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Neutrinoless double-β decay: Combining quantum Monte Carlo and the nuclear shell
model with the generalized contact formalism
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Neutrinoless double beta decay searches can determine the Majorana nature of neutrinos, the absolute neutrino
mass, and provide invaluable insights on the matter dominance of the universe. However, the uncertainty in the
nuclear matrix elements that govern the decay limits the physics reach of these experiments. We devise a novel
framework based on the generalized contact formalism that combines the nuclear shell model and quantum
Monte Carlo methods and compute the neutrinoless double-beta decay of nuclei used in the most advanced
experiments, including 76Ge, 130Te, and 136Xe. Our results cover all relevant terms, including the leading-order
short-range operator recognized recently. We validate our method in light nuclei by comparing against accurate
variational Monte Carlo results. On heavy systems we obtain reduced nuclear matrix elements compared with
previous calculations due to additional correlations captured by quantum Monte Carlo and introduced within
the generalized contact formalism, suggesting longer decay half-lives than previously considered. On the other
hand, we find an enhancement of the nuclear matrix elements due to the new short-range operator.
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I. INTRODUCTION

Neutrinoless double-beta decay (0νββ) is a hypothetical
transition of atomic nuclei forbidden by the standard model of
particle physics, in which two neutrons are transmuted into
two protons and two electrons are emitted with no accom-
panying antineutrinos [1]. The measurement of 0νββ decay
would have profound implications, demonstrating that lepton
number is not a symmetry of nature, proving that the neutrino
mass has a Majorana component [2]—so that neutrinos and
antineutrinos are the same particle—and, since two matter
particles are created without the corresponding antimatter
ones, illuminating the matter dominance in the universe. In
addition, assuming the decay is mediated by the exchange of
light neutrinos—the best motivated scenario both experimen-
tally and theoretically—it would provide invaluable insight on
the neutrino mass scale and ordering [3,4].

Because 0νββ is a second-order decay, in practice it can
only be detected in the few nuclei where β decay is either en-
ergetically forbidden or strongly suppressed by spin change.
Current best limits are given for 76Ge (T 0ν

1/2 > 1.8 × 1026 yr
[5]) and 136Xe (T 0ν

1/2 > 1.07 × 1026 yr [6]), and in this decade
next-generation ton-scale experiments plan to reach T 0ν

1/2 ≈
1028 yr, mainly in 76Ge, 100Mo, 130Te, or 136Xe [7–10]. Since
the decay involves physics beyond the standard model, its rate
is proportional to a parameter describing the lepton number
violation in that beyond standard model mechanism. In ad-

dition, the decay rate is also governed by a nuclear matrix
element (NME) that encodes the structure of the initial and
final nuclei. Thus, extracting specific new physics informa-
tion from half-life measurements demands reliable NMEs and
hence high-quality nuclear structure studies of heavy nuclei,
such as 76Ge and 136Xe.

Most NME calculations use the quasiparticle random-
phase approximation (QRPA) [11–14], nuclear shell model
(SM) [15–18], energy density functional theory [19–22], or
the interacting-boson model [23,24]. Among them, the SM
describes very well a variety of nuclear structure properties of
medium and heavy nuclei including those involved in 0νββ

decay [25–27]. These properties are mostly dictated by nu-
cleons around the Fermi surface, and therefore dominated by
mid- and long-range correlations. However, the SM and the
many-body methods listed above show deficiencies related to
the inconsistent treatment of the 0νββ-decay operator—for
an extensive review see Ref. [28]. These may appear as miss-
ing nuclear correlations or two-nucleon currents in the decay
operator.

Ab initio many-body methods, in contrast, treat transition
operators consistently, as they describe nuclear properties
emerging from the bare interaction between protons and
neutrons. This way they reproduce well β-decay rates in
light- and medium-mass nuclei [29] without any adjustments
(usually known as “quenching”), a feature required by the
less sophisticated many-body approaches mentioned above
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[23,30–33]. The challenge for ab initio approaches is to de-
scribe heavy nuclei like those that ββ decay. Ab initio methods
relying on single-particle basis expansion have calculated
reliably the 0νββ-decay NME for 48Ca [34–36], and have
even been extended to the heavier 76Ge and 82Se [37] but
with nuclear properties not yet of the same quality as in SM
calculations. On the other hand, quantum Monte Carlo (QMC)
methods [38] use coordinate-space representation of many-
body wave functions and are well-suited for the description
of nuclear states with complex intrinsic structures [39]. In
particular, they accurately treat short-range nuclear dynamics,
a key aspect for 0νββ transitions where decaying neutrons
are typically a few fm apart. This is even more critical for the
contribution to the NME recently recognized in Refs. [40,41],
which is of even shorter-range character. QMC calculations
describe well β decays [42] but so far have been limited to
light nuclei with up to A � 12 nucleons for 0νββ NMEs
[40,43].

The generalized contact formalism (GCF) is a powerful
tool to model the short-range behavior of nuclear distri-
butions, both in coordinate and momentum space [44–47].
Nuclear wave functions show a universal short-range behavior
determined by the nuclear interaction; the only dependence on
the specific nucleus comes about as an overall normalization
factor, proportional to the number of short-range correlated
(SRC) pairs. Hence, the GCF is applicable across the nu-
clear chart, provided that these normalization factors are
known. The GCF has been used to describe quantities that are
governed by short-range physics, with negligible long-range
contribution.

In this work, we develop a framework that combines the
GCF with QMC and the SM to capture both short- and
long-range nuclear dynamics that is applicable for a wide
range of processes, including 0νββ decay. This framework
is based on the observation that the ratio of the GCF normal-
ization factors for different nuclei is largely independent of
the specific nuclear Hamiltonian. Therefore, the short-range
behavior of 0νββ transition densities of a given heavy nucleus
can be completely determined from state-of-the-art variational
Monte Carlo (VMC) and SM calculations of light nuclei,
supplemented by SM results for the heavy nucleus of inter-
est. To obtain the full transition density, we rescale the SM
predictions so that they continuously match the GCF at short
distances. Although similar in spirit to correcting SM transi-
tion densities with Jastrow correlations [48–51], our approach
is more systematic and can exactly reproduce the transition
density at short distance.

First we validate our method in light nuclei, where
accurate QMC calculations are available. We then make
NME predictions for nuclei used in 0νββ experiments, in-
cluding 48Ca, 76Ge, 130Te, and 136Xe. Our results include
estimates of the theoretical uncertainty associated with our
method, although not all uncertainty sources can be cur-
rently accounted for. In addition to the contribution of
long-range operators to the NME, calculated in most pre-
vious works, we include the contribution of the recently
acknowledged short-range operator, for which our approach
may be particularly reliable. We follow recent analyses and
estimate the hadronic coupling associated with this short-

range term by the charge-independence-breaking (CIB) term
of the Argonne v18 (AV18) potential used in the VMC calcula-
tions. While for this work we use the phenomenological AV18
plus the three-nucleon Urbana X (UX) force, our method is
general and can readily be applied to interactions derived
within chiral effective field theory.

The paper is organized as follows. First, we introduce the
0νββ transition potentials in Sec. II. Section III describes the
many-body methods, while Sec. IV presents our NME results.
Finally, Sec. V summarizes our main conclusions and future
perspectives.

II. 0νββ TRANSITION POTENTIALS

Under the closure approximation [52,53], the 0νββ NME
between the initial and final nuclear states |�i〉 and |� f 〉 reads

M0ν = 〈� f |O0ν |�i〉. (1)

SM and QRPA results obtained using this approximation
differ by less than 10% with respect to those including
intermediate states explicitly [52–55]. This small error is con-
sistent with the effective field theory analysis of Ref. [56].
We focus on the light Majorana neutrino exchange. For this
mechanism the long-range transition operator can be cast as a
sum of Fermi (F), Gamow-Teller (GT), and tensor (T) contri-
butions O0ν

L = O0ν
F + O0ν

GT + O0ν
T , where

O0ν
F = (4πRA)

∑
a �=b

V 0ν
F (rab)τ+

a τ+
b ,

O0ν
GT = (4πRA)

∑
a �=b

V 0ν
GT (rab) σab τ+

a τ+
b ,

O0ν
T = (4πRA)

∑
a �=b

V 0ν
T (rab)Sab τ+

a τ+
b . (2)

Here τ+
a is the nucleon isospin raising operator, σa represents

the nucleon spin operator, σab = σa · σb, and the tensor op-
erator is Sab = 3(σa · r̂ab)(σb · r̂ab) − σab with rab being the
internucleon distance. The nuclear radius RA = 1.2 A1/3 fm is
inserted by convention to make the NME dimensionless. The
coordinate-space neutrino potentials above are obtained from
the standard Fourier transform:

V 0ν
α (rab) = 1

g2
A

∫
d3q

(2π )3 eiq·rabV 0ν
α (q2), (3)

where q is the momentum transfer, α indicates F, GT, or T,
and we take gA = 1.27 for the axial-vector coupling.

Defining V 0ν
α (q2) = 1

q2 vα (q2) the relevant functions can be
given in terms of the nucleon isovector vector, axial, induced
pseudoscalar, and magnetic form factors [28,43]:

vF (q2) = −g2
V (q2),

vGT (q2) = g2
A(q2) + 2

3

q2

2mN
gA(q2)gP(q2)

+ 1

3

q4

4m2
N

g2
P(q2) + 2

3

q2

4m2
N

g2
M (q2),

vT (q2) = −2

3

q2

2mN
gA(q2)gP(q2) − 1

3

q4

4m2
N

g2
P(q2)
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FIG. 1. Fermi (solid blue curve), Gamow-Teller (dashed orange
curve), tensor (dot-dashed green curve), and short-range (dot red
curve) transition potentials.

+ 1

3

q2

4m2
N

g2
M (q2), (4)

where mN = 938.9 MeV is the nucleon mass. Consistent with
the 0νββ literature, for the single-nucleon form factors we
adopt the simple dipole parametrization:

gV (q2) = gV

(1 + q2/	2
V )2 ,

gM (q2) = (1 + κ1)gV (q2),

gA(q2) = gA

(1 + q2/	2
A)2 ,

gP(q2) = − 2mN

q2 + m2
π

gA(q2), (5)

with vector coupling gV = 1, anomalous nucleon isovector
magnetic moment κ1 = 3.7, and pion mass mπ = 138 MeV.
The cutoff values are 	V = 0.85 GeV and 	A = 1.04 GeV.
More sophisticated functional forms for these form factors
exist [57], including some based on a systematic z expansion
[58]. However, for the relatively small momentum transfer
at play in 0νββ processes, |q| ≈ 200 MeV, no significant
differences are expected with respect to the simple dipole
ansatz.

Figure 1 displays the radial dependence of the transition
potentials and shows that the T component is clearly much
smaller than both the F and GT ones. This behavior is reflected
in the magnitude of the corresponding NMEs, as highlighted
in a number of previous calculations [15,59,60]. Including the
form factors regularizes the potentials at short interparticle
distances, while the typical 1/rab behavior at large rab is
preserved.

The authors of Ref. [40] have demonstrated that an ef-
fective field theory approach of the light-neutrino exchange
0νββ decay requires a leading-order counter-term to absorb
the divergences induced by the long-range neutrino poten-
tial and ensure renormalizability. This new short-range (SR)

operator is associated with a Fermi spin structure and a SR
neutrino potential:

O0ν
S = (4πRA)

∑
a �=b

V 0ν
S (rab)τ+

a τ+
b , (6)

V 0ν
S (rab) = 2

gNN
ν

g2
A

δ
(3)
R (rab), (7)

where δ
(3)
R (rab) is a regularized three-dimensional Dirac δ

function. In contrast with Ref. [41], the above definition in-
cludes a factor 1/g2

A so that the full light Majorana transition
operator is O0ν = O0ν

F + O0ν
GT + O0ν

T + O0ν
S . Consistent with

the opposite sign in the definition of the F, GT, and T con-
tributions, the sign of the SR potential is also different from
Ref. [41]. We note that the need of introducing the SR term
was shown using Eq. (1), which is obtained under the closure
approximation, thereby without including intermediate states
explicitly.

The value of the new coupling gNN
ν arises from nonper-

turbative QCD dynamics and could in principle be found
by matching to lattice-QCD calculations of light-neutrino
exchange amplitudes [61,62]. It can also be obtained by
reproducing the synthetic 2n → 2p + 2e data provided by
Refs. [63,64]. Alternatively, Ref. [41] notes that renormalizing
the nucleon-nucleon (NN) scattering amplitude with Coulomb
photon exchange also requires a short-range interaction with
coupling (C1 + C2)/2, and connects 0νββ and CIB SR cou-
plings: gNN

ν = C1. Furthermore, assuming the same value for
the two couplings entering the CIB of NN potentials, so that
gNN

ν � (C1 + C2)/2, describes well synthetic 2n → 2p + 2e
data [64]. We follow this approach, which allows us to evalu-
ate short-range 0νββ-decay NMEs for a variety of nuclei.

We compute the short-range behavior of nuclear states
from the high-quality AV18 NN potential. Hence, when eval-
uating NMEs we make the consistent replacement

gNN
ν δ

(3)
R (rab) → − 6

e2
vcd

01 (rab) (8)

[see Eq. (163) in Ref. [41] ]. The full expression for the short-
range component of the CIB term of AV18, vcd

ST (rab), for the
spin S = 0, isospin T = 1 channel can be found in Eq. (32) of
Ref. [65] and is displayed in Fig. 1. S = 1 contributions are
negligible at short distances. To better gauge the importance
of V 0ν

S , we also consider the expression derived from the CIB
contribution of the local, �-full chiral effective field theory
NN potential of Ref. [66]. Specifically, for the NV-Ia∗ model
(C1 + C2)/2 = −1.03 fm2 and δ

(3)
R (rab) = e−r2

ab/R2
S /(π3/2R3

S )
with RS = 0.8 fm.

Throughout this work, two-body transition densities play a
crucial role [41,67]

4πr2ρF (r) = 〈� f |
∑
a<b

δ(r − rab)τ+
a τ+

b |�i〉,

4πr2ρGT (r) = 〈� f |
∑
a<b

δ(r − rab)σabτ
+
a τ+

b |�i〉,

4πr2ρT (r) = 〈� f |
∑
a<b

δ(r − rab)Sabτ
+
a τ+

b |�i〉, (9)
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and ρS (r) = ρF (r). All NMEs can be obtained integrating the
above densities [41,67]:

M0ν
α =

∫ ∞

0
drC0ν

α (r), (10)

where we define C0ν
α (r) ≡ (8πRA)4πr2ρα (r)V 0ν

α (r) with the
additional factor two to compensate the restricted sum a < b
in Eq. (9).

III. MANY-BODY METHODS

A. Variational Monte Carlo

The VMC method solves the Schrödinger equation by ap-
proximating the true ground state of the system with a suitably
parametrized variational wave function �T . The Rayleigh-
Ritz variational principle

〈�T |H |�T 〉
〈�T |�T 〉 = ET � E0 (11)

is exploited to find the optimal set of variational parameters.
The VMC takes as input the Hamiltonian

H =
∑

i

− h̄2

2m
∇2

i +
∑
i< j

vi j +
∑

i< j<k

Vi jk, (12)

which consists of nonrelativistic single-nucleon kinetic-
energy terms, and two- and three-nucleon potentials. As for
the latter, in this work, we utilize the AV18 NN interaction
[65] in combination with the UX three-nucleon (3N) force.
UX is intermediate between the Urbana and Illinois fami-
lies of potentials [38] and is essentially a truncation of the
Illinois-7 (IL7) model [68]; it has the form of Eq. (17) in
Ref. [38], including two-pion S- and P-wave terms and a
short-range isospin-independent repulsion, with the parameter
values of IL7 but without the three-pion-ring term or short-
range isospin dependence. The highly successful Green’s
Function Monte Carlo calculations of light nuclei with AV18
+ IL7 shown in Ref. [38] start from VMC calculations with
AV18 + UX.

The VMC trial wave function is typically written as

|�T 〉 =
⎛
⎝1 +

∑
i< j<k

Fi jk

⎞
⎠(

S
∏
i< j

Fi j

)
|�J〉, (13)

where Fi j and Fi jk are two- and three-body operator correla-
tions, respectively and S denotes a symmetrized product over
nucleon pairs. The latter is required for the wave function to be
antisymmetric because, in general, the spin-isospin-dependent
correlation operators Fi j do not commute. The Fi j are designed
to reflect the spin-isospin and tensor dependence of the NN
interaction, while the Fi jk does the same for the 3N force.

To account for the alpha-cluster structure of light nuclei
the antisymmetric Jastrow wave function is constructed as a
sum over independent-particle terms, �A, each having four
nucleons in an α-like core and the remaining (A − 4) nucleons
in p-shell orbitals [69]:

|�J〉 = A
[ ∏

i< j<k

f c
i jk

∏
i< j�4

fss(ri j )
∏

k�4<l�A

fsp(rkl )

TABLE I. Normalized amplitudes for different spatial symmetry
components in the VMC wave functions for 12Be and 12C.

1S0[44] 3P0[431] 1S0[422] 5D0[422] 3P0[332]

12Be 0.983 0.186
12C 0.947 0.314 0.055 0.015 0.033

×
∑
LS[n]

(
βLS[n]

∏
4<l<m�A

f [n]
pp (rlm)

× |�A(LS[n]JJzTz )1234:5...A〉
)]

. (14)

The operator A denotes an antisymmetric sum over all pos-
sible partitions of the A particles into four s-shell and (A −
4) p-shell states. The independent-particle wave function
|�A(LS[n]JJzTz )1234:5...A〉 with the desired total angular mo-
mentum and projection JJz values of a given nuclear state
is obtained using orbital-spin LS coupling, which is most
efficient for nuclei with up to A � 12. It includes a product
over single-particle functions φLS

p (Rαl ) (4 < l � A) which are
p-wave solutions of a particle in an effective α-N potential
with Woods-Saxon and Coulomb terms. The symbol [n] is
the Young pattern that indicates the spatial symmetry of the
angular-momentum coupling of the p-shell nucleons [70]. The
pair correlation function for particles within the s shell, fss,
arises from the structure of the α particle. The fsp is similar
to the fss at short range, but it has a long-range tail that
approaches a constant at large distances, allowing the wave
function to develop a cluster structure, i.e., the asymptotic
binding is provided only by the φLS

p (Rαl ). Finally, fpp is set to
give the appropriate clustering outside the α core, while f c

i jk is
a three-body central correlation induced by the NN potential.

For the A = 6 case the 6He wave function has two spa-
tial symmetry components: 1S0[2] and 3P0[11], which give
a complete p-shell representation. Since 6Be is taken as the
charge-symmetric mirror, the 6He → 6Be transition densities
are large and have no nodal structure. For the A = 12 case, a
complete p-shell representation gives the 12Be wave function
two spatial symmetry components: 1S0[422] and 3P0[332],
while 12C has three additional components, given in Table I.
The normalized amplitudes for each component in Table I
indicate that the dominant states in the initial wave function
are a very small part of the final wave function, making the
12Be → 12C transition densities much smaller than for A = 6.
They are further reduced by the presence of a node in the
transition densities, required by the isospin orthogonality of
the two wave functions.

In an earlier comparison of VMC and SM calculations [51]
the VMC wave function for 12C included only the leading [44]
and [431] components. While these are by far the dominant
part of the final-state wave function, the small [422] and [332]
components included here have a much greater spatial overlap
with the 12Be wave function, leading to a significant change,
particularly at long range, in the transition densities. In partic-
ular, the GT NME with the more complete 12C wave function
is about double that of the previous VMC calculation, while
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the F and T NMEs increase by 10%–20%. This improves the
agreement between VMC and the earlier SM calculations of
Ref. [51].

The expectation values of quantum-mechanical operators
of the form of Eq. (11) contain multidimensional integrals
over all nucleon positions

〈�T |O|�T 〉
〈�T |�T 〉 =

∫
dR�

†
T (R)O�T (R)∫

dR�
†
T (R)�T (R)

, (15)

and Metropolis-Hastings Monte Carlo techniques are em-
ployed to efficiently evaluate them. These Monte Carlo
samples are also used to compute the two-body transition den-
sities of Eq. (9) and to estimate their statistical uncertainties.

B. Nuclear shell model

The nuclear SM is one the most successful nuclear many-
body methods for describing the properties of ground and
excited states, including electromagnetic and weak transitions
[25–27]. It is also one of the common methods used to com-
pute 0νββ-decay NMEs [15–18].

To handle both light and heavy nuclei, the nuclear SM
simplifies the many-body problem by restricting to a rel-
atively small configuration space consisting of one or two
harmonic-oscillator shells. This excludes from the calculation
the core—filled with nucleons—below and the high-energy
orbitals—empty—above the configuration space, but their
impact is captured by an effective interaction correspond-
ing to the configuration space. The resulting many-body
Schrödinger equation is

Heff|�SM〉 = E |�SM〉, (16)

which we solve using the J-coupled code NATHAN [25]. Even
though ab initio approaches allow one to obtain effective
interactions solely based on NN and 3N forces [71], in this
work we use high-quality interactions obtained from NN
potentials complemented with small phenomenological ad-
justments, mostly on the monopole part [25].

For light A � 12 nuclei we use the p- and sd-shell config-
uration space and the PSDMWK interaction [72,73] corrected
for center-of-mass contamination. In heavier nuclei we use the
same configuration space and SM interactions as in previous
SM studies [15,16,74]: the p f -shell with the KB3G [75] and
GXPF1B [76] interactions for 48Ca, the 1p3/2, 1p1/2, 0 f5/2,
0g9/2 space with the GCN2850 [15], JUN45 [77], and JJ4BB
[78] interactions for 76Ge, and the 1d5/2, 2s1/2, 1d3/2, 0g7/2,
0h11/2 space with the GCN5082 interaction [79] for 130Te and
136Xe.

All the SM interactions used are isospin symmetric, while
the spin-isospin symmetry relevant for GT transitions is bro-
ken due to the spin-orbit interaction and the different isovector
and isoscalar pairing strengths [80]. The SM configuration
space for light nuclei and 48Ca include all relevant spin-orbit
partner orbitals. In contrast, these are not always included
in the configuration spaces in heavier nuclei. A consequence
of this is that β and 2νββ matrix elements tend to be more
overestimated when some spin-orbit partners are missing than
when they are all included [81]. While this could also have

FIG. 2. Fermi transition density for A = 48 using the SM
with HO, WSS, and WSW single-particle orbitals and the KB3G
interaction.

implications for 0νββ-decay NMEs, the situation is less clear
[82–84].

The SM wave functions from Eq. (16) directly provide
energies and other observables not dependent on radial de-
grees of freedom. However, for 0νββ decay the spatial part is
relevant as well, and usually a harmonic oscillator (HO) basis
is used for single-particle states [15,74]. Here we follow the
improved approach of Ref. [51] and obtain our transition den-
sities replacing the standard HO spatial single-particle states
by Woods-Saxon (WS) ones, which reflect a more realistic
long-range asymptotic behavior. We consider two kinds of
WS potential: first, the standard parametrization from Suho-
nen (WSS) [85]; second, the potential proposed by Ref. [51]
adjusted to the experimental neutron and proton separation
energies and taking all orbitals in the configuration space as
bound (WSW)—however, these conditions cannot be met for
A = 6, which we only study with WSS. We have checked that
alternative WS parametrizations [86] give very similar results
to WSS.

In light nuclei, Ref. [51] shows that SM results with WSW
orbitals greatly improve the agreement with VMC ones. The
improvement with WSS is similar. However, extending the
SM results with WS single-particle orbitals to heavy nuclei is
challenging, and only HO calculations are currently feasible.
Fortunately, we have tested in A = 48 that the differences
between using HO and WS orbitals become smaller for heav-
ier systems. Figure 2 shows minor differences between the
F transition density computed employing the two different
parametrizations of the WS orbitals and the HO one for single-
particle orbitals. Likewise, the GT and T transition densities
are also very similar.

Since the nuclear SM deals with regularized effective in-
teractions, part of the short-range dynamics is missing in
the wave functions. This shortcoming is common to other
non ab initio approaches such as the QRPA, energy den-
sity functional theory and interacting boson model. Because
the short-range dynamics can impact 0νββ decay NMEs,
typically calculations correct for missing SRCs via a Jastrow-
type function. Different parametrizations have been provided
by Miller-Spencer [48] or based on Argonne and CD-Bonn
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potentials [49], or by others [50,87,88]. However, in this work
we do not include any additional correlations of this kind, as
we introduce the correct short-range dynamics captured by the
VMC calculations using the GCF.

C. Generalized contact formalism

The GCF is an effective theory for describing the impact
of SRCs on a variety of nuclear distributions and observables.
This formalism has proven extremely successful in model-
ing the short-range and high-momentum parts of different
nuclear densities [45–47], and also large momentum trans-
fer electron-scattering experiments sensitive to SRCs [89–93]
and other reactions [44,94–96]. In a high-resolution picture,
when two or more particles are close to each other, and,
therefore, strongly interacting, the SM solution for the wave
function—based on a regularized potential—becomes inaccu-
rate [97]. For example, SRCs lead to a significant occupation
of high-momentum states absent in the SM. On the other hand,
QMC methods fully capture these features but are limited to
light nuclei. Therefore, the GCF provides an ideal framework
to quantitatively incorporate the correct short-range behavior
into shell-model calculations of heavy nuclei.

The GCF is based on scale separation, leading to
wave-function factorization when two particles are very
close to each other. Explicitly, any nuclear wave function
�(r1, r2, . . . , rA) is expected to obey the asymptotic form [45]

� −−−→
ri j→0

∑
α

ϕα (ri j )A
α (Ri j, {rk}k �=i, j ). (17)

Here ri j = r j − ri and Ri j = (ri + r j )/2 are the relative and
center-of-mass coordinates of the pair, and α denotes its
quantum numbers, i.e., parity πα , spin sα , total angular mo-
mentum jα , and projection jαz, and total isospin tα and
projection tαz. Isospin quantum numbers are relevant to keep
the nuclear wave function � antisymmetric under permu-
tations of any two nucleons. This convention is equivalent
to the one in most previous GCF studies considering wave
functions antisymmetric under separate permutations of pro-
tons and neutrons. The solution of the zero-energy two-body
Schrödinger equation ϕα (ri j ) describes the pair dynamics
when the two nucleons are close together. It is a universal
function, i.e., identical for all nuclei and all quantum states,
but depends on the particular nuclear interaction. It can be
written as

ϕα (r) ≡ ηtα,tαz

∑
�α∈πα

φα (r)[Y�α
(r̂) ⊗ χsα

] jαmα , (18)

where ηt,tz is an isospin factor, Ylm are spherical harmonics,
χsm is the two-body spin function, and the sum runs over
orbital angular momenta �α of correct parity πα that can
couple with sα yielding jα . The radial dependence is modeled
by φα (r), which is independent of jαz and, to good accuracy,
also of tαz due to isospin symmetry.

Based on this asymptotic form, the nuclear contacts for a
nucleus with A nucleons are defined as

Cαβ = A(A − 1)

2
〈Aα|Aβ〉. (19)

The factor A(A − 1)/2 appears in place of the number
of proton-proton, neutron-proton, or neutron-neutron pairs
present in previous publications because here the wave func-
tion is antisymmetric under permutation of any two nucleons.

The diagonal contacts Cαα are proportional to the number
of correlated pairs in the nucleus with quantum numbers α.
However, in this work we apply the GCF to describe the
short-range behavior of the two-body densities relevant for
0νββ transitions. Hence, we define new contact parameters
that involve different initial (i) and final ( f ) nuclear states as

Cαβ ( f , i) = A(A − 1)

2
〈Aα ( f )|Aβ (i)〉. (20)

Using the above definition, we can write the dominant contri-
butions to the transition densities defined in Eq. (9) at short
distances. For F and GT transitions, we expect pairs in a
s-wave state, mainly with s = 0, j = 0, t = 1. Denoting the
corresponding contact parameter for a transition of two neu-
trons to two protons (nn → pp) with such quantum numbers
as C0

pp,nn( f , i), the F transition density can be expressed as

ρF (r) −−→
r→0

1

4π
|φ0(r)|2C0

pp,nn( f , i), (21)

where φ0(r) is the radial function for the � = 0, s = 0, j = 0,
t = 1 channel. Since ρS = ρF , the above asymptotic form is
also valid for the transition density associated with the short-
range operator of Eq. (7). As for the GT transition, the σab

operator leads to a factor of (−3) in this s = 0 channel and
we similarly obtain

ρGT (r) −−→
r→0

− 3

4π
|φ0(r)|2C0

pp,nn( f , i), (22)

which implies the following relation between the F and GT
densities for short distances

ρGT (r � 1 fm) = −3ρF (r � 1 fm). (23)

Based on our previous experience with two-body densities
[46,47], these expressions should provide a good description
of the transition densities for r � 1 fm. The s = 1 contribution
is negligible at short distances, but it is accounted for at larger
distances using the SM calculations.

To calculate the 0νββ matrix elements, we wish to com-
bine the GCF expressions, valid at short distances, and the
long-range behavior of the nuclear SM many-body wave func-
tions. The main unknowns in this approach are the values of
the relevant contacts, which in general depend on the nucleus
and on the particular nuclear interaction. Nevertheless, previ-
ous studies have shown that for the case of the contacts defined
in Eq. (19), contact ratios Cαα (X )/Cαα (Y ), for any two nuclei
X and Y , are model independent [47,96,98]. In this sense,
contact ratios can be interpreted as long-range, low-resolution
quantities that do not depend on the details of the nuclear
interaction.

Such a model independence is expected to hold also for
ratios of the contacts defined in Eq. (20). Therefore, the ratio
of the contacts C0,SM

pp,nn( f1, i1)/C0,SM
pp,nn( f2, i2)—indices 1 and 2

denote different 0νββ decays—is inferred from SM transition
densities at short distances. Then, the contact C0,VN

pp,nn( f2, i2) is
obtained by fitting the short-range behavior to the transition
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density “2” computed with VMC for a given realistic nuclear
interaction VN . Finally, the contact for transition “1” is ob-
tained exploiting the model independence of the ratios:

C0,VN
pp,nn( f1, i1) = C0,SM

pp,nn( f1, i1)

C0,SM
pp,nn( f2, i2)

C0,VN
pp,nn( f2, i2). (24)

This procedure allows us to obtain contact values of heavy
nuclei for any nuclear interaction, using only a single ab initio
calculation for light nuclei and SM ones for both heavy and
light nuclei. In Sec. IV we demonstrate the validity of the
model independence of contact ratios.

The contact value C0,VN
pp,nn( f1, i1) and the corresponding

short-range radial function fully determine the short-range
part (r � 1 fm) of the transition densities for a given nuclear
interaction. On the other hand, the SM is expected to provide
high-quality transition densities at long distances. Thus, we
merge the GCF and SM results continuously, by scaling the
SM transition densities to match the GCF expression around
r � 1 fm. This approach, dubbed GCF-SM, allows us to ob-
tain the F and GT transition densities for any given nuclear
interaction—including heavy nuclei where direct ab initio
calculations with high-resolution potentials are currently not
available. We integrate the resulting transition densities as in
Eq. (10) to evaluate the relevant 0νββ NMEs.

In the case of the T transitions the leading contribution is
expected to come from p-wave channels. There are three such
channels (with j = 0, 1, 2) which complicates the analysis.
In addition, comparing SM and VMC calculations, it seems
that the model-independence of the ratios does not hold for
the T case. For this reason, in this work we estimate the T
matrix element by the SM results with a 50% uncertainty. This
should not have a big impact on the total NME as the T part
is expected to be small compared with the GT contribution
[15,28].

IV. RESULTS AND DISCUSSION

A. Light nuclei

To use the GCF to describe the short-range part of the tran-
sition densities, we evaluate the contact C0

pp,nn( f , i) assuming
the model independence of contact ratios. In light nuclei, the
availability of both VMC and SM 0νββ transition densities
allows us to test the accuracy of this approach. Figure 3 (top
panel) displays three ratios of F transition densities: 12Be →
12C decay, 10Be → 10C decay, and 14C → 14O decay, all rel-
ative to 6He → 6Be decay. These have been obtained with
the VMC method for the AV18 + UX interaction and with the
SM method for the PSDMWK interaction, together with the
importance-truncated no-core shell model (IT-NCSM) calcu-
lations of Ref. [99] in which the chiral EM1.8/2.0 interaction
was used (A = 14 calculations are not available for the VMC
method, while A = 12 calculations are not available for the
IT-NCSM method.) Based on Eq. (21), we expect these ratios
to reach a plateau at short distances, representing the contact
ratio of the two transitions. Indeed, the SM calculations show
such a clear plateau. The EM1.8/2.0 ratios seem to also reach
a plateau for r � 0.5 fm. The AV18 + UX ratio are somewhat
noisy at the very short distances (r � 0.5 fm), but focusing

FIG. 3. (top) Fermi transition density ratio for different nuclei,
calculated using different interactions (AV18 + UX, EM1.8/2.0,
and SM). The EM1.8/2.0 results are IT-NCSM calculations from
Ref. [99]. (bottom) VMC Fermi transition densities (solid circles)
compared with the GCF description using the universal function
squared and fitted value of the contact (dashed black lines and bands).

on the 0.5 fm � r � 1 fm range, we also observe a plateau. In
addition, we can see that for all cases separately (i.e., A = 10,
A = 12, and A = 14) the value of the ratio at short distances
is very similar for the different interactions, indicating model
independence. Note that model independence is also observed
when considering similar ratios of heavier nuclei using differ-
ent SM interactions.

To corroborate the fact that AV18 + UX VMC calculations
for different nuclei are indeed characterized by a universal
behavior at short distances, we show in Fig. 3 (bottom panel)
the VMC Fermi transition densities compared with the GCF
universal function squared (calculated using the AV18 inter-
action). The contact value has been fit so as to reproduce the
VMC results at r < 1.0 fm based on Eq. (21), while the error
bands are obtained by changing the best-fit value by ±10%.
It clearly emerges that at short distances, the VMC transition
densities are well described by the same universal function for
r < 1 fm, as predicted by the GCF.

To gauge the accuracy of our approach, we use the VMC
transitions for A = 6 and A = 10 to predict results for A =
12. The contact C0

pp,nn(10Be, 10C) is fit to the VMC calcula-
tions using the functional form of Eq. (21). We then obtain
the A = 12 contact C0

pp,nn(12Be, 12C) based on the model
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independence of Eq. (24), multiplying C0
pp,nn(10Be, 10C) by

the average value of the SM ratio ρF (A = 12)/ρF (A = 10)
at short distances. We repeat the same procedure using as
input the VMC transition densities for A = 6. Comparing
the two approaches yields �10% differences in the extracted
contact values, and we take the average as our best estimate
for C0

pp,nn(12Be, 12C), associated with a ±10% uncertainty.
Once the value of the contact is determined, we construct

the short-range part of the F, GT, and SR transition densities
with Eqs. (21) and (22). To highlight the consistency of the
approach, we note that the value of the contact is extracted
from VMC calculations using the AV18 + UX Hamiltonian,
and the two-body function φ0(r) is computed with the same
AV18 NN force.

For long distances we use the SM transition densities, after
rescaling them so that they are continuously merged with the
short-range part. This part is expected to be well described by
the SM, given the very good description it gives of nuclear
structure and spectroscopy [25,26]. In particular, long-range
correlations have been studied extensively in 0νββ studies
[100–102], and the SM has proven to capture well important
correlations such as those related to high-seniority compo-
nents [103] or proton-neutron pairing [80]. Furthermore, a
recent statistical analysis for 48Ca suggests that the lowest-
energy 2+ state in 48Ti and especially the 2νββ NME are
the nuclear properties better correlated with the 0νββ NME
[104]. These two observables are well described by SM cal-
culations, in the case of the 2νββ matrix after accounting for
a “quenching” factor common to β decays and which is the
same for all nuclei in the same mass region [32,105,106]. In
sum, even though it is possible that 0νββ NMEs could be
sensitive to different physics than other nuclear properties, we
expect that the GCF-SM describes also well the long-range
part of the transition densities.

The upper, middle, and lower panels of Fig. 4 display the
F, GT, and SR transition densities obtained with the above
procedure. The band is obtained by randomly varying sepa-
rately the contact value within its ±10% uncertainty, and the
matching point of GCF and SM between 0.8–1.0 fm. Fig-
ure 4 shows an overall good agreement between the GCF-SM
and the VMC results. In particular, our new method greatly
improves upon the short-range behavior of the SM transi-
tions densities, bringing them into excellent agreement with
the VMC ones. It has to be noted that while introducing ad
hoc Jastrow-like correlations into SM calculations certainly
ameliorates their short-range behavior, the agreement with ab
initio results is not as good [51]. In addition, the GCF can
readily accommodate different interactions and correct SM
calculations in a consistent fashion. The long-range part of the
transitions (r � 1 fm), taken from the SM, also agrees with
the VMC, although some small differences can be observed
for the F and GT transitions. In this regard, an important
role is played by the complete p-shell representation of the
VMC 12C wave function utilized in this work, in contrast
with earlier VMC calculations [41,43,51] that only included
the leading [44] and [431] spatial symmetry components. As
expected, the transition density of the SR operator is almost
perfectly described by our approach, at both short and long
distances.

FIG. 4. Fermi, Gamow-Teller, and short-range transition densi-
ties for the 12Be → 12C decay calculated with the SM WSS (orange
line), VMC (green points), and the combination of the GCF and SM
WSS (blue band) approaches. For the latter, only VMC calculations
for A = 6 and A = 10 are used to extract the 12Be → 12C contact
value.

We further gauge the accuracy of the GCF-SM method
by using either both the A = 10 and A = 12, or the A = 6
and A = 12 VMC transition densities, to predict the A = 6
or A = 10 ones, respectively. The latter are then integrated as
in Eq. (10) to obtain the corresponding NMEs M0ν

α . Figure 5
compares the GCF-SM A = 6, A = 10, and A = 12 F (up-
per panel), GT (middle panel), and SR (lower panel) NMEs
for these nuclei to the VMC and standard SM results—see
Table II for their numerical values. Most of the VMC and
GCF-SM matrix elements are consistent within the error
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FIG. 5. Ratio of nuclear matrix elements of the F (upper panel),
GT (central panel), and SR (lower panel) operators. Results obtained
combining the GCF and SM, or just the SM approach, divided by the
VMC ones with the AV18 + UX Hamiltonian. Both WSS and WSW
parametrizations are used for the SM calculations.

bars—little dependence on the particular WS parametrization
is observed—and SR NMEs agree especially well. The SR
SM values without correcting for SRCs, not shown in Fig. 5,
are about 10 times larger than the VMC ones due to the
scale of the AV18 SR potential, see Fig. 1. While a rigorous
uncertainty quantification of SM results is difficult to carry
out, the GCF-SM error estimation appears to be reasonable,
although it does not include directly all possible error sources.

We note that using SR transition potential from the NV-
Ia* interaction changes the value of M0ν

S by less than 20%,

TABLE II. Fermi, Gamow-Teller, and short-range NMEs for the
6He → 6Be, 10Be → 10C and 12Be → 12C transitions calculated us-
ing different methods. VMC2 stands for VMC calculations with two
components for 12C, while VMC5 includes five components. The
latter is used to extract the contact ratios.

Transition Method F GT SR

6He → 6Be VMC 0.935 3.706 0.296
WSS 1.001 4.160 3.293

WSS + GCF 0.72(16) 3.08(71) 0.32(8)
10Be → 10C VMC 1.178 3.632 0.528

WSW 1.254 4.524 4.631
WSS 1.303 4.695 4.834

WSW + GCF 0.83(19) 2.99(66) 0.43(10)
WSS + GCF 0.93(20) 3.36(76) 0.50(12)

12Be → 12C VMC2 0.102 0.365 0.347
VMC5 0.111 0.751 0.371
WSW 0.211 0.943 2.677
WSS 0.203 0.885 2.680

WSW + GCF 0.16(4) 0.69(14) 0.37(7)
WSS + GCF 0.15(3) 0.61(12) 0.36(7)

despite the differences in the shape of the transition densities
C0ν

S (r) being more dramatic. Nonetheless, fully consistent
calculations of SR operators for potentials other than AV18
require using the appropriate two-body function φ0(r) and the
corresponding VMC transition densities. This is left for future
work.

Finally, we have studied the effect of 3N forces on the
A = 6 VMC NME values. Adding the 3N force increases the
binding energy and makes the nucleus more compact. The F
and GT matrix elements to the mirror nucleus change by less
than ±1.5%. However, the small tensor is increased by 15%.
This is probably because the 3N force boosts the fraction of
the wave function with S � 1 from 19% to 24%.

B. Heavy nuclei

Having validated the accuracy of the GCF-SM approach
on light nuclei, we now turn our analysis to nuclei relevant
to the 0νββ decay experimental program, currently beyond
the reach of the VMC method. We obtain GCF-SM predic-
tions of 0νββ transitions analogously to light nuclei, the only
difference being that we use all the VMC and SM transition
densities for A = 6, A = 10, and A = 12 nuclei to extract the
contact values. The short-range components of the transition
densities are modeled according to Eqs. (21) and (22) and
continuously matched to rescaled SM results, so that the long-
range part C0ν

α (r) is fully specified.
We note that the experimentally relevant decays are

isospin-changing transitions (�T = 2). Nevertheless, we use
also isospin-conserving (�T = 0) transitions of light nuclei
(A = 6 and A = 10) to calculate contact values because the
GCF model-independence of contact ratios does not dis-
tinguish between isospin-conserving and isospin-changing
decays. The validity of this statement was tested above for
the A = 12, �T = 2 transition.
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TABLE III. Fermi, Gamow-Teller, and short-range NMEs for
the 48Ca → 48Ti, 76Ge → 76Se, 130Te → 130Xe, and 136Xe → 136Ba
transitions using the SM (HO, WSS, WSW) and the GCF-SM with
different WS orbitals to fix the values of the contact ratios. The
KB3G SM interaction was used for A = 48, GCN2850 was used
for A = 76, and GCN5082 for A = 130 and A = 136. Results using
additional SM interactions appear in Appendix A.

Transition Method F GT SR

48Ca → 48Ti WSS 0.144 0.893 2.389
WSW 0.138 0.868 2.110
HO 0.145 0.906 2.388

WSS + GCF 0.09(2) 0.60(12) 0.32(6)
WSW + GCF 0.09(2) 0.57(12) 0.28(5)
HO(S) + GCF 0.09(2) 0.61(13) 0.32(6)
HO(W) + GCF 0.09(2) 0.60(12) 0.32(6)

76Ge → 76Se HO 0.357 3.030 5.346
HO(S) + GCF 0.23(5) 2.14(47) 0.70(13)
HO(W) + GCF 0.23(5) 2.12(48) 0.69(13)

130Te → 130Xe HO 0.418 2.882 5.942
HO(S) + GCF 0.27(6) 2.02(44) 0.78(15)
HO(W) + GCF 0.27(6) 1.97(43) 0.77(15)

136Xe → 136Ba HO 0.335 2.312 4.725
HO(S) + GCF 0.22(5) 1.61(36) 0.62(12)
HO(W) + GCF 0.22(4) 1.60(36) 0.61(12)

While for light nuclei A � 12 WSS and WSW clearly
improve the transition densities in Eq. (9) in relation with the
VMC results, the HO and WS radial wave functions lead to
very similar results in 48Ca, see Fig. 2. Based on this observa-
tion, for A � 48 nuclei our SM transitions are obtained with
HO orbitals. On the other hand, the SM transition densities
for A = 6, A = 10, and A = 12 used to extract the contact
ratios against AV18 + UX VMC results are always carried out
with WS single-particle states. Specifically, we denote the HO
results for heavy nuclei “HO(S)” or “HO(W)” depending on
whether the WSS or WSW parametrization is used to extract
the contacts from light-nuclei transitions.

Figure 6 illustrates the differences between SM and GCF-
SM transition densities for the 76Ge → 76Se decay, covering
the F, GT, and SR operators. The short-range behavior of the
SM is modified in a consistent fashion as in light nuclei and
reflects the underlying realistic nuclear potential. Analogously
to Fig. 5, we do not report the SM transition densities for
the SR operator, as the corresponding NMEs are about seven
times larger than the GCF-SM values.

The GCF-SM results for the F, GT, and SR matrix elements
for A = 48, A = 76, A = 130, and A = 136 are displayed
in Fig. 7 and their numerical values are listed in Table III.
They are compatible with NME results using alternative SM
interactions given in Appendix A. We supplement these pre-
dictions with estimates for the uncertainties associated with
the matching procedure and the extraction of the contact ra-
tios as described in Sec IV A. Our results indicate that the
F and GT matrix elements are reduced by about 20%–45%
compared with the conventional SM calculations due to the
additional SRCs introduced via the GCF.

FIG. 6. Transition densities C0ν
F (upper panel), C0ν

GT (middle
panel), and C0ν

S (lower panel) for the 76Ge → 76Se decay obtained
with the SM with HO orbitals (orange line) and the GCF-SM (blue
band). The GCN2850 SM interaction was used.

The bottom panel of Fig. 7 shows that the value of the
short-range NME is significantly smaller in A = 48 than in
heavier nuclei, a trend which is similar when we replace
the SR transition potential with the one corresponding to
the NV-Ia* interaction—M0ν

S only changes by about 20%.
Figure 7 also indicates that our short-range NMEs are in
general smaller but consistent within error bars with the SM
results by Jokiniemi et al. [107], which cover a wider range
of SR transition potentials—not including the AV18 one we
use—and are further corrected by the SRC parametrization
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FIG. 7. NMEs of the F (upper panel), GT (middle panel), and SR
(lower panel) operators using the GCF-SM and the SM approaches,
compared with the SR results of Jokiniemi et al. [107] and Wirth et al.
[36]. The KB3G SM interaction was used for A = 48, GCN2850 was
used for A = 76, and GCN5082 for A = 130 and A = 136.

of Ref. [49]. In contrast, we only use one SR potential and
just include uncertainties associated with the matching proce-
dure and the extraction of the contact ratios. The M0ν

S values
obtained with the QRPA by Jokiniemi et al. are somewhat
larger than ours. Remarkably, our SR NME for 48Ca is in
good agreement with the in-medium similarity renormaliza-
tion group (IMSRG) combined with the generator coordinate
method (IM-GCM) ab initio result of Wirth et al. [36]. This
is particularly interesting since they use a different nuclear
interaction and also a different procedure for determining the
SR coupling gNN

ν .

FIG. 8. Long-range matrix element M0ν
L calculated with the com-

bination of the GCF and the SM (blue), the SM without (orange)
and with SRCs from Jokiniemi et al. (green) [107], CC theory from
Novario et al. (red) [34], the VS-IMSRG method from Belley et al.
(purple) [37], and the IM-GCM from Yao et al. (brown) [35]. For
A = 48 we use the KB3G SM interaction, GCN2850 for A = 76, and
GCN5082 for A = 130 and A = 136.

Eventually, the total 0νββ decay NME is the sum of
the long-range term M0ν

L = M0ν
GT + M0ν

F + M0ν
T and the short-

range matrix element M0ν
S . As discussed in Sec. III, we

evaluate the relatively small MT contribution within the stan-
dard SM, associated with a conservative 50% uncertainty.
Figure 8 presents our results for M0ν

L , highlighting that the
GCF-SM reduces the value of M0ν

L by about 15%–40%
compared with the original SM calculations. Therefore, our
approach introduces a much larger SRC effect than the one
from typical SRC parametrizations such as the one from
Ref. [49] used in SM 0νββ studies, see the very small dif-
ference between the SM (HO) and Jokiniemi et al. results
from Ref. [107]. Figure 8 also compares our NMEs with
the ab initio results of Novario et al. [34] using the coupled
cluster (CC) method and of Yao et al. [35] using the IM-GCM
approach for 48Ca and of Belley et al. [37] using the valence
space IMSRG (VS-IMSRG) method for 48Ca and 76Ge. Our
long-range NMEs are in very good agreement with all the
ab initio results for 48Ca even though these calculations use
different nuclear interactions, and are also consistent with the
VS-IMSRG for 76Ge. As our estimation of the tensor matrix
element is currently based on SM calculations, it is also useful
to compare our results for M0ν

F + M0ν
GT with those of ab initio

calculations. Belley et al. [37] obtain M0ν
F + M0ν

GT = 0.7 for
48Ca, and M0ν

F + M0ν
GT = 2.50 for 76Ge. This is in very good

agreement with our results (see Table III). The good agree-
ment with ab initio calculations supports our predictions for
130Te and 136Xe, for which ab initio NMEs are not available
currently.

Comparing Figs. 7 and 8, it is apparent that the SR term
contributes significantly to the total NME: M0ν

S is around
35%–60% of M0ν

L for A = 48—in good agreement with
Ref. [36]—and around 25%–40% for the heavier nuclei. Since
M0ν

S has the same sign as M0ν
L , the total matrix element would

be enhanced, also in agreement with Ref. [36]. Despite the
differences between our results and the SM ones of Jokiniemi
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et al., the relative importance of the SR term is overall similar,
while the QRPA predicts somewhat larger ratio values [107].

It is important to highlight the differences between the
GCF-SM and previous attempts to include SRCs into the SM
and other approaches based on regularized interactions. Some
of the correlation functions that produce larger effect of SRCs,
e.g., those by Miller and Spencer [48], were criticized because
they lead to violation of isospin symmetry because they yield∫ ∞

0 r2ρF (r)dr �= 0 even when the isospins of the initial and
final states differ [108]. Given the relatively large effects of
SRCs, one might think that the GCF-SM approach can suffer
from the same shortcomings. Reference [108] also claims that,
in order to respect isospin symmetry, correlation functions
should peak around r � 1 fm with a value above 1 to compen-
sate for the reduction of probability at short distances. This
behavior eventually leads to a relatively small effect on the
NME values. In contrast, to match the VMC and SM results
an appropriate correlation function should be defined as the
ratio of the corresponding transition densities—by construc-
tion, multiplying the SM results by this correlation function
reproduces the VMC one. By comparing the VMC and SM
transition densities presented in Fig. 4, we notice that the cor-
relation function does not peak around r � 1 fm. Furthermore,
the GCF-SM approach has a significant difference in that the
SM results are rescaled to match the short-range behavior, so
that the effect of the GCF does not approach unity at long
distances unlike most SRC parametrizations. This rescaling
allows the GCF-SM to compensate for the short-range reduc-
tion without a peak at r � 1 fm. Some violation of the isospin
orthogonality can still be found in our actual results, but this
is due to subleading corrections, like three-body correlations,
and possible small differences between the SM and the exact
solution at long distances. For an extended discussion, see
Appendix B. Eventually, the good agreement between the
GCF-SM and VMC results (which rigorously obey isospin
orthogonality) in light nuclei shown in Fig. 4 demonstrates
the accuracy of our method.

In addition, most of the available SRC functions assume in
their derivation a simple form for the uncorrelated wave func-
tion, for instance, the single Slater determinant in Ref. [49].
The latter differs from the SM wave function and therefore
leads to inconsistencies when combined with SM calculations.
Likewise, the correlation function based on VMC calculations
introduced in Ref. [87] also uses a simple function for the
uncorrelated part. Furthermore, Ref. [87] uses proton-proton
VMC densities of a given nucleus in contrast to the transi-
tion densities involving the initial and final nuclei used in
the GCF-SM approach. In short, the GCF-SM replaces the
need of introducing SRC functions by directly providing the
appropriate short-range structure for any given NN interaction.

V. CONCLUSIONS

We have introduced a novel protocol based on the GCF
that combines SM and QMC methods to compute 0νββ

decay nuclear matrix elements of heavy nuclei relevant for
experimental searches. The GCF captures the short-distance
behavior of transition densities computed within VMC, while
rescaled SM calculations are used to model the long-range

components. A key role in our GCF-SM approach is played
by the “contact” values, which determine the number of short-
range correlated pairs participating in the transition densities.
Assuming their model-independence—extensively verified in
diagonal two-body densities—we extract the contact values
of heavy nuclei combining VMC calculations of light nu-
clei with SM transitions of both light and heavy isotopes.
We verify the accuracy of this procedure on VMC transition
densities of A = 6, A = 10, and A = 12 nuclei. The latter
are also improved compared with earlier VMC calculations
by introducing a complete p-shell representation of the 12C
wave function. We supplement the GCF-SM predictions by
estimates of uncertainties due to the matching procedure and
the extraction of the contact ratios.

We employed the GCF-SM to predict NMEs for 48Ca,
76Ge, 130Te, and 136Xe. The long-range matrix elements are
appreciably reduced by 15%–40% with respect to the SM
calculations. In particular, the impact of SRCs is significantly
larger within the GCF-SM than when using relatively soft
functions to incorporate SRCs effects into the SM. In fact,
our approach replaces altogether the need of using correlation
functions, since, besides an overall normalization factor, the
short-range behavior of the transition density is fully deter-
mined by the GCF. Remarkably, our results are consistent
within the error bars with recent ab initio results for 48Ca
and 76Ge from the CC, VS-IMSRG, and IM-GCM methods.
Furthermore, we make GCF-SM predictions for the heaviest
emitters used in 0νββ searches: 130Te and 136Xe, for which
ab initio results are not currently available. Given the agree-
ment with the VMC in the light-nuclei sector and with other
ab initio approaches for 48Ca and 76Ge, we believe that the
GCF-SM is a reliable complementary approach to calculate
0νββ NMEs. This might help to reduce the overall uncer-
tainty in the NMEs due to the different values obtained using
different many-body methods.

The GCF-SM approach is especially suitable for calculat-
ing the recently introduced leading-order SR matrix element.
Using a potential consistent with the AV18 interaction used
to compute the transition densities at short distances, we find
that the SR term enhances the total NME by 25%–40% in
heavy nuclei, which is consistent with IM-GCM and SM
estimations. Nonetheless, our SR NMEs obtained based on
the CIB of AV18 may need to be rescaled once the correct
gNN

ν coupling is determined—see Ref. [63] for a recently
proposed strategy using synthetic data. As we mentioned
above, the choice of gNN

ν � (C1 + C2)/2 describes well this
synthetic data, within 35% in the case studied in Ref. [64].
This approximation is also supported by the QCD analysis in
Ref. [109]. Nonetheless, since the Ci couplings are scheme
and scale dependent, it is difficult to quantify the exact impact
of fitting gNN

ν directly to the synthetic data.
A limitation of this work is the absence of two-body cur-

rents in the 0νββ decay, which are related to a consistent
treatment of the transition operator. Two-body currents are
necessary to reproduce β-decay matrix elements [29,110], but
are not fully included in any 0νββ calculation yet, where their
impact has only been estimated within simple approximations
[111–113]. However, Refs. [29,110] indicate that two-body
currents are relatively less important when using hard nuclear
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TABLE IV. Fermi, Gamow-Teller, and short-range NMEs for the decays 48Ca → 48Ti with the GXPF1B interaction and 76Ge → 76Se with
the JJ4BB and JUN45 interactions.

Transition Method F GT SR

48Ca → 48Ti (GXPF1B) WSS 0.133 0.763 2.115
WSW 0.127 0.742 1.867
HO 0.133 0.770 2.098

WSS + GCF 0.08(2) 0.50(11) 0.28(5)
WSW + GCF 0.08(2) 0.49(11) 0.24(5)
HO(S) + GCF 0.08(2) 0.51(11) 0.28(5)
HO(W) + GCF 0.08(2) 0.50(11) 0.27(5)

76Ge → 76Se (JJ4BB) HO 0.357 3.051 4.949
HO(S) + GCF 0.23(5) 2.16(48) 0.64(12)
HO(W) + GCF 0.23(5) 2.13(48) 0.63(12)

76Ge → 76Se (JUN45) HO 0.395 3.283 5.672
HO(S) + GCF 0.26(5) 2.30(0.51) 0.74(14)
HO(W) + GCF 0.25(5) 2.30(0.51) 0.73(14)

interactions characterized by high-momentum components,
like AV18. In this sense, the absence of two-body currents
in our NMEs may have a smaller impact than for ab initio
methods relying on a single-particle basis expansion that deal
with softer nuclear potentials.

The GCF-SM 0νββ matrix elements presented in this work
rely on VMC calculations carried out with the AV18 + UX
Hamiltonian, and the short-range GCF two-body function has
consistently been computed with AV18. In future work we
plan to study the NME dependence on the nuclear Hamilto-
nian of choice, including ones derived within chiral effective
field theory. For instance, the local chiral Norfolk two- and
three-body potentials can be readily incorporated in the GCF-
SM method once the VMC calculations are carried out. On
the other hand, including nonlocal potentials would require
calculating transition densities for light nuclei with suitable
many-body methods, like the no-core shell model [99,114].

A further development of the method is to improve the
treatment of the tensor matrix element. This is especially im-
portant in view of a recent ab initio study that found relatively
large tensor contributions compared with the SM [37]. This
development will require disentangling the different p-wave
contributions at short distances and additional analyses of
the model independence of contact ratios. We also note that
there are some differences between the SM and the VMC at
intermediate and long distances that should be further studied
to improve the accuracy of our predictions.

More generally, the GCF-SM approach, anchored on VMC
calculations of light nuclei, can be applied to incorporating the
effect of SRCs in a variety of nuclear quantities accessible by
the nuclear SM. We envision computing the transition densi-
ties relevant for studying the role of correlations and two-body
currents in single-β decay rates. As noted in Ref. [42], the
two-body densities exhibit a universal, i.e., nucleus indepen-
dent, behavior at short distance. Describing the contribution
of the leading one-body current is more complicated, since
the separation to short-range and long-range contributions
is less obvious. Also, we plan on utilizing the GCF-SM
method to analyze momentum distributions and spectral func-
tions of nuclei of interest in the context of electron-scattering

experiments and for the accelerator-based neutrino oscillation
program.
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APPENDIX A: ADDITIONAL SHELL
MODEL INTERACTIONS

Table IV provides the values of the NMEs using additional
SM interactions: GXPF1B for the decay of 48Ca and JUN45
and JJ4BB for the decay of 76Ge. As noted in the main body
of the paper, these results are compatible within errors with
those reported in Table III.

APPENDIX B: ISOSPIN SYMMETRY

As discussed above, due to isospin symmetry the integral∫ ∞
0 4πr2ρF (r) should approximately vanish for isospin-

changing transitions. Table V presents the values of this
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TABLE V. Values of the integrals
∫ ∞

0 4πr2ρF (r) and∫ ∞
0 4πr2ρGT (r) for isospin-changing decays (�T = 2) using

different methods. For the SM we use the KB3G interaction for
A = 48, GCN2850 for A = 76, and GCN5082 for A = 130 and
A = 136.

Transition Method
∫ ∞

0 4πr2ρF (r)
∫ ∞

0 4πr2ρGT (r)

12Be → 12C VMC5 −0.00026 0.20
WSS −0.000021 −0.036

WSS + GCF 0.010 ± 0.004 −0.06 ± 0.02
48Ca → 48Ti WSS 0.000065 0.14

WSS + GCF 0.009 ± 0.003 0.09 ± 0.02
76Ge → 76Se HO −0.000013 0.56

HO(S) + GCF 0.018 ± 0.006 0.4 ± 0.1
130Te → 130Xe HO 0.0000085 0.35

HO(S) + GCF 0.028 ± 0.009 0.23 ± 0.05
136Xe → 136Ba HO 0.000019 0.27

HO(S) + GCF 0.020 ± 0.007 0.17 ± 0.04

integral for the isospin-changing decays using the VMC, SM,
and GCF-SM approaches. For the VMC and SM calculations,∫ ∞

0 4πr2ρF (r) ≈ 10−4–10−6. For the GCF-SM calculations,
we obtain smaller cancellations of the order of 10−2. To

understand the origin of this result, we can compare the
A = 12 F transition we obtain using the GCF-SM method with
the VMC results (top panel of Fig. 4). At short distances there
is a good agreement between the two calculations, while for
longer distances there are some small differences. We note
that Fig. 4 shows the C0ν

F (r) density which includes the tran-
sition potential V 0ν

F (r). Asymptotically, this potential has the
form ≈1/r, and, therefore, the long-distance tail is suppressed
in C0ν

F (r). When we consider ρF (r), the long-distance tail
becomes more significant. We can therefore conclude that dif-
ferences between the VMC and the SM in the long-range tail
are the main reason for the

∫ ∞
0 4πr2ρF (r) values we obtain

in the GCF-SM approach. Such differences are much less
significant for the calculation of 0νββ NMEs due to the 1/r
suppression, and therefore the value of this integral should not
be regarded as an important criteria for the reliability of 0νββ

NMEs.
The values of the integral

∫ ∞
0 4πr2ρGT (r) are also pre-

sented in Table V. Again, for A = 12 the disagreement
between the VMC and GCF-SM values is driven by the
long-range part (see Fig. 4). References [67,115] discuss the
relevance of this integral, and its possible connection to 0νββ

decay. For 48Ca, 76Ge, 130Te, and 136Xe, the GCF-SM values
with uncertainties are in good agreement with the correlations
presented in Ref. [115].
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