
Nature Genetics

nature genetics

https://doi.org/10.1038/s41588-024-01878-5Article

Genome-scale quantification and prediction 
of pathogenic stop codon readthrough by 
small molecules

Ignasi Toledano1,2, Fran Supek    1,3,4   & Ben Lehner    2,4,5,6 

Premature termination codons (PTCs) cause ~10–20% of inherited diseases 
and are a major mechanism of tumor suppressor gene inactivation in 
cancer. A general strategy to alleviate the effects of PTCs would be to 
promote translational readthrough. Nonsense suppression by small 
molecules has proven effective in diverse disease models, but translation 
into the clinic is hampered by ineffective readthrough of many PTCs.  
Here we directly tackle the challenge of defining drug efficacy by 
quantifying the readthrough of ~5,800 human pathogenic stop codons 
by eight drugs. We find that different drugs promote the readthrough 
of complementary subsets of PTCs defined by local sequence context. 
This allows us to build interpretable models that accurately predict 
drug-induced readthrough genome-wide, and we validate these models by 
quantifying endogenous stop codon readthrough. Accurate readthrough 
quantification and prediction will empower clinical trial design and the 
development of personalized nonsense suppression therapies.

Premature termination codons (PTCs) are the cause of 10%1 to 20%2 of 
inherited diseases and an important mechanism of tumor suppressor 
gene inactivation in cancer. PTCs cause the production of truncated 
versions of proteins, which are typically loss-of-function and some-
times gain-of-function or dominant negatives. Many, but not all, PTCs 
also cause the degradation of mRNA transcripts by a process called 
nonsense-mediated mRNA decay (NMD), strongly reducing the pro-
duction of the truncated protein3,4.

A general therapeutic strategy to alleviate the effects of PTCs 
would be to promote translational readthrough (RT) of the stop codon 
(Fig. 1a). Effective nonsense suppression therapy would increase the 
expression of full-length proteins, reduce the production of pathologi-
cal protein fragments and inhibit NMD5.

Multiple small-molecule drugs that promote PTC-readthrough 
have been discovered, with diverse mechanisms of action (MOAs) pro-
moting the recognition of stop codons by near-cognate tRNAs rather 

than translation termination factors6. For multiple disease genes, even 
modest readthrough can be sufficient to alleviate disease symptoms 
in animal models7–10.

The extent of readthrough promoted by small molecules varies 
extensively for different stop codons, with most drugs increasing the 
readthrough of UGA more effectively than UAG and UAA PTCs11–13. 
Testing small numbers of mutations has identified sequence features 
that influence the readthrough of particular stops, for example, the 
presence of a cytosine in position +1 after the PTC14 and the pres-
ence of an adenine at position −1 (ref. 15). To date, the largest survey 
of drug-induced readthrough tested the compound TLN468 on 40 
variants16.

Here we deploy a deep mutational scanning (DMS) approach to 
generate much richer datasets quantifying nonsense suppression 
by different drugs. We measure the readthrough of ~5,800 human 
disease-causing PTCs for eight different readthrough-promoting 
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Results
Quantifying readthrough of thousands of pathogenic PTCs
To quantify drug-induced readthrough of diverse PTCs, we constructed 
a library containing 3,498 PTCs that cause Mendelian diseases reported 
in ClinVar1, 2,372 recurrent somatic PTCs in cancer genes (721 from The 
Cancer Genome Atlas (TCGA)17 plus 1,651 from MSK-IMPACT18) and 
a TP53 control no-nonsense variant (n = 5,871; Fig. 1b; Methods). We 
cloned each PTC with 144 nucleotides (nts) of surrounding sequence 
context into a dual fluorescent protein reporter, where an upstream 
green fluorescent protein (EGFP) controls for variable expression and 
readthrough causes expression of a downstream mCherry protein, and 
performed single-copy genomic integration into HEK293T landing 
pad (LP) cell line19. We combined fluorescence sorting and Illumina 

compounds (henceforth referred to as drugs). We find that the drugs 
vary substantially in their efficacy and also in the identity of the PTCs 
that they most effectively promote readthrough. We identify multiple 
local sequence determinants that predict PTC-readthrough efficacy 
and show that these determinants differ across drugs. Using these 
sequence determinants, we are able to build models that predict 
readthrough efficacy by the best-performing drugs with very good 
performance genome-wide (r2 = 0.83). We make these models avail-
able as a resource to allow these drugs to be profiled for all possible 
PTCs in the human genome. Our data and models suggest that the 
design of clinical trials of nonsense suppression therapies could be 
improved by using patient–drug combinations that are predicted 
to be effective.
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Fig. 1 | Quantifying readthrough of thousands of pathogenic PTCs.  
a, Readthrough drugs stimulate full-length protein synthesis and decrease 
NMD-mediated transcript degradation. b, Experimental design, ~5,800 nonsense 
variants in human genetic diseases and cancer were retrieved from ClinVar, TCGA 
and MSK-IMPACT datasets, cloned in a readthrough reporter, integrated into 
the genome of HEK293T_LP human cell line and treated with eight readthrough 
compounds. A readthrough efficiency value was obtained for each variant–drug 
pair. c, Sort-sequencing overview. Each cell integrates one copy of one variant, 
cells are sorted based on mCherry fluorescence (x-axis), bins are sequenced 
and readthrough percentages are calculated from the mCherry distribution of 
reads of each variant normalized to the distribution of a no-nonsense variant. 
d, Deep mutational scanning (DMS) versus individual measurements Pearson’s 
correlation (r = 0.95), where 15 variants spanning the whole readthrough 

range under SRI treatment were individually measured (Spearman correlation 
(ρ) = 0.86). e, The same 15 variants shown in d were episomally transfected in 
MCF7 and HeLa cells, and their readthrough percentages were correlated with 
HEK293T_LP’s. Pearson’s correlation and P values are shown. f, DMS Pearson’s 
correlation (and corresponding P values) with measurements from previous 
studies14,16,20–24 (Spearman’s correlation (ρ) = 0.56, 0.93, 0.71, 0.59, 1, 0.94, from 
top-left to bottom-right plots). Titles indicate the gene for which nonsense 
variants were tested and the drug used to stimulate readthrough. The bottom-
right plot does not show DMS estimates, but measurements of individual  
variants also tested in refs. 23,24, which were used to validate the readthrough 
reporter. Note that the readthrough scales differ across some of the studies, 
illustrating how differences in the assay, conditions and reporter influence the 
absolute readthrough.

http://www.nature.com/naturegenetics


Nature Genetics

Article https://doi.org/10.1038/s41588-024-01878-5

sequencing to obtain readthrough efficiencies (Fig. 1c and Extended 
Data Fig. 1a), which were highly correlated across replicates (Extended 
Data Fig. 1b), with individual measurements of 15 variants spanning the 
full dynamic range of the assay in HEK293T_LP cells (r = 0.95, ρ = 0.86; 
up to the measurement saturation limit of ~6%; Fig. 1d, Extended Data 
Fig. 1h, Supplementary Table 1 and Supplementary Note 1) and in two 
other cell lines (MCF7 and HeLa; Fig. 1e). Readthrough is highly corre-
lated across variants in the three cell types (r = 0.94–0.99), but absolute 
readthrough levels are about twofold lower in HeLa cells. Our meas-
urements also correlate very well with quantifications performed in 
other laboratories comprising varied genes and drugs14,16,20–24 (Fig. 1f).

Readthrough varies extensively across drugs and PTCs
We tested four to six concentrations for 20 drugs reported to induce 
readthrough, of which eight induced reproducible readthrough in our 
assay (Extended Data Fig. 1c,d and Supplementary Table 2; Methods). 
We quantified the readthrough of the library in untreated conditions 
and under the effect of the following eight drugs: CC90009 (refs. 
25,26), clitocine27, 2,6-diaminopurine (DAP)12, gentamicin28,29, G418 
(refs. 28,29), SJ6986 (ref. 25), SRI-41315 (refs. 30,31; henceforth: SRI) 
and 5-fluorouridine (FUr)8, which comprise different classes of small 
molecules spanning different MOAs (Fig. 1b, Methods). Considering all 
PTCs in the library, the median readthrough varied across drugs from 
0.08% (gentamicin) to 1.32% (SJ6986; Supplementary Table 3). However, 
each drug promoted a stronger readthrough of a subset of PTCs, with 
the median readthrough of the top 10% of variants varying from 0.51% 
(gentamicin) to 4.28% (DAP). Readthrough distributions were unimodal 
with a long upper tail for seven drugs, whereas clitocine treatment 
resulted in a bimodal distribution (Fig. 2a and Extended Data Fig. 1i). 
In the absence of drugs, only a very small number of PTCs (n = 17) gave 
>1% readthrough. Additionally, by quantifying readthrough for three 
SJ6986 concentrations (0.5 μM, 5 μM and 20 μM), we observed that 
sequence effects are preserved across drug concentrations (Extended 
Data Fig. 2k,l and Supplementary Note 2).

The readthrough profiles of the different drugs are, in most cases, 
only moderately correlated (Fig. 2b and Extended Data Fig. 1e). One 
exception is SRI and SJ6986, which both inhibit eRF1/eRF3 (refs. 25,30) 
and induce readthrough of a highly correlated set of PTCs (r = 0.93; 
Fig. 2b and Supplementary Note 3). The effects of other drugs are 
much more distinct. Clitocine and SRI, for example, both elicit high 
readthrough of many PTCs, but their effects are only weakly corre-
lated (r = 0.39, in comparison to the inter-replicate correlations of 
r = 0.94 and r = 0.96 for the two drugs). Hierarchical clustering of the 
readthrough profiles of all 5,837 PTCs identifies sets of PTCs with 
strong readthrough induced by multiple drugs as well as PTCs strongly 
affected by only one drug (Fig. 2c).

Stop type and downstream sequence modulate readthrough
To better understand why the readthrough of particular PTCs is pro-
moted by particular drugs, we quantified the association between 
readthrough and 47 sequence features for all drugs. These included 
the stop codon type, the adjacent downstream and upstream nucleo-
tides (up to eight nucleotides away), several codon-related metrics and 
general features such as G + C content and RNA secondary structure 
propensity (Extended Data Fig. 1f and Supplementary Table 4).

Figure 2 shows data for one drug representative of each MOA, with 
the remaining drugs presented in Extended Data Fig. 2. Consistent 
with previous observations23,32,33, drug-induced readthrough is much 
stronger for particular types of stop codon (P < 2 × 10−16, Kruskal–Wallis 
test). However, this varies extensively across drugs. For example, for 
G418 and SRI, the efficiency of readthrough is UGA>UAG>UAA, whereas 
for clitocine it is UGA>UAA>>UAG, and for DAP, it is UGA>>UAG~UAA 
(P < 1.7 × 10−15 for all comparisons, one-sided Wilcoxon signed-rank 
test; Fig. 2d and Extended Data Fig. 2c). Drugs with the same direction 
of effect can also have different magnitudes of effects. For instance, 

both DAP and SRI stimulate UGA>UAG, but the fold change is different 
(4.65-fold and 1.64-fold, respectively).

To control for the strong effect of the stop codon types, in the 
following sections, we focus on UGA variants because they trigger the 
highest readthrough across all drugs (conclusions for UAG and UAA 
are similar, and all data are included in Supplementary Table 3, with 
main differences pointed out in the text). The three nucleotides imme-
diately after a stop codon have been previously reported to modulate 
readthrough efficiency in the absence of drugs23,34. Consistent with 
this, we see a strong effect of the downstream sequence (+1, +2 and 
+3 nts) on drug-induced readthrough (P < 2 × 10−16, Kruskal–Wallis 
test). However, as for stop codon preferences, how the downstream 
sequence modulates readthrough is drug-specific. Readthrough by all 
drugs is modulated by the nucleotide immediately after the stop codon 
(Fig. 2e and Extended Data Fig. 2d), with C consistently being the most 
efficient nucleotide. However, the rest of the nucleotides show distinct 
preferences across drugs.

Readthrough is also modulated by the +2 and +3 positions, and the 
effects differ across drugs (Fig. 2f and Extended Data Fig. 2a). We iden-
tified a stop codon-dependent effect of the downstream nucleotides 
(Fig. 2g and Extended Data Fig. 2e), indicating genetic interactions 
between neighboring nucleotides. A detailed analysis of nucleotide 
contexts can be found in Supplementary Note 4.

Upstream sequence modulates readthrough
Previous studies in bacteria35, yeast36,37 and mammalian cells38,39 have 
shown that the codons upstream of a stop codon can also modulate 
readthrough under drug-free conditions. Clustering sequences in our 
library by the upstream codon revealed upstream preferences for each 
of the drugs (P < 2 × 10−16, Kruskal–Wallis test; Fig. 2h and Extended Data 
Fig. 2b). For instance, under SRI treatment, the codons encoding the 
amino acids P, G and I (n = 193) display low readthrough, as opposed 
to Y- and Q-encoding codons (n = 459), which drive high readthrough 
(1.8-fold in Q and Y versus P, G and I; P < 2 × 10−16, one-sided Wilcoxon 
signed-rank test; Extended Data Fig. 2f). Note that codons encoding the 
same amino acid might display different readthrough in a drug-specific 
fashion (Fig. 2i and Extended Data Fig. 2g,h).

To gain more insight into the effect of the upstream sequence, we 
clustered the codons by the identity of the third nucleotide (Fig. 2j and 
Extended Data Fig. 2i). Codons ending in A (n = 538 versus n = 1,457) 
tend to be the top-readthrough-promoting codons for all readthrough 
drugs, except for clitocine, although the effect differs across amino 
acids (1.1- to 1.3-fold change, adjusted P < 1 × 10−4 for DAP, G418, SRI, 
SJ6986 and CC90009). Additional analyses of nucleotide contexts can 
be found in Supplementary Note 4.

We found little association between readthrough and GC-content 
or codon bias indexes (codon adaptation index (CAI)40, tRNA adapta-
tion index (tAI)41,42; Methods; Extended Data Fig. 3a–c). Controlling for 
nucleotide sequence does suggest an additional effect of the encoded 
amino acid (Extended Data Fig. 2j).

Multistop variants
Our library comprised a total of 240 genomic positions with two vari-
ants representing different stop types (named ‘multistop variants’). 
The correlation of readthrough between pairs of stop variants ranges 
from ~0 to almost 0.85, depending on the drug and stop types being 
compared (Extended Data Fig. 3d). For instance, in SRI and SJ6986, the 
UGA variants correlate well in readthrough efficiency with the UAA 
variants, but their readthrough is two times higher. For G418, UGA 
variants are three times more readthrough sensitive than UAA variants. 
Other comparisons show very different behavior across stop types 
(for example, UAA versus UAG for DAP and clitocine). Examples of 
different stop codon variants in the same genomic position under dif-
ferent treatments are shown in Fig. 3a. For instance, DMD_S622X_UGA 
responds efficiently to DAP, but DMD_S622X_UAA responds poorly. 
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Other examples include PTEN_Y88X in clitocine, IFNGR1_S306X in DAP/
G418/SRI and APC_S583X in DAP/SRI.

Effective readthrough drugs for pathogenic variants
The drug-specific readthrough of different variants increases the num-
ber of patients potentially treatable by a genetically informed choice 
of drug. Considering all 5,837 PTCs in our library, readthrough >2% can 
be achieved for 50.3% by using the best drug for each mutation. This 
is higher than for any individual drug, with >2% readthrough for 38%, 
28%, 21%, 19%, 7% and 0.6% of PTCs with DAP, SJ6986, SRI, clitocine, G418 
and CC90009, respectively (Fig. 3b). By applying genetically informed 

drug selection, many variants display even higher readthrough—>3% 
for 27% of PTCs, >4% for 11%, >5% for 3.2% and >6% for 1.6% (Fig. 3b).

However, clinical trials usually test one drug—one gene associa-
tion; hence, knowing which drug maximizes readthrough across all 
observed PTCs of a gene is important. The highly represented genes 
in our library (>20 mutations, n = 33) revealed that DAP, SJ6986 and 
clitocine are the most efficient drugs for most genes, but their relative 
order is different (Extended Data Fig. 3e). As expected, it is strongly 
associated with the stop type prevalence in the gene. In general, clito-
cine emerges as the best drug for UAA-rich genes (APC and BRCA2), 
DAP for UGA-rich (ATRX and FAT1) and SJ6986 for UAG-rich (MYBPC3 

n = 5,705

n = 5,597

n = 5,481

n = 5,532

n = 5,624

n = 5,483

n = 5,684

n = 5,563

n = 5,606

Clitocine

SJ6986

SRI

DAP

G418

CC90009

FUr

Gentamicin

Untreated

1 2 3 4 5

Readthrough (%)

r = 0.39

0

2

4

6

0 2 4
SRI

C
lit

oc
in

e

r = 0.93

0

2

4

6

0 2 4 6
SJ6986

SR
I

Untreated

Gentamicin

FUr

DAP

Clitocine

G418

CC90009

SRI

SJ6986

U
nt

re
at

ed

G
en

ta
m

ic
in

FU
r

D
AP

C
lit

oc
in

e

G
41

8

C
C

90
00

9

SR
I

SJ
69

86

0
0.25
0.50
0.75
1.00

Pearson
correlation

Untre
ate

d

Gentam
icin FU

r
DAP

Clito
cine

G418

CC90009 SRI

SJ6
986

ca b

h

d g

0

1

2

3

4

GAA GAG

Glutamic acid upstream the UGA

Re
ad

th
ro

ug
h 

(%
)

P = 77 × 10–11

P = 0.6

0

1

2

3

4

UAA UAG UGA
Stop type

Re
ad

th
ro

ug
h 

(%
)

Treatment
G418 Clitocine
DAP SRI

P < 2 × 10–16

e
P < 2 × 10–16

0

2

4

A C G U
+1 nt downstream the UGA

Re
ad

th
ro

ug
h 

(%
)

i j

f
P < 2 × 10–16

0

2

4

6

AA
A

AA
C

AA
G

AA
U

AC
A

AC
C

AC
G

AC
U

AG
A

AG
C

AG
G

AG
U

AU
A

AU
C

AU
G

AU
U

C
AA

C
AC

C
AG C
AU

C
C

A
C

C
C

C
C

G
C

C
U

C
G

A
C

G
C

C
G

G
C

G
U

C
U

A
C

U
C

C
U

G
C

U
U

G
AA

G
AC

G
AG

G
AU

G
C

A
G

C
C

G
C

G
G

C
U

G
G

A
G

G
C

G
G

G
G

G
U

G
U

A
G

U
C

G
U

G
G

U
U

U
AC U
AU

U
C

A
U

C
C

U
C

G
U

C
U

U
G

C
U

G
G

U
G

U
U

U
A

U
U

C
U

U
G

U
U

U

Three nucleotides downstream the UGA

Re
ad

th
ro

ug
h 

(%
)

P < 2 × 10–16

K N K N T T T T R S R S I I M I Q H Q H P P P P R R R R L L L L E D E D A A A A G G G G V V V V Y Y S S S S CWC L F L F0

2

4

6

AA
A

AA
C

AA
G

AA
U

AC
A

AC
C

AC
G

AC
U

AG
A

AG
C

AG
G

AG
U

AU
A

AU
C

AU
G

AU
U

C
AA

C
AC

C
AG C
AU

C
C

A
C

C
C

C
C

G
C

C
U

C
G

A
C

G
C

C
G

G
C

G
U

C
U

A
C

U
C

C
U

G
C

U
U

G
AA

G
AC

G
AG

G
AU

G
C

A
G

C
C

G
C

G
G

C
U

G
G

A
G

G
C

G
G

G
G

G
U

G
U

A
G

U
C

G
U

G
G

U
U

U
AC U
AU

U
C

A
U

C
C

U
C

G
U

C
U

U
G

C
U

G
G

U
G

U
U

U
A

U
U

C
U

U
G

U
U

U

Three nucleotides upstream the UGA

Re
ad

th
ro

ug
h 

(%
)

Treatment

Va
ria

nt
s Readthrough

(%)
6
4
2
0

UAA UAG UGA

A C G U A C G U A C G U
0

2

4

6

0

2

4

6

0

1

2

3

4

Stoptype*down_1 nt interaction

Re
ad

th
ro

ug
h 

(%
)

P < 2 × 10–16

P = 0.3

DAP SRI

G418 Clitocine

A E G I K L P Q R S T V A E G I K L P Q R S T V

A E G I K L P Q R S T V A E G I K L P Q R S T V

1

2

3

0

2

4

6

1

2

3

1

2

3

4

Amino acid upstream of the UGA

Re
ad

th
ro

ug
h 

(%
)

Nucleotide upstream PTC A C G U

P = 0.77

P < 2 × 10–16

P = 8 × 10–6

P = 6 × 10–5

Stop type
UAA
UAG
UGA

Stop type
UAA
UAG
UGA

Fig. 2 | Sequence features explain the readthrough variability across PTCs 
and drugs. a, Readthrough distributions across drugs. The number of high-
confidence variants (≥10 reads) recovered for each treatment and for which 
readthrough percentages were quantified is shown. b, Interdrug correlation. 
Correlation values between the same drug represent the inter-replicate 
correlation. Examples of high-correlated (SRI and SJ6986) and low-correlated 
(SRI and clitocine) drug pairs are shown, colored by stop type. c, Readthrough 
efficiencies for all variant–drug combinations. d–j, Effect of the sequence 
feature (x axis) on readthrough efficiency (y axis) in HEK293T_LP cells, colored 
by the drug. The top and bottom sides of the box are the upper and lower 
quartiles, respectively. The box covers the interquartile interval, where 50% of 
the data are found. The horizontal line that splits the box in two is the median. 
Only variants where the stop codon is UGA are shown (except for d and g, where 
all stop codon variants are shown). The sequence features are stop codon 
identity (n = 22,342, P < 2 × 10−16, Kruskal–Wallis test; d), the nucleotide in 

position +1 downstream of the PTC (n = 10,602, P < 2 × 10−16; e), the nucleotides 
in +1, +2 and +3 positions downstream of the PTC (n = 2,589, P < 2 × 10−16; f), 
same as e but stratified by stop codon (in clitocine samples U>G for UAA stops, 
n = 614, adjusted P < 2 × 10−16; U=G for UGA stops, n = 1,395, adjusted P = 0.3; 
one-sided Wilcoxon signed-rank test; g), the nucleotides in −1, −2 and −3 
positions upstream of the PTC together with the amino acid encoded by each 
codon (n = 2,589, P < 2 × 10−16, Kruskal–Wallis test; h) and same as h but only for 
variants with a glutamic acid upstream of the PTC (GAA>GAG for DAP, n = 155, 
adjusted P = 7 × 10−11; GAA=GAG for clitocine, n = 158, adjusted P = 0.6; one-sided 
Wilcoxon signed-rank test; i). Finally, the effect of amino acids encoded by 
A-ending codons on readthrough efficiency across drugs, where codons ended 
in A display higher readthrough compared to the rest of the codons (n = 7,989, 
adjusted P < 6 × 10−5 for DAP, G418 and SRI, one-sided Wilcoxon signed-rank 
test). The nucleotide upstream of the PTC is colored (j).
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and TSC2). Additionally, we asked whether some genes are overall more 
readthrough sensitive than others. The average readthrough when 
pooling all drugs together is normally distributed and varies between 
0.9% and 1.5% across genes (>20 mutations in our library, n = 33).

Readthrough of tumor suppressor and disease genes
As evidenced above, there is considerable drug-specific variability in 
readthrough at the variant level (Fig. 2c). Comparing the top 50 most 
sensitive variants for each drug shows that each drug maximizes 
readthrough of a different set of variants (an average of 13 variants 
overlap across all pairwise comparisons; Fig. 3c). Thus, the best drug 
to apply would strongly depend on the particular nonsense mutation 
causing the disease in each patient.

As an example of how different drugs promote the readthrough 
of different PTCs, we consider the commonly mutated tumor sup-
pressors TP53 and PTEN (Fig. 3d, Extended Data Fig. 3f and Supple-
mentary Table 5). The five most recurrent TP53 PTCs constitute 44% 
of all the TP53 nonsense mutations in the MSK-IMPACT and TCGA 
datasets (102 different TP53 nonsense mutations) and are carried by 3% 
of all MSK-IMPACT and TCGA patients17,18. These PTCs show promising 
readthrough therapy potential. Readthrough of the most prevalent 
TP53 nonsense mutation R213X_UGA can be substantial—4.5% with DAP 

and 3.6% with SRI and SJ6986. Interestingly, readthrough stimulation 
of TP53_R213X_UGA bearing mice was reported to decrease tumor 
growth8. Readthrough of the second most frequent PTC, R342X_UGA, 
is strong with clitocine, DAP, SRI and SJ6986 (all > 2%). Q192X_UAG, the 
fifth most recurrent mutation, is the only variant in this set insensitive 
to all treatments (readthrough < 1%). In total, readthrough >2% can be 
achieved by at least one drug for 43/102 PTCs in TP53. Considering 
all 102 PTCs, SJ6986 is the most effective drug for 36 PTCs, DAP for 
25 PTCs, clitocine for 21 PTCs, SRI for 14 PTCs and G418 for 6 PTCs in 
TP53. Encouragingly, clitocine treatment was shown to impede tumor 
growth in mice bearing the Q136X_UAA mutation27, which displays a 
2.1% readthrough in our dataset. R196X_UGA, R213X_UGA, R306X_UGA 
and R342X_UGA have similar readthrough efficiencies (1.9%, 2.1%, 2.1% 
and 2.1%, respectively), suggesting that clitocine could also have similar 
therapeutic potential for these four TP53 mutations.

For PTEN, the four most frequent PTCs constitute 36% of PTCs 
reported in MSK-IMPACT (97 different PTEN nonsense mutations 
were considered here). Of these, the two more prevalent mutations 
(R130X_UGA and R233X_UGA) show very similar readthrough profiles 
with high DAP-induced readthrough (3.4% and 3.1%) and are also effec-
tively stimulated by SJ6986 (2.0% and 2.0%), clitocine (1.7% and 1.8%) 
and SRI (1.8% and 1.3%; Extended Data Fig. 3f), in line with previous 
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Fig. 3 | Readthrough-sensitive nonsense variants differ across drugs.  
a, Readthrough efficiency for 12 multistop variants across four drugs. Each 
multistop variant comprises two different nonsense mutations (different stop 
codon identities) observed in the same genomic locus. b, Percentage of variants 
with readthrough over different thresholds for each drug separately and when 
considering all eight drugs together (All_drugs). c, All pairwise overlaps of each 
drug’s top 50 readthrough-sensitive variants. The number indicates how many 
variants overlap in the top 50 readthrough-sensitive variant sets of the two 
compared drugs. d, Readthrough efficiency across drugs, for 102 nonsense TP53 
mutations colored by stop codon type. The top five most recurrent nonsense 

mutations in the human tumor genomes are highlighted. e, Our observed 
readthrough efficiencies of the nonsense variants tested in two clinical trials 
(CTs) (blue), together with the rest of the nonsense variants in the same gene 
tested in our assay (purple). Clinical trial identifier, drug and gene tested are 
specified in the titles. The top and bottom sides of the box are the lower and 
upper quartiles. The box covers the interquartile interval, where 50% of the data 
are found. The horizontal line that splits the box in two is the median. f, Number 
of variants for which each drug displays the highest readthrough efficiency 
across the top three genes commonly tested in clinical trials for nonsense 
suppression therapies, considering all variants in our dataset.
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observations that these mutations drive restoration of functional 
PTEN under readthrough treatment21. In contrast, PTEN Q171X_UAG 
and Q245X_UAG do not respond to any of the readthrough drugs tested 
here (readthrough <1%). In total, readthrough >2% can be achieved 
for 35/97 of all the PTCs reported in PTEN in MSK-IMPACT with at least 
one drug. Considering all 97 PTCs, DAP is the most effective drug for 
32 PTCs, clitocine for 31 PTCs, SJ6986 for 22 PTCs and SRI for 12 PTCs.

Residual WT protein levels that partially rescue phenotypes were 
also reported for mucopolysaccharidosis type I-Hurler disease (>0.5% 
expression of IDUA gene)7 and ataxia-telangiectasia (2–5% expression 
of ATM gene)43,44. Our dataset shows that 10/10 IDUA mutations and 
28/83 ATM mutations display readthrough >0.5% and >2%, respectively, 
for at least one treatment, suggesting that patients harboring those 
mutations could be promising candidates for readthrough therapy 
(Extended Data Fig. 3g).

Genetics-informed patient stratification for clinical trials
Our data highlight the highly variable efficacy of readthrough-inducing 
drugs across different PTCs. However, to our knowledge, only 1 of 42 
phase II–IV clinical trials using readthrough-promoting drugs45 used 
the genetic context of a PTC as an inclusion criterion (ClinicalTrials.
gov registration: NCT04135495; Supplementary Table 6 and Extended 
Data Fig. 3h). Furthermore, only five trials made the identity of patient 
PTCs available46–48.

We used our data to evaluate the optimal match between drugs 
and PTCs in two of these trials (Fig. 3e). Clinical trials NCT04140786 
used gentamicin and NCT04135495 used a gentamicin derivative, 
ELX-02. However, our data show that effective readthrough of the PTCs 
present in patients included in these trials is likely to have been very 
limited. The average readthrough of these PTCs by gentamicin is only 
0.2%. In contrast, average readthrough by clitocine and DAP would be 
1.8% and 2.9%, respectively, and other PTCs in the same gene would be 
better choices for a gentamicin trial (Fig. 3e). In the two other trials 
with available patient data, the most effective drug also varies across 
patients' PTCs and PTCs display high-readthrough variability within 
each drug, too (Extended Data Fig. 3i). Patient response data shows a 
non-significant but positive correlation with our readthrough measure-
ments (Supplementary Note 5).

We next considered the following three genes most frequently 
targeted in nonsense suppression clinical trials: DMD, CFTR and APC. 
Our data shows that the most effective readthrough drugs for these 
genes are clitocine and DAP, but that, in all three cases, a combination of 
drugs matched to patient PTCs would prompt the highest readthrough 
rates (Fig. 3f). For example, of the 95 pathogenic PTCs in DMD, the most 
effective readthrough is obtained with clitocine for 30 PTCs, DAP for 26, 
SJ6986 for 25, SRI for 12 and G418 and CC90009 for 1 PTC each. To our 
knowledge, none of the best three drugs (clitocine, DAP and SJ6986) 
have yet been evaluated in clinical trials.

Accurate prediction of readthrough efficiency
Our extensive and quantitative dataset of drug-induced PTC 
readthroughs provides an opportunity to train and evaluate compu-
tational models to predict drug-induced readthrough. We focused on 
the six drugs that triggered readthrough >1% for >3% of PTCs and used 

logistic regression to train sequence-based genotype–phenotype mod-
els (Supplementary Note 6). Models for the remaining three conditions 
(FUr, gentamicin and untreated cells) had poor predictive performance 
(r2 = 0.37, 0.38 and 0.02, respectively) due to the very small propor-
tion of PTCs undergoing any notable amount of readthrough in these 
conditions (153, 31 and 17 PTCs with >1% readthrough, respectively; 
Extended Data Fig. 4a,b and Supplementary Note 6).

After model optimization (Supplementary Note 6 and Extended 
Data Fig. 4c–e), we found that a simple model using four sequence 
feature groups showed good performance across all six drugs (Fig. 4a 
and Supplementary Table 7). The four feature groups included are as 
follows: (1) stop codon type; (2) the three nucleotides downstream 
of the PTC and their interactions; (3) the three nucleotides upstream 
of the PTC and their interactions and (4) the interaction between the 
stop type and the three nucleotides downstream of the PTC (formula 
4 in Supplementary Note 8). Increasing the downstream sequence 
context up to +8 nts didn’t improve predictive performance for any 
of the drugs (Fig. 4b and formula 5 in Supplementary Note 8). The 
correlation between predicted and observed readthrough evaluated 
by ten rounds of cross-validation (90–10% training-testing split) was 
r2 = 0.89 (clitocine), 0.87 (DAP), 0.76 (SRI), 0.76 (G418), 0.71 (SJ6986) 
and 0.55 (CC90009). Of note, CC90009 is the dataset with the highest 
technical noise (r2= 0.62 inter-replicate correlation), likely hindering 
model performance. Training a single model with the data from all six 
drugs (pan-drug model) provided poor performance (r2 = 0.39) unless 
the drug identity was included as a predictive feature with interaction 
terms between the drug and the additional features (r2 = 0.83 for the 
pan-drug model; Fig. 4c, Supplementary Table 8 and formula 6 in 
Supplementary Note 8). This model explains 94% of the explainable 
readthrough variance (maximum achievable r2 = 0.89 calculated via 
inter-replicate correlation across all variants and drugs).

To identify features important for model performance, 
we removed one variable at a time and calculated the drop in 
cross-validated r2 normalized to the full model r2, showing that fea-
ture contributions quantitatively differ across drug models (Fig. 4d, 
Extended Data Fig. 4f and Supplementary Note 7). We also compared 
the model coefficients for each feature (in a simplified model with-
out the interaction term to aid coefficient interpretability; Fig. 4e, 
Extended Data Fig. 4g–j, Supplementary Note 6 and Supplementary 
Tables 9 and 10), which allowed us to capture similarities and differ-
ences of individual sequence elements across drugs.

Readthrough prediction for all PTCs in the human genome
The accurate prediction of drug-induced readthrough by our interpret-
able model allows us to provide readthrough predictions for every 
possible PTC in every transcript of the human genome (Fig. 5a). In total, 
one to three nucleotide substitutions can introduce 32.7 million stop 
codons in the 19,061 human protein-coding transcripts (Ensembl v107 
genes, hg38 assembly), and we made readthrough predictions for six 
drugs, available as a resource named RTDetective that can be visualized 
along the human genome using the UCSC browser (Fig. 5b and Extended 
Data Fig. 5a,b; https://doi.org/10.6084/m9.figshare.23708901).

We estimate that by using these six drugs, a readthrough of >2% 
can be achieved for 13 million of 32.7 million (39.6%) possible stops in 

Fig. 4 | Interpretable models predict readthrough efficiency from sequence 
context. a, Drug-specific models cross-validated predictive performance for 
CC90009, clitocine, DAP, G418, SJ6986 and SRI conditions. b, Contribution to 
model performance of the eight nucleotides downstream of the PTC (by adding 
one at a time). The fixed predictive variables present in all models are the stop 
codon type and the three nucleotides upstream of the PTC. T test over 20 cross-
validation rounds comparing each model (column) to the previous one was used 
to determine significance (adjusted *P < 0.05, adjusted **P < 0.01, one-sided  
t test). c, Pan-drug models cross-validated predictive performance—drug-agnostic 
(top), drug-aware but sequence × drug interaction-agnostic (middle), drug and 

sequence × drug interaction-aware (bottom). d, Contribution of each sequence 
feature to the drug-specific models. Y axis shows the percentage drop in r2 when 
each term is removed from the model and normalized to the full model (1 − (r2 on 
term removal/r2 full model)). e, Correlation of drug-specific model coefficients 
(note that for the sake of coefficient interpretability, we ran the models without 
the interaction term stop_type × down_123 nts, which incurs only a small decrease 
of r2, ranging between 1% and 3% depending on the drug). Coefficients are colored 
by the model feature they belong to—stop codon type, down_123 nt and up_123 nt. 
Drugs displaying high correlations respond similarly to the sequence features and, 
consequently, trigger readthrough of similar subsets of PTCs.
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the human genome, with a readthrough of >1% possible for 28.6 million 
stops (87.3%; Fig. 5c). The individual drugs are predicted to result in >2% 
readthrough for 31.4%, 21.3%, 16.2%, 11.7%, 4.3% and 0.02% of PTCs for 
DAP, SJ6986, SRI, clitocine, G418 and CC90009, respectively. Clitocine 
is a mid-intensity readthrough drug but spans UAA and UGA stops, 
inducing 1.5–2% readthrough for many variants but higher readthrough 

for only a few. Considering all 32.7 million possible PTCs, the most 
effective drug in 32.8% of cases is DAP, followed by clitocine (30.5%), 
SJ6986 (29.5%), SRI (6%) and G418 (1.1%; Fig. 5d).

Some drug-stop codon type combinations show promising  
potential, as illustrated for DMD, PTEN and TP53 (Fig. 5e). DAP stimu-
lates readthrough >2% for almost 100% of the UGA variants across 
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the three genes. For UAA mutations, clitocine emerges as the best 
candidate (readthrough >1.5% for ~50% of PTCs). For UAG mutants, 
the recently reported eRF1/eRF3 inhibitors SRI-41315 and SJ6986 (refs. 
25,30) show promise (across DMD, PTEN and TP53, readthrough > 1.5% 
for 33% and 25% of UAG PTCs for SJ6986 and SRI, respectively, whereas 
readthrough > 1.5% for <0.1% of UAG PTCs for clitocine and DAP). 
Thus, even for UAG variants that have been considered particularly 
difficult to suppress, drug-induced readthrough provides a promis-
ing therapeutic strategy, provided that the correct drugs are matched 
to each PTC.

Readthrough of natural termination codons
Drug-induced readthrough over natural termination codons (NTCs) has 
been postulated as the main cause of toxicity observed in patients49. 
Notably, translation termination of NTCs differs from that of PTCs, with 
additional elements involved, including the proximity to Poly(A) tails50, 
readthrough peptide targeting pathways51 and in-frame downstream 
3′-UTR stops that together reduce the generation of readthrough pep-
tides at NTCs. Here we focus on the contribution of local sequence 
context to NTC readthrough, while the additional elements listed above 
remain to be addressed in future work.

We leveraged our system to assess the readthrough stimulation 
of five high-readthrough drugs (clitocine, DAP, G418, SJ6986 and SRI) 
over NTCs from ~18.8k human protein-coding genes, preserving the 
upstream and downstream (3′ UTR) 66 nts, but selectively removing 
the in-frame stops downstream (to uniquely assess the role of the 
stop codon proximal sequence to NTC readthrough). Readthrough 
measurements were highly correlated across replicates (r = 0.88–0.99), 
and on average, 5 million cells were sorted (~277 cells per variant) 
and 17,590 high-confidence variants (≥10 reads) were recovered in 
each experiment (Supplementary Table 11). Distributions resembled 
their PTC counterparts with somewhat lower readthrough (except 
for SJ8986), with the largest PTC–NTC differences for DAP (1.9-fold, 
adjusted P < 2 × 10−16) and SRI (1.5-fold, adjusted P < 2 × 10−16) drugs 
(Fig. 6a). This suggests a modest readthrough-protective effect of the 
NTC-surrounding sequence, even after removing additional down-
stream stops. Artificially setting the readthrough of variants whose 
endogenous gene has downstream in-frame stops to 0% (assuming that 
readthrough over two stops is ~0%), shows a strong drop in readthrough 
of the NTC population (Fig. 6b).

Finally, we used the drug-induced readthrough of the NTC library 
as an additional test of our PTC-trained predictive models (Fig. 6c). 
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Fig. 5 | In silico nonsense saturation mutagenesis of the human genome.  
a, Generation of the comprehensive in silico dataset with all possible nonsense 
mutations in human coding genes. b, Readthrough predictions along the coding 
sequence (CDS) of TP53 for each stop codon type. Each panel represents a drug-
specific readthrough prediction—DAP (top), clitocine (middle) and SRI (bottom). 
c, Percentage of variants genome-wide with readthrough over a given threshold 
(color legend) for each drug separately and when considering all eight drugs 

together (All_drugs). d, Percentage of the number of variants across all possible 
variants in the human exome for which each drug is predicted to display the 
highest readthrough efficiency. e, Cumulative histograms showing the number 
of variants as a function of readthrough efficiency for the genes DMD (top), PTEN 
(middle) and TP53 (bottom), stratified by stop codon type as UAA (left), UAG 
(center) and UGA (right).
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Performance was good across drugs (r = 0.47–0.86) and similar to 
that for new models trained on the NTC data itself (r = 0.52–0.88 by 
tenfold cross-validation; Supplementary Table 12). Indeed, the mean 
readthrough for each sequence feature correlates very well in PTCs 
versus NTCs, supporting a similar sequence context role in both transla-
tion termination scenarios (Fig. 6d).

Discussion
We have presented here a systematic quantification of drug-induced 
stop codon suppression comprising >140,000 readthrough measure-
ments in human cells made using eight drugs. Our massively parallel 
assay represents a substantial scaling-up of data production compared 
to previous studies14,16, generating datasets of sufficient size to train 
models to accurately predict drug-induced nonsense suppression 
genome-wide.

Our results show that each drug only induces the readthrough of 
a subset of pathogenic PTCs, and our models use the sequence context 
to predict the readthrough specificity of each drug. This diversity of 
drug responses means that for any particular disease gene, there is no 
single drug that triggers a strong readthrough of all pathogenic PTCs. 
Rather, effective clinical nonsense suppression will require a panel of 
drugs, with the appropriate drug selected for each patient according 
to the identity of the PTC that they carry.

The models that we have trained are deliberately interpret-
able and relatively simple, and yet they explain 94% of the variance 

in our dataset (excluding FUr and gentamicin). It is possible that 
black box machine learning models may further improve predic-
tive performance, but model interpretability both aids mechanistic 
understanding and is desirable for models to be used in clinical 
decision-making52.

We envisage that accurate genome-scale prediction of 
drug-induced readthrough will improve clinical trial design and the 
development of personalized nonsense suppression therapies. To date, 
trial designs have nearly all ignored the large variation in readthrough 
efficacy across PTCs45, resulting in suboptimal matching between 
patient PTCs and drugs. The use of the right drugs but in the wrong 
patients is, in retrospect, likely to have been an important cause of 
trial failure.

Our general approach can be used to rapidly quantify the specifici-
ties of new nonsense suppression therapeutics, allowing their clinical 
efficacy to then be tested in the subset of patients in which they are 
likely to be most effective.

Our study has some important limitations. First, readthrough was 
not measured in the endogenous genomic context, and long-distance 
features may also affect readthrough. Second, not all readthrough 
translation products will be functional proteins. Third, the level of 
readthrough required for clinical benefit will vary across proteins 
and diseases. Finally, the clinical efficacy of readthrough-promoting 
drugs will depend on additional parameters such as pharmacokinetics, 
pharmacodynamics and drug toxicity.
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Taken together, our results show that the specificities of nonsense 
suppression therapies differ extensively across drugs, and these spe-
cificities can be rapidly learned using high-throughput experiments 
to allow accurate prediction of drug responses. Looking forward, we 
believe that the goal should be to develop an expanding portfolio of 
readthrough drugs with defined and complementary specificities 
such that effective and specific nonsense suppression therapy can be 
achieved for any pathogenic stop codon in the human genome.
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Methods
Ethics and consent
The study did not require any specific ethics approval. It builds on 
publicly available data provided by ClinVar, TCGA and MSK-IMPACT. 
The patient data obtained from two clinical trials were already released.

Library design
For the PTCs library, genetic disease and cancer germline variants were 
retrieved (n = 3498) from the ClinVar database, where all pathogenic 
nonsense variants whose review status was two or more stars were 
included (a final filtering step was carried out to decrease the pen-
etrance of overrepresented genes such as BRCA2). Somatic cancer vari-
ants were obtained from MSK-IMPACT and TCGA databases with at least 
two entries in either dataset (n = 2,372). Finally, a control no-nonsense 
TP53 variant (c.541C-c.687T nucleotides from ENST00000269305 tran-
script) was included to use as a 100% readthrough control to normalize 
the expression of the PTC variants and get estimates for the percentage 
of WT protein expression for each variant. The 147 nt spliced-mRNA 
context of each nonsense variant (MANE transcript isoform) was 
retrieved from Ensembl (v104) to preserve a large sequence context 
(72 nts upstream and 72 nts downstream).

For the NTCs library, the 66 nts upstream and downstream  
(3′ UTR) for the spliced MANE isoform of all 18,824 human protein- 
coding genes were retrieved from Ensembl (v104). We artificially 
performed 1-Hamming distance substitutions to remove all in-frame 
3′-UTR stop codons (TAA->TAC, TAG, TGA->TGG) to assess the role 
of sequence context on readthrough without the confounding influ-
ence of tandem stops. The no-nonsense TP53 variant (c.541C-c.687T 
nucleotides from ENST00000269305 transcript) was included to use 
as a 100% readthrough control.

No statistical methods were used to predetermine sample sizes 
of the libraries, but our sample sizes are 100–1,000 folds larger than 
those reported in previous publications11–14,16.

Readthrough reporter
We designed a double fluorescent reporter plasmid (pIT092) to quan-
tify readthrough. The plasmid encodes a single transcript that contains 
the open reading frames (ORFs) of EGFP, T2A (2×) and mCherry from 
5′–3′, respectively. The library oligo pool was cloned in-frame between 
the two T2A sequences. T2As allow the independent folding of the 
fluorescent proteins and prevent undesired effects of the variable 
sequence on their folding and stability. In a normal translation event, 
termination occurs in the PTC of the library, protecting mCherry from 
translation. However, if readthrough occurs, the ribosome extends 
elongation until the mCherry stop codon translating the mCherry 
protein along the way. Hence, mCherry fluorescence is proportional 
to readthrough efficiency, and we used it as our assay readout. EGFP 
is used to filter out those cells that either do not have EGFP or have 
unexpectedly high levels of EGFP. These cells are likely to have either 
aberrant cloning, out-of-frame integration, promoter mutations, pro-
moter silencing, transcript-stability mutations, etc., and might be 
misleading if included in the assay. For some of the treatments, we 
detect a slight EGFP increase in the mCherry+ population, suggest-
ing a readthrough-mediated transcript stabilization either via NMD 
inhibition or translation-mediated mRNA protection. In those cases, 
the mCherry increase (in mCherry+ versus mCherry− populations) is 
higher than the EGFP increase, proving that the drugs are increasing 
the mCherry signal via readthrough. pIT092 is suitable for genomic 
integration using the HEK293T landing pad (LP) system19, which ensures 
that each cell integrates only one variant providing a direct genotype–
phenotype linkage. The vector contains BxBI-compatible attB sites that 
allow recombination into the genomic LP of HEK293T_LP cells. After 
genomic integration into the LP locus, the ORF sequence is placed right 
downstream of a tetracycline induction cassette, allowing its expres-
sion when doxycycline is added to the media.

Library cloning
Oligos were ordered as an oligo pool to Twist Biosciences containing 
the variable part (library) and two constant sequencesfor PCR amplifi-
cation and subcloning. The oligo pool was PCR-amplified for 14 cycles 
using primers oIT204 and oIT340 (Supplementary Table 14). The oligo 
pool was cloned between the EGFP-T2A and T2A-mCherry ORFs of 
pIT092 using Gibson Assembly. The library was electrotransformed 
using Neb10 electrocompetent bacteria and grown in 100 ml over-
night culture. Library complexity and representativity of the variants 
were estimated by plating a small amount of the transformation reac-
tion and extrapolating the total number of transformants. Individual 
clones were Sanger sequenced to confirm the expected structure  
and diversity.

Stable cell line generation
To generate the cell lines, we used the HEK293T_LP cell line generated in 
ref. 19 (TetBxB1BFP-iCasp-Blast Clone 12 HEK293T cells), which allows 
the stable single-copy integration of variants in the genome. Muta-
tional libraries cloned into the LP compatible construct (pIT092) are 
cotransfected (1:1) with a BxBI expression construct (pCAG-NLS-Bxb1) 
into the HEK293T_LP cell line using lipofectamine 3000 according to 
the manufacturer’s instructions in three T150 cm2 flasks. This cell line 
has a genetically integrated tetracycline induction cassette, followed 
by a BxBI recombination site and a split rapalog-inducible dimerizable 
Casp-9. Cells were maintained in DMEM supplemented with 10% FBS 
tetracycline-free without antibiotics. Two days after transfection, 
doxycycline (2 μg ml−1; Sigma-Aldrich) was added to induce expression 
of the library (recombined cells) or the iCasp-9 protein (no recom-
bination). Twenty-four hours later, 10 nM rimiducid (Selleckchem, 
AP1903) was added to the cells. Successful recombination frameshifts 
the iCasp-9 out of frame. However, nonrecombined cells express iCasp-
9, which dimerizes in the presence of rimiducid and induces apoptosis. 
One day after rimiducid treatment, the media was changed back to 
DMEM + doxycycline, and cells were maintained in culture for the fol-
lowing 5 days to obtain a large volume of cells for downstream experi-
ments and cryostorage.

Readthrough compounds
We tested a panel of 20 compounds reported to have readthrough 
activity (Supplementary Table 2), in our library-integrated HEK293T_LP 
cells. If a drug induces readthrough, the fluorescence-activated cell 
sorting (FACS) profile would be different than the untreated cells; 
specifically, we would observe an increase in the mCherry+ popu-
lation (Extended Data Fig. 1a). Readthrough was calculated as the 
(mCherry+ and EGFP+)/(EGFP+) cell ratio multiplied by the mean 
mCherry intensity of the mCherry+ population and normalized to the 
readthrough of the no-nonsense variant (Extended Data Fig. 1d). All 
drugs were tested at four or more different concentrations ranging 
along orders of magnitude, to ensure that a negative result was not 
due to a concentration-related problem. The 4 × 105 library-integrated 
HEK293T_LP cells were seeded in six-well plates and treated with 
2 μg ml−1 doxy to induce the expression of the transcript, and after 
24 h, the drug was added to the medium. Readthrough was measured 
48 h after treatment with the BD LSRFortessa Cell Analyzer as described 
above. Eight drugs, namely SRI, clitocine, SJ6986, DAP, G418, gen-
tamicin, CC90009 and FUr, were validated, whereas the remaining 
12 did not trigger detectable readthrough in our system at the tested 
concentrations. We did toxicity titrations for the eight positive drugs 
(Extended Data Fig. 1c). In total, 2 × 104 cells were plated in 96-well 
plates, and the CellTiter-Glo Luminescent Cell Viability Assay (Pro-
mega) was used to quantify cell viability 48 h after drug or vehicle 
treatment using a Tecan Infinite M Plex plate reader (Tecan). For each 
drug, the concentration that didn’t decrease cell viability by more than 
25% and exhibited the highest readthrough was selected (Extended 
Data Fig. 1c,d). For G418, we chose a concentration that dropped cell 
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viability by a slightly different quantity of 30%, because the increase 
in readthrough was substantial, compared to the concentration that 
reduced viability by 25%. Also, note that very high concentrations 
of gentamicin and G418 were used to counteract the effect of the 
aminoglycoside-resistance cassette of the HEK293T_LP cells19.

The validated drugs comprise different classes of small molecules. 
G418 and gentamicin bind to the decoding center of the small riboso-
mal subunit; SRI, SJ6986 and CC90009 are eRF1/eRF3 inhibitors; DAP 
interferes with the activity of a tRNA-specific 2′-O-methyltransferase 
(FTSJ1); and clitocine and FUr are nucleotide analogs that get incor-
porated into the mRNA. Some were reported decades ago, and their 
readthrough potential is supported by extensive literature (gentamicin, 
G418) and tested in several clinical trials (most of them with disappoint-
ing and confusing outcomes). In contrast, others have been recently 
described as drugs, and little is known about their readthrough stimu-
latory potential.

FACS
Cells were grown on standard culture plates in tetracycline-free DMEM 
supplemented with 10% FBS, and without antibiotics. They were split 
before reaching confluency to maintain cell health. Cells were detached 
with trypsin, spun down and washed with PBS. For the sort-seq experi-
ments53, cells were treated with 2 μg ml−1 doxy to induce the expression 
of the transcript, and after 24 h, the drug was added to the medium for 
48 h more. We used high volumes of cells to ensure that each variant 
was represented >100 times in the cell population.

Cells were sorted on a BD Influx Cell Sorter and analyzed with BD 
FACS Software (1.0.0.650). Cells were gated by forward scattering area 
and by side scattering area to retain whole cells, forward scattering 
width and height to discard aggregates, and by DAPI staining to retain 
only recombined and alive cells. EGFP and mCherry fluorescence were 
excited with 488 nm and 561 nm lasers and recorded with 530/40 band-
pass (BP) and 593/40 BP channels, respectively. EGFP+ cells were sorted 
based on mCherry expression into three to five populations (Extended 
Data Fig. 1a), depending on how stretched the library was across the 
mCherry axis. The top-right population in the Extended Data Fig. 1a 
plots represents the no-nonsense variant and was sequenced for one 
drug condition (gentamicin) of the natural stops library. In total, 30% 
of the reads in that population indeed map to the no-nonsense TP53 
variant, in contrast to <0.01% in the other populations (Extended Data 
Fig. 1g). For most of the populations, 400k cells were sorted. However, 
for some minor populations representing <2% of the total population, 
we sorted less cells (100–200k). The percentage of cells in each bin 
population was used for normalization during sequencing analysis 
(see below). Experiments were performed in biological duplicates, 
and, on average, 1.6 million cells were sorted in each drug experiment 
(~272 cells per variant).

DNA extraction
Sorted cells were centrifuged at 1,200 rpm for 3 min, and the pellet 
was used to conduct genomic DNA extraction following the DNeasy 
Blood & Tissue Kit (Qiagen) and resuspended in 80 μl of Milli-Q water.

Sequencing library preparation
The sequencing libraries were constructed in three consecutive PCR 
reactions. The first PCR intends to amplify the library fragment from 
the genomic DNA pool without amplifying the remaining plasmid 
from transfection. It uses a forward (oIT314) primer annealing in the 
LP outside of the recombined sequence and a reverse (oIT205) primer 
annealing at the 3′ end of the library fragment. This ensures that plas-
mid DNA is not amplified because it lacks the annealing site for the 
forward primer. The second PCR (PCR2) was designed to insert part 
of the Illumina adapters and to increase the nucleotide complexity of 
the first sequenced bases by introducing frame-shift bases between 
the adapters and the sequencing region of interest. The third PCR 

(PCR3) was necessary to add the remainder of the Illumina adapter 
and the demultiplexing indexes. All PCRs were run using Q5 Hot Start 
High-Fidelity DNA Polymerase (New England Biolabs) according to the 
manufacturer’s protocol.

All genomic DNA extracted from each bin was used as a template 
for PCR1 and amplified using 25 pmol of primers oIT205 and oIT314. 
The annealing temperature was set to 66 °C, extension time to 1 min and 
number of cycles to 25. Because high volumes of genomic DNA inhibit 
PCR reactions, we aliquoted each sample in eight PCRs and ran them 
in 96-well plates. Excess primers were removed by adding 0.04 μl of 
ExoSAP-IT (Affymetrix) per microliter of PCR1 reaction and incubated 
for 20 min at 37 °C followed by an inactivation for 15 min at 80 °C. Then, 
the PCRs of each sample were pooled together and purified using the 
MinElute PCR Purification Kit (Qiagen) according to the manufacturer’s 
protocol. DNA was eluted in Milli-Q water to a volume of 20 μl.

In total, 2 μl of PCR1 product were used as template for PCR2, 
together with 25 pmol of pooled frame-shift primers (oIT_ILL_204_mix 
and oIT_ILL_205_mix; Supplementary Table 14). The PCR reactions 
were set to an annealing temperature of 66 ºC, 15 s of extension time 
and were run for eight cycles. Excess primers were removed by adding 
0.04 μl of ExoSAP-IT (Affymetrix) per microliter of PCR1 reaction and 
incubated for 20 min at 37 °C followed by an inactivation for 15 min at 
80 °C. The PCRs of each sample were purified using the MinElute PCR 
Purification Kit (Qiagen) according to the manufacturer’s protocol. 
DNA was eluted in Milli-Q water to a volume of 10 μl.

In total, 2 μl of PCR2 products were used as template for PCR3. In 
PCR3, the remaining parts of the Illumina adapters were added to the 
library amplicon. The forward primer (oIT_GJJ_1J) was the same for all 
samples, while the reverse primer (oIT_GJJ_2J) differed by the barcode 
index, to allow pooling of all samples together and demultiplexing after 
deep sequencing (Supplementary Table 14). Eight cycles of PCR3s were 
run at 62 °C of annealing temperature and 25 s of extension time. All 
reactions from the same sample were pooled together, and an aliquot 
was run on a 2% agarose gel to be quantified. After quantification, sam-
ples with different Illumina indexes that were sequenced together in the 
same flow cell were pooled in an equimolar ratio, run on a gel and puri-
fied using the QIAEX II Gel Extraction Kit. The purified amplicon library 
pools were subjected to 150-bp paired-end NextSeq 500 sequencing 
(Illumina) at the CRG Genomics Core Facility.

Sequencing data processing
FastQ files from paired-end sequencing of all experiments were pro-
cessed with DiMSum (v.1.3; https://github.com/lehner-lab/DiMSum) 
to obtain the read counts for each variant. DimSum applies stringent 
quality filters to discard low-quality reads, reads with sequencing 
errors, etc., to ensure that only high-quality reads are used for down-
stream analysis.

The DimSum output read count tables were used to calculate 
readthrough estimates for each variant as follows: the read count table 
provides the distribution of each variant among the different sorting 
gates. Because gates harbored different percentages of the general 
population, they had to be sorted at different times to get the same 
number of cells in each bin, forcing us to calculate the mCherry distri-
butions in relative numbers (formula 1 in Supplementary Note 8). The 
distribution of each variant is generated by calculating its proportion 
of reads in each sorting gate (j), with m being the total number of sort-
ing gates. All reads of a given variant in a given sorting gate (rj) are (1) 
divided by the total number of reads of that gate (Rj) yielding a normal-
ized reads value, (2) multiplied by a fixed value (pc) corresponding to 
the percentage of cells of the total population that belong to that gate 
and (3) and multiplied by a second fixed value (fv) corresponding to 
the mean mCherry signal of the gate. Finally, (4) it is averaged by the 
total number of normalized reads across gates (N). In steps (1) and (2), 
we are simply calculating the percentage of reads of the total popula-
tion belonging to each variant in each gate ( rj

Rj
pcj). In steps (3) and (4) 
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we obtain a value corresponding to a normalized mean mCherry value 
for each variant. Then, by dividing this mCherry value of each variant 
by the mCherry value of the untreated no-nonsense variant (which 
represents the amount of WT protein in basal conditions), the 
readthrough percentage for each variant (RTp, percentage of WT 
protein expression) is calculated (formula 2 in Supplementary Note 
8). The no-nonsense population does not undergo readthrough and 
displays the same mCherry value across treatments, as expected. 
However, under clitocine conditions, its mCherry signal is 1.6-fold 
higher, suggesting an RNA stabilization effect of clitocine. The nor-
malization with the no-nonsense variant in the untreated condition 
sets all the treatments’ readthrough distributions on the same scale 
and allows direct comparison across drugs. The EGFP−/mCherry− popu-
lation was used to calibrate the voltage of the sorting instrument across 
treatments and replicates. The standard deviation (s.d.) from the two 
replicates was used as the error measure. Readthrough percentage 
efficiencies for all variants and drugs are included in Supplementary 
Tables 3 (PTCs) and 11 (NTCs). Experiments were performed in biologi-
cal duplicates, and, on average, 5,602 high-confidence variants (≥10 
reads) were recovered in each experiment. We retained variants with 
≥10 reads. Shapiro–Wilk test was used to determine the non-normality 
of the sample, and accordingly, nonparametric tests (Kruskal–Wallis 
and Wilcoxon signed-rank tests) were used to assess significance. Note 
that the two clitocine replicates were sigmoidally related due to a dif-
ference in the voltage setting of the flow cytometer between experi-
ments. A LOESS model was fit and used to predict replicate 2 based on 
replicate 1. This transformation yielded a linear relation between the 
two replicates.

Single-variant validation experiments
To validate the assay, we set out to individually measure the read
through of 15 variants. We selected 15 variants spanning the whole 
dynamic range when treated with SRI plus the no-nonsense control 
and individually cloned and integrated them into HEK293T_LP, yielding 
16 stable cell lines each expressing a different variant. In parallel, we 
conducted the same measurements in MCF7 and HeLa cell lines (cells 
were maintained in tetracycline-free DMEM supplemented with 10% 
FBS without antibiotics). Because the LP is unique to HEK293T cells, 
we used transient transfection to express the readthrough variants in 
MCF7 and HeLa cell lines. Constructs harboring the 16 variants were 
cloned out from pIT092 and cloned in a mammalian CMV-expression 
vector (pIT075).

HEK293T_LP were treated with 2 μg ml−1 doxy, and 50 ng of pIT075 
plasmids were transfected into MCF7 and HeLa with lipofectamine 
3000. Twenty-four hours later, cells were treated with SRI at the same 
concentration than used in the DMS assay (7.5 μM). 48 h after treat-
ment, EGFP and mCherry fluorescence were quantified using 530/40 BP 
and 593/40 BP channels in the BD LSRFortessa Cell Analyzer. EGFP+ cells 
were used to calculate the readthrough by multiplying the percentage 
of mCherry+ cells by its mean mCherry intensity and finally normalizing 
to the no-nonsense variant (formula 3 in Supplementary Note 8). We 
termed these readthrough values as ‘readthrough Pindividual’ because they 
refer to individual measurements of readthrough percentages of each 
variant. Readthrough Pindividual were correlated against the readthrough 
PDMS estimates of the 15 variants to calculate the correlation coefficient 
between our DMS assay and individually measured readthrough (Sup-
plementary Table 1).

Sequence features
We listed a large set of sequence features to test their contribution to 
readthrough variability. Features were chosen based on literature and 
preliminary results, but we also listed several features for which we had 
no evidence of their participation in readthrough. All features tested 
in the predictive models can be found in Supplementary Table 4. See 
Supplementary Note 6 for extended information on model design.

tAI
The tAI is a measure of translational efficiency that takes into account 
the intracellular concentration of tRNA molecules and the efficien-
cies of each codon–anticodon pairing41,42. The pairing affinity of each 
codon–anticodon is specific to each species. The human-specific tAI 
indexes were downloaded from the STADIUM database as of January 
2023 (ref. 54). tAI for a given sequence was calculated as the mean tAI 
across all codons of the sequence.

CAI
The CAI is an estimate of translational efficiency based on the similar-
ity of codon usage of one sequence with regard to the genome codon 
usage40. The human codon usage table was downloaded from the 
Codon/Codon Pair Usage Tables project release as of January 2023  
(ref. 55). CAI for a given sequence was calculated as the mean CAI across 
all codons of the sequence.

In silico saturation mutagenesis
We used the general drug model to perform an in silico prediction 
of the readthrough efficiency of all possible nonsense mutations in 
the human exome, resulting in 32.7 × 106 predictions for the 19,061 
protein-coding transcripts (Ensembl v107 genes, hg38 assembly) for 
each drug. For each codon position of each protein-coding transcript, 
a readthrough efficiency value was estimated for each drug.

Statistics and reproducibility
Statistical tests were performed in R (v4.3.1) using RStudio (v2023. 
03.0+386). Kruskal–Wallis tests were used to assess the general asso-
ciation of sequence features and readthrough, whereas Wilcoxon tests 
were used for pairwise comparisons of specific levels of the sequence 
features. Wilcoxon tests were either one- or two-sided, and this informa-
tion is always provided in the figure legend. P values were adjusted using 
the p.adjust function in R (Benjamini–Hochberg). No statistical method 
was used to predetermine the sample size. Variants with <10 reads were 
not used for analyses, and analyses included all other variants unless 
explicitly indicated. No blinding or randomization was performed.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
All DNA sequencing data have been deposited in the Sequence Read 
Archive with accessions PRJNA996618 (PTCs) and PRJNA1073909 
(NTCs). The readthrough efficiency predictions have been made 
available through the Figshare repository at https://figshare.com/
articles/dataset/Readthrough_predictions/23708901 and via a digital 
object identifier (https://doi.org/10.6084/m9.figshare.23708901). All 
readthrough measurements are provided in Supplementary Tables 3 
and 11.

The MSK-IMPACT and TCGA datasets were downloaded from cBio-
Portal (https://www.cbioportal.org/) on 2 June 2021. The ClinVar data-
set was downloaded from https://ftp.ncbi.nlm.nih.gov/pub/clinvar/
vcf_GRCh38/ on 3 June 2021. Source data are provided with this paper.

Code availability
Source code used to perform all analyses and to reproduce all figures 
in this work is available at GitHub (https://github.com/lehner-lab/
Stop_codon_readthrough) and has been archived to Zenodo (https://
zenodo.org/records/12698349)56.
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Extended Data Fig. 1 | Experimental setup and overview of the drug’s 
datasets. a, FACS profiles (BD Influx Cell Sorter instrument) of the PTC library 
under the different treatments sorted by EGFP (y-axis) and mCherry (x-axis). 
Binned populations are indicated together with the control population 
harboring the no-nonsense TP53 variant. b Inter-replicate correlations for 
the nine conditions. c,d, Cell viability (c) and readthrough (d) titration curves 
for each drug, where error bars represent the standard deviation across three 
biological replicates. Four to six drug concentrations were tested for each drug, 
and the concentration displaying the highest readthrough and reducing cell 
viability less than 25% (blue) was used for the assay. Very toxic concentrations 
were not tested for readthrough stimulation. In d, readthrough was calculated 
as the (mCherry+ and EGFP+)/(EGFP+) cell ratio multiplied by the mean mCherry 
intensity of the mCherry+ population and normalized to the readthrough of 
the no-nonsense variant. e, All pairwise inter-drug correlations. f, Sequence 

features association with readthrough efficiency: showing Pearson correlations 
(continuous variables) and Kruskal–Wallis chi-squared statistics (discrete 
variables). g, Percentage of reads mapping to the no-nonsense variant across 
sorting populations of the natural stops library under gentamicin treatment. 
The variant is almost exclusively found in the no-nonsense population, where 
it represents 30% of the cells. h, DMS vs individual measurements Pearson’s 
correlation (r = 0.77). It represents an extension of Fig. 1d to specifically test the 
upper ceiling of the assay, with ten more variants spanning high-readthrough 
estimates included. A loess curve was fit to model the non-linearities triggered by 
the upper limit of the assay (see Supplementary Note 1 for more information on 
the assay saturation limit. Variants above the dashed line (1.3% of the library) have 
>90% reads in the highest sorting gate. i, Readthrough distributions across drugs 
colored by the stop type.
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Extended Data Fig. 2 | See next page for caption.
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Extended Data Fig. 2 | Sequence features explain the readthrough 
variability across PTCs and drugs. a–i, Effect of the sequence feature (x-axis) 
on readthrough efficiency (y-axis) colored by drug. The top and bottom sides 
of the box are the lower and upper quartiles. The box covers the interquartile 
interval, where 50% of the data are found. The horizontal line that splits the 
box in two is the median. Only variants where the stop codon is UGA are shown 
(except for c and e, where all stop codon variants are shown). The sequence 
features are the three nucleotides downstream of the PTC (n = 10645, p < 2e−16, 
Kruskal–Wallis test) (a), the three nucleotides upstream of the PTC (n = 10645, 
p < 2e−16) (b), the stop type (n = 22227, p < 2e−16) (c), the nucleotide in position 
+1 downstream of the PTC (n = 10502, p < 2e−16) (d), same as d but stratified 
by stop codon (n = 16753) (e), the amino acid upstream of the PTC (n = 10602, 
p < 2e−16) (f), variants with a glutamic acid upstream of the PTC stratified by the 

codon (n = 613) (g), variants with an arginine upstream of the PTC stratified by the 
codon (n = 1040, p = 3e−6) (h), and the effect of amino acids encoded by A-ending 
codons on readthrough efficiency for FUr, gentamicin, CC90009 and SJ6986, 
where codons ended in A display higher readthrough efficiencies compared to 
the rest of the codons (n = 7902, adjusted p < 1e−3, one-sided Wilcoxon signed-
rank test). The nucleotide in position +3 of the codon is denoted with colors (i). j, 
Mean readthrough difference between pairs of codons with Hamming distance 
of 1 (that is, single nucleotide difference) that encode for the same amino acid, 
or pairs that encode a different amino acid across drugs. P value of the two-sided 
t-test between the same amino acid and different amino acid groups is shown. k,l, 
Readthrough distributions (k) and pairwise correlations (l) for the three SJ6986 
concentrations tested (0.5 μM, 5 μM and 20 μM).
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Extended Data Fig. 3 | See next page for caption.
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Extended Data Fig. 3 | Codon-related features, multistop variants and 
overview of PTEN nonsense mutations and clinical trials. a–c, Correlation 
of tAI (a), CAI (b) and GC% (c) of the 5aas upstream of the PTC with readthrough 
efficiency for each drug. d, Correlation of multistop variants across drugs. 
Each data point belongs to a mutation in the same genomic position but with a 
different stop type. e, Drug preferences for the highly represented genes in our 
dataset (>20 variants, n = 33). Y-axis shows the percentage of mutations for  
which each drug displays the highest readthrough. f, Readthrough efficiency 
across drugs for 97 nonsense PTEN mutations colored by stop codon type.  
The top 4 most recurrent nonsense mutations in human tumors are highlighted. 
g, Percentage of IDUA and ATM mutations in our dataset displaying higher 

readthrough levels than the phenotypic threshold reported in refs. 7,43,44 
across drugs. h, All past and current (n = 42) phases II–IV clinical trials testing 
readthrough drugs, obtained from ref. 45. i, Our readthrough efficiencies of 
the nonsense variants tested in two clinical trials (CTs) (blue), together with the 
rest of nonsense variants in the same gene tested in our assay (purple). Clinical 
trial identifier, drug (ataluren) and gene tested are specified in the titles. Many 
variants included in clinical trials are unresponsive to drugs, likely hindering 
their performance. The top and bottom sides of the box are the lower and upper 
quartiles. The box covers the interquartile interval, where 50% of the data are 
found. The horizontal line that splits the box in two is the median.
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Extended Data Fig. 4 | See next page for caption.
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Extended Data Fig. 4 | Predictive models overview and optimization. a, Drug-
specific models cross-validated predictive performance for FUr, gentamicin 
and untreated conditions. b, Downsampling the number of readthrough 
variants yields decreased model performance for the high-performing drug 
models (Supplementary Note 6). X-axis shows the number of variants with 
readthrough >1% retained and used to rerun the models (gray). We used control 
models randomly removing the same number of variants to control for the 
effect of smaller training sizes in model performance (black). Models with 20, 
50 and 150 variants retained intend to represent similar scenarios to untreated, 
gentamicin and FUr datasets. The r2s shown are the average over 10 cross-
validation rounds. c, Comparison of the r2 values for the drug-specific models 
when using stop type, the three nucleotides downstream and upstream of the 
PTC and the interaction between stop type and three nucleotides downstream 
versus when using ElasticNet regularization on 47 sequence features (Extended 
Data Fig. 1f and Supplementary Table 4). d, Performance for three different 
model formulations across drugs (Supplementary Note 6): using only stop type 
and the three nucleotides downstream and upstream of the PTC, adding the 
stop type and three nucleotides upstream interaction or adding the stop type 
and three nucleotides downstream interaction. Only the latter consistently 

improves model performance across drugs. The r2s shown are the average over 10 
cross-validation rounds. e, Performance for three different model formulations 
across drugs: encoding the three nucleotides downstream and upstream of the 
PTC as nucleotide triplets (m1), encoding the upstream sequence as a nucleotide 
triplet and the three nucleotides downstream as three different terms (one for 
each position, no interaction among them, m2) and encoding the downstream 
sequence as a nucleotide triplet and the three nucleotides upstream as three 
different terms (one for each position, no interaction among them, m3). m1 
consistently yields higher r2 across drugs. The r2s shown are the average over 10 
cross-validation rounds. f, Contribution of each sequence feature to the pan-
drug model. The y-axis shows the relative drop in r2 when each term is removed 
from the model and normalized to the full model (1 − (r2 upon term removal/r2 full 
model)). g–j, Model coefficients of the following predictive models: CC90009 
and clitocine (g), DAP and SJ6986 (h), G418 and SRI (i) and the down_123 nt 
(top) and up_123 nt (bottom) coefficients for the pan-drug model (j). Mean, 
95% confidence intervals and significance (two-sided Student’s t-test) of the 
coefficient estimates across 10 cross-validation rounds are shown. Asterisks 
represent an adjusted p-value < 0.01.
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Extended Data Fig. 5 | In silico PTC saturation mutagenesis. a, Overview of the readthrough predictions along the coding sequence of TP53 for each stop codon 
type. Each panel represents a drug-specific prediction: G418 (top), CC90009 (middle) and SJ6986 (bottom). b, Same as a, but drugs are represented as colors and each 
panel belongs to a different stop type.

http://www.nature.com/naturegenetics









	Genome-scale quantification and prediction of pathogenic stop codon readthrough by small molecules

	Results

	Quantifying readthrough of thousands of pathogenic PTCs

	Readthrough varies extensively across drugs and PTCs

	Stop type and downstream sequence modulate readthrough

	Upstream sequence modulates readthrough

	Multistop variants

	Effective readthrough drugs for pathogenic variants

	Readthrough of tumor suppressor and disease genes

	Genetics-informed patient stratification for clinical trials

	Accurate prediction of readthrough efficiency

	Readthrough prediction for all PTCs in the human genome

	Readthrough of natural termination codons


	Discussion

	Online content

	Fig. 1 Quantifying readthrough of thousands of pathogenic PTCs.
	Fig. 2 Sequence features explain the readthrough variability across PTCs and drugs.
	Fig. 3 Readthrough-sensitive nonsense variants differ across drugs.
	Fig. 4 Interpretable models predict readthrough efficiency from sequence context.
	Fig. 5 In silico nonsense saturation mutagenesis of the human genome.
	Fig. 6 Quantifying readthrough for >17,000 natural termination codons (NTCs).
	Extended Data Fig. 1 Experimental setup and overview of the drug’s datasets.
	Extended Data Fig. 2 Sequence features explain the readthrough variability across PTCs and drugs.
	Extended Data Fig. 3 Codon-related features, multistop variants and overview of PTEN nonsense mutations and clinical trials.
	Extended Data Fig. 4 Predictive models overview and optimization.
	Extended Data Fig. 5 In silico PTC saturation mutagenesis.




