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IDENTIFICATION AND REFLECTION ON THE SUSTAINABLE 

DEVELOPMENT GOALS (SDG) 

The 2030 Agenda for Sustainable Development, adopted by all UN Member States in 2015, 

is a global plan for peace and prosperity centered on 17 Sustainable Development Goals. These 

goals call for joint action to eliminate poverty, improve health and education, reduce inequality, 

stimulate economic growth, and protect the climate, oceans, and forests. This academic project 

supports several of these goals, which are Quality Education (SDG 4), Industry, Innovation, and 

Infrastructure (SDG 9), and Partnerships for the Goals (SDG 17). 

 

 

 

 

Within each section, the following points are supported: 

• SDG 4 (target 4.4): The incorporation of Machine Learning algorithms to analyze 

experimental data helps people learn advanced technology and analytical skills. 

This is important for training staff and giving them valuable work experience. 

• SDG 9 (target 9.5): The proposal of new analysis methodologies based on Machine 

Learning represents a significant advancement in scientific and technological 

research, contributing to innovation in industry and scientific infrastructure. 

• SDG 17 (target 17.6): The realization and advancement of the project require 

collaboration between experts in physics, chemistry, computer science, and other 

disciplines, promoting strategic alliances for the advancement of knowledge and 

technology. 
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1. SUMMARY 

The study of electronic properties of individual molecules have become a reality thanks to the 

use of advanced techniques such as the Break Junction approach. These techniques enable the 

creation of single-molecule junctions by contacting electrically a molecule between two electrodes 

with sub-nanometer precision. This study focuses on the Scanning Tunneling Microscope Break-

Junction (STM-BJ) technique, which allows the formation of thousands of single-molecule 

junctions by repeatedly approaching and retracting a tip electrode against a surface electrode, 

generating current curves that relate conductance to displacement. These curves show steps 

associated with the formation atomic and molecular contacts.  

To better understand these kind of measurements, 1D and 2D histograms are commonly used 

to accumulate thousands of traces to characterize the single-molecule junction evolutions. 

Traditionally, these histograms have been built using selection criteria imposed by the 

researchers, commonly, leading to biased interpretations and limitations in identifying complex 

patterns. Our study proposes new methodologies to classify single-molecule current traces, 

unveiling-details that could go unnoticed by human-based analysis. The proposed methodologies 

are based on Machine Learning algorithms, a sub-domain of Artificial Intelligence, which enables 

computers to understand and identify patterns in large datasets and make predictions. 

Specifically, unsupervised learning has been used, which classifies unlabeled data into groups 

based on predefined variables. Various types of algorithms have been tested, ranging from hard 

clustering to the more sophisticated soft clustering.  

In this project we developed a Python-based Machine Learning framework aimed to 

revolutionize the interpretation of single-molecule junction datasets. It is expected that this 

advancement will improve the rationalization of single-molecule phenomenology, facilitating a 

more accurate understanding of experimental data. 

Keywords: Scanning Tunneling Microscope Break-Junction, atomic junctions, Machine 

Learning, unsupervised learning, hard clustering, soft clustering  





 

Novel Machine Learning Tools for data treatment in STM Break-Junction Technique 5 

 

2. RESUM 

L'estudi de les propietats electròniques de molècules individuals s'ha convertit en una realitat 

gràcies a l'ús de tècniques avançades. Aquestes tècniques, anomenades Break-Junction, 

permeten la creació d’unions unimoleculars posant en contacte una molècula individual entre dos 

elèctrodes amb una precisió sub-nanomètrica. Aquest estudi se centra en la tècnica de l’Scanning 

Tunneling Microscopy Break-Junction (STM-BJ), que permet la formació de milers d’unions 

unimoleculars apropant i retraient repetidament dos elèctrodes (punta contra superfície), 

generant corbes de corrent que relacionen la conductància amb el desplaçament.  

Per comprendre millor aquest tipus de mesures, s'utilitzen comunament histogrames 1D i 2D 

els quals acumulen milers de corbes per caracteritzar les evolucions d’aquestes unions. 

Tradicionalment, aquests histogrames s'han construït utilitzant criteris de selecció decidits pels 

investigadors, cosa que sovint pot conduir a interpretacions esbiaixades i molt limitades en la 

identificació de patrons complexos en la racionalització de resultats. Ell nostre estudi proposa 

noves metodologies per classificar corbes de corrent d’unions moleculars, proporcionant uns 

detalls que podrien passar desapercebuts per l'anàlisi humà. Aquestes metodologies es basen 

en algoritmes d'Aprenentatge Automàtic, un subdomini de la Intel·ligència Artificial, que permeten 

als ordinadors entendre i identificar patrons en grans conjunts de dades i fer prediccions. Així 

doncs, s'ha utilitzat l'Aprenentatge No Supervisat, que organitza dades no classificades en grups 

basats en variables pre-definides. Per tal d’obtenir el millor resultat, s'han provat diversos tipus 

d'algoritmes, amb diferents nivells de classificació, de mes a menys flexibles. 

En aquest projecte, hem desenvolupat un programa d'Aprenentatge Automàtic basat en 

llenguatge Python amb l'objectiu de revolucionar la interpretació dels conjunts de dades d’unions 

unimoleculars. El nostre avanç millorarà la racionalització de la fenomenologia unimolecular, 

facilitant una comprensió més precisa de les dades experimentals. 

Paraules clau: Microscopi de Túnel d'Escaneig Break-Junction, Unions atòmiques, 

Aprenentatge Automàtic, Aprenentatge no-supervisat, Agrupament dur, Agrupament suau
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3. INTRODUCTION 

3.1. MEASUREMENT OF SINGLE-MOLECULE CONDUCTANCE: MOLECULAR ELECTRONICS 

In recent years, a new branch has emerged in nanotechnology: the ability to measure 

electronic properties of molecules in their characteristic length scale, known as molecular 

electronics. A key concept within this field is the single-molecule junction, which its prediction 

dates back to 1974, when Aviram and Ratner proposed a hypothetical molecular diode based on 

a simulated asymmetric current-voltage (I-V) behavior obtained from a model molecule.[1] Since 

then, there have been significant advances leading to the development of several devices and 

methods that can achieve this feat, providing a unique opportunity to understand charge transport-

phenomenon, undoubtedly crucial for physical, chemical and biological processes. [2] 

The conductance of a single-molecule can be determined by accurately positioning a target 

molecule between two electrodes, creating a single-molecule junction. Additionally, three 

requirements must be taken into account: (a) provide a signature to confirm that the measured 

conductance comes from a individual molecule, not a group of molecules in the interelectrode 

nanogap, (b) ensure that the molecule is strongly attached to the two terminal electrodes, and (c) 

perform the measurement in a well-defined environment to prevent possibles alterations from 

factors such as solvent molecules, pH or ions. [3]  

The type of material used for the electrodes in conductance determination, typically metal, is 

a crucial component in the formation of a single-molecule junction. These are highly relevant in 

charge transport due to their electrical conductivity, which allows charge carriers to be transmitted 

through the single-molecule junction, and the ability to form such junctions stable enough to 

ensure that the molecule remains rigidly attached to the electrodes during the measurement.[4] 

The most used metal is gold (Au), a noble metal, due to its high probability of junction 

formation, chemical stability, and electrical conductivity.[5] Au’s inert nature ensures consistent 

and reliable results over extended experimental durations, as its lack of chemical reactivity 

prevents undesired changes during the measurements.[5] In addition, it enables the use of the 
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quantum of conductance (1 Go), with a value of equivalent to 77.5 µS, as an internal conductivity 

reference.[6] However, other metals can also be used as electrodes, including Cu, Pt and Si.[7] 

3.1.1. Break junction techniques 

 The techniques used to measure individual atoms or molecules conductance by creating a 

electrode-electrode nanogaps are called Break-Junction (BJ) techniques.[1] BJ techniques rely in 

the formation of electrode-electrode nanogaps with a sub-nanometer precision, allowing the 

atomic and molecular trapping.[3] There are three major approaches for the BJ technique that will 

be described below: (1) mechanically controllable break junctions (MCBJ); (2) scanning tunneling 

microscope break junction (STM-BJ); and (3) conducting probe atomic-force-microscope break 

junction (CP-AFM-BJ).[6] 

3.1.1.1. Mechanically Controllable Break Junction   

In 1985, Moreland and Ekin developed a method for mechanically forming tunnelling 

junctions[1] which evolved towards the existing MCBJ technique.[8] They used a thin wire of Nb-Sn 

filament mounted on a flexible glass bead.[8] Using this configuration, they measured electron 

tunnelling characteristics of superconductors. In 1992, Muller et al. pioneered the technique to 

create metallic quantum point contacts, to prove the conductance quantization via a narrow 

conductor of a length of the order of electron’s elastic mean free path.[3]  

MCBJ’s three-point adjustable bending mechanism, as shown in Fig. 1a, uses a pushing rod 

that applies an upward force causing the progressive bending of the substrate, which results in 

the continuous stretching of the metallic wire. As the metallic wire elongates, the cross-section at 

the central region decreases until it fractures, and then, two atomic-level metal electrodes with 

clean surfaces are simultaneously formed. Conversely, when the substrate relaxes, the inevitable 

contraction of the metallic wire causes the two electrodes to revert to re-forming a metallic wire. 

The nanogap between the two opposing electrodes can be precisely regulated during the bending 

and relaxation process (Fig. 1b) mediated by a piezoelectric transducer (PZT) coupled to the 

pushing rod.[9] 

The MCBJ sample can be prepared manually by attaching a metal wire to a flexible substrate 

using epoxy glue and notching the central part of the wire to create a constriction point.[1] More 

recently, an alternative method to create the nanobridge is based on microfabrication techniques, 

to define suspended metallic bridges. [8] 
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Figure 1. Schematic representation of the MCBJ technique. 

3.1.1.2. Scanning Tunneling Microscope Break-Junction  

The scanning tunneling microscope (STM) was developed by Gerd Binning and Heinrich 

Rohrer in 1981 at the IBM Zurich Research Laboratory. STM was the first device capable to 

provide the first three-dimensional (3D) images of solid conductive and semiconductive surfaces. 

Nowadays, the STM is widely used to study the electronic structure and properties of metallic and 

semimetallic surfaces at atomic level and has further evolved to incorporate various techniques, 

one of which is the STM-based break junction (STM-BJ) technique.[10] The STM-BJ technique was 

created by Profs. Xu and Tao in 2003. STM-BJ enables the creation of thousands of single-

molecule junctions by repeatedly moving a STM tip electrode into and out of contacts with the 

substrate electrode. In this technique the molecules of interest can be solved in (i) the working 

solution surrounding the tip and the substrate electrodes or (ii) adsorbed to the surface 

electrodes.[11] This technique typically (but not necessarily) uses a Au substrate and Au STM tip 

to form single-molecule junctions.[12] 

STM-BJ process can be divided in four steps (see Fig. 2 sequence): (a) A PZT drives the Au 

tip towards the Au substrate until it contacts the molecule, which causes the formation of atomic 

junction. [8] (b) The tip is pulled away from the substrate, forming an Au-Au atomic junction formed 

by few metallic atoms. (c) As the tip continues retracting, the metallic atomic junction progressively 

stretches, disconnecting metallic atoms sequentially, until eventually it breaks. The formed 

nanogap enables the trapping and electrical contact of the target molecules in the interelectrode 

nanogap, i.e. the single-molecule junction,[1] until spontaneously (d) such single-molecule junction 

breaks. The entire cycle is repeated thousands of times to gather enough data for subsequent 

statistical analysis. [3] During this cycle a fixed bias potential is set between the tip and the 

substrate, and the tunneling current is monitored to create conductance-displacement curves.[13]  
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Figure 2. Schematic representation of the STM-BJ technique working principle. 

Typically, the conductance–displacement curves show a short step feature at 1 Go 

corresponding to the quantum conductance of the atomic metal junction, below such value the 

step feature that appears at a later stage can be assigned to the formation of single-molecule 

junctions.[11] 

As an added value, since the STM-BJ technique is based on STM, it can be employed to 

imaging the substrate surface before performing the electron transport measurement,[13] enabling 

us to place the tip on an atomically flat area or move it laterally to a fresh are of the substrate 

during the measurement.[3] 

3.1.1.3. Conducting Probe Atomic-Force-Microscope Break-Junction  

Xu et al. successfully measured the electronic properties of a junction using an Atomic Force 

Microscope (AFM). In the CP-AFM-BJ technique, a single-molecule junction is created by placing 

a conducting AFM tip in contact with a metal-supported molecular film, such as a self-assembled 

monolayer (SAM) on Au, as illustrated in Fig. 3.[14] The AFM's normal force feedback circuit 

controls the mechanical load on the microcontact while the current-voltage (I-V) characteristics 

are recorded. Each abrupt conductance decrease is accompanied by an abrupt decrease in the 

monitored force, corresponding to the breakdown of a molecule from contacting the electrodes.[3] 

 

 

 

 

 

 

Figure 3. Schematic representation of the CP-AMF-BJ technique. 
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This technique's ability to adjust the load on the microcontact is unique, allowing researchers 

to study the relationship between the mechanical deformation of molecules and their transport 

properties. Moreover, the load-dependent contact area between the tip and the SAM in these 

junctions is small (approximately 10 nm²), meaning the junction properties reflect transport 

through a limited number of molecules.[14] 

3.1.2. Single-molecule histogram-based analysis 

The techniques described before represented different ways to measure atomic and single-

molecule junctions. When data is analyzed from these junctions’ current traces, a single trace is 

insufficient to determine the sample's conductance in a statistically reliable way, requiring a large 

volume of accumulated data. Thus, in this context, histogram-based analysis becomes the most 

suitable statistical method for analysis.[15] 

Conductance histograms are typically created by accumulating junctions’ conductance traces 

during the contact rupture process, and the mean conductance is then determined from the peak 

positions of the histogram. The most used histograms in STM-BJ are 1D and 2D histograms. The 

1D histograms represent the frequency of occurrence of specific conductance values, providing 

a straightforward statistical distribution of conductance measurements (Fig. 4a).[1] 

On the other hand, 2D histograms, display conductance on the vertical axis and elongation 

distance on the horizontal axis, which allows for a visualization of the statistical behavior of the 

conductance as a function of the time or tip displacement (Fig. 4b). These 2D histograms are a 

valuable statistical tool for analyzing junction evolution parameters related to junction stability, 

including the length of the plateau of the junction, retention time, and snapback distance—the 

distance traveled by the electrode immediately after its collapse.[15] 

(a)                                                (b) 

Figure 4. Examples of single-molecule 1D and 2D histograms. 
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3.2. MACHINE LEARNING 

As previous mentioned, single-molecule measurements are typically rationalized using 

histograms-based analysis. However, such histograms are constructed based on the 

discrimination criteria imposed by the researcher, which often leads to biased interpretations and 

limitations to identify complex patterns. By implementing new tools such as Machine Learning 

(ML) based on clustering with multidimensional features, we can enhance the accuracy of 

discrimination and reveal details that may be missed by simple human-based analysis. [15] 

ML is a sub-domain of artificial intelligence (AI) that gives computers the ability to learn without 

being explicitly programmed.[16] ML goal is usually to understand the structure of the data and to 

match that data to models that can be understood and used by humans. Although ML and AI are 

frequently paired, they represent distinct concepts. AI encompasses a wide range of capabilities, 

including decision-making, skill acquisition, and problem-solving. Conversely, ML serves as a 

subset of AI, empowering intelligent systems to autonomously acquire new knowledge from data. 

ML employs a series of algorithms to learn from a dataset. These algorithms can be classified 

based on their purpose and the main categories they follow. The classification of ML algorithms 

is as follows: (i) Supervised learning, (ii) Unsupervised learning, and (iii) Semi-supervised 

learning.[17] 

3.2.1. Supervised learning 

Supervised learning is a category of ML that uses labelled datasets to train algorithms to 

predict outcomes and recognize patterns. In this model the predictors (input variables) and 

outputs (response or target variables) values are already known, and the algorithm learns the 

mapping function from input to output.[18] Mathematically, given a set of N training examples of 

the form {(x1,y1),...,(xN, yN)} such that x is the feature vector and y its label, the learning algorithm 

tries to find the best mapping functions, f, such that Y= f(X), where Y is the output space and X is 

the input space.(Fig. 5) [19] 

Supervised learning problems can be split further into classification or regression problems 

according to type of output variables. When the output variable represents a numerical value, 

regardless of whether it's discrete or continuous, the task is considered a regression problem. 

Conversely, if the output variable represents categories or classes, the problem falls into the 

classification category.  
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Otherwise, we have a type of models that combines the previous ones when data contains 

both continuous and categorical variables. Classification and regression algorithms combine the 

learning function to predict continuous values (as in regression) with classification to assign 

elements to specific categories.[20]  

 

 

 

 

Figure 5. Schematic representation of supervised learning procedure. 

3.2.2. Unsupervised learning and Clustering 

In unsupervised learning, the model’s task is to identify patterns within the training dataset, 

and subsequently react based on the presence or absence of these patterns in new data 

introduced to the model. Unlike supervised algorithms, these types of algorithms utilize an 

unlabeled training set. Implying that, these data points do not have a predefined expected output, 

and the system must be able to identify or determine this output. To enable the model to learn to 

discern hidden patterns within the dataset, it is necessary to expose it to large volumes of data. 

(Fig. 6) [16] Mathematically, given a set of N training without labels dataset {(x1,y?),...,(xN, y?)}, the 

learning algorithm return a model with k (number of clusters) and centroids—points representing 

the center of each cluster— for each cluster.[19] 

 

 

 

 

 

 

Figure 6. Schematic representation of unsupervised learning procedure. 
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Clustering is a protocol which enables us partitioning the dataset into groups, called clusters 

in an unsupervised manner.[21] The goal is to split up the data in such a way that points within a 

single cluster are very similar and points in different clusters are different. The resulting structured 

data is termed as data-concept. [22] Clustering algorithms are used to process raw, unclassified 

objects (i.e. data) into groups represented by structures or patterns in the information. 

There are two primary types of clustering: hard and soft clustering. Hard clustering involves 

grouping objects where each object can only belong to one group. Commonly used methods for 

hard clustering include k-means, hierarchical clustering, and DBSCAN.[23] On the other hand, soft 

clustering involves grouping data items in a way that allows an item to exist in multiple clusters. 

The most typical method for soft clustering is Fuzzy C-means. [23]  

3.2.2.1. Dimensionality reduction 

Clustering, as discussed above, provides a structured approach to partitioning datasets into 

meaningful groups. However, as datasets grow in complexity and dimensionality, understanding 

and interpreting these clusters can become challenging. This is where dimensionality reduction 

techniques step into offers valuable insights.  

Dimensionality reduction is a methodology of unsupervised learning that reduces the number 

of data inputs to a manageable size while also preserving the integrity of the dataset as much as 

possible.[24] There are a few different methods that can be used, such as Principal Component 

Analysis (PCA), a linear representation method, or t-distributed Stochastic Neighbor Embedding 

(t-SNE) and Uniform Manifold Approximation and Projection (UMAP), non-lineal representation 

methods. 

• PCA is a statistical procedure that uses an orthogonal transformation to convert a 

set of observations of possibly correlated variables into a set of values of linearly 

uncorrelated variables called principal components. In this the dimension of the data 

is reduced to make the computations faster and easier. It is used to explain the 

variance-covariance structure of a set of variables through linear combinations.[16] 

• t-SNE is a nonlinear dimensionality reduction technique used to represent high-

dimensional data in two or three dimensions. This method constructs a probability 

distribution over pairs of high-dimensional objects and then tries to find a similar 

distribution in a lower-dimensional space.[24] It minimizes the Kullback-Leibler (KL) 

divergence between the two distributions, which is a measure of the difference 
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between them. The KL divergence quantifies how much information is lost when 

one probability distribution is used to approximate another. t-SNE excels at 

preserving the local structure of the data while also uncovering global patterns, such 

as clusters at multiple scales.[25] 

• UMAP is an innovative manifold learning technique for dimensionality reduction, 

grounded in a theoretical framework of Riemannian geometry—a branch of 

mathematics concerned with curved surfaces and spaces—and algebraic topology. 

This results in a practical and scalable algorithm applicable to real-world data. 

UMAP competes with t-SNE in visualization quality, arguably preserving more of 

the global structure while offering superior runtime performance.[26] 

3.2.2. Semi-supervised learning 

We identified two main types of ML, supervised and unsupervised learning. However, there 

exists a third category called semi-supervised learning that integrates features from both 

categories.[15] Semi-supervised learning is a branch of ML which can train models with small 

amount of labeled data and effectively label unknown data (Fig.7). These methods are especially 

relevant in situations where obtaining enough labeled data is significantly difficult or 

computationally demanding, but large amounts of unlabeled data are relatively easy to acquire. 

Mathematically, given a set of N training examples with partial labels dataset as an input 

{(x1,y2),...,(xN, yP)}, the learning algorithm return a training model with probabilistic approach as 

an output.[19] 

 

 

 

 

 

 

 

 

Figure 7. Schematic representation of semi-supervised learning procedure. 
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4. OBJECTIVES 

The aim of this work is to create and implement a new tool using Python that utilizes ML, 

specifically focusing on unsupervised learning techniques, to organize and classify data obtained 

from STM-BJ measurements. This tool will employ advanced algorithms capable of learning and 

adapting autonomously, enabling a more detailed and comprehensive interpretation of the data 

with an objective criterion. 

The focus on unsupervised learning will enable the tool to identify patterns and group the data 

without the need for predefined labels, making the classification process unbiased, more flexible 

and adaptable to new data. This method aims to overcome the limitations of manual classification, 

which is often influenced by individual biases and may overlook subtle details. 

Several algorithmic methods and techniques will be tested to achieve the best analysis 

results, demonstrating the potential of ML to transform how complex datasets are interpreted and 

understood. By implementing and evaluating these methods, we aim to provide a robust tool that 

enhances the accuracy and depth of data analysis, ultimately contributing to the field of molecular 

electronics. 

5. METHODS 

5.1. CLUSTERING ALGORITHMS 

This section provides a concise overview of the clustering algorithms utilized in this study, 

which will be later evaluated to ensure optimal data analysis. Cluster algorithms are divided into 

two categories already presented in previous sections: hard clustering algorithms and soft 

clustering algorithms. With a focus on unsupervised learning and the objective of determining the 

optimal number of clusters (𝑘), many algorithms will be combined with cluster evaluation methods 

(detailed in the following section) to refine the data selection. Each method will be presented with 

a brief description, followed by an explanation of its associated procedure.  
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5.1.1. Hard clustering algorithms 

Clustering algorithms can be categorized into two groups: hard and soft clustering. This study 

primarily concentrates on hard clustering, where data exclusively belong to a single cluster. 

Below, we provide explanations of the three algorithms employed in this work: (i) K-means, (ii) 

Agglomerative hierarchical clustering, and (iii) DBSCAN, which are widely recognized and 

implemented in various fields for their effectiveness in data analysis and pattern recognition. 

5.1.1.1. K-means 

K-means is one of the simplest of the hard clustering algorithms and as such is widely used 

and depurated.[27] This algorithm follows a straightforward way to classify a given data set through 

a certain number of clusters (assume k clusters) fixed a priori.[23] K-means goal is to produce 

groups of cases with a high degree of similarity within each group and a low degree of similarity 

between groups. To achieve this, k centroids are defined and placed far apart. Each data point is 

assigned to the nearest centroid, then new centroids are calculated based on the resulting 

clusters. This process repeats until the centroids no longer move (Fig. 8).[27]  

Different metrics can be used to calculate this similarity, the Euclidian distance being the most 

common (1).[28]  

(1)                         𝒅𝑬 =  √∑ (𝒄𝒊 − 𝒙𝒊)
𝟐𝒏

𝒊=𝟏
              𝑑𝐸 =  √∑( 𝑐𝑖 − 𝑥𝑖)

2√∑( 𝒄𝒊𝒙𝒊)
⬚

 

Here, c is the cluster center, 𝑥 is the case it is compared to, 𝑖 is the dimension of 𝑥 (or c) 

being compared and k is the total number of dimensions.[27]   

Figure 8. Schematic representation of K-means algorithm. 
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K-means algorithm is composed of the following steps:[28] 

K-MEANS (𝑆, 𝑘) 

 

Input: a dataset of points 𝑆 = {x1,…, x𝑛}, a number of clusters 𝑘  

Output: centers {c1, …., c𝑘 } implicitly dividing 𝑆 into 𝑘 clusters 

 

Step 1: Choose 𝑘 numbers of clusters to be determined 

Step 2: Choose C𝑘 centroids randomly as the initial centers of the clusters 

Step 3: Iteration 

 3.1: Assing each object to their closest cluster center using Euclidean distance 

 3.3: Compute new cluster center by calculating mean points 

Step 4: Until 

 4.1: No changes in cluster center OR No object changes its cluster  

 

5.1.1.2. Agglomerative hierarchical clustering 

Agglomerative hierarchical clustering has been the dominant approach to constructing 

embedded classification schemes.[29] Agglomerative clustering schemes start from the partition 

of the data set into singleton nodes and merge step by step the current pair of mutually closest 

nodes into a new node until there is one final node left, which comprises the entire data set (Fig. 

9).[30] 

Figure 9. Schematic representation of agglomerative hierarchical clustering algorithm. 

Various clustering schemes share this procedure as a common definition but differ in the way 

in which the measure of inter-cluster dissimilarity is updated after each step. [31] The most used 

methods are: (i) Single linkage, (ii) Average linkage, (iii) Complete linkage and (iv) Ward’s 

methods. 
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• Single linkage: Also known as the nearest neighbor or minimum method. This measure 

defines the distance between two clusters as the minimum distance found between any 

pair of points, one from each cluster. 

(2)                            𝒅𝒔𝒊𝒏𝒈𝒍𝒆(𝐶𝑖, 𝐶𝑗) = 𝒎𝒊𝒏{𝑑(𝑥𝑎, 𝑥𝑏)|𝑥𝑎 ∈ 𝐶𝑖 , 𝑥𝑏 ∈ 𝐶𝑗} 

Here 𝑑(𝑥a, 𝑥b) is the distance between point 𝑥a in cluster 𝐶𝑖 and 𝑥b in cluster 𝐶𝑗. 

• Complete linkage: Also known as the furthest neighbor or maximum method. This 

method is close to Single linkage described above, but instead of searching for the 

minimum distance between pairs of cases, it considers the furthest distance between 

pairs of points from each cluster. 

(3)                  𝒅𝒄𝒐𝒎𝒑𝒍𝒆𝒕𝒆(𝐶𝑖 , 𝐶𝑗) = 𝒎𝒂𝒙{𝑑(𝑥𝑎 , 𝑥𝑏)|𝑥𝑎 ∈ 𝐶𝑖 , 𝑥𝑏 ∈ 𝐶𝑗} 

Here 𝑑(𝑥a, 𝑥b) is the distance between point 𝑥a in cluster 𝐶𝑖 and 𝑥b in cluster 𝐶𝑗. 

• Average linkage: Also known as the Unweighted Pair-Group Method using Arithmetic 

averages (UPGMA). For Average linkage, the distances between each case in the first 

cluster and every case in the second cluster are calculated and then averaged. 

(4)                     𝒅𝒂𝒗𝒆𝒓𝒂𝒈𝒆(𝐶𝑖 , 𝐶𝑗) =
1

|𝐶𝑖|·|𝐶𝑗|
∑ ∑ 𝑑(𝑥𝑎, 𝑥𝑏)𝑥𝑏∈𝐶𝑗𝑥𝑎∈𝐶𝑖

 

Here ∣𝐶𝑖∣ and ∣𝐶𝑗∣ are the number of points in clusters 𝐶𝑖 and 𝐶𝑗 respectively. The    

formula calculates the average of all distances between points in the two clusters. 

• Ward’s method: Defines the distance between two clusters as the increase in the total 

within-cluster variance after merging the two clusters. It minimizes the sum of squared 

differences within all clusters. 

 

(5)                                   𝒅𝒘𝒂𝒓𝒅(𝐶𝑖 , 𝐶𝑗) =
|𝐶𝑖|·|𝐶𝑗|

|𝐶𝑖|+|𝐶𝑗|
‖�̅�𝑖 − �̅�𝑗‖

2
 

 

Here x̅𝑖 is the mean (average) of the points in cluster 𝐶𝑖, x̅𝑗 is the mean of the points in 

cluster 𝐶𝑗, and ∥x̅𝑖−x̅𝑗∥ is the Euclidean distance between these means.[32] 

 



20 Cuscó Rovira, Sara 

 

Agglomerative clustering algorithm is composed of the following steps:[30] 

 

       AGGLOMERATIVE CLUSTERING (𝑆, 𝑘) 

 

       Input: A dataset 𝑆 containing data points {𝑥1, 𝑥2, …, 𝑥𝑛}, number of clusters 𝑘 

       Output: A dendrogram showing the hierarchy of clusters for 𝑘=1 to 𝑛 

 

       Step 1: Initialization 

1.1: Each data point 𝑥𝑖 starts as its own cluster 

1.2: Define 𝐶𝑖={𝑥𝑖} for each data point 𝑥𝑖 

       Step 2:  Loop from n clusters to 1 cluster 

2.1: At each iteration, there are 𝑘 clusters. Construct the corresponding dendrogram 𝑘 with the current  

clusters {𝐶1, 𝐶2, …, 𝐶𝑘} 

2.2: Compute the distance 𝑑 (𝑖, 𝑗) between all pairs of clusters 𝐶𝑖 and 𝐶j. The distance 𝑑 (𝐶𝑖, 𝐶𝑗) is  

computed based on the chosen linkage criterion 

2.3: Identify the two clusters 𝐶𝑙 and 𝐶𝑚 with the smallest distance 

2.4: Merge these two clusters into a new cluster 

2.5: Remove cluster 𝐶𝑚 from the list of current clusters 

       Step 3: Termination of the loop 

3.1: Continue the iterative process until only one cluster remains, which contains all data points 

 

5.1.1.3. Density-Based Spatial Clustering of Applications with Noise  

DBSCAN (Density-Based Spatial Clustering of Applications with Noise) is a clustering 

algorithm designed to identify core points and form clusters based on these points.[33] Before 

running the algorithm, the user must set two parameters: neighborhood distance (ε), which 

defines the radius around a sample point, and the threshold. These parameters are constants set 

before the program starts and remain unchanged.[32] 

A core point is defined as a point that has enough neighboring points within a specified radius, 

indicating a dense region. The algorithm starts by identifying all core points and then forms 

clusters by connecting these core points with their neighboring points. Points that do not have 

enough neighbors to be considered core points are labeled as noise. Consequently, border points 

emerge as those point which, although not qualifying as core points themselves, reside within the 

ε radius of at least one core point, making them adjacent to dense regions (Fig. 10).[33] 

DBSCAN offers a notable advantage by eliminating the need to predefine the number of 

clusters, enhancing its adaptability across various datasets. By effectively filtering out noise 

points, DBSCAN significantly improves the precision and clarity of the resulting clusters.[32] 
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Figure 10. Schematic representation of DBSCAN clustering algorithm. 

DBSCAN algorithm is composed of the following steps:[34] 

DBSCAN (𝑆, ε, MinPts) 

 

Input: Dataset 𝑆= {𝑥1, 𝑥2…, 𝑥𝑛}; Parameters: ε (radius of a neighborhood), MinPts (minimum number of points 

to form a dense region) 

Output: Cluster labels for each point in dataset, noise points 

 

Step 1: Initialization 

            1.1: Mark all points as unvisited 

            1.2: Initialize empty lists for clusters and noise points 

        Step 2: Iteration: for each point 𝑥 do 

2.1: Mark 𝑥 as visited 

2.2: Count points within ε-radius 

2.3: If count ≥ MinPts, mark 𝑥 as a core point 

        Step 3: Form clusters 

            3.1: start a new cluster with each unvisited core point 𝑥 

            3.2: Add all points within the ε-radius of 𝑥 to this cluster 

        Step 4: Expand cluster 

4.1: For each core point 𝑞 in the cluster, add all its ε-neighbors if they are not already in the cluster 

       Step 5: Label noise points 

5.1: Points that are not part of any cluster and are not core points are marked as noise 

5.1.2. Soft clustering algorithms 

Soft clustering is a technique that allows data items to belong to multiple clusters 

simultaneously. This work focuses exclusively on one specific type: Fuzzy C-Means, which is one 

of the most widely used methods in the field of soft clustering. By using this type of clustering, the 

aim is to obtain a different approach to data treatment. 
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5.1.2.1. Fuzzy C-means  

Fuzzy C-Means (FCM) is a data clustering technique where each data point's membership in 

a cluster is defined by a degree of membership. The core idea of FCM is to determine the cluster 

centers, which represent the average location of each cluster. The algorithm assigns membership 

values to each data point for each cluster center based on the distance between the data point 

and the cluster center. The closer a data point is to a cluster center, the higher its membership 

value for that cluster.[23] 

The summation of membership values for each data point across all clusters equals one. 

Initially, the cluster centers are imprecise, but through iterative refinement, both the cluster centers 

and the membership values are updated according to the following formulas:[35] 

1. Update cluster Centers: 

 

(6)    𝐺𝑘 =  
∑ 𝑢𝑖𝑘

𝑤 · 𝑥𝑖
𝑛
𝑖=1

∑ 𝑢𝑖𝑘
𝑤𝑛

𝑖=1

 

 

Here Gk is the center of cluster 𝑘, 𝑢𝑖𝑘 is the degree of membership of data point 𝑖 in 

cluster 𝑘, 𝑤 is the weighting exponent, and 𝑥𝑖 represents the data point number 𝑖. 

2. Update membership values: 

 

(7)         𝑢𝑖𝑘 = (∑ (
‖𝑥𝑖−𝐺𝑘‖

‖𝑥𝑖−𝐺𝑗‖
)𝑐

𝑗=1

2

𝑤−1
)

−1

 

 
Here ∥⋅∥ denotes the Euclidean distance, and 𝑐 is the number of clusters. 
 

Through these iterations, the cluster centers move towards their optimal and final positions. 

The primary advantage of FCM clustering is that it allows each data point to belong to multiple 

clusters simultaneously. Fig. 11 demonstrates how FCM operates compared to hard clustering. 

 



 

Novel Machine Learning Tools for data treatment in STM Break-Junction Technique 23 

 

 

 

 

 

 

 

Figure 11. Hard and soft (fuzzy) clustering. 

Fuzzy c-means algorithm is composed of the following steps:[23] 

FUZZY C-MEANS (X, w, max_inter, 𝐾) 

 

Input: data matrix X (n x m in size), with n = the amount of data to be clustered and m = the number of criteria              

(variables), number of clusters (𝐾 ≥ 2), weighting rank (w >1), and maximum iteration (max_inter) 

Output: Cluster centroids 𝐺𝑘 for 𝑘=1, 2…, 𝐾, and membership matrix 𝑈 indicating the degree of membership               

of each data point to each cluster 

 

       Step 1: Randomly initialization 

1.1: Randomly initialize the membership matrix 𝑈, where each entry 𝑢𝑖𝑗 represents the degree of  

membership of data point 𝑖 in cluster 𝑗 

       Step 2: Iteration 

2.1: Calculate the centroids 𝐺𝑘 by considering the cluster membership 

2.2: Update the membership matrix 𝑈 based on the distances between data points and centroids 

       Step 3: Until 

 3.1: Convergence (the centroids don’t change) 

 

 

5.2. CLUSTER EVALUATION METHODS 

As previously observed, clustering algorithms aim to classify data into clusters. All these 

algorithms, except for DBSCAN, require a predefined number of clusters before their execution. 

Although this number can be determined subjectively, there are specific techniques that help 

identify the optimal number of clusters more accurately. These techniques are known as cluster 

evaluation methods. This section presents the cluster evaluation methods applied to the previous 

cluster algorithms which are (i) the Elbow method, (ii) the Average silhouette method, (iii) the 

Davies-Bouldin index, and (iv) the Calinski-Harabasz index. 
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5.2.1. Elbow method 

The Elbow Method is an approach used to determine the optimal number of centroids (𝑘) for 

a clustering algorithm by iteratively evaluating the within-cluster-sum of squares (WCSS) value, 

also known as inertia (I), for different values of k ranging from 1 to 𝑛 (where 𝑛 is a hyperparameter 

chosen based on requirements).[36] The inertia, I, is calculated using the formula (8). 

 (8)           𝐼 = ∑ ∑ ‖𝑥 − 𝜇𝑖‖2
𝑥∈𝐶𝑖

𝐾
𝑖=1

 

 

Here 𝐾 is the number of clusters, 𝐶𝑖 is the set of data points assigned to cluster 𝑖, µ𝑖 is the 

centroid (mean) of cluster 𝑖, and ∣∣𝑥 -μ𝑖∣∣2 is the squared Euclidean distance between a data point 

𝑥 and the centroid μ𝑖 of its cluster. 

Subsequently, we generate an elbow graph plotting the WCSS values (on the y-axis) against 

different values of 𝑘 (on the x-axis). The optimal value for 𝑘 is identified at the point where the 

graph exhibits an elbow, indicating a significant drop in the cost followed by a plateau as 𝑘 

increases further. With increasing 𝑘, the average distortion decreases, and the samples become 

closer to the centroids. The 𝑘 value corresponding to the elbow signifies the point where the 

improvement in distortion diminishes the most, suggesting an optimal number of clusters.[37]  

5.2.2. Average silhouette method 

The Average silhouette method determines the optimal number of clusters (𝑘) by identifying 

the k that maximizes the mean silhouette coefficient across all observations. This method 

evaluates how similar an object is to its own cluster compared to other clusters, providing an 

effective measure of clustering quality. 

The silhouette coefficient (s𝑖) for each sample xi in the dataset X is calculated using two main 

metrics: the average distance within the cluster (a𝑖) and the average distance to the nearest 

neighboring cluster (b𝑖). The formula for the silhouette coefficient is as follows: 

(9)                          𝒔𝒊 =
𝑏𝑖−𝑎𝑖

𝐦𝐚 𝐱(𝑎𝑖,𝑏𝑖)
 

The silhouette normalized coefficient ranges from -1 to 1: 

• A value close to 1 indicates that the sample is well matched to its own cluster and 

poorly matched to neighboring clusters. 
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• A value close to 0 indicates that the sample is on or very close to the decision 

boundary between two neighboring clusters. 

• A negative value indicates that the sample might have been assigned to the wrong 

cluster.[38] 

5.2.3. Davies Bouldin Index  

Davies-Bouldin Index (DBI) is utilized as an internal cluster evaluation scheme, assessing the 

quality of cluster results based on both the quantity and proximity between clusters. The DBI 

measures cluster validity by considering cohesion, defined as the sum of the proximity of data 

points to the center point of their respective clusters, and separation, which is based on the 

distance between cluster center points. The optimal number of clusters is determined by 

identifying the clustering solution that yields the lowest DBI value.[39] Mathematically, the Davies-

Bouldin Index is calculated as follows: 

(10)                                                𝑫𝑩𝑰 =
1

𝑛
∑ 𝒎𝒂𝒙𝑖≠𝑗

𝑛
𝑖=1 (

𝜎𝑖+𝜎𝑗

𝑑(𝐶𝑖,𝐶𝑗)
) 

Here 𝑛 is the number of clusters, σ𝑖 is the average distance between each point in cluster 𝑖 

and the centroid Ci of that cluster, and d (𝐶𝑖, 𝐶𝑗) is the distance between centroids 𝐶𝑖 and 𝐶𝑗 of 

clusters 𝑖 and 𝑗, respectively.[38] 

5.2.4. Calinski-Harabasz index  

The Calinski-Harabasz Index (CHI), also known as the Variance Ratio Criterion, is an 

evaluation index used to measure the quality of a clustering result by assessing the degree of 

dispersion between clusters. The index is defined as follows: 

(11)                                                  𝑪𝑯𝑰(𝑲) =
𝑊(𝐾)·(𝑁−𝐾)

𝐵(𝐾)·(𝐾−1)
 

Here K is the corresponding number of clusters, B(𝐾) is the inter-cluster divergence, also 

called the inter-cluster covariance, W(𝐾) is the intra-cluster divergence, also called the intra-

cluster covariance, and N is the number of samples.  

The between-clusters scatter matrix B(𝐾) (12) and the within-cluster scatter matrix W(𝐾) (13) 

are defined as: 

(12)      𝑩(𝑲) =  (∑ 𝑎𝑘‖𝑥𝑘̅̅ ̅ − �̅�‖2𝐾
𝑘=1 )         (13)      𝑾(𝑲) = (∑ ∑ ‖𝑥𝑗 − 𝑥𝑘̅̅ ̅‖

2
𝑐(𝑗)=𝑘

𝐾
𝑘=1 ) 
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The larger the B(K) is, the higher the degree of dispersion between clusters is. The smaller 

the W(K) is, the closer the relationship is in the cluster. The higher the ratio is, the larger the value 

of the CH index is, that is, the better the clustering effect is.[40] 

6. MACHINE LEARNING APPLIED TO STM-BJ DATA 

As it has been introduced before, in the field of STM-BJ measurements, the classification of 

data has traditionally relied on subjective criteria, often leading to variability in results. To address 

this problem, unsupervised ML algorithms were used in this study due to its ability to find hidden 

patterns and details that humans might miss. By using these techniques, a Python tool was 

created to unbiasedly analyze the dataset and stablishing a standardized approach to classifying 

STM-BJ data. To provide the most reliable and consistent tool for data analysis a comprehensive 

comparative study of various clustering algorithms and representations was conducted. 

This section describes the process of creating the Python tool for analyzing STM-BJ 

measurements. It will include dataset description, preprocessing steps, features selection, 

evaluation of clustering algorithms, and a final presentation of results. 

6.1. ANALYZED DATA’S DESCRIPTION 

Our Python tool focuses on analyzing data obtained from STM-BJ technique using both STM’s 

electrodes made of Au. The measurements were acquired applying a 50 mV bias employing a 

1000 nA/V amplification, and using mesitylene as liquid protective environment. As explained in 

section 3.1.2.1, when the tip, initially in contact with the surface, separates, a Au-Au atomic 

junction is formed by few metallic atoms shrinks up to a specific distance at which the last single-

atom bond eventually breaks. This phenomenon becomes evident in the intensity vs. time plots 

of each individual junction (see Fig.12). 

 As the tip initiates separation, a decay in current due to the growing distance between the 

electrodes, is followed by distinctive steps consequence of the multiatomic junction. These steps, 

via on their distinctive current values during the breaking events (see events Fig. 12), enable us 

to discern the number of atomic units contacted in parallel between at the tip and surface. These 
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plots are part of individual ‘.acq’ files which the program is capable of displaying, indicating the 

file selection number. It requires a previous enumeration and a preprocessing. 

Figure 12. Plot Intensity vs. time of an illustrative sample. Note the variance in the current intensity due to 

the consecutive atomic disconnection during the junction evolution, evidenced as the distinct steps. 

6.2. DATA PROCESSING 

Preprocessing data contained in binary files (‘.acq’ files) is a crucial part of this task as Python 

only supports '.csv’ files by default. As a solution, a binary unpacking process has been 

implemented to allow the program to process this type of data effectively. Next, the data is stored 

in a data frame (two-dimensional tabular data structure). 

After conversing the files, the program aims to maximize efficiency and speed, needing data 

constraint. As illustrated in the Fig. 12, when intensity surpasses 2.5 nA, the current amplifier is 

saturated (upper detection limit exceeded), yielding data points irrelevant to analysis. Likewise, 

the current amplifier is below its lower detection limit as intensity approaches 0 when the tip is 

entirely separated from the surface electrode. For this reason, two functions were created that 

allows to the program to determine, based on upper and lower thresholds, when the current starts 

to decrease and when it becomes null, to remove the preceding and subsequent points. 

The 'find_decay_start_point' function searches for the point where the current starts 

decreasing after a significant increase. It firstly finds the index where the current reaches its 

maximum using the 'np.argmax(current)' function. Next, it defines a threshold for the decrease, 

calculated as 33% of the maximum current. The function then looks for the index where the current 
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drops below this threshold from the index of the maximum current. The index found indicates the 

point where the current begins to decrease after the maximum step. On the other hand, the 

'decay_stop_point' function searches for the point where the current becomes negligible, 

indicating complete electrode separation. Firstly, it finds the peaks of the current using the 

'find_peaks(current)' function. Then, it calculates the maximum current of these peaks. The 

threshold for negligibility is calculated as 0.9% of the maximum current. The function then 

searches for the index where the current drops below this threshold and returns the found index, 

indicating the point where the current becomes negligible. Please note that the thresholds used 

in these functions may need adjustment depending on the specific employed current amplifiers 

or setup. 

The above descrived approach enables the creation of a new Data Frame with the specific 

data required for analysis. Again, the program can display individual files, indicating the file 

selection number, as shown in Fig 13. 

 (a)                                                                        (b) 

Figure 13. Plots Intensity vs. time of samples after preprocessing removing the points before the decay start 

point and after the decay stop point. 

Visualizing the data individually facilitates thorough preprocessing, otherwise, a collective 

visualization is essential to capture the global trend of the measurements. Thus, in Fig. 14 (a) 

linear and (b) semi-logarithmic 1D histograms the whole dataset has been built. Initial 

observations from the plots indicate that the acquired data shows the expected behavior for Au-

Au atomic contacts, mostly single-traces of 1 Go (one trapped Au atom) but occasionally they are 

preceded by 2 Go (two trapped Au atoms). 
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    (a)                                                                                                    (b) 

Figure 14. 1D lineal and semi-logarithmic conductance histograms of the whole analyzed dataset. 

6.3. FEATURES EXTRACTION 

Once the preprocessing is done, it is necessary to extract variables from the dataset to classify 

it into various groups using subsequent clustering algorithms. The aim of this process is to identify 

distinct features that make traffic patterns distinguishable from each other, aiming to create a new 

set of features F based on the original set. This is applied to the training dataset to produce a 

mapping function capable of transforming any future examples x into the same feature space. 

Feature extraction is based on trial and error, where results and graphical representations 

play a key role. Initially, a series of variables were carefully selected based on their potential 

influence on data classification and their relevance to the experiment, which were mean current, 

current kurtosis, noise, current skewness, slope, time, standard deviation, and coefficient 

of variation. Take note that all data must be normalized to ensure consistency across the 

analysis.  

Below, a description of each variable and its purpose in characterizing the current data are 

described: 

• Current Kurtosis: Helps understand the shape of the current distribution, useful 

for identifying significant patterns. 

• Noise: Represents external and instrumental fluctuations affecting current stability, 

ensuring data reliability. 
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• Current Skewness: Measures asymmetry in current distribution, revealing 

potential deviations with respect of the rest of dataset. 

• Slope: Indicates the rate of change in the current, important for detecting abrupt 

changes and characterizing process kinetics. 

• Time: Captures the temporal evolution of the current, essential for tracking changes 

over time. 

• Standard Deviation: Quantifies data dispersion, complementing mean and range 

information. 

• Current Mean: Provides the central value of the current distribution, offering a 

general understanding of the typical current magnitude observed. 

• Coefficient of Variation: Measures data variability relative to the mean, useful for 

detecting anomalies. 

Subsequently, clustering was performed which organized the data into groups according to 

criteria based on the implemented variables. Many variables have been selected, so it was 

necessary to observe which ones provide relevant information and which ones are redundant. To 

carry out a detailed study, two types of representations were made: plot histograms for each 

feature across each cluster, and plot correlation matrices for each cluster across each feature. 

Histograms of each feature provide insights into the distribution of variables within each 

cluster. Fig. 15 shows that the histograms for "noise" and "coef_variation" evidence a clear 

correlation and thus they are redundant. It enables us to exclude one. In contrast, 

"current_skewness" shows a broad range, potentially affecting cluster dispersion. 

The global correlation matrix (Fig. 16) confirms these observations, also revealing a 

correlation between "time_duration" and "current_std" with a correlation coefficient over 0.5. 

Based on these observations and various trials, the features selected were coefficient of 

variation, time, slope, current kurtosis, and current mean. These selected features aim to 

enhance the accuracy and reliability of our clustering results, providing deeper insights into the 

STM-BJ experiments. 
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Figure 15. Histogram for each feature across each cluster. 

 
 
 
 
 
Feature #0: current_mean 
Feature #1: time_duration 
Feature #2: coef_variation 
Feature #3: current_kurtosis 
Feature #4: noise 
Feature #5: current_skewness 
Feature #6: slope 
Feature #7: current_std 

 

Figure 16. Global correlation matrix. 
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6.4. CLUSTERING EVALUATION 

After selecting the variables that will represent the initial dataset, the data classification 

process, the clustering, begins. The clustering algorithms, described in Section 5, were 

implemented in the tool with the aim of determining the most appropriate criterion and the most 

reliable method for processing STM-BJ data. Except for the DBSCAN algorithm, which does not 

require an initial number of clusters, the procedure followed for the other algorithms is identical. 

Below, the protocol followed for the selection of the optimal number of clusters is described 

using the K-means method as an example, employing different cluster evaluation methods. 

Each cluster evaluation method is implemented by executing the K-means algorithm with an 

initial number of clusters 𝑘, iterating up to a maximum number of clusters. When applying the 

Elbow method, an optimal result of 𝑘=5 is obtained, indicating that this is the most appropriate 

number of clusters to execute the algorithm. This is determined by representing the WCSS values 

as a function of the number of clusters. As observed in Fig. 17, when 𝑘=1, the WCSS value is 

high. As 𝑘 increases to 2, the WCSS value decreases. However, when choosing 𝑘=5, the 

reduction in WCSS stabilizes, forming a plateau. Finally, the WCSS equals zero when each point 

has its own cluster, as the centroid is exactly at the point, making the distance between them 

zero. Identifying the point where the elbow starts to stabilize is a complex process, but the 

program can determine it automatically. 

 

 

 

 

 

 

 

Figure 17. Representation of Elbow method applied to k-means algorithm. 

Subsequently, the Average silhouette method was implemented in a similar manner, obtaining 

an optimal value of 𝑘=4, but that is not sufficient to select the optimal 𝑘. The following conditions 

should be checked to pick the right ‘𝑘’ using the Silhouette plots. 
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Initially, the average silhouette score for each value of 𝑘 is calculated, representing the mean 

silhouette coefficient across all points for each cluster (Fig. 18). The highest average silhouette 

score indicates the best clustering configuration, where points are well matched within their 

clusters and poorly matched with neighboring clusters. 

 

 

 

 

 

 

 

Figure 18. Representation of Average silhouette method applied to k-means algorithm. 

Additionally, visualizing the silhouette plots for different numbers of clusters helps to 

understand the quality of the clustering. Each plot displays the silhouette coefficient of each point, 

sorted within their respective clusters. This visualization aids in confirming the number of clusters 

chosen by the program or exploring other potential configurations. As shown in Fig. 19, when 

𝑘=4, a very large group of points is formed, and the remaining clusters are relatively small. In 

contrast, when 𝑘=5, the largest cluster remains dominant, but a fifth cluster emerges, which can 

provide additional insights into the data. Since the elbow method had determined 5 clusters, this 

configuration is the most reliable. 

Figure 19. Additional representation of Average silhouette method. 
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In addition to the Elbow method and Average silhouette method, other clustering evaluation 

techniques were employed to further assess the quality of the clustering results. These methods 

are the Davies-Bouldin index and the Calinski-Harabasz index. 

The DBI measures the average similarity between each cluster and its most similar cluster, 

considering both the scatter within clusters and the separation between clusters. After applying 

this method, a value 𝑘=4 was obtained for the clusters (Fig 20a). 

On the other hand, the CHI, also known as the variance ratio criterion, evaluates clustering 

quality based on the ratio of the between-cluster dispersion to the within-cluster dispersion. Upon 

calculation, a value 𝑘=5 was obtained for the clusters (Fig 20b). 

(a)                                                                                     (b) 

Figure 20. Representation of DBI and CHI Index applied to k-means algorithm. 

Due to two of the proposed methods yielding a value of 𝑘=4 and two others yielding a value 

of 𝑘=5, it was decided to try the algorithm with both configurations to determine which one 

produces better results. 

As has been mentioned earlier, the procedure followed for each clustering algorithm is like 

the one described above. Table 1 compiles the information from each clustering algorithm with 

each cluster evaluation method and the final chosen number of clusters. It is important to 

emphasize that the selection of the optimal number of clusters involves a subjective assessment, 

which relies primarily on the coherence of the results obtained from various cluster evaluation 

methodologies and their subsequent analysis. Additionally, it is worth noting that the effectiveness 

of cluster evaluation techniques can vary significantly depending on the clustering algorithm 

employed. Some methodologies may demonstrate superior performance in assessing the quality 

of clustering, while others may not offer as reliable results. 
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Cluster algorithm 
Elbow 

method 

Average silhouette 

method 
DBI CHI Optimal k 

 

 

Hard Clustering 

K-means 5 4 4 5 4-5 

Single linkage 2 2 3 2 2 

Complete linkage 4 2 2 4 4 

Average linkage 2 2 4 2 2 

Ward’s method 5 5 5 6 5 

DBSCAN ---- ---- ---- ---- 4 

Soft clustering FCM 6 4 6 5 5-6 

Table 1. Comparison of the optimal number of clusters for different clustering algorithms using various cluster 

evaluation methods. 

Observing Table 1, we can discard two methods of agglomerative clustering for data 

classification: the Average linkage method and the Single linkage method. Both the Single 

method and the Average method have yielded an optimal number of clusters of 2. However, these 

methods are not suitable for our STM-BJ data classification task due to their tendency to create 

clusters based solely on proximity or distance metrics, which may not adequately capture the 

underlying patterns and complexities present in our data. 

6.4.1. Dimensionality reduction 

After determining the optimal number of clusters for each clustering algorithm, we define the 

value of 𝑘 for each algorithm and execute them. To facilitate the understanding of data 

classification, we employ dimensionality reduction techniques to visualize the clusters. Below, the 

following visualizations are presented: (a) UMAP, (b) t-SNE, and (c) PCA, for each method— K-

means (Fig. 21), Complete linkage (Fig. 22), Ward's method (Fig. 23), DBSCAN (Fig. 24), and 

FCM (Fig. 25). 
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(a)                                                                   (b)                                                                    (c) 

Figure 21. Dimensionality reduction representations for K-means. 

(a)                                                              (b)                                                                    (c) 

Figure 22. Dimensionality reduction representations for Complete linkage. 

(a)                                                              (b)                                                                    (c) 

Figure 23. Dimensionality reduction representations for Ward’s method. 

(a)                                                              (b)                                                                    (c) 

Figure 24. Dimensionality reduction representations for DBSCAN. 
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(a)                                                              (b)                                                                    (c) 

Figure 25. Dimensionality reduction representations for Fuzzy-c means. 

After evaluating the results obtained through PCA, UMAP, and t-SNE, it is observed that each 

method offers a unique perspective on the underlying structure of the data. While PCA provides 

a quick dimensionality reduction and preserves the global structure of the data, both UMAP and 

t-SNE stand out for their ability to capture both global and local structures, which is especially 

relevant in nonlinear datasets. Therefore, based on the complexity of the data, both UMAP and t-

SNE are considered to play a fundamental role in understanding the data structure, providing 

detailed and insightful perspectives. 

Observing the set of visualizations, we can see those three methods (K-means, Ward's 

method, and FCM) reflect a good distribution of the data. In contrast, DBSCAN and Complete 

linkage exhibit a disordered distribution. In the later, smaller populations are encompassed within 

larger ones, indicating a lack of clear differentiation between them. 

The DBSCAN algorithm does not perform well with our STM-BJ data. This method primarily 

focuses on detecting anomalies and forming clusters based on density. As observed in our 

visualizations, DBSCAN creates an external cluster that surrounds the data and several internal 

clusters. This indicates that DBSCAN struggles with the varying densities present in STM-BJ 

measurements, which can lead to an overemphasis on detecting noise rather than forming 

coherent clusters. The nature of STM-BJ data, which includes intricate patterns and variations, 

does not align well with DBSCAN's density-based clustering approach. 

Similarly, the Complete linkage method also fails to provide a meaningful clustering solution. 

It detects one very large cluster and three much smaller groups with very few points, leading to 

an uneven and uninformative clustering structure. This method tends to create clusters by 

maximizing the distance between the most distant points within a cluster. For STM-BJ data, this 
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results in merging dissimilar clusters and forming disproportionately large clusters. This approach 

is not well-suited for our data, which contains subtle but important variations that are crucial for 

accurate clustering. 

Therefore, due to these observations and the specific characteristics of STM-BJ data, we can 

anticipate that both, DBSCAN and Complete linkage, are not suitable for our clustering needs. 

6.5. VALIDATION 

To validate of each clustering method, we generated final 2D conductance histograms. Below, 

the clusters formed by each algorithm are described and compared to select the optimal clustering 

method according to the phenomenology and characteristics of atomic junctions’ evolution. 

K-means achieved its best classification with five clusters, as shown in Fig. 26. Cluster 1, with 

a 45.7% of selected traces, reflects the most common scenario, junctions of 2 Go and 1 Go 

conductance values[3], due to the sequential disconnection from two to single atoms during 

junction evolution. Cluster 2 also shows a trend of 1 Go and 2 Go signatures but with step-lengths 

10 times longer than Cluster 1, highlighting stability in the junctions, and thus less common. 

Cluster 3 involves junctions due to common electrode-solvent interactions, forming Au-C-Au 

bonds, with short steps at ca. 0.3 Go. Cluster 4 represents the simplest and most unlikely condition 

with a single Au atom junction at 1 Go. Finally, Cluster 5 comprises residual data with shorter 

lifetimes and thus datapoints. 

FCM also classified the data into five clusters, as shown in Fig. 27, following the same criteria 

as the K-means algorithm but with notable differences in the populations. The most remarkable 

difference is in Cluster 4, comprising 17.8% of the data with only 1 Go compared to 7.5% in K-

means. This indicates that K-means combined some single-step data with multiple-step data, 

hindering the analysis, and FCM successfully distinguished them. Also, the percentage of residual 

data in Cluster 5 increased significantly, indicating FCM's higher capacity to detect poorly defined 

traces, helping discard data that do not accurately reflect the experiment's behavior. 

Ward's method also resulted in five clusters, as shown in Fig. 28. The organization of most 

clusters differed from the previous algorithms except for Cluster 3. Cluster 2, which contains long 

steps, had a very low percentage, while Cluster 1 presented more than 50% of the data. This 

suggests that the method failed to distinguish between step durations, combining long and short 

steps. On the other hand, Cluster 4 was very similar to the Cluster 4 in the K-means algorithm, 
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again not effectively separating samples with a single step as FCM did. Lastly, if we compare 

Cluster 4 and Cluster 5, which in the previous algorithms was the residual cluster, Cluster 5 

surpass in population Cluster 4 with a similar length step. We can conclude that the algorithm 

created two minority groups very similar without obtaining a discrimination between the clusters. 

Ward’s method achieved a proper discrimination between clusters but not a good assignment. 

This analysis confirms that FCM clustering is the most effective method for analyzing STM-

BJ data, providing clear and organized groupings. The success of FCM can be attributed to its 

approach of testing each data point against multiple cluster centers, ensuring the most accurate 

and nuanced classification. This ability to discern subtle differences in data patterns and to detect 

poorly defined traces underlines FCM's superior performance in handling complex datasets. 

 

      Cluster 1 (45,7%)  Cluster 2 (18,5%)               Cluster 3 (22,2%) 

 

 

 

     Cluster 4 (7,5%)  Cluster 5 (6,2%)              Whole dataset (100%) 

 

 

 

 

Figure 26. Lineal 2D histograms representations for each cluster applying K-means. 
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 Cluster 1 (28,5%)                  Cluster 2 (19,1%)                  Cluster 3 (22,1%) 

 

 

 

 Cluster 4 (17,7%)                  Cluster 5 (12,6%)              Whole dataset (100%) 

 

 

 

Figure 27. Lineal 2D histograms representations for each cluster applying FCM. 

            Cluster 1 (51,7%)              Cluster 2 (8,4%)                  Cluster 3 (22,7%) 

 

 

 

             Cluster 4 (7,4%)                   Cluster 5 (9,8%)           Whole dataset (100%) 

 

 

        

 

 

Figure 28. Lineal 2D histograms representations for each cluster applying Ward’s method. 
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7. CONCLUSIONS 

The development of a Python tool based on ML for analysing data from STM-BJ 

measurements has proven to be highly effective and objective in understanding the diverse 

patterns and trends in electron transport through Au atomic junctions. Unsupervised learning 

offered great potential for classifying data, adapting to various datasets, and producing consistent 

results that surpass the limitations of traditional human classification, which often leads to 

scattered and variable outcomes. 

The extensive range of ML algorithms for clustering allowed for a detailed and thorough study 

to achieve the most accurate comparison between them. By testing our tool on a acquired STM-

BJ dataset in the host lab, DBSCAN, Complete linkage, Single linkage, and Average linkage, 

were found to be ineffective in capturing the complex patterns in our data. Conversely, algorithms 

like K-means, FCM, and Ward’s method proved to be highly effective, adapting to the complexity 

of the dataset and providing valuable insights into the mathematical data’s parametrisation. 

Among all the algorithms, FCM significantly stood out for its efficiency, producing clear and 

organized clusters that reflected the behaviours of atomic junctions. The identified clusters 

revealed relevant information about the conductance of electrons at the atomic level, 

distinguishing the number of junctions, the duration of conductance steps, and even possible 

interactions with the solvent. We speculate that fuzzy algorithms represent the most suitable 

framework since the subtle of atomic junctions’ phenomenology. Our work opens new avenues 

for exploring complex patterns and subtle details for atomic junctions in ways that were not 

previously achievable. 
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12. ACRONYMS 

BJ: Break Junction 

STM-BJ: Scanning Tunneling Microscope Break-Junction 

PZT: piezoelectric transducer 

MCBJ: Mechanically Controllable Break Junctions 

CP-AMF-BJ: Conducting Probe Atomic-Force-Microscope Break-Junction 

ML: Machine Learning 

AI: Artificial Intelligence 

PCA: Principal Component Analysis 

UMAP: Uniform Manifold Approximation and Projection 

t-SNE: t-distributed Stochastic Neighbor Embedding 

KL: Kullback-Leibler 

DBSCAN: Density-Based Spatial Clustering of Applications with noise 

FCM: Fuzzy C-Means 

WCSS: within-cluster-sum of squares 

DBI: Davies-Bouldin Index 

CHI: Calinski-Harabasz index 
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APPENDICES 





 

APPENDIX 1: STM-BJ TOOL (FUZZY-C MEANS) 

IMPORT MODULES 

#import modules 
import pandas as pd 
import numpy as np 
import matplotlib.pyplot as plt 
import seaborn as sns 
from scipy.signal import find_peaks 
import glob 
import os 
import math 
from tqdm.notebook import tqdm, trange 
from tqdm import tqdm 
import struct 
from scipy.signal import butter, filtfilt 
from sklearn.cluster import KMeans 
from sklearn.metrics import silhouette_score 
from sklearn.metrics import silhouette_samples 
import sklearn.metrics as metrics 
from sklearn.preprocessing import StandardScaler 
from joblib import Parallel, delayed 
from scipy.stats import kurtosis, skew, linregress 
!pip install kneed 
from kneed import KneeLocator 
import warnings 
warnings.filterwarnings("ignore") 
!pip install umap-learn 
from sklearn.manifold import TSNE 
import umap 
from sklearn.decomposition import PCA 
from yellowbrick.cluster import SilhouetteVisualizer 
from yellowbrick.cluster import KElbowVisualizer 
from sklearn.metrics import davies_bouldin_score, calinski_harabasz_score 
!pip install scikit-fuzzy 
import skfuzzy as fuzz 
from sklearn.datasets import make_blobs 

EXPERIMENTAL PARAMETERS 

#Experimental Parameters Introduction  
Vbias = float(input("Enter the bias value in mV: ")) # potential applied between the two electrodes 
Vbias = Vbias/1000 
bins_1D = int(input("Enter the number of bins for 1D: ")) 
Amplification = float(input("Enter the amplification value in nA/V: ")) 
VtoG = (((Amplification)*1E-9) / 77.4E-6) * (1/Vbias) # output voltage in V 

LOADING DATA 

# Get the path of the "results" folder on the desktop 
folder_path = os.path.join(os.path.expanduser("~"), "Desktop", "results") 
 
# Get all .acq files in the "results" folder 
acq_files = sorted(glob.glob(os.path.join(folder_path, '*.acq')))  
 
# Display the number of files found 
print(f"Number of .acq files found in the 'results' folder on the desktop: {len(acq_files)}") 
 
# Check if .acq files were found 
if not acq_files: 
    print("No .acq files found in the 'results' folder on the desktop.") 
 
 

 



 

READ BINARY FILES 
 
# Read .acq binary files 
def getDataframe(filename): 
    binary = open(filename, "rb").read() 
    number_of_points = struct.unpack("@I", binary[0:4])[0] 
    datafile = struct.unpack("@" + "d" * number_of_points, binary[4:4 + number_of_points * 8]) 
    time_interval = struct.unpack("@d", binary[4 + number_of_points * 8 + 16:])[0] 
    return pd.DataFrame({"time": [time_interval * i for i in range(number_of_points)], "current": datafile}) 
 

FILE SELECTION 
 
data = [] 
for filename in acq_files: 
    df = getDataframe(filename) 
    df["current"] = df["current"].abs() # Take absolute values (log...) 
    df['current'] = df['current'] * VtoG  
    data.append(df) 
 
# Select a file from the list 
file_selected = int(input("Select the file number to visualize: ")) - 1 
df_acq = data[file_selected] 
 
# Plot intensity vs time 
plt.figure(figsize=(10, 6)) 
plt.plot(df_acq['time'], df_acq['current'], color='blue') 
plt.title('Intensity vs Time') 
plt.xlabel('Time') 
plt.ylabel('Intensity') 
plt.grid(True) 
plt.show() 
 

FILTER DATA 
 
#Signal Filtering Parameters 
N = 2 # Butterworth filter order 
Wn = 7000 # Cutoff frequency 
fs = 30000 # Sampling rate 
 
#Function to find the decay start point 
def find_decay_start_point(time, current): 
    # Find the index where the current starts decreasing after a significant increase 
    start_index = np.argmax(current)  # Index of the maximum current 
    max_current = current[start_index] 
    # Define a threshold for the decrease 
    threshold = 0.33  # You may need to adjust this threshold based on your data  
    # Find the index where the current drops below the threshold 
    decay_start_index = start_index + np.argmax(current[start_index:] < max_current * (1 - threshold)) 
    return time[decay_start_index], current[decay_start_index] 
 
# Function to find the decay stop point 
def decay_stop_point(time,current): 
    peaks, _ = find_peaks(current) 
    peak_max= max(current[peaks]) 
    threshold= 0.009 * peak_max 
    for i in range(len(current)): 
        if current[i]<threshold: 
            decay_stop_point_index = i 
            break 
    return time[decay_stop_point_index], current[decay_stop_point_index] 
 
# Functions to "coerce" or adjust the data to the decay start point and decay stop point 
def coerce1(time, current): 
    decay_start_time, decay_start_current = find_decay_start_point(time, current) # Get the coordinates of 
the decay start point 
    return decay_start_time, decay_start_current # Return the coordinates of the decay start point 
 
def coerce2(time, current): 
    decay_stop_time, decay_stop_current = decay_stop_point(time, current) # Get the coordinates of the 
decay stop point 
    return decay_stop_time, decay_stop_current # Return the coordinates of the decay stop point 
 
# Read data from all capture files 
data = [] #List to store valid files 



 

invalid_files = []  # List to store invalid files 
for filename in acq_files: 
    df = getDataframe(filename) 
    df["current"] = df["current"].abs()  # Take absolute values (log...) 
     
    # Filtering 
    B, A = butter(N=N, Wn=Wn, btype='lowpass', output='ba', fs=fs) 
    df["current"] = filtfilt(B, A, df["current"]) 
 
    # Find the saturation point of the current and the inflection point 
    saturation_current = df['current'].max() 
    inflection_point_1 = coerce1(df['time'], df['current']) 
    inflection_point_2 = coerce2(df['time'], df['current']) 
 
    # Remove the saturation region 
    df = df.loc[df['time'] >= inflection_point_1[0]] 
    df = df.loc[df['time'] <= inflection_point_2[0]] 
    df['time'] = df['time'] - df['time'].min()  
    df['current'] = df['current'] * VtoG #Convert current to the Go scale 
     
    # Check if the dataframe is empty after processing 
    if df.empty: 
        invalid_files.append(filename)  # Add filename to the list of invalid files 
        continue  # Skip further processing for this file 
     
    data.append(df) 
 
# Print invalid files 
if invalid_files: 
    print("\033[4m\033[1mInvalid files (empty dataframes):\033[0m\n") 
    for file in invalid_files: 
        print(file) 
         
# Concatenate all DataFrames 
allinone = pd.concat(data, axis=0, ignore_index=True) 
 
#Select a file from the list 
file_selected = int(input("Select the file number to visualize: ")) - 1 
df_acq = data[file_selected] 
 
#Current vs. time plot for preprocesing files 
plt.figure(figsize=(5, 6)) 
plt.plot(df_acq['time'], df_acq['current'], color='blue') 
plt.title('Intensity vs Time') 
plt.xlabel('Time') 
plt.ylabel('Intensity') 
plt.grid(True) 
plt.show() 
 

PLOT WHOLE DATASET 
 
print('The plots of the data represented as a function of current are as follows:') 
 
# Histograms linear and logarihtmic 
fig, axes = plt.subplots(1, 2, figsize=(12, 5)) 
sns.histplot(data=allinone["current"], x=None, log_scale=False, bins=500, ax=axes[0], element="poly", 
color="blue") 
axes[0].set_title('Linear scale') 
axes[0].set_xlabel('Conductance(G/Go)') 
 
sns.histplot(data=allinone["current"], x=None, log_scale=True, bins=500, ax=axes[1], element="poly", 
color="red") 
 
axes[1].set_title('Logarithmic scale') 
axes[1].set_xlabel('Conductance(G/Go)') 
axes[1].set_xlim(0.01, 4)   
axes[1].set_xscale('log') 
plt.tight_layout() 
 
plt.show() 

 
 
 
 



 

FEATURES EXTRACTION 
 
# Function to extract features from all DataFrames using parallel processing (WITH progress bar) 
def extract_features_parallel(data): 
    features = Parallel(n_jobs=-1)(delayed(extract_features)(df) for df in tqdm(data, desc='Feature 
Extraction')) 
    return np.array(features) 
 
# Function to extract features from a single DataFrame 
def extract_features(df): 
    current_mean = df['current'].mean()  # Current mean 
    time_duration = df['time'].max() - df['time'].min()  # Time duration of capture 
    current_kurtosis = kurtosis(df['current'])  # Kurtosis of current 
    current_std = df['current'].std()  # Standard deviation of current 
    slope, _, _, _, _ = linregress(df['time'], np.exp(df['current']))  # Calculate the slope of the linear 
regression line of current vs. time 
    coef_variacion = current_std / current_mean 
    return [  coef_variacion,time_duration ,current_kurtosis,  slope, current_mean] 
 
# List of feature names 
feature_names = [  'time_duration','coef_variacion', 'current_kurtosis',  'slope', 'current_mean'] 
 
# Extract features from the data 
features = extract_features_parallel(data) 
 
# Normalize the features 
scaler = StandardScaler() 
features_scaled = scaler.fit_transform(features) 
 

CLUSTERING 
 

ELBOW METHOD 
 
# Elbow method 
print("\033[4m\033[1mElbow Method:\033[0m\n") 
wcss = [] 
for i in range(2, 11): 
    cntr, u, u0, d, jm, p, fpc = fuzz.cluster.cmeans( 
        data=features_scaled.T, c=i, m=2, error=0.005, maxiter=1000, init=None, seed=42) 
    distances = np.min(d, axis=0) 
    wcss.append(np.sum(distances ** 2)) 
 
# Determine the optimal number of clusters 
kl = KneeLocator(range(2, 11), wcss, curve='convex', direction='decreasing') 
elbow_point = kl.elbow 
 
#Plot elbow 
plt.figure(figsize=(10, 6)) 
plt.plot(range(2, 11), wcss, marker='o', linestyle='-') 
plt.axvline(x=elbow_point, color='r', linestyle='--', label=f'Optimal Clusters: {elbow_point}') 
plt.title('Elbow Method for Optimal Clusters (FCM)') 
plt.xlabel('Number of Clusters') 
plt.ylabel('WCSS') 
plt.legend() 
plt.show() 
print('Optimal number of clusters (Elbow Method):', elbow_point) 
 

AVERAGE SILHOUETTE METHOD 
 
#Average Silhouette method 
print("\033[4m\033[1mSilhouette Method:\033[0m") 
 
# Calculate the Silhouette Score for different numbers of clusters 
min_clusters = 2 
max_clusters = 10 
silhouette = [] 
 
for n_clusters in range(min_clusters, max_clusters + 1): 
    cntr, u, u0, d, jm, p, fpc = fuzz.cluster.cmeans( 
        data=features_scaled.T, c=n_clusters, m=2, error=0.005, maxiter=1000, init=None, seed=42) 
    cluster_labels = np.argmax(u, axis=0) 
    silhouette_avg = metrics.silhouette_score(features_scaled, cluster_labels, metric='euclidean') 
    silhouette.append(silhouette_avg) 
# Determine the optimal number of clusters 



 

optimal_num_clusters = np.argmax(silhouette) + min_clusters 
 
# Plot Silhouette scores 
plt.figure(figsize=(7, 4), dpi=80) 
plt.plot(range(min_clusters, max_clusters + 1), silhouette, label='Silhouette vs K') 
plt.xlabel('Number of clusters') 
plt.ylabel('Silhouette Score') 
plt.legend(loc='upper right') 
plt.title('Silhouette Score for different number of clusters') 
plt.show() 
print("Optimal number of clusters by the silhouette method:", optimal_num_clusters) 
 
silhouette = [] 
fig, axs = plt.subplots(6, sharex=True, figsize=(20, 12)) 
 
for i in range(2, 8):  # Modify according to your results 
    cntr, u, u0, d, jm, p, fpc = fuzz.cluster.cmeans( 
        data=features_scaled.T, c=i, m=2, error=0.005, maxiter=1000, init=None, seed=42) 
    cluster_labels = np.argmax(u, axis=0) 
    silhouette_samples = metrics.silhouette_samples(features_scaled, cluster_labels, metric='euclidean') 
    silhouette.append(silhouette_samples) 
    axs[i - min_clusters].plot(silhouette_samples, label=f'K={i}') 
    axs[i - min_clusters].set_title("Silhouette average score for K={}: {:.3f}".format(i, 
np.mean(silhouette_samples))) 
    axs[i - min_clusters].legend() 
plt.show() 
 

DAVIES BOULDIN SCORE 
 
# Davies-Bouldin Score 
print("\n\033[4m\033[1mDavies-Bouldin Score:\033[0m\n") 
davies_bouldin_scores = [] 
for i in range(2, 11): 
    cntr, u, u0, d, jm, p, fpc = fuzz.cluster.cmeans( 
        data=features_scaled.T, c=i, m=2, error=0.005, maxiter=1000, init=None, seed=42) 
    cluster_labels = np.argmax(u, axis=0) 
    db_score = davies_bouldin_score(features_scaled, cluster_labels) 
    davies_bouldin_scores.append(db_score) 
 
optimal_db_index = np.argmin(davies_bouldin_scores) + 2 
print('Optimal number of clusters (Davies-Bouldin):', optimal_db_index) 
 
# Plot Davies-Bouldin Score 
plt.figure(figsize=(10, 6)) 
plt.plot(range(2, 11), davies_bouldin_scores, marker='o', linestyle='-') 
plt.axvline(x=optimal_db_index, color='r', linestyle='--', label=f'Optimal Clusters: {optimal_db_index}') 
plt.title('Davies-Bouldin Score vs. Number of Clusters (FCM)') 
plt.xlabel('Number of Clusters') 
plt.ylabel('Davies-Bouldin Score') 
plt.legend() 
plt.show() 

 
CALINSKI-HARABASZ SCORE 
 
# Calinski-Harabasz Score 
print("\n\033[4m\033[1mCalinski-Harabasz Score:\033[0m\n") 
 
# Calculate Calinski-Harabasz Score for different numbers of clusters 
ch_scores = [] 
for i in range(3, 11): 
    cntr, u, u0, d, jm, p, fpc = fuzz.cluster.cmeans( 
        data=features_scaled.T, c=i, m=2, error=0.005, maxiter=1000, init=None, seed=42) 
    cluster_labels = np.argmax(u, axis=0)  # Get cluster labels 
    ch_score = calinski_harabasz_score(features_scaled, cluster_labels) 
    ch_scores.append(ch_score) 
 
optimal_ch_index = np.argmax(ch_scores) + 3   
print('Optimal number of clusters (Calinski-Harabasz):', optimal_ch_index) 
 
# Plot Calinski-Harabasz Score 
plt.figure(figsize=(10, 6)) 
plt.plot(range(3, 11), ch_scores, marker='o', linestyle='-') 
plt.title('Calinski-Harabasz Score vs. Number of Clusters') 
plt.xlabel('Number of Clusters') 



 

plt.ylabel('Calinski-Harabasz Score') 
plt.axvline(x=optimal_ch_index, color='r', linestyle='--', label='Optimal Number of Clusters') 
plt.legend() 
plt.show() 
 

CLUSTERING LOOP 
 
def fuzzy_cmeans(features_scaled, n_clusters): 
    cntr, u, u0, d, jm, p, fpc = fuzz.cluster.cmeans( 
        features_scaled.T, n_clusters, 2, error=0.005, maxiter=1000, init=None) 
     
    #Assigning samples to a single cluster based on maximum membership 
    labels_soft = np.argmax(u, axis=0) 
     
   # Visualize fuzzy membership of samples to clusters 
    fig, ax = plt.subplots(figsize=(35, 6)) 
    for i in range(n_clusters): 
        ax.plot(u[i], label=f'Cluster {i+1}') 
    ax.set_xlabel('Sample') 
    ax.set_ylabel('Fuzzy Membership') 
    ax.set_title('Fuzzy Membership of Samples to Clusters') 
    ax.legend() 
    plt.show() 
    return labels_soft 
 
num_clusters= 5 #Adjust to your result 
# Perform soft clustering using c-fuzzy means 
print("\n\033[4m\033[1mSoft Clustering (Fuzzy C-Means):\033[0m\n") 
labels = fuzzy_cmeans(features_scaled, num_clusters) 
 
# Create list of dataframes for each cluster 
cluster_data = [[] for _ in range(num_clusters)] 
for i, df in enumerate(data): 
    cluster_data[labels[i]].append(df) 
 

DIMENSIONALITY REDUCTION REPRESENTATIONS 
 

UMAP 
 
# Apply UMAP for dimensionality reduction 
umap_model = umap.UMAP(n_components=2, random_state=0) 
umap_result = umap_model.fit_transform(features_scaled) 
 
# Plot UMAP representation colored by cluster labels 
plt.figure(figsize=(8, 6)) 
plt.scatter(umap_result[:, 0], umap_result[:, 1], c=labels, cmap='viridis', marker='o', alpha=0.5) 
plt.title('UMAP Representation of Clusters') 
plt.xlabel('UMAP Dimension 1') 
plt.ylabel('UMAP Dimension 2') 
plt.colorbar(label='Cluster Label') 
plt.show() 
 

t-SNE 
 
# Apply t-SNE for dimensionality reduction 
tsne = TSNE(n_components=2, random_state=0) 
features_tsne = tsne.fit_transform(features_scaled) 
 
# Plot t-SNE representation colored by cluster labels  
plt.figure(figsize=(8, 6)) 
plt.scatter(features_tsne[:, 0], features_tsne[:, 1], c=labels, cmap='viridis', marker='o', alpha=0.5) 
plt.title('t-SNE Representation of Clusters') 
plt.xlabel('t-SNE Dimension 1') 
plt.ylabel('t-SNE Dimension 2') 
plt.colorbar(label='Cluster Label') 
plt.show() 
 

PCA 
 
# Apply PCA for dimensionality reduction 
pca = PCA(n_components=2) 
pca_result = pca.fit_transform(features_scaled) 
 
# Plot PCA representation colored by cluster labels  



 

plt.figure(figsize=(8, 6)) 
plt.scatter(pca_result[:, 0], pca_result[:, 1], c=labels, cmap='viridis', marker='o', alpha=0.5) 
plt.title('PCA Representation of Clusters') 
plt.xlabel('PCA Component 1') 
plt.ylabel('PCA Component 2') 
plt.colorbar(label='Cluster Label') 
plt.show() 
 

FILES PER CLUSTER 
 
# Create a dictionary to store the file numbers per cluster 
file_numbers_by_cluster = {i: [] for i in range(num_clusters)} 
 
# Associate each file number with its respective cluster 
for i, label in enumerate(labels): 
    # Ensure label is within the valid range 
    if label < num_clusters: 
        file_numbers_by_cluster[label].append(i + 1)  # Add 1 to start file numbers from 1 
 
# Print the file numbers per cluster 
print("\033[4m\033[1mFiles per Cluster:\033[0m \n") 
for cluster, file_numbers in file_numbers_by_cluster.items(): 
    print(f"\033[1mCluster {cluster + 1}:\033[0m {file_numbers}\n") 
 

CLUSTERING REPORT 
 
# Print information for each cluster with data 
print("\033[4m\033[1mCluster Information:\033[0m \n") 
for cluster, file_numbers in file_numbers_by_cluster.items(): 
    if len(file_numbers) > 0: 
        print(f"\033[1mCluster {cluster + 1}:\033[0m") 
        print(f"Number of captures: {len(file_numbers)}\n") 
        print("\033[1mFeature Information (Min-Max):\033[0m") 
        for feature_name, feature_values in zip(feature_names, np.vstack((np.min(features_scaled[labels 
== cluster], axis=0), np.max(features_scaled[labels == cluster], axis=0))).T): 
            print(f"{feature_name}: ({feature_values[0]:.2f} , {feature_values[1]:.2f})") 
        print("\n") 
 
# Plot histograms for each cluster with data 
num_features = len(feature_names) 
colors = ['blue', 'green', 'orange', 'red', 'purple', 'brown', 'pink', 'gray', 'olive', 'cyan', 
'magenta'] 
fig, axes = plt.subplots(len(file_numbers_by_cluster), 1, figsize=(6, 4 * len(file_numbers_by_cluster))) 
 
for cluster, file_numbers in file_numbers_by_cluster.items(): 
    if len(file_numbers) > 0: 
        ax_index = list(file_numbers_by_cluster.keys()).index(cluster) 
        for j, feature_name in enumerate(feature_names): 
            cluster_features = features_scaled[labels == cluster, j] 
            axes[ax_index].hist(cluster_features, bins=20, color=colors[j], alpha=0.5, 
label=feature_name) 
 
        axes[ax_index].set_title(f'Cluster {cluster+1}') 
        axes[ax_index].set_xlabel('Value') 
        axes[ax_index].set_ylabel('Frequency') 
        axes[ax_index].grid(True) 
        axes[ax_index].legend() 
plt.tight_layout() 
plt.show() 

 
FEATURES REPORT 
 
# Plot histograms for each feature across all clusters 
num_clusters = len(cluster_data) 
num_features = len(feature_names) 
colors = ['blue', 'green', 'orange', 'red', 'purple', 'brown', 'pink', 'gray', 'olive', 'cyan', 
'magenta'] 
 
fig, axes = plt.subplots((num_features + 1) // 2, 2, figsize=(15, 25)) 
 
for j, feature in enumerate(feature_names): 
    row = j // 2 
    col = j % 2 
    for i, cluster_df in enumerate(cluster_data): 



 

        cluster_features = features[labels == i] 
        axes[row, col].hist(cluster_features[:, j], bins=20, color=colors[i], alpha=0.5) 
    axes[row, col].set_title(f'{feature}') 
    axes[row, col].set_xlabel('Value') 
    axes[row, col].set_ylabel('Frequency') 
    axes[row, col].grid(True) 
 
# Remove the last axis if the number of features is odd 
if num_features % 2 != 0: 
    fig.delaxes(axes[(num_features) // 2, 1]) 
 
# Add a global legend in a box 
handles = [plt.Line2D([0], [0], color=colors[i], lw=4) for i in range(num_clusters)] 
labels = [f'Cluster {i+1}' for i in range(num_clusters)] 
fig.legend(handles, labels, loc='upper right', bbox_to_anchor=(1.15, 0.5), ncol=1, frameon=True, 
title="Clusters") 
 
plt.tight_layout(rect=[0, 0, 0.85, 1])   # Adjust layout to prevent the legend from overlapping 
plt.show() 
 

CORRELATION MATRIX 
 
# Plot correlation matrices for each cluster in a row 
fig, axs = plt.subplots(1, num_clusters+1, figsize=((num_clusters+2)*9, 9)) 
for i in range(num_clusters): 
    # Extract features for current cluster 
    cluster_features = [features[j] for j in range(len(features)) if labels[j] == i]  
    cluster_data_scaled = scaler.fit_transform(cluster_features) 
 
    # Plot correlation matrix for current cluster 
    corr_matrix = pd.DataFrame(cluster_data_scaled).corr() 
    sns.heatmap(corr_matrix, annot=True, cbar=False, ax=axs[i]) 
    axs[i].set_title(f"Correlation matrix for cluster #{i+1}") 
     
    # Compute global correlation matrix 
    if i == num_clusters - 1: 
        global_data_scaled = scaler.fit_transform(features) 
        global_corr_matrix = pd.DataFrame(global_data_scaled).corr() 
        sns.heatmap(global_corr_matrix, annot=True, cbar=False, ax=axs[num_clusters], center=None) 
        axs[num_clusters].set_title("Global correlation matrix") 
         
plt.show() 
print() 
 
for i in range(len(feature_names)): 
    print("Feature #{}: {}".format(i, feature_names[i])) 
 

CURRENT LINEAL HISTOGRAMS (2D) 
 
# Define x-axis limits for histogram scaling 
x_limits1D = [0, 3] 
bins1D = 200 
bins2D = 200 
saturation2D = 25 
 
# Create subplots for each cluster 
fig, axs = plt.subplots(num_clusters+1, 3, figsize=(4*3, 4*(num_clusters+1))) 
 
# Calculate percentages for each cluster 
percentages = [(len(cluster_data[i]) / len(acq_files)) * 100 for i in range(num_clusters)] 
rounded_percentages = [round(p, 1) for p in percentages] 
 
# Adjust the last percentage to ensure the sum is exactly 100% 
percentage_sum = sum(rounded_percentages) 
if percentage_sum != 100: 
    adjustment = 100 - percentage_sum 
    rounded_percentages[-1] += adjustment 
 
# Plot histograms for each cluster 
for i in range(num_clusters): 
    # Plot 1D histogram of current 
    all_currents = np.concatenate([df['current'] for df in cluster_data[i]]) 
    axs[i, 0].hist(all_currents, alpha=0.5, label=f"Cluster {i+1}: {rounded_percentages[i]} % samples", 
range=x_limits1D, bins=bins1D) 
    axs[i, 0].set_xlim(x_limits1D) 



 

    axs[i, 0].set_xlabel("Current") 
    axs[i, 0].set_ylabel("Frequency") 
    axs[i, 0].legend() 
 
    # Plot 2D histogram of all captures in each cluster 
    all_currents = np.concatenate([df['current'] for df in cluster_data[i]]) 
    all_times = np.concatenate([df['time'] for df in cluster_data[i]]) 
    axs[i, 1].hist2d(all_times, all_currents, cmap=plt.cm.hot, density=False, bins=bins2D, 
cmax=saturation2D) 
    axs[i, 1].set_xlabel("Time") 
    axs[i, 1].set_ylabel("Current") 
 
    # Plot all captures in each cluster 
    for df in cluster_data[i]: 
        axs[i, 2].plot(df['time'], df['current'], alpha=0.5) 
    axs[i, 2].set_xlabel("Time") 
    axs[i, 2].set_ylabel("Current") 
 
# Plot histograms for the entire dataset 
# Plot 1D histogram of current 
all_currents = np.concatenate([df['current'] for df in data]) 
axs[num_clusters, 0].hist(all_currents, alpha=0.5, range=x_limits1D, label="Whole dataset", 
density=False, bins=bins1D) 
axs[num_clusters, 0].set_xlim(x_limits1D) 
axs[num_clusters, 0].set_xlabel("Current") 
axs[num_clusters, 0].set_ylabel("Frequency") 
axs[num_clusters, 0].legend() 
 
# Plot 2D histogram of all captures in the entire dataset 
all_currents = np.concatenate([df['current'] for df in data]) 
all_times = np.concatenate([df['time'] for df in data]) 
axs[num_clusters, 1].hist2d(all_times, all_currents, cmap=plt.cm.hot, density=True, bins=bins2D, 
cmax=saturation2D) 
axs[num_clusters, 1].set_xlabel("Time") 
axs[num_clusters, 1].set_ylabel("Current") 
 
# Plot all captures in the entire dataset 
for df in data: 
    axs[num_clusters, 2].plot(df['time'], df['current'], alpha=0.5) 
axs[num_clusters, 2].set_xlabel("Time") 
axs[num_clusters, 2].set_ylabel("Current") 
 
plt.tight_layout() 
plt.show() 
 

CURRENT LOGARITHMIC HISTOGRAMS (2D) 
 
# Define x-axis limits for histogram scaling 
G_limit = [-1, 0.5] 
bins1D = 100 
bins2D = 200 
 
df['log_current'] = np.log10(df['current']) 
 
# Ensure 'log_current' column is present in all dataframes 
filtered_cluster_data = [] 
 
for i in range(num_clusters): 
    filtered_cluster_data.append([]) 
    for df in cluster_data[i]: 
        if 'log_current' not in df.columns: 
            df['log_current'] = np.log10(df['current']) 
        filtered_cluster_data[i].append(df[(df['log_current'] >= G_limit[0]) & (df['log_current'] <= 
G_limit[1])]) 
 
# Concatenate all clusters 
all_cluster_data = pd.concat([pd.concat(cluster) for cluster in filtered_cluster_data]) 
 
# Calculate percentages for each cluster 
percentages = [(len(cluster) / len(data)) * 100 for cluster in filtered_cluster_data] 
rounded_percentages = [round(p, 1) for p in percentages] 
 
# Adjust the last percentage to ensure the sum is exactly 100% 
percentage_sum = sum(rounded_percentages) 
if percentage_sum != 100: 



 

    adjustment = 100 - percentage_sum 
    rounded_percentages[-1] += adjustment 
 
 
# Create subplots for each cluster 
fig, axs = plt.subplots(num_clusters + 1, 3, figsize=(4 * 3, 4 * (num_clusters + 1))) 
 
# Plot histograms for each cluster 
for i in range(num_clusters): 
    # Plot 1D histogram of current 
    all_currents = np.concatenate([df['log_current'] for df in filtered_cluster_data[i]]) 
    axs[i, 0].hist(all_currents, alpha=0.5, label=f"Cluster {i+1}: {rounded_percentages[i]} % samples", 
bins=bins1D) 
    axs[i, 0].set_xlabel("Current") 
    axs[i, 0].set_ylabel("Frequency") 
    axs[i, 0].legend() 
 
    # Plot 2D histogram of all captures in each cluster 
    all_times = np.concatenate([df['time'] for df in filtered_cluster_data[i]]) 
    valid_indices = ~np.isnan(all_times) & ~np.isnan(all_currents) 
    axs[i, 1].hist2d(all_times[valid_indices], all_currents[valid_indices], cmap=plt.cm.hot, 
density=False, bins=bins2D) 
    axs[i, 1].set_xlabel("Time") 
    axs[i, 1].set_ylabel("Current") 
    axs[i, 1].set_xlim([min(all_times), max(all_times)]) 
 
    # Plot all captures in each cluster 
    for df in filtered_cluster_data[i]: 
        axs[i, 2].plot(df['time'], df['log_current'], alpha=0.5) 
    axs[i, 2].set_xlabel("Time") 
    axs[i, 2].set_ylabel("Current") 
 
# Plot histograms for the entire dataset 
# Plot 1D histogram of current 
all_currents = all_cluster_data['log_current'] 
axs[num_clusters, 0].hist(all_currents, alpha=0.5, label="Whole dataset", density=False, bins=bins1D) 
axs[num_clusters, 0].set_xlabel("Current") 
axs[num_clusters, 0].set_ylabel("Frequency") 
axs[num_clusters, 0].legend() 
 
# Plot 2D histogram of all captures in entire dataset 
all_times = all_cluster_data['time'] 
valid_indices = ~np.isnan(all_times) & ~np.isnan(all_currents) 
axs[num_clusters, 1].hist2d(all_times[valid_indices], all_currents[valid_indices], cmap=plt.cm.hot, 
density=True, bins=bins2D) 
axs[num_clusters, 1].set_xlabel("Time") 
axs[num_clusters, 1].set_ylabel("Current") 
axs[num_clusters, 1].set_xlim([min(all_times), max(all_times)]) 
 
# Plot all captures in entire dataset 
for df in data: 
    axs[num_clusters, 2].plot(df['time'], df['log_current'], alpha=0.5) 
axs[num_clusters, 2].set_xlabel("Time") 
axs[num_clusters, 2].set_ylabel("Current") 
 
plt.tight_layout() 
plt.show() 
 


