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1 Introduction

The process of adjudicating conflicting claims arises when there’s a need to allocate a fi-

nite resource among competing agents, and the available quantity falls short of meeting

all demands (Aumann and Maschler, 1985). To navigate this challenge, various rules have

been put forward, drawing primarily from two enduring principles of practical application:

egalitarianism and proportionality.

Egalitarianism advocates for an equal distribution of resources among claimants, regard-

less of their individual circumstances or contributions. This principle prioritizes fairness

and aims to minimize disparities by ensuring that each agent receives an equitable share of

the available resources. On the other hand, proportionality suggests that the allocation of

resources should be proportionate to certain factors, such as need, merit, or contribution.

Unlike egalitarianism, proportionality considers the varying circumstances and characteris-

tics of the claimants, allocating resources in accordance with their relative entitlements or

worthiness.

The choice between these principles and the specific rules derived from them depends

on the context, values, and goals of the adjudication process. In practice, a combination

of egalitarian and proportional approaches may be employed to achieve a balanced and fair

distribution of the limited resource. This nuanced approach acknowledges both the impor-

tance of equitable treatment and the recognition of individual differences among claimants.

Thomson (2019) provides an extensive review encompassing all the literature pertaining to

these topics.

Many allocation rules are based on an egalitarian criterion. This principle advocates

for the equal distribution of resources among all involved agents, prioritizing fairness and

equality. It ensures that everyone receives an equitable share, irrespective of factors such as

need or contribution. Egalitarian approaches aim to minimize disparities and promote social

justice. The most notable and purely egalitarian rule is the Constrained Equal Awards

rule. It’s distinguished, among other properties, by its aim to minimize the variance of

payoffs assigned to agents compared to the ”go Dutch” distribution, also known as the pure

egalitarian distribution, which involves dividing the estate equally among all agents.Many
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other significant rules have been analyzed. Among them, we select the Constrained Equal

Losses (CEL), the Talmudic rules and their extensions (T), the Proportional Rule (P), and

the CIC rules.

The fundamental model for analyzing the problem of adjudicating conflicting claims is

enriched by introducing a vector in the space of payoffs that represents a reference or baseline

point. This is pertinent for conducting evaluations of the final allocation or proposal. By

employing this reference point, we attempt to equalize the agents’ perception of how they

are treated. Agents’ perception not only considers the absolute final outcome but also how

this outcome compares with a certain reference point (Kahneman and Tversky, 1979).

Reference points in bankruptcy problems and related issues are not a new concept. Her-

rero (1998) incorporates the reference point as a function of the agents’ claims. Pulido et al.

(2002, 2008) examine bankruptcy problems incorporating reference points. Hougaard et al.

(2012, 2013a, 2013b)) introduce the concept of baselines in this context, which can be seen

as equivalent to reference points. Timoner and Izquierdo (2016) use ex-ante conditions to

address claims problems that can be embedded in our context.

More recently, Gallice (2019) has provided justification for the utilization of reference

points and has left to the reader the opportunity to introduce new solutions or rules in our

context by appropriately considering reference points.

This paper illustrates that well-known rules, including CEA, CEL, Proportional, weighted

CEA, weighted CEL, reverse Talmudic rule, and the broader family of CIC rules, conform to

the same egalitarian criterion for a given reference point. Consequently, we characterize all

these solutions by a unified relationship: the egalitarian solution. As a second result, we also

characterize all of these rules through a minimization problem of a weighted sum of quadratic

gaps within a well-defined and natural domain. This outcome not only offers a practical

method for solving such problems but also serves as a natural extension of Schummer and

Thomson’s (1997) result concerning the variance of the CEA rule. The final section and the

concluding remarks suggest avenues for future research.

The paper is structured as follows. Section 2 presents basic definitions and notations.

Section 3 introduces the concept of egalitarian rule from a reference point. Section 4 explores

the specific case where the reference point adheres to certain order-preservation properties.
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Section 5 expands the model by incorporating external weights. Section 6 discusses the

specific rule ”concede and divide” demonstrating how non-covered rules within our model can

be approached through its weighted extension. Finally, in Section 7 we provide concluding

remarks.

2 Notations and definitions

Let N = {1, 2, . . . , n} be a set of agents. We denote by RN the set of n-dimensional vectors

indexed by N , i.e. if x = (x1, x2, . . . , xn) ∈ RN , then xi is the component relative to agent

i ∈ N . Furthermore, for all T ⊆ N , we write x(T ) =
∑

i∈T xi, with x(∅) = 0. On the other

hand, given a real value b ∈ R we write (b)+ = max{0, b}.

A conflicting claims problem is a pair (E, c) where E ≥ 0 is the amount of resource

that should be distributed among a set of agents N = {1, 2, . . . , n}, and a vector of claims

c = (c1, c2, . . . , cn) ∈ RN
+ , where ci > 0 is the claim of agent i ∈ N over E. It is supposed

E ≤
∑n

i=1 ci. We denote the set of all claims problems on N as CN .

Given a claims problem (E, c), an allocation x = (x1, x2, . . . , xn) ∈ RN is a payoff vector

that assigns to each agent i ∈ N its share of E such that 0 ≤ xi ≤ ci (claim boundedness

property), for all i ∈ N , and
∑

i∈N xi = E (efficiency property). We define the set of

admissible allocations D(c) as the set of allocations satisfying claim boundedness, i.e.

D(c) = {x ∈ RN | 0 ≤ xi ≤ ci, for all i ∈ N},

and the set of efficient allocations, H(E), as

H(E) = {x ∈ RN |
∑
i∈N

xi = E}.

An allocation rule f assigns to each claims problem (E, c) a feasible and efficient allocation

x ∈ D(c)∩H(E). Five of the main allocation rules are the following. The constrained equal

awards rule (CEA) assigns the same amount λ to each agent, but not exceeding its claim,

i.e.

fCEA
i (E, c) = min{λ, ci}, for all i ∈ N.
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The constrained equal losses rule (CEL) withdraw the same amount λ from the claim of

each agent, so as no agent can receive a negative amount, i.e. ??

fCEL
i = max{0, ci − λ}, for all i ∈ N.

The family of θ-reverse Talmudic rules apply the CEL rule according to a fraction θ of

the claims, 0 ≤ θ ≤ 1 , if E is smaller than a fraction θ of the sum of claims, and otherwise,

it distributes the excess according to the CEA rule, i.e.

f
RT (θ)
i (E, c) =

 max{0, θ · ci − λ} if E ≤ θ · c(N)

θ · ci +min{λ, (1− θ) · ci} if E > θ · c(N).

The proportional rule (P) assigns the same fraction λ of its claim to each agent i ∈ N ,

i.e.

fP
i (E, c) = λ · ci, for all i ∈ N.

The Talmudic rule apply the CEA rule according to half of the claims, if E is smaller

than half of the sum of claims, and otherwise, it distributes the excess according to the CEL

rule, i.e.

fT
i (E, c) =

 min{λ, 1
2
ci} if E ≤ 1

2
c(N)

max{1
2
ci, ci − λ} if E > 1

2
c(N)

where, in all cases λ ∈ R+ such that the efficiency constraint is satisfied, i.e.,
∑
i∈N

fi(E, c) = E.

3 Egalitarian rules from a reference

In this section, we define a family of rules based on a reference system. From the vector of

claims, each agent is assigned a reference value, which will be used as an initial value for

evaluating its gains or losses.

A reference system α associates to each claims vector c ∈ Rn
+ a reference vector α(c) ∈

D(c). Given an allocation x = (x1, x2, . . . , xn) ∈ D(c) ∩ H(E), a claims vector c and a

reference system α, the difference xi − αi(c) represents the net payoff for agent i from its
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reference. If xi−αi(c) > 0, the agent i receives an amount larger than its reference, perceiving

the payoff as as gain. Conversely, if xi − αi(c) is negative the payoff is interpreted as a loss.

Based on this, a concept of egalitarian rule can be defined as follows.

Definition 1. On the domain of claims problems CN , an allocation rule f is considered

egalitarian with respect to a reference system α if, for any claims problem (E, c), the rule

assigns an allocation f(E, c) = x that satisfies the following condition:

for all pair of agents i and j, if the net payoff for agent i is strictly smaller

than the net payoff for agent j, then either agent i receives its full claim or

agent j does not receive anything, i.e.

if xi − ai < xj − aj then either xi = ci or xj = 0. (1)

Condition (1) stipulates that if there is a gap between the net payoffs of two arbitrary

agents i and j, i.e. xi − ai < xj − aj, then no transfer of payoff from agent j to agent i can

be carried out. This is because either agent i has already received the full claim or agent j

has not received anything.

Next proposition shows the existence and uniqueness of an egalitarian rule for each ref-

erence system.

Theorem 1. On the domain of claims problems CN and given a reference system α, there

is a unique allocation rule f that is egalitarian with respect to α. We denote it by fα and it

assigns to each claims problem (E, c) the payoff vector x ∈ D(c) defined as

xi = fα
i (E, c) = min{(λ+ ai)+, ci}, for all i ∈ N,

where α(c) = a, λ ∈ R and
∑

i∈N min{(λ+ ai)+, ci} = E.

Proof. First notice that, by definition, 0 ≤ fα
i (E, c) ≤ ci, for all i ∈ N . Moreover, for

each problem the value of λ does exist since F (λ) =
∑

i∈N min{(λ+ ai)+, ci} is a continuous

function and F (−maxk∈N ck) = 0, F (maxk∈N ck) =
∑

i∈N ci ≥ E.

Next we show that the rule fα satisfies condition (1). Given a problem (E, c) and α(c) =
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a, suppose that, for some i, j ∈ N , fα
i (E, c)− ai < fα

j (E, c)− aj, or equivalently

min{(λ+ ai)+, ci} − ai < min{(λ+ aj)+, cj} − aj. (2)

If (λ+ ai)+ ≥ ci then, by definition, fα
i (E, c) = ci and thus condition (1) is satisfied.

If (λ + ai)+ < ci, let us show that fα
j (E, c) = 0. To this aim, suppose to the contrary

that fα
j (E, c) > 0. Then, by definition min{(λ+aj)+, cj} > 0, which implies that λ+aj > 0.

Hence,

λ ≤ max{λ,−ai} = (λ+ ai)+ − ai = min{(λ+ ai)+, ci} − ai

< min{(λ+ aj)+, cj} − aj = min{(λ+ aj)+ − aj, cj − aj}

≤ (λ+ aj)+ − aj = λ+ aj − aj = λ,

where the second equality follows from the hypothesis of the case and the strict inequality

follows by (2). Hence, we get a contradiction, and thus we conclude that fα
j (E, c) = 0.

Therefore, condition (1) is also satisfied in this case.

Finally, we prove the uniqueness of the rule. Suppose there were two different rules f

and g satisfying condition (1). Hence, there would be a claims problem (E, c) such that

x = f(E, c) ̸= g(E, c) = y. By the efficiency condition, x(N) = y(N), we have xi < yi and

xj > yj, for some i, j ∈ N . Thus xi − ai < yi − ai and xj − aj > yj − aj. Then, we analyze

two cases. If yi − ai ≤ yj − aj, it would follow that xi − ai < xj − aj and thus, by (1), either

xi = ci or xj = 0. However, if xi = ci, since xi < yi, we would get ci < yi which contradicts

y ∈ D(c); if xj = 0, then by hypothesis xj = 0 > yj, which contradicts y ∈ D(c). In case

yi − ai > yj − aj, we use a similar argument to get a contradiction. We conclude the rule

satisfying condition (1) is unique.

□

Let us remark that in the definition of the egalitarian rule fα, the parameter λ can

be either a positive or a negative number. If it is positive, λ > 0, it represents the equal

positive excess that any agent i receives from its reference value αi(c) = ai constrained to

not receiving more than its claim. If it is negative, λ < 0, the parameter represents the equal

loss that any agent i incurs from the reference value αi(c) = ai constrained to receiving a

positive amount.
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Next proposition shows that some basic classical rules are in fact egalitarian rules.

Proposition 1. The constrained equal awards rule, the constrained equal losses rule and the

family of reverse Talmudic rules are all egalitarian rules on CN

Proof. For the case of the CEA rule the proof is straightforward taking the reference system

α(c) = 0 for each c ∈ RN
+ .

For the CEL rule, take α(c) = c. Indeed, in this case fα
i (E, c) = min{(λ+ci)+, ci}. where∑

i∈N min{(λ+ci)+, ci} = E. Notice that when E <
∑

i∈N ci the value of λ must be negative,

λ < 0. Otherwise, if λ ≥ 0, we would have E =
∑

i∈N min{(λ + ci)+, ci} =
∑

i∈N ci > E,

resulting a contradiction. Moreover, for E =
∑

i∈N ci, then we can take λ = 0. Hence, in

any case it holds λ ≤ 0. Thus, we can rewrite the formula for the egalitarian rule as follows:

fα
i (E, c) = min{(λ+ ci)+, ci} = (λ+ ci)+ = (ci − λ′)+ = fCEL(E, c).

where λ′ = −λ ≥ 0.

For the family of reverse Talmudic rules, and for any 0 ≤ θ ≤ 1 just take α(c) = θ · c.

Indeed, if θ = 0 or θ = 1 then we refer to the proofs of CEA rule and the CEL rule above.

If 0 < θ < 1 and E ≤
∑

i∈N θ · ci, then the value of λ that makes
∑

i∈N min{(λ + θ ·

ci)+, ci} = E, is non-positive, i.e. λ ≤ 0. Otherwise, if λ > 0 we would have

E =
∑
i∈N

min{(λ+ θ · ci)+, ci} =
∑
i∈N

min{λ, (1− θ) · ci}+
∑
i∈N

θ · ci >
∑
i∈N

θ · ci,

getting a contradiction. Therefore, λ ≤ 0, and thus

f
RT (θ)
i (E, c) = min{(λ+ θ · ci)+, ci} = (λ+ θ · ci)+ = max{θ · ci − λ′, 0}

= fCEL
i (E, θ · c),

where λ′ = −λ.

If 0 < θ < 1 and E ≥
∑

i∈N θ · ci, then it holds that the λ value that makes

∑
i∈N

min{(λ+ θ · ci)+, ci} = E,
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is non-negative, i.e. λ ≥ 0. Otherwise, if λ < 0 we would have

E =
∑

i∈N min{(λ+ θ · ci)+, ci} =
∑

i∈N(λ+ θ · ci)+ =
∑

i∈N max{λ+ θ · ci, 0}

=
∑

i∈N max{λ,−θ · ci}+
∑

i∈N θ · ci <
∑

i∈N θ · ci.

Therefore, λ ≥ 0, and thus

f
RT (θ)
i (E, c) = min{(λ+ θ · ci)+, ci} = min{λ+ θ · ci, ci}

= θ · ci +min{λ, (1− θ) · ci)} = θ · ci + fCEA
i (E, (1− θ) · c).

□

The reference system α can be interpreted as agents’ payoff expectations before knowing

the available amount to be distributed. Some examples are those analyzed in Proposition 1.

Other instances of a reference system are:

⋆ Smallest best αSB. Every agent expects to receive at least as much as the next smallest

claim after its own claim. Supposing c1 ≤ c2 ≤ . . . ≤ cn, then

αSB
1 (c) = 0 and αSB

i (c) = ci−1, for i = 2, . . . , n.

⋆ Average of smaller claims αAv. Every agent expects to receive at least the average of

smaller claims. Supposing c1 ≤ c2 ≤ . . . ≤ cn, then

αAv
1 (c) = 0 and αAv

i (c) =
1

i− 1

∑
k<i

ck, for i = 2, . . . , n.

⋆ Truncated claim αTC . Every agent expects to receive its claim if it is small enough

compared to the average of claims; otherwise, it will consider the average claim as the

reference. For i = 1, 2, . . . , n

αTC
i (c) = min{ci,

1

n
c(N)}.

⋆ Serial sharing αS. The smallest claimant expects to receive an equal part of its claim,

c1
n
. The second smallest claimant expects to receive the previous amount plus the equal
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REFERENCE SYSTEMS

90AGENT 90CLAIM 90αCEA 90αCEL 90αRT ( 1
2
) 90αSB 90αAv 90αTC 90αS

1 2000 0 2000 1000 0 0 2000 666.66
2 3000 0 3000 1500 2000 2000 3000 1166.66
3 4000 0 4000 2000 3000 2500 3000 2166.66

Table 1: Reference systems for the three-agent problem with c = (2000, 3000, 4000).

part, shared with the n−1 remaining agents, of the difference between c2 and c1,
c2−c1
n−1

,

and so on. Supposing c1 ≤ c2 ≤ . . . ≤ cn, then

αS
i (c) =

i∑
k=1

ck − ck−1

n− k + 1
, for i = 1, . . . , n,

where we take c0 = 0.

In all cases the reader can check that 0 ≤ αi(c) ≤ ci, for all i ∈ N .

Table 2 shows a numerical application of the reference systems introduced above for

c = (2000, 3000, 4000). Each of these systems defines an egalitarian rule. For instance,

consider the truncated claim system αTC = (2000, 3000, 3000). If E = 1000 the egalitarian

allocation is

fαTC

(E, c) = (0, 500, 500).

The corresponding net payoffs xi − αTC
i (c) are

(x1 − αTC
1 (c), x2 − αTC

2 (c), x3 − αTC
3 (c)) = (−2000,−2500,−2500).

Observe that the loss of agent 1 from its reference, −2000, is larger than the one of agent 2,

−2500. When this happens, egalitarian condition (1) requires, as a consequence, that either

agent 1 should not receive anything, or agent 2 should receive its full claim. In this case

agent 1 is assigned a zero payoff.

If now we take the same reference system but E = 8500, then we have

fαTC

(E, c) = (2000, 3000, 3500)
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ALLOCATIONS FOR E = 1000 AND CLAIMS c = (2000, 3000, 4000)

CEA CEL RT( 12 ) SB Av TC S

1 333 1
3 (0.3) 0 (-2) 0 (-1) 0 (0) 0 (0) 0 (-2) 0 (-0.6)

2 333 1
3 (0.3) 0 (-3) 250 (-1.25) 0 (-2) 250 (-1.75) 500 (-2.5) 0 (-1.16)

3 333 1
3 (0.3) 1000 (-3) 750 (-1.25) 1000 (-2) 750 (-1.75) 500 (-2.5) 1000 (-1.16)∑
1000 1000 1000 1000 1000 1000 1000

ALLOCATIONS FOR E = 8500 AND CLAIMS c = (2000, 3000, 4000)

CEA CEL RT( 12 ) SB Av TC S

1 2000 (2) 1833 1
3 (-0.1) 2000 (1) 1500 (1.5) 1500 (1.5) 2000 (0) 2000 (1.33)

2 3000 (3) 2833 1
3 (-0.1) 3000 (1.5) 3000 (1) 3000 (1) 3000 (0) 2750 (1.58)

3 3500 (3.5) 3833 1
3 (-0.1) 3500 (1.5) 4000 (1) 4000 (1.5) 3500 (0.5) 3750 (1.58)∑

8500 8500 8500 8500 8500 8500 8500

Table 2: Egalitarian allocations corresponding to different reference systems and claims
vector c = (2000, 3000, 4000). In the first table E = 1000 and in the second one E = 8500.
In brackets we indicate the agents’ net payoffs in thousands of units and rounded to one
decimal place.

with net payoffs (0, 0, 500). Observe that the net payoff of agent 1 is now smaller than that

of agent 3, but in this case agent 1 receives its full claim to fulfill condition (1). Similarly

for agents 2 and 3, and for agents 1 and 2.

In Table 2 you can find egalitarian allocations with respect to different reference systems

when E = 1000 and E = 8500, respectively. After each agents’ payoff, in brackets, it is

shown its net payoff with respect to the corresponding reference value. In all cases you can

easily verify that condition (1) is met.

4 Order-preserving reference systems

An egalitarian rule is based on its associated reference system. For any claims vector c it

recommends a reference point α(c) = a ∈ RN . This reference point is only required to be

feasible, i.e. 0 ≤ ai ≤ ci, for all i ∈ N . However, in the literature some equity criteria has

been introduced to refine the feasible set. Indeed, we can frame the selection of a reference

point by using two order preservation principles:

• Order preservation in awards. The larger an agent’s claim, the greater its gain.

• Order preservation in losses. The larger an agent’s claim, the greater its loss (from

that claim).
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This way we define the order preserving set as follows

O(c) =

x ∈ D(c)

∣∣∣∣∣∣∣for all i, j ∈ N, if ci ≤ cj then
xi ≤ xj and

ci − xi ≤ cj − xj

 .

All the reference systems discussed in the previous section recommend reference points

in the order-preserving, except for the smallest best system and the average of smaller

claims system. Indeed, take the reference point proposed by this system in Table 1, i.e.

αSB(2000, 3000, 4000) = (0, 2000, 3000). This vector respects order-preservation in awards,

but not in losses since

c1 − αSB
1 = 2000− 0 > c2 − αSB

2 = 3000− 2000 = 1000.

Next proposition shows that, only if the reference point is in the order-preserving set, the

egalitarian rule proposes allocations in the order-preserving set (see Figure 1).

Proposition 2. Given a claims vector c ∈ RN
++ and a reference system α, the following two

conditions are equivalent:

1. fα(E, c) ∈ O(c) for all 0 ≤ E ≤ c(N),

2. α(c) ∈ O(c).

Proof.

1 ⇒ 2) Taking E =
∑
i∈N

αi(c), then by definition of egalitarian rule we have fα(E, c) =

α(c) ∈ O(c), since we are assuming, by hypothesis, fα(E, c) ∈ O(c), for all 0 ≤ E ≤ c(N).

2 ⇒ 1) Let i and j be two agents such that ci ≤ cj. Since a = α(c) ∈ O(c), then ai ≤ aj and

ci − ai ≤ cj − aj. Hence, it is straightforward that

fα
i (E, c) = min{(λ+ ai)+, ci} ≤ min{(λ+ aj)+, cj} = fα

j (E, c).
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a1

a2

c1

c2c2

(a): a ∈ O(c)

a1

a2

c1

c2c2

(b): a ̸∈ O(c)

(c1 − a1 > c2 − a2)

a1

a2

c1

c2c2

(c): a ̸∈ O(c)

(a1 > a2)

O(c)

O O O

C C C

A

A

A

B

B

B

Figure 1: Two-person problem (E, (c1, c2)) and reference point α(c) = (a1, a2), where c1 < c2.
The path of awards (OABC) of the egalitarian rule for three different reference points. In
(a), the reference point is in the order-preserving set O(c) and thus, by Proposition 2, the
path of awards is in the order-preserving set. In (b) and (c) the reference point is above or
below the order-preserving set O(c) (shadow grey band) and thus the path of awards is not
included in the order-preserving set.

Moreover, if λ+ aj ≤ 0, then λ+ ai ≤ 0, and thus fα
i (E, c) = fα

j (E, c) = 0. Hence

ci − fα
i (E, c) = ci ≤ cj ≤ cj − fα

j (E, c).

If λ+ aj > 0, then

ci − fα
i (E, c) = ci −min{(λ+ ai)+, ci} = max{ci − (λ+ ai)+, 0}

≤ max{ci − λ− ai, 0} ≤ max{cj − λ− aj, 0}

= cj +max{−λ− aj,−cj} = cj −min{λ+ aj, cj}

= cj −min{(λ+ aj)+, cj} = cj − fα
j (E, c),

where the second inequality comes from ci − ai ≤ cj − aj. □

When the reference system always proposes points within the order-preserving set, we say

the reference system is order-preserving, and the corresponding rule is an order-preserving

egalitarian rule. Next, we show that the entire family of CIC rules consists of order-

preserving egalitarian rules.

Thomson (2008) define CIC rules with the aim of generalizing and including some of
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the allocation rules. Next we show that CIC rules are a particular case of egalitarian rules.

To formally define CIC rules, let H = (F k, Gk)n−1
k=1 , where n = |N |, be a list of pairs of

real-valued functions defined on Rn, such that for each c ∈ RN
+ , the sequence (F k(c))n−1

k=1 is

nowhere decreasing, the sequence (Gk(c))n−1
k=1 is nowhere increasing such that

0 ≤ F 1(c) ≤ F 2(c) ≤ . . . ≤ F n−1(c) ≤ Gn−1(c) ≤ . . . ≤ G1(c) ≤ c(N),

and the following CIC relations hold: suppose (w.l.o.g.) that c1 ≤ c2 ≤ . . . ≤ cn, then

−F n−1(c)

n
+

Gn−1(c)

n
= c1;

...

ck−1 +
F n−k+1(c)− F n−k(c)

n− k + 1
+

Gn−k(c)−Gn−k+1(c)

n− k + 1
= ck, for k = 2, . . . , n− 1;

...

cn−1 +
F 1(c)

1
+

c(N)−G1(c)

1
= cn.

(3)

Then, the CIC rule, fCIC
H , assigns to any claims problem (E, c) a feasible allocation

x = fCIC
H (E, c) ∈ D(c) ∩H(E) defined as follows: take F 0(c) := 0 and G0(c) := c(N), then

• If 0 < E ≤ F 1(c), then

xn = E and xi = 0 for all i < n. (4)

• If F r−1(c) < E ≤ F r(c), for some r = 2, . . . , n− 1, we have1

xi =

[
r−1∑

k=n−i+1

F k(c)− F k−1(c)

k

]
+

E − F r−1(c)

r
, for i ≥ n+ 1− r

xi = 0, for i < n+ 1− r.

(5)

• If F n−1(c) < E ≤ Gn−1(c), then

1A sumatory over an empty set of indices is equal to 0.
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xi =

[
n−1∑

k=n−i+1

F k(c)− F k−1(c)

k

]
+

E − F n−1(c)

n
, for i = 1, . . . , n. (6)

• If Gr(c) < E ≤ Gr−1(c), for r = 2, . . . , n− 1, then

xi =

[
n−1∑

k=n−i+1

F k(c)− F k−1(c)

k

]
+ c1 +

[
n−1∑

k=r+1

Gk−1(c)−Gk(c)

k

]
, for i ≥ n+ 1− r

+
E −Gr(c)

r

xi = ci, for i < n+ 1− r.

(7)

• If G1(c) < E ≤ c(N), then

xi = ci, for i = 1, . . . , n− 1 and xn = E −
n−1∑
i=1

ci. (8)

Next theorem reinterprets CIC rules as order-preserving egalitarian rules.

Theorem 2. Any CIC rule is an order-preserving egalitarian rule.

Proof. Let fCIC
H be the CIC rule corresponding to the set of functions H = (F k, Gk)n−1

k=1

satisfying the CIC relations. We first show that fCIC
H is an egalitarian rule. To this aim we

shall prove that, for any claims problems (E, c),

fCIC
H (E, c) = fα(E, c)

for a properly defined reference system α. For shake of simplicity and without loss of gener-

ality, let us suppose that

c1 ≤ c2 ≤ . . . ≤ cn.

Then, define the reference system α as follows:

14



α1(c) = 0

αi(c) =
n−1∑

k=n−i+1

F k(c)− F k−1(c)

k
, for i = 2, . . . , n,

(9)

with F 0(c) = 0. Notice that, by CIC relations, α(c) ∈ D(c). Next, we check that x =

fCIC
H (E, c) satisfies the egalitarian condition (1) relative to the reference point a = α(c)

defined in (9).

If n = 1 the statement trivially holds. From now on, we assume n ≥ 2. If E = 0 then

x = 0 and (1) is trivially satisfied. If 0 < E ≤ F 1(c), then, since xn = E and xi = 0 for

i = 1, . . . , n− 1 (see(4)),

x1 − a1 = 0, xi − ai = −
n−1∑

k=n−i+1

F k(c)− F k−1(c)

k
, for i = 2, . . . , n− 1

and xn − an = E −
n−1∑
k=1

F k(c)− F k−1(c)

k
= (E − F 1(c))−

n−1∑
k=2

F k(c)− F k−1(c)

k
,

where ai = αi(c), for i = 1, . . . , n (see (9)). Notice that

0 = x1 − a1 ≥ x2 − a2 ≥ . . . ≥ xn − an,

where the last inequality follows from E ≤ F 1(c). Since xi = 0, for all i ∈ N \{n}, condition

(1) is satisfied.

If F r−1(c) < E ≤ F r(c), for some r = 2, . . . , n− 1, we have, by (5),

xi − ai = −
n−1∑
k=r

F k(c)− F k−1(c)

k
+

E − F r−1(c)

r
, for i ≥ n+ 1− r

xi − ai = −
n−1∑

k=n−i+1

F k(c)− F k−1(c)

k
, for i < n+ 1− r.

We discuss three cases. If i, j ≥ n + 1 − r, then xi − ai = xj − aj and (1) holds.

If i, j < n + 1 − r, then xi = xj = 0, and then condition (1) is trivially satisfied. If

j < n+ 1− r ≤ i, then we claim xi − ai ≤ xj − aj. Indeed,
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xi − ai = −
n−1∑
k=r

F k(c)− F k−1(c)

k
+

E − F r−1(c)

r

= −
n−j∑
k=r

F k(c)− F k−1(c)

k
−

n−1∑
k=n−j+1

F k(c)− F k−1(c)

k
+

E − F r−1(c)

r

= −
n−j∑

k=r+1

F k(c)− F k−1(c)

k
− F r(c)− F r−1(c)

r
+ (xj − aj) +

E − F r−1(c)

r

= xj − aj −
n−j∑

k=r+1

F k(c)− F k−1(c)

r
− F r(c)− E

r
≤ xj − aj.

If xi − ai = xj − aj condition (1) holds. If xi − ai < xj − aj, then, since xj = 0, condition

(1) is also satisfied.

If F n−1(c) < E ≤ Gn−1(c), then, by (6), we have

xi − ai =
E − F n−1(c)

n
, for i = 1, . . . , n.

Thus, (1) holds.

If Gr(c) < E ≤ Gr−1(c), for r = 2, . . . , n− 1, then, by (7), we have

xi − ai = c1 +
n−1∑

k=r+1

Gk−1(c)−Gk(c)

k
+

E −Gr(c)

r
, for i ≥ n+ 1− r

xi − ai = c1 +
n−1∑

k=n−i+1

Gk−1(c)−Gk(c)

k
, for i < n+ 1− r,

since, by CIC relations,

ci = c1 +
n−1∑

k=n−i+1

F k(c)− F k−1(c)

k
+

n−1∑
k=n−i+1

Gk−1(c)−Gk(c)

k
, for all i = 1, 2, . . . n.

We discuss three cases. If i, j < n+ 1− r, then, by (7), xi = ci and xj = cj and thus (1)

is satisfied. If i, j ≥ n + 1 − r, then xi − ai = xj − aj and (1) holds. If j < n + 1 − r ≤ i,

then xj − aj ≤ xi − ai, since j < n + 1 − r and thus r + 1 ≤ n − j + 1. In this case, if

xi − ai = xj − aj then (1) holds; if not, xj − aj < xi − ai, but xj = cj and thus condition (1)
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is also satisfied.

Finally, if G1(c) < E ≤ c(N), then, by (8) and the CIC relations (3),

xi − ai = c1 +
n−1∑

k=n−i+1

Gk−1(c)−Gk(c)

k
, for i = 1, 2, . . . , n− 1

xn − an = c1 +
n−1∑
k=2

Gk−1(c)−Gk(c)

k
+ E −G1(c).

Clearly xn − an ≥ xn−1 − an−1 ≥ . . . ≥ x1 − a1. However (1) is satisfied since xi = ci, for

all i = 1, . . . , n− 1. Thus, we conclude fCIC
H is an egalitarian rule

To check that any CIC rule is order-preserving, and due to Proposition 2, it is enough

to show that a = α(c) ∈ O(c) (see (9)). Indeed, without loss of generality let us suppose

c1 ≤ c2 ≤ . . . ≤ cn. Then, since {F k(c)}k=1,...,n−1 is a non-decreasing sequence of values, it

easily follows from the CIC relations that if ci ≤ cj, then ai ≤ aj and if ci = cj, then ai = aj.

Moreover, take a pair of agents i, j ∈ N such that ci ≤ cj. In case ci = cj, we know that

ai = aj, and thus ci − ai = cj − aj. Otherwise, ci < cj and so, by the CIC relations, see (3),

we have

ci − ai =
n−1∑

k=n−i+1

F k(c)− F k−1(c)

k
+ c1 +

n−1∑
k=n−i+1

Gk−1(c)−Gk(c)

k

−
n−1∑

k=n−i+1

F k(c)− F k−1(c)

k

= c1 +
n−1∑

k=n−i+1

Gk−1(c)−Gk(c)

k
≤ c1 +

n−1∑
k=n−j+1

Gk−1(c)−Gk(c)

k

=
n−1∑

k=n−j+1

F k(c)− F k−1(c)

k
+ c1 +

n−1∑
k=n−j+1

Gk−1(c)−Gk(c)

k

−
n−1∑

k=n−j+1

F k(c)− F k−1(c)

k

= cj − aj.

Hence, we conclude a ∈ O(c).

□
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5 Weighted claims problems

In this section we extend the domain of claims problems by introducing weights that qualify

the importance of agents. We represent a system of weights by any positive vector w =

(ωi)i∈N , ωi > 0, for all i ∈ N . A weighted claims problem will be then defined by the triplet

(E, c, ω). On this extended domain of claims problems, an egalitarian rule with respect to a

reference system α is defined as follows.

Definition 2. On the domain of weighted claims problems (E, c, ω), the egalitarian rule

relative to a reference system α, fα, is defined as:

fα
i (E, c, ω) = min{(λωi + ai)+, ci}, for all i ∈ N,

where a = α(c), λ ∈ R and
∑n

i=1 f
α
i (E, c, ω) = E .

Notice that if ω1 = . . . = ωn then we recover the expression of an egalitarian rule expressed

in Theorem 1. The rule defined above is well-defined and assigns a unique allocation2 for

any weighted claims problems. The proof is left to the reader and follows the arguments of

the proof of Theorem 1 .

Now, we can reinterpret the classical proportional rule as an egalitarian allocation taking

as a reference system α(c) = 0 and weighting vector equal to the claims vector, ω = c, i.e.

fP (E, c) = fα=0(E, c, ω = c).

Similarly, the weighted CEA rule, CEAω and the weighted CEL rule, CELω,(see Thom-

son (2019), p. 84) fit in this model. That is,

CEAω(E, c) = fα=0(E, c, ω)

and

2The allocation is unique for any weighted claims problem since the expression min{(λωi + ai)+, ci} is
increasing with respect to λ.
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CELω(E, c) = fα=c(E, c, (
1

ω1

, . . . ,
1

ωn

)).

Analogously to the non-weighted problem, the rule of Definition 2 is the unique that

satisfies the following egalitarian condition.

Theorem 3. Let f be an allocation rule defined on the domain of weighted claims problems

and α be an arbitrary reference system. The following statements are equivalent:

1. The allocation rule f is egalitarian relative to α, f = fα.

2. For all weighted claims problem (E, c, ω) and for all i, j ∈ N ,

if
xi − αi(c)

ωi

<
xj − αj(c)

ωj

then either xi = ci or xj = 0, (10)

where x = f(E, c, ω).

The proof is analogous to the one of Theorem 1 and it is left to the reader.

Thomson (2019, Theorem 13.13) characterizes the constrained equal awards rule as the

rule that minimizes the variance with respect to the pure egalitarian allocation. The variance

can be reinterpreted as the squared of the distance to the equal division point. Focusing

on this distance interpretation, next theorem characterizes egalitarian rules on the domain

of weighted problems as the ones that minimize the weighted squared of the distance with

respect to the reference point. If we apply this new theorem to the case of equal weights,

we obtain new characterizations of the classical egalitarian rules as those that minimize the

squared distance with respect to the corresponding reference systems.

Theorem 4. Let (E, c, ω) be a weighted claims problem. Then, the egalitarian rule relative

to a reference system α is characterized by

fα(E, c, ω) = argmin
x∈D(c)∩H(E)

∑
i∈N

1

ωi

(xi − αi(c))
2.
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Proof. Let a = α(c) and x∗ be the unique3 solution of the minimization problem

argmin
x∈D(c)∩H(E)

∑
i∈N

1

ωi

(xi − ai)
2.

Suppose on the contrary that x∗ ̸= fα(E, c, ω) and thus, by Theorem 3, x∗ does not satisfy

(10). Hence, there exist at least two agents i, j ∈ N, such that 1
ωi
(x∗

i − ai) <
1
ωj
(x∗

j − aj),

but x∗
i < ci and x∗

j > 0. Next, we define x′ ∈ RN
+ as follows:

x′
i = x∗

i + ε, x′
j = x∗

j − ε, and x′
k = x∗

k else,

where 0 < ε < min

ci − x∗
i , x

∗
j , 2 ·

x∗
j − aj

ωj

− x∗
i − ai
ωi

1

ωj

+
1

ωi

 .

Let us remark that, by definition of ε, x′ ∈ D(c) ∩H(E). However,

∑
k∈N

(x′
k − ak)

2

ωk

=
∑

k∈N\{i,j}

(x∗
k − ak)

2

ωk

+
1

ωi

(x∗
i + ε− ai)

2 +
1

ωj

(x∗
j − ε− aj)

2

=
∑
k∈N

(x∗
k − ak)

2

ωk

+ 2ε

(
x∗
i − ai
ωi

−
x∗
j − aj

ωj

)
+

1

ωi

ε2 +
1

ωj

ε2

=
∑
k∈N

(x∗
k − ak)

2

ωk

+ ε

(
2

(
x∗
i − ai
ωi

−
x∗
j − aj

ωj

)
+ ε

(
1

ωi

+
1

ωj

))
<

∑
k∈N

(x∗
k − ak)

2

ωk

where the strict inequality follows from ε < 2 ·

x∗
j − aj

ωj

− x∗
i − ai
ωi

1

ωj

+
1

ωi

. As a consequence, we

have reached a contradiction with the fact that x∗ = argmin
x∈D(c)∩H(E)

∑
i∈N

1

ωi

(xi − ai)
2. Thus,

we conclude that x∗ satisfies (10) and x∗ = fα(E, c, ω). □

3Notice that we minimize a strictly convex function over a non-empty compact and convex domain.

20



6 The concede and divide rule

In previous sections we introduced weighted claims problems and demonstrated that egalitar-

ian rules select allocations that minimizes the weighted squared distance from the reference

point. Among this family of rules, the concede and divide rule (see Thomson, 2019) cannot

be interpreted this way.

Let us recall the formula of the concede and divide rule (CD). Let N = {1, 2}, and define

m1 = (E − c2)+ and m2 = (E − c1)+

then

CD1(E, c) = m1 +
1

2
(E −m1 −m2) and CD2(E, c) = m2 +

1

2
(E −m1 −m2)

If c1 ≤ c2, the formula is

CD(E, (c1, c2)) =



(
E

2
,
E

2
) if 0 ≤ E ≤ c1

(
c1
2
, E − 1

2
c1) if c1 ≤ E ≤ c2

(
E

2
+

c1 − c2
2

,
E

2
+

c2 − c1
2

) if c2 ≤ E ≤ c1 + c2.

Proposition 3. The concede and divide rule is not an egalitarian rule.

Proof. Suppose on the contrary there would exist a reference system α(c) such that for any

claims problem (E, c = (c1, c2))

CD(E, c) = fα(E, c), (11)

for all 0 ≤ E ≤ c1 + c2. Next, we will show why this is not possible.

Indeed, taking 0 < E < c1 < c2 we know, by the definition of the CD rule, that

CD1(E, c) = CD2(E, c) = E
2
. Hence, by (11), we have

min{(λ+ α1(c))+, c1} = min{(λ+ α2(c))+, c2} =
E

2
.
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Since
E

2
> 0, we can deduce that λ+ α1(c) > 0 and λ+ α2(c) > 0, and thus

min{λ+ α1(c), c1} = min{λ+ α2(c), c2} =
E

2
. (12)

We claim that α1(c) = α2(c). Otherwise, suppose α1(c) ̸= α2(c). Taking (12) into account,

and since E < c1 < c1 + c2, we can analyze two cases:

case 1) min{λ+ α1(c), c1} = λ+ α1(c) and min{λ+ α2(c), c2} = c2

or

case 2) min{λ+ α1(c), c1} = c1 and min{λ+ α2(c), c2} = λ+ α2(c)

In the first case, since λ+ α1(c) > 0, we have

E = min{λ+ α1(c), c1}+min{λ+ α2(c), c2} = λ+ α1(c) + c2 > c2 ≥ c1,

in contradiction with E < c1.

Similarly, the same contradiction is reached for the second case

E = min{λ+ α1(c), c1}+min{λ+ α2(c), c2} = c1 + λ+ α2(c) > c1.

Thus we conclude α1(c) = α2(c).

Now take E =
c1 + c2

2
. Then, by definition of the CD rule

CD1(E, c) =
1

2
c1 and CD2(E, c) =

1

2
c2.

By (11)

min{(λ+ α1(c))+, c1} =
1

2
c1 and min{(λ+ α2(c))+, c2} =

1

2
c2.

and thus, since c1 > 0 and c2 > 0

λ+ α1(c) =
1

2
c1 and λ+ α2(c) =

1

2
c2,
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ω1

= c2
c1

1
2c1
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(b): ω2
ω1

> c2
c1
;

c1

c2

1
2c1

1
2c2

(c): 0 = ω1 < ω2 → 1

O(c)

O O O

C C C

A
A

B B

Figure 2: Two-person problem (E, (c1, c2)), c1 < c2. Minimizing the weighted squared
distance in the order preserving set to the reference point (1

2
c1,

1
2
c2) . The path of awards

(OABC) for different weighting vectors. In (a), the relative weights of agents coincides the
relative claims. In (b) the weight of agent 2 is strictly larger than the one of agent 1. In (c)
the difference between the weights is pushed to the limit w1 → 0 and w2 → 1.

Since c1 > 0, c2 > 0 and α1(c) = α2(c) (see the claim proved above), we get

0 = λ+ α1(c)− λ− α2(c) =
1

2
(c1 − c2),

which implies that c1 = c2, getting a contradiction. Thus, we conclude that the coincide and

divide rule is not an egalitarian rule. □

As a direct consequence of Proposition 3 the Talmudic rule and all ICI rules (Thomsom,

2008) are not egalitarian rules. This is because the concede and divide rule is a specific case

of them. However, the concede and divide rule can still be reinterpreted as the one that

minimizes the weighted squared distance with respect to the half-claims vector among allo-

cations that are in the order-preserving set and where weights reflect some priority between

agents. In Figure 2 we illustrate this with several examples.

Proposition 4. Let N = {1, 2} and (E, c) be a claims problem with c1 < c2. Then,

CD(E, c) = lim
ω = (ω1, ω2) → (0, 1)

ω ∈ S

argmin
x ∈ O(c) ∩H(E)

1

w1

(x1 −
1

2
c1)

2 +
1

ω2

(x2 −
1

2
c2)

2,

where S = {ω = (ω1, ω2) ∈ R2
++ | ω1 + ω2 = 1 and

ω2

c2
>

ω1

c1
}.
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Proof. Since by efficiency, x1 = E − x2, the function to be minimized is

φ(x2) =
1

w1

(E − x2 −
1

2
c1)

2 +
1

ω2

(x2 −
1

2
c2)

2, (13)

subject to

max{E − c1,
E

2
} ≤ x2 ≤ min{E

2
+

1

2
(c2 − c1), E}. (14)

The unconstrained optimum (φ′(x2) = 0, where φ′′(x2) =
2
ω1

+ 2
ω2

> 0) is attained at

x∗
2 = E ω2 −

1

2
[ω2 c1 − ω1 c2]. (15)

For studying the constrained optimum, we focus on the case
ω2

c2
>

ω1

c1
and thus 4

∆ = c1 ω2 − c2 ω1 > 0 and ω2 >
1

2
. (16)

Given (c1, c2) and (ω1, ω2) satisfying (16), we claim that the optimal value of x2 depending

on the value of the estate E, x2(E), is

x∗
2(E, c) =



E

2
if 0 ≤ E <

∆

2ω2 − 1

E ω2 − 1
2
∆ if

∆

2ω2 − 1
≤ E ≤ c2 − c1

2ω2 − 1
+

∆

2ω2 − 1

E

2
+

1

2
(c2 − c1) if

c2 − c1
2ω2 − 1

+
∆

2ω2 − 1
< E ≤ c1 + c2,

(17)

where ∆ = ω2 c1 − ω1 c2. Indeed, first notice that

0 <
∆

2ω2 − 1
=

ω2 c1 − ω1 c2
2ω2 − 1

≤ ω2 c1 − ω1 c1
2ω2 − 1

= c1, (18)

where the first strict inequality follows from (16), the second one from c1 < c2 and the last

equality since ω1 = 1− ω2.

Now we discuss three cases:

4Notice that condition
ω2

c2
>

ω1

c1
implies ω2 >

c2
c1

ω1 > ω1, which encompasses the particular case ω2 → 1

and ω1 → 0. Moreover
ω2

c2
>

ω1

c1
implies ω2

ω1
> c2

c1
or ω2

1−ω2
> c2

c1
> 1 and then ω2 > 1

2 .
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Case 1: 0 ≤ E <
∆

2ω2 − 1
.

We have E <
ω2 c1 − ω1 c2
2ω2 − 1

=
1

2

ω2 c1 − ω1 c2
ω2 − 1

2

, and thus E ω2 − 1
2
E < 1

2
(ω2 c1 − ω1 c2).

We conclude, by (15),

x∗
2 = E ω2 −

1

2
(ω2 c1 − ω1 c2) <

1

2
E = max{E − c1,

1

2
E},

where the last equality follows from the hypothesis of the case and (18). Since x∗
2 <

1
2
E,

x∗
2 is not in the domain of the constrained optimization problem, see (14) and the

objective function (13) is strictly increasing to the right of x∗
2. Hence, the constrained

optimum is attained at E
2
, as indicated in (17) .

Case 2:
∆

2ω2 − 1
≤ E ≤ (c2 − c1)

2ω2 − 1
+

∆

2ω2 − 1
.

Similarly to the previous case we can prove that x∗
2 ≥ 1

2
E. Indeed, as

∆

2ω2 − 1
=

1

2

ω2c1 − ω1c2
ω2 − 1

2

≤ E,

we obtain

1

2
(ω2c1 − ω1c2) ≤ Eω2 −

E

2
,

or equivalently

E

2
≤ x∗

2 = Eω2 −
1

2
∆.
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Furthermore,

x∗
2 = Eω2 − 1

2
(ω2c1 − ω1c2) = ω2 [E − 1

2
c1] +

1
2
ω1c2

= E − c1 − (1− ω2) (E − c1) +
1
2
(ω2c1 + ω1c2)

= E − c1 − (ω1) (E − c1) +
1
2
(ω2c1 + ω1c2)

≥ E − c1 − (ω1) c2 +
1
2
(ω2c1 + ω1c2) = E − c1 +

1
2
[ω2c1 − ω1c2]

> E − c1.

where the first inequality follows from c2 ≥ E, and thus c1 + c2 ≥ E, and the strict

inequality from ω2

c2
> ω1

c1
. Thus, we have proved that max{E − c1,

E
2
} ≤ x∗

2.

On the other hand,

x∗
2 = Eω2 −

1

2
[ω2c1 − ω1c2] < E ω2 < E,

where the first inequality follows for ω2

c2
≥ ω1

c1
.

Furthermore, since E ≤ (c2 − c1)

2ω2 − 1
+

∆

2ω2 − 1
,

E ≤ 1

2

c2 − c1
(ω2 − 1

2
)
+

1

2

∆

(ω2 − 1
2
)
and thus

Eω2 −
1

2
E ≤ 1

2
(c2 − c1) +

1

2
∆

Hence,

x∗
2 = Eω2 −

1

2
(ω2c1 − ω1c2) ≤

1

2
E +

1

2
(c2 − c1).

We conclude that for this range of E

max{E − c1,
E

2
} ≤ x∗

2 ≤ min{1
2
(c2 − c1) +

1

2
E, E},

and x∗
2 = Eω2−∆

2
is the solution for the constrained optimization problem, as indicated

in (17).

26



Case 3:
c2 − c1
2ω2 − 1

+
∆

2ω2 − 1
< E ≤ c1 + c2.

Since
c2 − c1
2ω2 − 1

+
∆

2ω2 − 1
< E, then

1

2

c2 − c1
(ω2 − 1

2
)
+

1

2

∆

(ω2 − 1
2
)
< E, or equivalently

1

2
(c2 − c1) +

1

2
∆ < Eω2 −

E

2
< E − E

2
=

E

2
.

Hence,

x∗
2 = Eω2 −

1

2
∆ >

1

2
E +

1

2
(c2 − c1) = min{1

2
E +

1

2
(c2 − c1), E},

where the last equality come from the fact that c2 − c1 < E since

c2 − c1
2

<
1

2
(c2 − c1) +

∆

2
< Eω2 −

E

2
< E − E

2
=

E

2
.

Therefore x∗
2 = Eω2− 1

2
∆ is not in the domain of the constrained optimization problem.

As the objective function is strictly convex, and thus, is strictly decreasing to the left

of x∗
2, the constrained optimum is attained at E

2
+ 1

2
(c2 − c1), as indicated in (17) .

Finally, taking limits in (17) we obtain

lim
(ω1, ω2) → (0, 1)

ω ∈ S

x∗
2(E, c) =



E

2
if 0 ≤ E < c1

E − 1
2
c1 if c1 ≤ E ≤ c2

E

2
+

1

2
(c2 − c1) if c2 < E ≤ c1 + c2,

(19)

that coincides with the payoff to agent 2 according to the concede and divide rule, finishing

the proof.

□

Aumann and Maschler (1985) already stated that the extension of the concede and di-

vide rule to the n-person problem is the Talmudic rule. We conjecture that the result of

Proposition 4 can be extended to the n-person claims problem, and thereby proving that the

Talmudic rule can be viewed as the output of a minimization problem. To this aim, the idea
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is to take weights that pairwise replicate the relative extreme weights used in Proposition

4. That is, suppose c1 ≤ c2 ≤ . . . cn; then, we can assign the following weights to agents,

depending on some fixed value M ≥ 1

ω1(M) =
1

M
, ω2(M) =

M

M
, ω3(M) =

M2

M
, . . . , ωn(M) =

Mn−1

M
,

where M = 1 +M +M2 + . . .+Mn−1.

We conjecture that for any problem (E, c) the Talmudic rule T assigns the allocation

T (E, c) = lim
M→∞

argmin
x ∈ O(c) ∩H(E)

n∑
i=1

1

wi(M)
(xi −

1

2
ci)

2.

7 Conclusions

In this paper, we have revealed that basic allocation rules merely select the nearest efficient

point to a given reference vector. This opens the door to introduce new rules with a properly

defined and sensible reference vector, as illustrated in Table 1.

The approach used in the paper allows to define new rules by selecting the closest point

to a reference point, while also restricting the domain of allocations. For instance, the

constrained egalitarian rule (see Thomson, 2019, p. 34) can be interpreted in this manner.

This rule can be seen as one that minimizes the variance, as stated in Theorem 4, while

restricting the domain to those payoff vectors below half of the claims vector and above of

half of the claims vector.

However, there are other well-accepted solution concepts such as the family of Talmudic

rules, the minimal overlap rule, or the largest family of ICI rules that are not covered by this

approach. In Section 6, we discuss how to reinterpret one of these rules as a rule that select

the closest point to a reference by employing extreme weights. This reinterpretation shows

the versatility and potential of our approach in extending the applicability of traditional rules.

A promising area for future research could be to introduce two reference points instead of

one, as proposed by Gimenez-Gómez et al. (2016), to characterize this uncovered family of

rules.
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To conclude this section, it is worth noting that interesting properties of solutions can

be analyzed and discovered from this perspective. For example, it would be intriguing to ex-

plore the subset of egalitarian rules that exhibit consistency. Specifically, we are interested

in understanding the relationships between the reference point and the consistency prop-

erty of the corresponding egalitarian solution. This exploration could yield deeper insights

underlying fair allocation and contribute to the development of more robust and equitable

mechanisms.
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