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Abstract 

We demonstrate that nucleosomes placed in the gene body can be accurately located from signal decay theory assuming two emitters located 
at the beginning and at the end of genes. These generated wave signals can be in phase (leading to well defined nucleosome arrays) or in 
antiphase (leading to fuzzy nucleosome architectures). We found that the first (+1) and the last (-last) nucleosomes are contiguous to regions 
signaled by transcription factor binding sites and unusual DNA physical properties that hinder nucleosome wrapping. Based on these analyses, 
w e de v eloped a method that combines Machine L earning and signal transmission theory able to predict the basal locations of the nucleosomes 
with an accuracy similar to that of experimental MNase-seq based methods. 
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ntroduction 

ucleosomes (the basic units of eukaryotic chromatin) are
ormed by 147 bp of duplex DNA wrapped around an oc-
amer of histones ( 1 ), followed by a linker DNA where, in
omplex eukaryotic organisms, an additional histone (H1)
an be bound ( 2 ). Nucleosomes are not randomly placed but
aintain a defined architecture along the genome, with certain
ositions occupied by well-positioned nucleosomes while oth-
rs are nucleosome-free ( 3–9 ). Most significant nucleosome
ree regions (NFRs) are associated with the promoter regions
f genes (upstream of the Transcription Start Sites, TSSs),
he replication origins (ORIs) and the Transcription Termina-
ion Sites (TTSs) ( 10 ,11 ). The general consensus is that NFRs
t TSSs are preferentially recognized by effector proteins in-
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volved in the regulation of gene activity, and the widths of
these regions correlate with gene expression ( 12 ). Further-
more, perturbation in nucleosome architectures associated to
stress, changes in cell cycle phases, source of nutrients, or the
cell metabolic cycle ( 6 , 11 , 13 , 14 ) proved the connection be-
tween nucleosome architecture and gene activity. The causal-
ity in this relationship is however unclear. 

Over the last two decades, many efforts have been made
to discover the main determinants of nucleosome position-
ing ( 15–20 ). Several studies have suggested that DNA phys-
ical properties are crucial for defining nucleosome posi-
tioning, with NFRs characterized by sequences where the
mechanical cost of wrapping DNA around nucleosomes
is very high ( 10 , 13 , 21 ). On the contrary, others have
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Table 1. Genes modified with the 81-nt sequence in each strain 

Gene Strain Strand Start End Chromosome Insert Position Phasing 

UBX5 1 + 1 127 872 1 129 374 chrIV 1 128 586 Phased 
CKB2 2 + 405 768 406 544 chrXV 406 248 Phased 
PPT1 3 - 736662 738 203 chrVII 737 615 Phased 
TRP4 4 + 1 184 747 1 185 889 chrIV 1 185 196 Phased 
BSP1 1 + 883 828 885 558 chrXVI 884 578 Control (not-phased) 
DGK1 2 - 899056 899 928 chrXV 899 667 Control (not-phased) 
SLM3 3 - 392659 393 912 chrIV 393 462 Control (not-phased) 
PAN5 4 - 224030 225 169 chrVIII 224 581 Control (not-phased) 
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suggested that nucleosome positioning is dictated exclusively
by cellular machinery involving a complex interplay between
chromatin remodelers, transcription factors and RNA poly-
merase activity ( 22–25 ). Chromatin reconstitution experi-
ments ( 13 , 22 , 26 , 27 ) demonstrated that NFRs are well re-
produced in vitro , but their boundaries are not precise in
the absence of cellular effectors. These findings suggest that
while physical principles can signal NFRs, cellular machin-
ery is required for the correct definition of their bound-
aries ( 18 , 25 , 28 ). Nonetheless, it is unclear how these intrin-
sic and extrinsic signals are combined to define nucleosome
architecture. 

We explore here whether the basal nucleosome architecture
can be determined by easily available DNA descriptors such as
sequence-dependent physical properties ( 29 ,30 ) and sequence
annotations of transcription factor binding sites (TFBSs) ( 31 ).
Additionally, we investigated whether changes in nucleosome
architecture are a reason for, or a consequence of gene ex-
pression. With this aim, we developed a method that com-
bines Machine Learning (ML) and signal transmission theory
(STT) able to predict the most probable nucleosome architec-
tures in yeast with accuracy comparable to experimental tech-
niques. Furthermore, synthetic biology experiments demon-
strate that the structural fingerprint of active genes (character-
ized by wide NFRs and phased nucleosome arrays) is a con-
sequence, rather than a reason for their gene expression level
( 14 ,32 ). 

Materials and methods 

Yeast strains and growth conditions 

The Saccharomyces cerevisiae PPY1 strain ( MA T a his3 Δ0
leu2 Δ0 met15 Δ0 ura3 Δ0 bar1::leu2) was transformed with
the appropriate DNA fragments to generate all the mutant
strains used in this work. The PPY1 strain was obtained from
Oscar Aparicio’s lab at the University of Southern California,
USA. For the selection of the mutant strains, we used YPD
with or without 5-FOA (5-fluoroorotic acid) and SD (synthetic
defined) with the required amino acids. 

Mutant strains generation 

We generated 4 mutant strains, with the 81-nt DNA sequence
(5 

′ -GCGTGTTGTGTTTTCTCCGAGGAGAAAC ATTC A 

AATCTTGTGCT ATGGCTTTGCCT ACCGTCTGCGCCA 

TCCATCTTTCGC-3 

′ ) inserted in the coding sequence of
2 selected genes per strain (Table 1 ). We selected four non-
essential genes which showed phased nucleosomes (UBX5,
CKB2, PPT1, TRP4; see phase definition below) together with
four non-essential control genes which were unphased (BSP1,
DGK1, SLM3, PAN5). The 81-nt sequence was designed not
to match any existing yeast sequence and not to favor nor 
disfavor nucleosome formation or affect the reading frame 
(see Results). The strains were produced using the Delitto 

Perfetto strategy described in ( 33 ). 

RNA extraction and RT-qPCR 

Three independent colonies from each yeast strain were grown 

until exponential phase and then arrested at late G1 by alpha- 
factor. RNA was obtained from 10 ml yeast cultures (OD 600 

0.8) using the hot-phenol method. cDNA synthesis was done 
with the First Strand cDNA Synthesis Kit (Roche) using oligo 

dT and following the provider instructions. Gene expression 

levels were determined by quantitative PCR using the Light- 
Cycler 480 sybr green I master (Roche). The oligonucleotides 
used for the qPCR are listed in Supplementary Table S1 . 

Transcription inhibition 

In order to determine the correct incubation time to inhibit 
transcription without killing the cells, we selected 2 genes with 

low RNA stability (RPA135 and NMD3) and 2 genes with 

high RNA stability (ACT1 and DGK1) to serve as controls 
( 34 ). We then measured their mRNA level by qPCR after in- 
cubation with 10-phenanthroline at 100 μg / ml at 30 

◦C dur- 
ing 0, 5, 15, 30 and 45 minutes. Using this approach, we ob- 
served that the amount of RPA135 and NMD3 mRNA started 

to decrease after 30 min. This incubation time was selected to 

perform the MNase-seq experiments on cells with inhibited 

transcription. 

MNase digestion 

The Micrococcal nuclease (MNase) digestion was performed 

on semi-intact yeast cells prepared as described elsewhere ( 35 ).
We optimized the MNase digestion conditions for each sample 
to obtain about 80% of mononucleosomes. The integrity and 

size distribution of digested fragments were determined using 
the microfluidics-based platform Bioanalyzer (Agilent) prior 
to sample preparations and sequencing. The sample prepara- 
tion was done using the Illumina TruSeq DNA sample prepa- 
ration kit for whole genome sequencing, following the Illu- 
mina standard protocol. The libraries (paired-end) were se- 
quenced paired-end on a HiSeq2000, v4, 2 × 75 bp, with ap- 
proximately 10 M PE reads / sample. 

Nucleosome calling 

MNase-seq paired-end reads were mapped to customized ver- 
sions of the yeast genome (SacCer3, UCSC), containing the 
inserted sequences in the modified genes, using the Bowtie 
( 36 ) aligner, allowing up to two mismatches. Output files were 
imported in to R where reads were trimmed to 50 bp 

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae689#supplementary-data
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aintaining the original center and transformed to reads per
illion bp. Peak calling was performed, after noise filtering,
ith the nucleR package implemented in the Nucleosome Dy-
amics platform ( 37 ,38 ) using the standard parameters for
east: peak width of 147 bp, peak detection threshold of 35%
nd maximum overlap of 80 bp. Nucleosome calls were con-
idered well-positioned when nucleR’s peak width score and
eight score were higher than 0.6 and 0.4 ( 39 ) respectively,
nd fuzzy otherwise. 

ucleosome periodicity and phasing 

eriodicity in nucleosome positioning was determined for
ach gene by computing the autocorrelation coefficient, as
een in ( 40 ): 

R (T ) = 

∫ X 2 

X 1 

I(x ) · I( x − T ) dx (1)

here X 1 and X 2 stand for the limits of a sampling window
e.g. the position of TSS and TTS), I is the function represent-
ng nucleosome coverage for all genes and T is the period. This
hus reflects the continuity of a nucleosome repeat length and
ill have a maximum when all the nucleosome peaks are T 

nits apart as R (T ) will be the highest. In other words, au-
ocorrelation is defined by the correlation between a profile
nd shifted versions of itself. This method can uncover hidden
atterns in the signal that wouldn’t be clear by just examining
he strength of the signal itself. Autocorrelation coefficients
or different periods were normalized as shown in: 

ˆ R ( T ) = 

R ( T ) 
R ( 0) 

(2)

ucleosome period is defined as the value of T that optimizes
ˆ 
 (T ) , and periodic genes are those showing large autocorre-

ation coefficient values (eq. 1 ). Phased genes are defined as
hose where the +1 to –last distance ( L ) is a multiple of the
eriod ( T ). Anti-phased genes are those where the distance
rom integer (DFI) score, defined as the modulus of the ratio
ength / periodicity, is close to T / 2 . Unphased genes refer to
ntermediate values. 

DF I = L − T · round 

(
L 

T 

)
(3)

ignal transmission theory for nucleosome 

ositions 

aving observed experimentally two clear NFRs at the be-
inning and end of genes, we propose a simple signal decay
odel, where the coverage at a given position is given by the

ddition of two independent positioning signals emitted from
he two ends of a gene, one starting from the +1 (i.e. the nucle-
some right after the NFR at promoter region), and another
ne from the –last nucleosome (i.e. right before the TTS). The
trength of the signal emitted from the two ends has been cho-
en to better reproduce the nucleosome coverage pattern. For
his reason, the emitted value is strongest at the position of
he +1 ( Co v +1 ( X) ) compared to the emitter from the -last nu-
leosome ( Co v −last ( X 

′ ) ) , as can be seen in: 

Co v +1 (X) = 

(
1 + α + sin 

(π

2 

+ 2 · π

T 

X 

))
σ ( | X| 

T ) (4)

Co v −last ( X 

′ ) = 

(
1 + sin 

(π

2 

+ 2 · π

T 

X 

′ 
))

σ ( | X 
′ | 

T ) (5)
where X is the distance from the +1 nucleosome and X ’ is
the distance from the -last nucleosome, X’ = L – X . The shift-
ing factor α corrects for the higher density of reads at the +1
nucleosome and the decay factor σ accounts for the reduced
coverage as we move away from the NFR. We evaluated dif-
ferent values for α and σ and selected those that maximized
the correlation between the observed experimental coverage
and the predicted ( α was set to 0.2 and σ was set to 0.7). The
total coverage is then normalized to guarantee an effective de-
cay of the signal: 

C ov (X) = 

C o v +1 (X) + Co v −last ( X 

′ ) 
C o v +1 (0) + Co v −last (0) 

(6)

where, C o v +1 (0) , C o v −last (0) are the values of the two emit-
ting signals at the +1 nucleosome dyad, which are used as
denominator to normalize the Cov(X) to 1 at this position.
The difference in strengths will be determined by the factor
α which affects the normalization of the total coverage. 

Deformation energy 

The elastic energy associated to the DNA deformation from
the naked to the nucleosome DNA was calculated in the har-
monic regime using: 

Energy = 

∑ 146 
j=1 E j 

146 

with E j = 

1 

2 

6 ∑ 

s =1 

6 ∑ 

t=1 

k 

j 
st �X 

j 
s �X 

j 
t (7)

where j stands for each of the 146 bp steps of the DNA
stretches. E j is the elastic energy required at each base pair
step determined using the stiffness matrix (K), and �X 

j 
s and

�X 

j 
t are the differences between the nucleosome and equilib-

rium values for the 6 bp step helical parameters (roll, twist,
tilt, slide, rise or shift). The equilibrium values and stiffness
constants for each individual base pair step were taken from
MD simulations that cover all the unique base pair steps in all
the possible tetranucleotide environments from microsecond-
long parmbsc1 simulations ( 29 ,30 ). 

Machine learning 

A Neural Network (NN) was developed to predict NFRs (and
non-NFRs, i.e. regions occupied by nucleosomes) based exclu-
sively on sequence information. The selected NN was defined
by three layers: an input layer which depended on the selected
centered window length, a 30-neuron hidden layer and a 2-
neuron output layer to obtain the respective probabilities for
the two studied classes. We used a ReLU activation function
for the hidden layer and a sigmoid activation function for the
output layer as defined in Keras ( https://keras.io ). The binary
crossentropy function was minimized using a stochastic gradi-
ent descent optimizer with parameters 0.001 for the learning
rate and 0.003 for the momentum. The NN was built using
the Python library scikit-learn (v 0.20.3) ( 41 ), the software
library TensorFlow ( 42 ) and its API Keras. 

Data on nucleosome positions were obtained from MNase-
seq experiments of yeast cells synchronized at the G1 phase
and processed with nucleR as implemented in our Nucleo-
some Dynamics package ( 37 ,38 ). NFRs defined by nucleR
proximal to TSS or TTS were used for training. As non-NFRs
are more present in the data than NFRs, we randomly re-
moved points from non-NFRs to obtain a balanced data set
corresponding to the NFRs / one and non-NFRs / zero classes.
A train / test ratio of 80 / 20 was used to reduce overtraining
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A B
C D

A B

C D

Figure 1. Average nucleosome coverage (red), TFBS density (yellow) and deformation energy (green) around well positioned +1 and –last nucleosomes 
for open NFRs (wider than 215 bp): Long TSSs-NFR (panel A , 2749 genes), Long TTSs-NFR (panel B , 1134 genes); and closed NFRs (shorter than 215 
bp): Short TSSs-NFR (panel C , 644 genes) and Short TTSs-NFR (panel D , 942 genes). 
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artifacts and to choose the best ML algorithm. To explore
the generality of the model some additional tests were done
by training the model only with data from one chromosome
(chrIV) and validating the model on the whole genome. Ad-
ditionally, to avoid any potential bias training and testing on
the same set of data, we re-trained our model with data from
DANPOS ( 43 ) and tested on nucleR defined maps. 

Results 

NFRs are characterized by unique DNA physical 
properties and by high density of 
protein-recognition sequences. 

Our analysis of the entire yeast genome reveals the placement
of NFRs at the TSS and TTS of genes; the latter being present
in different classes of gene, tandem and convergent, showing
that the NFRs at the TTS is not a duplication of a neighboring
TSS (see Supplementary Figure S1 ). Interestingly, both NFRs
correspond to regions where the harmonic deformation en-
ergy (see Methods) required to wrap the DNA around the his-
tone core is unusually high and where there is a large density of
potential TFBS (Figure 1 ). Note that this behavior was found
for both open (Figure 1 A, B) and closed (Figure 1 C, D) NFRs,
suggesting the existence of a sequence-coded fingerprint char-
acterizing all NFRs (at least at functionally relevant gene
positions). 
The differential characteristics of NFRs allowed us to train 

a Neural Network (NN) classifier to predict NFRs using as 
predictive features the deformation energy and experimental 
TFBS density profiles through the entire genome (see Materi- 
als and methods). These features are taken as stacked vector 
windows of size N around a center point, which define the 
first input layer of our neural network consisting of N × 2 

neurons (see Supplementary Figure S2 ). The resulting method 

has a good NFR prediction power as shown by the Area un- 
der the ROC Curve (AUC) of 96% and accuracy of 92% (Fig- 
ure 2 A, B; see also some examples of NFR predictions along 
the genome shown in Supplementary Figure S3 ). As described 

in Methods, in order to demonstrate the consistency of our 
model we trained our predictor using only one large chro- 
mosome (chrIV) and tested it on all remaining chromosomes 
with good results (accuracy of 90% on the remaining chro- 
mosomes). 

The NN-prediction peaks were then fitted to a Gaussian 

curve to define the 95% range (2 standard deviations of the 
mean; see Figure 2 C–F) at which we place the +1 (TSS) and 

–last (TTS) nucleosomes. In order to test the precision of this 
procedure, we then considered the overall averaged experi- 
mental maps and located ( 44 ) the first peak before and after 
the NFR to which we assigned the dyad of the –last and +1 

nucleosomes, respectively. After the positioning we calculated 

the absolute difference between the experimental positions 
and our predicted ones considering the Gaussian fitting. This 

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae689#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae689#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae689#supplementary-data
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A

B

C

D

E

F

Figure 2. (A, B) panels showing the receiver operating characteristic (ROC) curve results from our Neural Network for ( A ) a 350 bp window and ( B ) 
different window sizes ROC curves (350 bp in blue, 250 bp in orange and 600 bp in green). NFR prediction (grey) against nucleosome experimental 
co v erage (red) for ( C ) all TSSs (5676 genes), ( D ) well defined TSSs (3393 genes), ( E ) all TTSs (5676 genes) and ( F ) well defined TTSs (2076 genes). Green 
lines denote the a v erage prediction of the +1 (in C and D) and –last (in E and F ) nucleosomes, 2 stds from a fitted Gaussian distribution (dark blue). 
Purple lines mark the peak of the NFR probability prediction. Around 19% of the genes were excluded from the analysis given that they were missing 
the +1 and / or –last nucleosome experimental calls (see Supplementary Table S2 ). 
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imple method allowed us to position the +1 and –last nucleo-
omes with striking accuracy: only 4 bp (+1) and 17 bp (–last)
way from the detected peaks ( 44 ) (Figure 2 C, D for TSSs
nd 2E, F for TTSs). The results from increasing and decreas-
ng our predetermined standard deviation from our Gaussian
tting allowed us to observe a decrease in accuracy as we
ove away from two standard deviations. This was also the

ase when considering separately and optimizing for different
lasses of genes (tandem or convergent). Additionally, train-
ng our model and performing the same analysis for larger
nd shorter windows (600 and 250 bp), we observed similar
r worse results (data not shown). 
We repeated the same procedure but training only us-

ng a single chromosome (chrIV) and obtained similar re-
ults (see Supplementary Figure S4 A–D). Quite interestingly,
ur method works for both open (the distance between the
wo dyads is wider than 215 bp) and closed NFRs (the dis-
ance between the two dyads is shorter than 215 bp) ( 39 ),
specially when predicting the crucial +1 nucleosome (see
Supplementary Figure S4 E–H). In order to further validate
our model and discard possible biases given by training and
testing the algorithm on the same dataset, we trained our
algorithm with nucleosome positioning maps obtained from
a widely used calling tool DANPOS ( 43 ) and tested it with
our experimental data. The results obtained showed that our
model trained with DANPOS nucleosome positions was still
able to position the +1 and –last nucleosomes, respectively
9 and 11 bp away from the experimental average peak (see
Supplementary Figure S5 ). This is similar to the distances
obtained when the algorithm was trained with maps from
nucleR. 

Nucleosome positioning along gene body is 

determined by distance-decayed periodic signals. 

We showed above how nucleosome positioning at the begin-
ning and end of genes can be defined by a combination of
intrinsic and extrinsic properties coded in the DNA sequence.

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae689#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae689#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae689#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae689#supplementary-data
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Figure 3. Scheme of resulting calls using nucleR (top golden bo x es) with 
the co v erage coming from the e xperimental mapping (red profile) against 
the predicted co v erage from our signal theory combined prediction; see 
Materials and methods (green profile). Note the cell variability detected 
as multiple peak callings detected by nucleR in the top plot. 
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Our next step was to predict the placement of nucleosomes
in the gene body and to understand why some of these nucle-
osomes appear well-positioned giving clear signal in the ex-
perimental MNase-seq maps, while others appear quite de-
localized leading to fuzzy signals. Firstly, we determined nu-
cleosome periodicity by computing the autocorrelation coef-
ficient (see Methods for details) from the nucleosome cov-
erage from one of our MNase-seq experiments for different
given periods (T; see Eqs. 1 –2 ), finding a clear peak at 165
bp (the average nucleosome repeat length in yeast ( 45 ); see
Supplementary Figure S6 ). This establishes reasonably well
the distance between the +1 and the –last nucleosomes (DFI,
see Methods) as a multiple of T, but as expected not the dis-
tance between the TSS and TTS which we find to be more
uniform ( Supplementary Figure S7 ). 

Taking the experimental positions of the +1 and –last nu-
cleosomes as emitting sites of a distance decaying signal (see
Materials and methods, Eqs. 4 –6 ), we can predict the posi-
tions of the intragenic nucleosomes (this is defined through-
out the paper as our combined prediction ) with good accu-
racy (Figure 3 ). As expected, the model performs best when
predicting those nucleosomes which are well positioned close
to the TSS, while the largest deviations are found in central
regions, where nucleosomes show more cell-dependent vari-
ability (see the green error bars in Supplementary Figure S8 A),
leading to fuzzier signals. Similarly, at the TTS our predic-
tion improves when the experimental nucleosomes are well
positioned, and we perform worse when we observe fuzzier 
architectures. 

Globally, we could reproduce well the nucleosome architec- 
ture within the gene (green box in Supplementary Figure S8 B) 
with 85% of the experimental nucleosomes correctly pre- 
dicted, and an average distance to the experimental peak (as 
determined by nucleR) of 19bp. Note that, matching the pre- 
diction from our model, experimental MNase-seq maps (Fig- 
ure 4 A) show the presence of phased genes, where the +1 and 

–last signals add up to define clear and periodic nucleosome 
patterns, and unphased genes, where signals can partially can- 
cel out in the middle of the gene, leading to diffuse nucleosome 
patterns (see examples in Figure 4 B, and profiles in Figure 
4 C), illustrating cell variability in these regions. Additionally,
it is also worth noting the stronger intensity detected experi- 
mentally of the +1 nucleosome emitter compared to the –last 
one, something that is considered and well reproduced by our 
signal-decay model (see Materials and methods). 

Predicting nucleosome positioning along the entire 

genome 

We can now join the NFR predictor and the periodic sig- 
nals from STT to reconstruct the nucleosome architecture 
at the genome level ( full prediction throughout the paper).
This method allowed us to reproduce 78% of the nucleo- 
some profile with an average distance of 32 ± 22 bp from 

the experimental peaks determined by nucleR (blue box in 

Supplementary Figure S8 B), without any experimental infor- 
mation on the position of the + 1 and -last nucleosomes.
The average distance to nucleR peaks compares well to the 
average experimental distance of 37 bp found between the 
centers of each individual read and the corresponding peak 

obtained from the coverage of all the reads ( 37 ) (red box 

Supplementary Figure S8 B), indicating that our nucleosome 
position estimate is within the intrinsic experimental noise de- 
rived from cellular heterogeneity. In our full prediction we de- 
tected a milder increase in noise as we displaced to the cen- 
ter of the gene than that found with our combined predic- 
tion (i.e. STT prediction based on experimental +1 and –last 
nucleosomes (blue bars in Supplementary Figure S8 A)). Fi- 
nally, our full prediction model is able to distinguish well be- 
tween phase and unphased genes as detected experimentally 
( Supplementary Figure S9 ). 

Next, we explored the robustness of the predicted nucleo- 
some arrays to changes in gene expression ( 10 ). To this end,
we checked the ability of our G1-trained model to reproduce 
nucleosome arrays within cells collected at different cell cycle 
phases or determined from completely different experiments 
( 11 ). As seen in Supplementary Figure S10 the model performs 
very well in reproducing not only G1, but also M and S data.
This suggests that there is a basal nucleosome architecture,
which can be reasonably well reproduced by our simple pre- 
dictive model, despite of specific changes related to the action 

of the cellular machinery. 

Nucleosome architecture and gene expression are 

coupled in a complex way 

Results above strongly suggest that nucleosomes along the 
genes are located based on periodicity rules from signals 
derived from the presence of NFRs, which position the +1 

and –last nucleosomes, organizing the rest of the nucleosome 
string, which can be well ordered in the case of phased genes,

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae689#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae689#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae689#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae689#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae689#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae689#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae689#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae689#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae689#supplementary-data
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Figure 4. Signal decay model of nucleosome positioning. ( A ) Experimental (left panel) and predicted (right panel) nucleosome co v erage f or each gene, 
with respect to the +1 nucleosome. Genes are sorted by the distance between the +1 and the –last nucleosomes. Colour scale corresponds to 
normalized nucleosome coverage, from 1 (red) to 0 (white). ( B ) Nucleosome coverage, experimental (black) and predicted (purple, see Materials and 
methods Eq. 6 ) from the +1 nucleosome, a v eraged across all genes. Genes are split into phased or unphased based on DFI < 10 and DFI > 40, 
respectively. ( C ) Signals from the +1 (red) and the –last nucleosomes (blue) to predict the experimental coverage (see Materials and methods Eqs. 4 –5 ). 
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r fuzzier in the case of the non-phased ones. Analysis of
Nase-seq and RNA-seq datasets from ( 46 ) show that, as

xpected( 14 ,32 ), transcriptionally active genes are associated
ith wider NFRs. Interestingly, while nucleosome positions
re not altered dramatically, the coverage is more periodic
long the gene bodies in transcribed regions in comparison to
he inactive counterparts (Figure 5 A and C) as was previously
bserved ( 40 ). This finding, which is also clear when looking
t predicted nucleosome coverage (Figure 5 B and D), reveals
 correlation between expression and periodicity, a result that
grees with the ‘crystal-like’ behavior of nucleosome in active
enes suggested by Vaillant e t al. ( 7 ). 

While the correlation between the architecture of the nu-
leosome array and gene activity is clear, the causality link
s not so obvious. To clarify this point, we inserted an in-
ocuous 81-nt sequence in a linker region approximately at
he middle of the coding sequence of 8 non-essential genes (4
enes with phased nucleosomes and 4 with unphased nucleo-
omes). The insert was placed in a linker region to avoid di-
ect interference with specific nucleosomes (see Figure 6 A and
Supplementary Figure S11 ). Additionally, we tested the effect
on nucleosome positioning and gene expression. For techni-
cal reasons, we only modified 2 genes per strain so we built 4
strains in total, with one phased and one unphased gene mod-
ified per strain (see Figure 6 , Table 1 and Materials and meth-
ods). In principle, we could expect three different scenarios:
(i) a displacement of the +1 and –last nucleosomes to recover
the original phasing; (ii) a coordinated small displacement of
all nucleosomes to recover phasing; and iii) an increase in the
fuzziness of the nucleosome string. Results in Table 2 , Figure
6 B and C, Supplementary Figures S12 –S14 demonstrate that
the introduction of the DNA segment in the phase genes leads
to the generation of fuzzier nucleosome arrays, but neither to
a significant change in the placement of the +1 and –last nu-
cleosomes, nor to a coordinate sliding of nucleosomes. This
suggests that irrespectively of other nucleosomes, the +1 and
–last are placed in well-defined regions marked by sequence-
dependent intrinsic and extrinsic factors, while the rest of the
nucleosomes are placed based on periodicity considerations as

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae689#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae689#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae689#supplementary-data
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A B

C D

Figure 5. Co v erage f or highly (713 genes) and lo wly (669 genes) e xpressed genes against a periodic nucleosome repeat length f or ( A ) our e xperimental 
method and ( B ) combined predicted co v erage. Autocorrelation scores for highly (red) and lowly (blue) expressed genes derived from ( C ) MNase-seq 
experiment al dat a and ( D ) our co v erage from our full prediction (see Materials and methods). 
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Interestingly, analysis of mRNA levels for the eight modified
genes with or without the 81-nt segment only showed signifi-
cant changes for two of the eight genes (a 2.2 log 2 fold change
for PPT1 transcript, and a mild decrease for CKB2 transcript)
( Supplementary Figure S15 ) suggesting that changes in nu-
cleosome architecture do not necessarily lead to changes in
expression. 

In order to investigate this further, the treatment with 1,10-
pt was performed in conditions that lead to a decrease in
RNAPII signals in ChIP-seq experiments ( 47 ). Inhibition of
transcription by treatment with 1,10-phenanthroline (1,10-
pt) led to an increased fuzziness of the nucleosome array
and a slight displacement of the + 1 and (specially) the –
last nucleosomes (Figure 7 A, B, Table 3 and Supplementary 
Figure S16 ), with a significant decrease of the autocorre-
lation score observed in the four strains tested (Figure 7 C
and Supplementary Table S3 ). 1,10-Phenanthroline is a metal
chelating agent with high affinity for divalent cations. How-
ever, its mechanism of action to inhibit transcription has not
been clearly established. Therefore, to discard an artefact
caused by the use of 1,10-pt, we repeated the analysis using
data from a previously published work on transcription and
nucleosome positioning ( 12 ). We observed that inactivation
of RNAPII using the temperature-sensitive (ts) allele rpb1-
1 causes an increase in nucleosome fuzziness and leads to a
wider NFR at the TSS due mostly to a shift of the −1 nucle-
osome, in agreement with our results obtained with 1,10-pt
(see Table 3 and Supplementary Figure S17 ). 
In conclusion, we can outline a preferential (most likely not 
unique) causality arrow: expression activity → changes in nu- 
cleosome architecture, with a direct role of polymerase or the 
elongation complex in reinforcing positioning signals within 

the gene body. 
Finally, we benchmarked our predictor to the state-of-the- 

art NuPoP ( 48 ) method, taking as reference our experimen- 
tal MNase nucleosome maps (grey profiles in Supplementary 
Figure 18 ). The profile calculated using our full predic- 
tor (blue profile in Supplementary Figure 18 ) could po- 
sition with high accuracy the +1 and –last nucleosomes 
and the periodicity in the middle of the genes, the largest 
differences being in the definition of the intensity of the 
peaks. NuPoP (green profile in Supplementary Figure 18 ) 
while being quite accurate, has more problems in the lo- 
calization of the +1 nucleosome and generates a very fuzzy 
and irregular profile, overpopulating some regions of nu- 
cleosomes, while fully depleting others, and leading to flat 
peaks that do not correspond to the read distributions found 

experimentally. 
While our model reproduces with high accuracy the nucle- 

osome architecture in yeast, other elements come in to play 
when understanding more complex organisms such as mam- 
malian genome architectures. We performed a similar analysis 
to predict the probability of having a NFR in human data us- 
ing annotated TFBS from the UCSC Genome Browser ( 49 ) 
and we calculated the deformation energy. The model was 
trained and tested on data from a single chromosome (chrI) 

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae689#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae689#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae689#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae689#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae689#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae689#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae689#supplementary-data


Nucleic Acids Research , 2024 9 

A

B C

Figure 6. ( A ) Schematic representation of the experimental design. The exact location of the 81-nt insertion for each of the eight genes is indicated in 
Table 1 and represented in Supplementary Figures S13 and S14 B and C. Nucleosome co v erage f or the selected genes in the unmodified strain (top 
panels) and the strain with the 81-nt insertion (bottom panels). Average of ( B ) the four genes phased in the unmodified strain (UBX5, CKB2, PPT1 and 
TRP4) (blue line) and ( C ) the four genes unphased in the unmodified strain (BSP1, DGK1, SLM3 and PAN5) (orange line). 

Table 2. Phase score (DFI) and autocorrelation (R) in the unmodified strain 
and in the strain with the 81-nt insertion in the selected genes. Genes 
UBX5, CKB2, PPT1 and TRP4 are phased, and genes BSP1, DGK1, SLM3 
and PAN5 are unphased in the unmodified strain 

Unmodified strain Strain with the 81-nt insert 

Gene DFI R DFI R 

UBX5 7 0.79 424 79 0.76 687 
CKB2 1 0.81 862 79 0.68 771 
PPT1 13 0.88 553 71 0.82 500 
TRP4 6 0.80 702 80 0.73 771 
BSP1 77 0.73 841 7 0.77 164 
DGK1 46 0.69 007 31 0.81 921 
SLM3 37 0.61 947 42 0.60 019 
PAN5 44 0.73 341 46 0.81 708 
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obtaining an AUC of almost 70% (see Supplementary Figure 
S19 ) outperforming what would be expected from random. 

Discussion 

Nucleosome positioning in the gene body can be predicted
with good accuracy by signal transmission theory (STT), as-
suming the existence of two well-positioned nucleosomes at
the +1 and –last positions, which emit periodic signals whose
intensities decay with distance. Phased genes (i.e. those whose
distances between the +1 and –last is a multiple of 165) have
periodic nucleosome signals, while unphased genes (and at
a lower extend non-phased genes) tend to have fuzzy nucle-
osomes in the middle of the gene body. Change in distance
between the + 1 and -last leads to changes in nucleosome
periodicity fully predictable by the theory and in the fuzzi-

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae689#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae689#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae689#supplementary-data
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A B

C

Figure 7. Effect of transcription on nucleosome positioning. ( A ) Change in the proportion of Fuzzy and Well-positioned nucleosomes upon transcription 
inhibition, with bars indicating relative standard error. ( B ) Change in NFRs’ width at the TSS ( −1 to +1 nucleosome distance) upon transcription inhibition 
in the presence of 1,10-phenanthroline (only cases with significant displacements ( > 20 bp) are considered in the box plots). ( C ) Mean autocorrelation 
scores of control (Ctrl) and phenanthroline (Ph) samples for the 4 strains previously described (see Figure 6 A and Table 1 ) and for all the genes having a 
well-defined +1 and a -last nucleosome. 

Table 3. NFRs’ width increase at the TSS for genes displacing −1, 
+1 or both nucleosomes upon transcription inhibition from our 1,10- 
phenanthroline inhibition and published work on the inactivation of RNAPII 
by a ts-allele ( 12 ) 

NFR width mean with std 
deviation (bp) 

1,10-Phenanthroline 
inhibition 

ts-allele 
inhibition 

Transcription ( 1 ) 242.5 ± 3.9 196.5 ± 65 
Transcription inhibition ( 2 ) 251.1 ± 1.2 214.5 ± 69 
Difference ( 2 , 1 ) 8.6 ± 4.6 18.0 ± 73 
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ness of nucleosomes in the middle of the gene. Very interest-
ingly, the placement of the +1 and –last nucleosomes can be
defined by the vicinity of NFRs, i.e. segments of DNA de-
pleted of nucleosomes, which in turn, can be predicted by
a simple neural network considering physical descriptors of
DNA and TFBS densities. This is the case for both tandem
and convergent genes, where the overall effects of neighboring
genes are still captured by the model even though we consider
each gene independently. Future models can investigate if a
more specific gene level model that takes into account neigh-
boring effects / cooperativity would benefit from a substantial 
increase in accuracy or contrary, not compensate for the in- 
crease in complexity. The combination of our machine learn- 
ing algorithm to localize the NFR, and consequently the + 1 

and -last nucleosomes, with the emission of two periodic sig- 
nals on opposite direction allows us to predict the ground 

state positioning of the nucleosomes through the gene body 
with an accuracy similar to the experimental noise associated 

to MNase-seq. This suggests that nucleosome positions are 
quite well defined in the absence of complex mechanisms in- 
volving chromatin remodelers. Obviously, this ‘ground state’ 
nucleosome architecture can be modified to satisfy cellular 
needs by a myriad of factors, including among others, epi- 
genetic signals, effector proteins or remodelers. Our signal 
transmission theory using two emitters assembled a pattern 

that could accurately reproduced the state positions of nucle- 
osome and the dependency of coverage on transcription ac- 
tivity. To precisely reproduce the experimental coverage, new 

attributes should be included in the model to match the inten- 
sity. However, the predictive power of the G1-trained model is 
maintained for nucleosome architectures detected in phase S 
and M, suggesting the existence of a basal nucleosome con- 
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guration, which can be modified to adapt to the cellular
eeds. 
When we applied our model to the human genome, we ob-

ained more accurate results than what would be expected
rom a random model. Considering the additional layers to
econvolute when studying more complex organisms and that
he current model and architecture was optimized for yeast,
ur current approach with a fine tuning methodology and ad-
itional experimental data, shows the potential to be used to
tudy any nucleosome positioning array. 

Results presented here show the existence of a clear con-
ection between expression level and the organization of nu-
leosome arrays, but while changes in nucleosome phasing
o not lead to alteration in gene activity, transcription inhi-
ition results in loss of order in the nucleosome string. Thus,
ur results suggest a causal order expression level −> nucle-
some architecture, with a role of RNA polymerase, and / or
he transcription elongation complex, in refining nucleosome
trings that goes beyond unfolding nucleosomes ( 50 ), support-
ng the mechanism of pausing and histone transfer suggested
y recent cryoEM studies of RNA polymerase II and the his-
one chaperone F ACT (F Acilitates Chromatin Transcription)
 51–53 ). 

ata availability 

ll relevant data supporting the key findings of this study are
vailable within the article and the Supplementary Informa-
ion. The datasets generated and / or analyzed during the cur-
ent study are available in the ArrayExpress repository under
he following accession number EMTAB-13613 and in GEO
nder GSE255857. For a detailed description of the gener-
ted data see Supplementary Table S4 . The code for the sub-
equent analysis is available in the GitHub repository ( https:
/ github.com/ Jalbiti/ NucleosomePeriodicity ) and on Zenodo
 https:// doi.org/ 10.5281/ zenodo.12793703 ). 

upplementary data 

upplementary Data are available at NAR Online. 
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