

Tutor/s

Dr. Albert Cortijos i Aragonès
Departament de ciències de materials i

Química Física

José Mauricio Regalado Aguilar
Departament de Química Orgànica I

Inorgànica

Treball Final de Grau

Novel Machine Learning Tools for data treatment in STM Break-
Junction Technique

Noves eines d'aprenentatge automàtic pel tractament de dades en
la Tècnica STM Break-Junction

Sara Cuscó Rovira
 June 2024

 Aquesta obra està subjecta a la llicència de:
Reconeixement–NoComercial-SenseObraDerivada

http://creativecommons.org/licenses/by-nc-
nd/3.0/es/

El camí del progres no és ni ràpid ni fàcil.

Marie Curie

En primer lloc, voldria expressar el meu agraïment al meu tutor, Albert Cortijos, per guiar-me

al llarg del camí, orientar-me i, sobretot, per introduir-me a un món que desconeixia i que m’ha

captivat. També agraeixo a Mauricio Regalado la seva disponibilitat i assistència en tot moment.

Gràcies als seus consells i ajuda, aquest treball s’ha realitzat èxit i ha complert amb els objectius

esperats.

D’altra banda, m’agradaria donar especialment les gràcies a la meva família per estar sempre

al meu costat, donar-me suport i per animar-me durant aquests anys. Finalment, vull agrair a la

meva parella, Bernat Luco, per ser el meu pilar imprescindible de cada dia i per poder finalitzar

aquesta carrera plegats com a químics.

En resum, família, parella, amics, companys i professors gràcies de tot cor per formar part

d’aquesta etapa tan especial.

REPORT

IDENTIFICATION AND REFLECTION ON THE SUSTAINABLE

DEVELOPMENT GOALS (SDG)

The 2030 Agenda for Sustainable Development, adopted by all UN Member States in 2015,

is a global plan for peace and prosperity centered on 17 Sustainable Development Goals. These

goals call for joint action to eliminate poverty, improve health and education, reduce inequality,

stimulate economic growth, and protect the climate, oceans, and forests. This academic project

supports several of these goals, which are Quality Education (SDG 4), Industry, Innovation, and

Infrastructure (SDG 9), and Partnerships for the Goals (SDG 17).

Within each section, the following points are supported:

• SDG 4 (target 4.4): The incorporation of Machine Learning algorithms to analyze

experimental data helps people learn advanced technology and analytical skills.

This is important for training staff and giving them valuable work experience.

• SDG 9 (target 9.5): The proposal of new analysis methodologies based on Machine

Learning represents a significant advancement in scientific and technological

research, contributing to innovation in industry and scientific infrastructure.

• SDG 17 (target 17.6): The realization and advancement of the project require

collaboration between experts in physics, chemistry, computer science, and other

disciplines, promoting strategic alliances for the advancement of knowledge and

technology.

Novel Machine Learning Tools for data treatment in STM Break-Junction Technique 1

CONTENTS

1. SUMMARY 3

2. RESUM 5

3. INTRODUCTION 7

3.1. Measurement of single molecule conductance: molecular electronics 7

 3.1.1. Break junction techniques 8

 3.1.1.1. Mechanically Controllable Break Junctions 8

 3.1.1.2. Scanning tunneling Microscope Break-Junction 9

 3.1.1.3. Conducting Probe Atomic-Force-Microscope Break-Junction 10

 3.1.2. Single-molecule histogram-based analysis 11

 3.2. Machine learning 12

 3.2.1. Supervised learning 12

 3.2.2. Unsupervised learning 13

 3.2.2.1. Dimensionality reduction 14

 3.2.3. Semi-supervised learning 15

4. OBJECTIVES 16

5. METHODS 16

 5.1. Clustering Algorithms 16

 5.1.1. Hard clustering algorithms 17

 5.1.1.1. K-means 17

 5.1.1.2. Agglomerative hierarchical clustering 18

 5.1.1.3. Density-Based Spatial Clustering of Applications with Noise 20

 5.1.2. Soft clustering algorithms 21

 5.1.2.1. Fuzzy C-means 22

5.2. Cluster evaluation methods 23

 5.2.1. Elbow method 24

 5.2.2. Average silhouette method 24

2 Cuscó Rovira, Sara

 5.2.3. Davies Bouldin Index 25

 5.2.4. Calinski-Harabasz index 25

6. MACHINE LEARNING APPLIED TO STM-BJ DATA 26

6.1. Analyzed data’s description 26

6.2. Data processing 27

6.3. Features extraction 29

6.4. Clustering evaluation 32

 6.4.1. Dimensionality reduction 35

6.5. Validation 38

7. CONCLUSIONS 41

8. REFERENCES AND NOTES 42

9. ACRONYMS 44

APPENDICES 45

Appendix 1: STM-BJ tool (Fuzzy-c means) 46

Novel Machine Learning Tools for data treatment in STM Break-Junction Technique 3

1. SUMMARY

The study of electronic properties of individual molecules have become a reality thanks to the

use of advanced techniques such as the Break Junction approach. These techniques enable the

creation of single-molecule junctions by contacting electrically a molecule between two electrodes

with sub-nanometer precision. This study focuses on the Scanning Tunneling Microscope Break-

Junction (STM-BJ) technique, which allows the formation of thousands of single-molecule

junctions by repeatedly approaching and retracting a tip electrode against a surface electrode,

generating current curves that relate conductance to displacement. These curves show steps

associated with the formation atomic and molecular contacts.

To better understand these kind of measurements, 1D and 2D histograms are commonly used

to accumulate thousands of traces to characterize the single-molecule junction evolutions.

Traditionally, these histograms have been built using selection criteria imposed by the

researchers, commonly, leading to biased interpretations and limitations in identifying complex

patterns. Our study proposes new methodologies to classify single-molecule current traces,

unveiling-details that could go unnoticed by human-based analysis. The proposed methodologies

are based on Machine Learning algorithms, a sub-domain of Artificial Intelligence, which enables

computers to understand and identify patterns in large datasets and make predictions.

Specifically, unsupervised learning has been used, which classifies unlabeled data into groups

based on predefined variables. Various types of algorithms have been tested, ranging from hard

clustering to the more sophisticated soft clustering.

In this project we developed a Python-based Machine Learning framework aimed to

revolutionize the interpretation of single-molecule junction datasets. It is expected that this

advancement will improve the rationalization of single-molecule phenomenology, facilitating a

more accurate understanding of experimental data.

Keywords: Scanning Tunneling Microscope Break-Junction, atomic junctions, Machine

Learning, unsupervised learning, hard clustering, soft clustering

Novel Machine Learning Tools for data treatment in STM Break-Junction Technique 5

2. RESUM

L'estudi de les propietats electròniques de molècules individuals s'ha convertit en una realitat

gràcies a l'ús de tècniques avançades. Aquestes tècniques, anomenades Break-Junction,

permeten la creació d’unions unimoleculars posant en contacte una molècula individual entre dos

elèctrodes amb una precisió sub-nanomètrica. Aquest estudi se centra en la tècnica de l’Scanning

Tunneling Microscopy Break-Junction (STM-BJ), que permet la formació de milers d’unions

unimoleculars apropant i retraient repetidament dos elèctrodes (punta contra superfície),

generant corbes de corrent que relacionen la conductància amb el desplaçament.

Per comprendre millor aquest tipus de mesures, s'utilitzen comunament histogrames 1D i 2D

els quals acumulen milers de corbes per caracteritzar les evolucions d’aquestes unions.

Tradicionalment, aquests histogrames s'han construït utilitzant criteris de selecció decidits pels

investigadors, cosa que sovint pot conduir a interpretacions esbiaixades i molt limitades en la

identificació de patrons complexos en la racionalització de resultats. Ell nostre estudi proposa

noves metodologies per classificar corbes de corrent d’unions moleculars, proporcionant uns

detalls que podrien passar desapercebuts per l'anàlisi humà. Aquestes metodologies es basen

en algoritmes d'Aprenentatge Automàtic, un subdomini de la Intel·ligència Artificial, que permeten

als ordinadors entendre i identificar patrons en grans conjunts de dades i fer prediccions. Així

doncs, s'ha utilitzat l'Aprenentatge No Supervisat, que organitza dades no classificades en grups

basats en variables pre-definides. Per tal d’obtenir el millor resultat, s'han provat diversos tipus

d'algoritmes, amb diferents nivells de classificació, de mes a menys flexibles.

En aquest projecte, hem desenvolupat un programa d'Aprenentatge Automàtic basat en

llenguatge Python amb l'objectiu de revolucionar la interpretació dels conjunts de dades d’unions

unimoleculars. El nostre avanç millorarà la racionalització de la fenomenologia unimolecular,

facilitant una comprensió més precisa de les dades experimentals.

Paraules clau: Microscopi de Túnel d'Escaneig Break-Junction, Unions atòmiques,

Aprenentatge Automàtic, Aprenentatge no-supervisat, Agrupament dur, Agrupament suau

Novel Machine Learning Tools for data treatment in STM Break-Junction Technique 7

3. INTRODUCTION

3.1. MEASUREMENT OF SINGLE-MOLECULE CONDUCTANCE: MOLECULAR ELECTRONICS

In recent years, a new branch has emerged in nanotechnology: the ability to measure

electronic properties of molecules in their characteristic length scale, known as molecular

electronics. A key concept within this field is the single-molecule junction, which its prediction

dates back to 1974, when Aviram and Ratner proposed a hypothetical molecular diode based on

a simulated asymmetric current-voltage (I-V) behavior obtained from a model molecule.[1] Since

then, there have been significant advances leading to the development of several devices and

methods that can achieve this feat, providing a unique opportunity to understand charge transport-

phenomenon, undoubtedly crucial for physical, chemical and biological processes. [2]

The conductance of a single-molecule can be determined by accurately positioning a target

molecule between two electrodes, creating a single-molecule junction. Additionally, three

requirements must be taken into account: (a) provide a signature to confirm that the measured

conductance comes from a individual molecule, not a group of molecules in the interelectrode

nanogap, (b) ensure that the molecule is strongly attached to the two terminal electrodes, and (c)

perform the measurement in a well-defined environment to prevent possibles alterations from

factors such as solvent molecules, pH or ions. [3]

The type of material used for the electrodes in conductance determination, typically metal, is

a crucial component in the formation of a single-molecule junction. These are highly relevant in

charge transport due to their electrical conductivity, which allows charge carriers to be transmitted

through the single-molecule junction, and the ability to form such junctions stable enough to

ensure that the molecule remains rigidly attached to the electrodes during the measurement.[4]

The most used metal is gold (Au), a noble metal, due to its high probability of junction

formation, chemical stability, and electrical conductivity.[5] Au’s inert nature ensures consistent

and reliable results over extended experimental durations, as its lack of chemical reactivity

prevents undesired changes during the measurements.[5] In addition, it enables the use of the

8 Cuscó Rovira, Sara

quantum of conductance (1 Go), with a value of equivalent to 77.5 µS, as an internal conductivity

reference.[6] However, other metals can also be used as electrodes, including Cu, Pt and Si.[7]

3.1.1. Break junction techniques

 The techniques used to measure individual atoms or molecules conductance by creating a

electrode-electrode nanogaps are called Break-Junction (BJ) techniques.[1] BJ techniques rely in

the formation of electrode-electrode nanogaps with a sub-nanometer precision, allowing the

atomic and molecular trapping.[3] There are three major approaches for the BJ technique that will

be described below: (1) mechanically controllable break junctions (MCBJ); (2) scanning tunneling

microscope break junction (STM-BJ); and (3) conducting probe atomic-force-microscope break

junction (CP-AFM-BJ).[6]

3.1.1.1. Mechanically Controllable Break Junction

In 1985, Moreland and Ekin developed a method for mechanically forming tunnelling

junctions[1] which evolved towards the existing MCBJ technique.[8] They used a thin wire of Nb-Sn

filament mounted on a flexible glass bead.[8] Using this configuration, they measured electron

tunnelling characteristics of superconductors. In 1992, Muller et al. pioneered the technique to

create metallic quantum point contacts, to prove the conductance quantization via a narrow

conductor of a length of the order of electron’s elastic mean free path.[3]

MCBJ’s three-point adjustable bending mechanism, as shown in Fig. 1a, uses a pushing rod

that applies an upward force causing the progressive bending of the substrate, which results in

the continuous stretching of the metallic wire. As the metallic wire elongates, the cross-section at

the central region decreases until it fractures, and then, two atomic-level metal electrodes with

clean surfaces are simultaneously formed. Conversely, when the substrate relaxes, the inevitable

contraction of the metallic wire causes the two electrodes to revert to re-forming a metallic wire.

The nanogap between the two opposing electrodes can be precisely regulated during the bending

and relaxation process (Fig. 1b) mediated by a piezoelectric transducer (PZT) coupled to the

pushing rod.[9]

The MCBJ sample can be prepared manually by attaching a metal wire to a flexible substrate

using epoxy glue and notching the central part of the wire to create a constriction point.[1] More

recently, an alternative method to create the nanobridge is based on microfabrication techniques,

to define suspended metallic bridges. [8]

Novel Machine Learning Tools for data treatment in STM Break-Junction Technique 9

Figure 1. Schematic representation of the MCBJ technique.

3.1.1.2. Scanning Tunneling Microscope Break-Junction

The scanning tunneling microscope (STM) was developed by Gerd Binning and Heinrich

Rohrer in 1981 at the IBM Zurich Research Laboratory. STM was the first device capable to

provide the first three-dimensional (3D) images of solid conductive and semiconductive surfaces.

Nowadays, the STM is widely used to study the electronic structure and properties of metallic and

semimetallic surfaces at atomic level and has further evolved to incorporate various techniques,

one of which is the STM-based break junction (STM-BJ) technique.[10] The STM-BJ technique was

created by Profs. Xu and Tao in 2003. STM-BJ enables the creation of thousands of single-

molecule junctions by repeatedly moving a STM tip electrode into and out of contacts with the

substrate electrode. In this technique the molecules of interest can be solved in (i) the working

solution surrounding the tip and the substrate electrodes or (ii) adsorbed to the surface

electrodes.[11] This technique typically (but not necessarily) uses a Au substrate and Au STM tip

to form single-molecule junctions.[12]

STM-BJ process can be divided in four steps (see Fig. 2 sequence): (a) A PZT drives the Au

tip towards the Au substrate until it contacts the molecule, which causes the formation of atomic

junction. [8] (b) The tip is pulled away from the substrate, forming an Au-Au atomic junction formed

by few metallic atoms. (c) As the tip continues retracting, the metallic atomic junction progressively

stretches, disconnecting metallic atoms sequentially, until eventually it breaks. The formed

nanogap enables the trapping and electrical contact of the target molecules in the interelectrode

nanogap, i.e. the single-molecule junction,[1] until spontaneously (d) such single-molecule junction

breaks. The entire cycle is repeated thousands of times to gather enough data for subsequent

statistical analysis. [3] During this cycle a fixed bias potential is set between the tip and the

substrate, and the tunneling current is monitored to create conductance-displacement curves.[13]

10 Cuscó Rovira, Sara

Figure 2. Schematic representation of the STM-BJ technique working principle.

Typically, the conductance–displacement curves show a short step feature at 1 Go

corresponding to the quantum conductance of the atomic metal junction, below such value the

step feature that appears at a later stage can be assigned to the formation of single-molecule

junctions.[11]

As an added value, since the STM-BJ technique is based on STM, it can be employed to

imaging the substrate surface before performing the electron transport measurement,[13] enabling

us to place the tip on an atomically flat area or move it laterally to a fresh are of the substrate

during the measurement.[3]

3.1.1.3. Conducting Probe Atomic-Force-Microscope Break-Junction

Xu et al. successfully measured the electronic properties of a junction using an Atomic Force

Microscope (AFM). In the CP-AFM-BJ technique, a single-molecule junction is created by placing

a conducting AFM tip in contact with a metal-supported molecular film, such as a self-assembled

monolayer (SAM) on Au, as illustrated in Fig. 3.[14] The AFM's normal force feedback circuit

controls the mechanical load on the microcontact while the current-voltage (I-V) characteristics

are recorded. Each abrupt conductance decrease is accompanied by an abrupt decrease in the

monitored force, corresponding to the breakdown of a molecule from contacting the electrodes.[3]

Figure 3. Schematic representation of the CP-AMF-BJ technique.

Novel Machine Learning Tools for data treatment in STM Break-Junction Technique 11

This technique's ability to adjust the load on the microcontact is unique, allowing researchers

to study the relationship between the mechanical deformation of molecules and their transport

properties. Moreover, the load-dependent contact area between the tip and the SAM in these

junctions is small (approximately 10 nm²), meaning the junction properties reflect transport

through a limited number of molecules.[14]

3.1.2. Single-molecule histogram-based analysis

The techniques described before represented different ways to measure atomic and single-

molecule junctions. When data is analyzed from these junctions’ current traces, a single trace is

insufficient to determine the sample's conductance in a statistically reliable way, requiring a large

volume of accumulated data. Thus, in this context, histogram-based analysis becomes the most

suitable statistical method for analysis.[15]

Conductance histograms are typically created by accumulating junctions’ conductance traces

during the contact rupture process, and the mean conductance is then determined from the peak

positions of the histogram. The most used histograms in STM-BJ are 1D and 2D histograms. The

1D histograms represent the frequency of occurrence of specific conductance values, providing

a straightforward statistical distribution of conductance measurements (Fig. 4a).[1]

On the other hand, 2D histograms, display conductance on the vertical axis and elongation

distance on the horizontal axis, which allows for a visualization of the statistical behavior of the

conductance as a function of the time or tip displacement (Fig. 4b). These 2D histograms are a

valuable statistical tool for analyzing junction evolution parameters related to junction stability,

including the length of the plateau of the junction, retention time, and snapback distance—the

distance traveled by the electrode immediately after its collapse.[15]

(a) (b)

Figure 4. Examples of single-molecule 1D and 2D histograms.

12 Cuscó Rovira, Sara

3.2. MACHINE LEARNING

As previous mentioned, single-molecule measurements are typically rationalized using

histograms-based analysis. However, such histograms are constructed based on the

discrimination criteria imposed by the researcher, which often leads to biased interpretations and

limitations to identify complex patterns. By implementing new tools such as Machine Learning

(ML) based on clustering with multidimensional features, we can enhance the accuracy of

discrimination and reveal details that may be missed by simple human-based analysis. [15]

ML is a sub-domain of artificial intelligence (AI) that gives computers the ability to learn without

being explicitly programmed.[16] ML goal is usually to understand the structure of the data and to

match that data to models that can be understood and used by humans. Although ML and AI are

frequently paired, they represent distinct concepts. AI encompasses a wide range of capabilities,

including decision-making, skill acquisition, and problem-solving. Conversely, ML serves as a

subset of AI, empowering intelligent systems to autonomously acquire new knowledge from data.

ML employs a series of algorithms to learn from a dataset. These algorithms can be classified

based on their purpose and the main categories they follow. The classification of ML algorithms

is as follows: (i) Supervised learning, (ii) Unsupervised learning, and (iii) Semi-supervised

learning.[17]

3.2.1. Supervised learning

Supervised learning is a category of ML that uses labelled datasets to train algorithms to

predict outcomes and recognize patterns. In this model the predictors (input variables) and

outputs (response or target variables) values are already known, and the algorithm learns the

mapping function from input to output.[18] Mathematically, given a set of N training examples of

the form {(x1,y1),...,(xN, yN)} such that x is the feature vector and y its label, the learning algorithm

tries to find the best mapping functions, f, such that Y= f(X), where Y is the output space and X is

the input space.(Fig. 5) [19]

Supervised learning problems can be split further into classification or regression problems

according to type of output variables. When the output variable represents a numerical value,

regardless of whether it's discrete or continuous, the task is considered a regression problem.

Conversely, if the output variable represents categories or classes, the problem falls into the

classification category.

Novel Machine Learning Tools for data treatment in STM Break-Junction Technique 13

Otherwise, we have a type of models that combines the previous ones when data contains

both continuous and categorical variables. Classification and regression algorithms combine the

learning function to predict continuous values (as in regression) with classification to assign

elements to specific categories.[20]

Figure 5. Schematic representation of supervised learning procedure.

3.2.2. Unsupervised learning and Clustering

In unsupervised learning, the model’s task is to identify patterns within the training dataset,

and subsequently react based on the presence or absence of these patterns in new data

introduced to the model. Unlike supervised algorithms, these types of algorithms utilize an

unlabeled training set. Implying that, these data points do not have a predefined expected output,

and the system must be able to identify or determine this output. To enable the model to learn to

discern hidden patterns within the dataset, it is necessary to expose it to large volumes of data.

(Fig. 6) [16] Mathematically, given a set of N training without labels dataset {(x1,y?),...,(xN, y?)}, the

learning algorithm return a model with k (number of clusters) and centroids—points representing

the center of each cluster— for each cluster.[19]

Figure 6. Schematic representation of unsupervised learning procedure.

14 Cuscó Rovira, Sara

Clustering is a protocol which enables us partitioning the dataset into groups, called clusters

in an unsupervised manner.[21] The goal is to split up the data in such a way that points within a

single cluster are very similar and points in different clusters are different. The resulting structured

data is termed as data-concept. [22] Clustering algorithms are used to process raw, unclassified

objects (i.e. data) into groups represented by structures or patterns in the information.

There are two primary types of clustering: hard and soft clustering. Hard clustering involves

grouping objects where each object can only belong to one group. Commonly used methods for

hard clustering include k-means, hierarchical clustering, and DBSCAN.[23] On the other hand, soft

clustering involves grouping data items in a way that allows an item to exist in multiple clusters.

The most typical method for soft clustering is Fuzzy C-means. [23]

3.2.2.1. Dimensionality reduction

Clustering, as discussed above, provides a structured approach to partitioning datasets into

meaningful groups. However, as datasets grow in complexity and dimensionality, understanding

and interpreting these clusters can become challenging. This is where dimensionality reduction

techniques step into offers valuable insights.

Dimensionality reduction is a methodology of unsupervised learning that reduces the number

of data inputs to a manageable size while also preserving the integrity of the dataset as much as

possible.[24] There are a few different methods that can be used, such as Principal Component

Analysis (PCA), a linear representation method, or t-distributed Stochastic Neighbor Embedding

(t-SNE) and Uniform Manifold Approximation and Projection (UMAP), non-lineal representation

methods.

• PCA is a statistical procedure that uses an orthogonal transformation to convert a

set of observations of possibly correlated variables into a set of values of linearly

uncorrelated variables called principal components. In this the dimension of the data

is reduced to make the computations faster and easier. It is used to explain the

variance-covariance structure of a set of variables through linear combinations.[16]

• t-SNE is a nonlinear dimensionality reduction technique used to represent high-

dimensional data in two or three dimensions. This method constructs a probability

distribution over pairs of high-dimensional objects and then tries to find a similar

distribution in a lower-dimensional space.[24] It minimizes the Kullback-Leibler (KL)

divergence between the two distributions, which is a measure of the difference

Novel Machine Learning Tools for data treatment in STM Break-Junction Technique 15

between them. The KL divergence quantifies how much information is lost when

one probability distribution is used to approximate another. t-SNE excels at

preserving the local structure of the data while also uncovering global patterns, such

as clusters at multiple scales.[25]

• UMAP is an innovative manifold learning technique for dimensionality reduction,

grounded in a theoretical framework of Riemannian geometry—a branch of

mathematics concerned with curved surfaces and spaces—and algebraic topology.

This results in a practical and scalable algorithm applicable to real-world data.

UMAP competes with t-SNE in visualization quality, arguably preserving more of

the global structure while offering superior runtime performance.[26]

3.2.2. Semi-supervised learning

We identified two main types of ML, supervised and unsupervised learning. However, there

exists a third category called semi-supervised learning that integrates features from both

categories.[15] Semi-supervised learning is a branch of ML which can train models with small

amount of labeled data and effectively label unknown data (Fig.7). These methods are especially

relevant in situations where obtaining enough labeled data is significantly difficult or

computationally demanding, but large amounts of unlabeled data are relatively easy to acquire.

Mathematically, given a set of N training examples with partial labels dataset as an input

{(x1,y2),...,(xN, yP)}, the learning algorithm return a training model with probabilistic approach as

an output.[19]

Figure 7. Schematic representation of semi-supervised learning procedure.

16 Cuscó Rovira, Sara

4. OBJECTIVES

The aim of this work is to create and implement a new tool using Python that utilizes ML,

specifically focusing on unsupervised learning techniques, to organize and classify data obtained

from STM-BJ measurements. This tool will employ advanced algorithms capable of learning and

adapting autonomously, enabling a more detailed and comprehensive interpretation of the data

with an objective criterion.

The focus on unsupervised learning will enable the tool to identify patterns and group the data

without the need for predefined labels, making the classification process unbiased, more flexible

and adaptable to new data. This method aims to overcome the limitations of manual classification,

which is often influenced by individual biases and may overlook subtle details.

Several algorithmic methods and techniques will be tested to achieve the best analysis

results, demonstrating the potential of ML to transform how complex datasets are interpreted and

understood. By implementing and evaluating these methods, we aim to provide a robust tool that

enhances the accuracy and depth of data analysis, ultimately contributing to the field of molecular

electronics.

5. METHODS

5.1. CLUSTERING ALGORITHMS

This section provides a concise overview of the clustering algorithms utilized in this study,

which will be later evaluated to ensure optimal data analysis. Cluster algorithms are divided into

two categories already presented in previous sections: hard clustering algorithms and soft

clustering algorithms. With a focus on unsupervised learning and the objective of determining the

optimal number of clusters (𝑘), many algorithms will be combined with cluster evaluation methods

(detailed in the following section) to refine the data selection. Each method will be presented with

a brief description, followed by an explanation of its associated procedure.

Novel Machine Learning Tools for data treatment in STM Break-Junction Technique 17

5.1.1. Hard clustering algorithms

Clustering algorithms can be categorized into two groups: hard and soft clustering. This study

primarily concentrates on hard clustering, where data exclusively belong to a single cluster.

Below, we provide explanations of the three algorithms employed in this work: (i) K-means, (ii)

Agglomerative hierarchical clustering, and (iii) DBSCAN, which are widely recognized and

implemented in various fields for their effectiveness in data analysis and pattern recognition.

5.1.1.1. K-means

K-means is one of the simplest of the hard clustering algorithms and as such is widely used

and depurated.[27] This algorithm follows a straightforward way to classify a given data set through

a certain number of clusters (assume k clusters) fixed a priori.[23] K-means goal is to produce

groups of cases with a high degree of similarity within each group and a low degree of similarity

between groups. To achieve this, k centroids are defined and placed far apart. Each data point is

assigned to the nearest centroid, then new centroids are calculated based on the resulting

clusters. This process repeats until the centroids no longer move (Fig. 8).[27]

Different metrics can be used to calculate this similarity, the Euclidian distance being the most

common (1).[28]

(1) 𝒅𝑬 = √∑ (𝒄𝒊 − 𝒙𝒊)
𝟐𝒏

𝒊=𝟏
 𝑑𝐸 = √∑(𝑐𝑖 − 𝑥𝑖)

2√∑(𝒄𝒊𝒙𝒊)
⬚

Here, c is the cluster center, 𝑥 is the case it is compared to, 𝑖 is the dimension of 𝑥 (or c)

being compared and k is the total number of dimensions.[27]

Figure 8. Schematic representation of K-means algorithm.

18 Cuscó Rovira, Sara

K-means algorithm is composed of the following steps:[28]

K-MEANS (𝑆, 𝑘)

Input: a dataset of points 𝑆 = {x1,…, x𝑛}, a number of clusters 𝑘

Output: centers {c1, …., c𝑘 } implicitly dividing 𝑆 into 𝑘 clusters

Step 1: Choose 𝑘 numbers of clusters to be determined

Step 2: Choose C𝑘 centroids randomly as the initial centers of the clusters

Step 3: Iteration

 3.1: Assing each object to their closest cluster center using Euclidean distance

 3.3: Compute new cluster center by calculating mean points

Step 4: Until

 4.1: No changes in cluster center OR No object changes its cluster

5.1.1.2. Agglomerative hierarchical clustering

Agglomerative hierarchical clustering has been the dominant approach to constructing

embedded classification schemes.[29] Agglomerative clustering schemes start from the partition

of the data set into singleton nodes and merge step by step the current pair of mutually closest

nodes into a new node until there is one final node left, which comprises the entire data set (Fig.

9).[30]

Figure 9. Schematic representation of agglomerative hierarchical clustering algorithm.

Various clustering schemes share this procedure as a common definition but differ in the way

in which the measure of inter-cluster dissimilarity is updated after each step. [31] The most used

methods are: (i) Single linkage, (ii) Average linkage, (iii) Complete linkage and (iv) Ward’s

methods.

Novel Machine Learning Tools for data treatment in STM Break-Junction Technique 19

• Single linkage: Also known as the nearest neighbor or minimum method. This measure

defines the distance between two clusters as the minimum distance found between any

pair of points, one from each cluster.

(2) 𝒅𝒔𝒊𝒏𝒈𝒍𝒆(𝐶𝑖, 𝐶𝑗) = 𝒎𝒊𝒏{𝑑(𝑥𝑎, 𝑥𝑏)|𝑥𝑎 ∈ 𝐶𝑖 , 𝑥𝑏 ∈ 𝐶𝑗}

Here 𝑑(𝑥a, 𝑥b) is the distance between point 𝑥a in cluster 𝐶𝑖 and 𝑥b in cluster 𝐶𝑗.

• Complete linkage: Also known as the furthest neighbor or maximum method. This

method is close to Single linkage described above, but instead of searching for the

minimum distance between pairs of cases, it considers the furthest distance between

pairs of points from each cluster.

(3) 𝒅𝒄𝒐𝒎𝒑𝒍𝒆𝒕𝒆(𝐶𝑖 , 𝐶𝑗) = 𝒎𝒂𝒙{𝑑(𝑥𝑎 , 𝑥𝑏)|𝑥𝑎 ∈ 𝐶𝑖 , 𝑥𝑏 ∈ 𝐶𝑗}

Here 𝑑(𝑥a, 𝑥b) is the distance between point 𝑥a in cluster 𝐶𝑖 and 𝑥b in cluster 𝐶𝑗.

• Average linkage: Also known as the Unweighted Pair-Group Method using Arithmetic

averages (UPGMA). For Average linkage, the distances between each case in the first

cluster and every case in the second cluster are calculated and then averaged.

(4) 𝒅𝒂𝒗𝒆𝒓𝒂𝒈𝒆(𝐶𝑖 , 𝐶𝑗) =
1

|𝐶𝑖|·|𝐶𝑗|
∑ ∑ 𝑑(𝑥𝑎, 𝑥𝑏)𝑥𝑏∈𝐶𝑗𝑥𝑎∈𝐶𝑖

Here ∣𝐶𝑖∣ and ∣𝐶𝑗∣ are the number of points in clusters 𝐶𝑖 and 𝐶𝑗 respectively. The

formula calculates the average of all distances between points in the two clusters.

• Ward’s method: Defines the distance between two clusters as the increase in the total

within-cluster variance after merging the two clusters. It minimizes the sum of squared

differences within all clusters.

(5) 𝒅𝒘𝒂𝒓𝒅(𝐶𝑖 , 𝐶𝑗) =
|𝐶𝑖|·|𝐶𝑗|

|𝐶𝑖|+|𝐶𝑗|
‖�̅�𝑖 − �̅�𝑗‖

2

Here x̅𝑖 is the mean (average) of the points in cluster 𝐶𝑖, x̅𝑗 is the mean of the points in

cluster 𝐶𝑗, and ∥x̅𝑖−x̅𝑗∥ is the Euclidean distance between these means.[32]

20 Cuscó Rovira, Sara

Agglomerative clustering algorithm is composed of the following steps:[30]

 AGGLOMERATIVE CLUSTERING (𝑆, 𝑘)

 Input: A dataset 𝑆 containing data points {𝑥1, 𝑥2, …, 𝑥𝑛}, number of clusters 𝑘

 Output: A dendrogram showing the hierarchy of clusters for 𝑘=1 to 𝑛

 Step 1: Initialization

1.1: Each data point 𝑥𝑖 starts as its own cluster

1.2: Define 𝐶𝑖={𝑥𝑖} for each data point 𝑥𝑖

 Step 2: Loop from n clusters to 1 cluster

2.1: At each iteration, there are 𝑘 clusters. Construct the corresponding dendrogram 𝑘 with the current

clusters {𝐶1, 𝐶2, …, 𝐶𝑘}

2.2: Compute the distance 𝑑 (𝑖, 𝑗) between all pairs of clusters 𝐶𝑖 and 𝐶j. The distance 𝑑 (𝐶𝑖, 𝐶𝑗) is

computed based on the chosen linkage criterion

2.3: Identify the two clusters 𝐶𝑙 and 𝐶𝑚 with the smallest distance

2.4: Merge these two clusters into a new cluster

2.5: Remove cluster 𝐶𝑚 from the list of current clusters

 Step 3: Termination of the loop

3.1: Continue the iterative process until only one cluster remains, which contains all data points

5.1.1.3. Density-Based Spatial Clustering of Applications with Noise

DBSCAN (Density-Based Spatial Clustering of Applications with Noise) is a clustering

algorithm designed to identify core points and form clusters based on these points.[33] Before

running the algorithm, the user must set two parameters: neighborhood distance (ε), which

defines the radius around a sample point, and the threshold. These parameters are constants set

before the program starts and remain unchanged.[32]

A core point is defined as a point that has enough neighboring points within a specified radius,

indicating a dense region. The algorithm starts by identifying all core points and then forms

clusters by connecting these core points with their neighboring points. Points that do not have

enough neighbors to be considered core points are labeled as noise. Consequently, border points

emerge as those point which, although not qualifying as core points themselves, reside within the

ε radius of at least one core point, making them adjacent to dense regions (Fig. 10).[33]

DBSCAN offers a notable advantage by eliminating the need to predefine the number of

clusters, enhancing its adaptability across various datasets. By effectively filtering out noise

points, DBSCAN significantly improves the precision and clarity of the resulting clusters.[32]

Novel Machine Learning Tools for data treatment in STM Break-Junction Technique 21

Figure 10. Schematic representation of DBSCAN clustering algorithm.

DBSCAN algorithm is composed of the following steps:[34]

DBSCAN (𝑆, ε, MinPts)

Input: Dataset 𝑆= {𝑥1, 𝑥2…, 𝑥𝑛}; Parameters: ε (radius of a neighborhood), MinPts (minimum number of points

to form a dense region)

Output: Cluster labels for each point in dataset, noise points

Step 1: Initialization

 1.1: Mark all points as unvisited

 1.2: Initialize empty lists for clusters and noise points

 Step 2: Iteration: for each point 𝑥 do

2.1: Mark 𝑥 as visited

2.2: Count points within ε-radius

2.3: If count ≥ MinPts, mark 𝑥 as a core point

 Step 3: Form clusters

 3.1: start a new cluster with each unvisited core point 𝑥

 3.2: Add all points within the ε-radius of 𝑥 to this cluster

 Step 4: Expand cluster

4.1: For each core point 𝑞 in the cluster, add all its ε-neighbors if they are not already in the cluster

 Step 5: Label noise points

5.1: Points that are not part of any cluster and are not core points are marked as noise

5.1.2. Soft clustering algorithms

Soft clustering is a technique that allows data items to belong to multiple clusters

simultaneously. This work focuses exclusively on one specific type: Fuzzy C-Means, which is one

of the most widely used methods in the field of soft clustering. By using this type of clustering, the

aim is to obtain a different approach to data treatment.

22 Cuscó Rovira, Sara

5.1.2.1. Fuzzy C-means

Fuzzy C-Means (FCM) is a data clustering technique where each data point's membership in

a cluster is defined by a degree of membership. The core idea of FCM is to determine the cluster

centers, which represent the average location of each cluster. The algorithm assigns membership

values to each data point for each cluster center based on the distance between the data point

and the cluster center. The closer a data point is to a cluster center, the higher its membership

value for that cluster.[23]

The summation of membership values for each data point across all clusters equals one.

Initially, the cluster centers are imprecise, but through iterative refinement, both the cluster centers

and the membership values are updated according to the following formulas:[35]

1. Update cluster Centers:

(6) 𝐺𝑘 =
∑ 𝑢𝑖𝑘

𝑤 · 𝑥𝑖
𝑛
𝑖=1

∑ 𝑢𝑖𝑘
𝑤𝑛

𝑖=1

Here Gk is the center of cluster 𝑘, 𝑢𝑖𝑘 is the degree of membership of data point 𝑖 in

cluster 𝑘, 𝑤 is the weighting exponent, and 𝑥𝑖 represents the data point number 𝑖.

2. Update membership values:

(7) 𝑢𝑖𝑘 = (∑ (
‖𝑥𝑖−𝐺𝑘‖

‖𝑥𝑖−𝐺𝑗‖
)𝑐

𝑗=1

2

𝑤−1
)

−1

Here ∥⋅∥ denotes the Euclidean distance, and 𝑐 is the number of clusters.

Through these iterations, the cluster centers move towards their optimal and final positions.

The primary advantage of FCM clustering is that it allows each data point to belong to multiple

clusters simultaneously. Fig. 11 demonstrates how FCM operates compared to hard clustering.

Novel Machine Learning Tools for data treatment in STM Break-Junction Technique 23

Figure 11. Hard and soft (fuzzy) clustering.

Fuzzy c-means algorithm is composed of the following steps:[23]

FUZZY C-MEANS (X, w, max_inter, 𝐾)

Input: data matrix X (n x m in size), with n = the amount of data to be clustered and m = the number of criteria

(variables), number of clusters (𝐾 ≥ 2), weighting rank (w >1), and maximum iteration (max_inter)

Output: Cluster centroids 𝐺𝑘 for 𝑘=1, 2…, 𝐾, and membership matrix 𝑈 indicating the degree of membership

of each data point to each cluster

 Step 1: Randomly initialization

1.1: Randomly initialize the membership matrix 𝑈, where each entry 𝑢𝑖𝑗 represents the degree of

membership of data point 𝑖 in cluster 𝑗

 Step 2: Iteration

2.1: Calculate the centroids 𝐺𝑘 by considering the cluster membership

2.2: Update the membership matrix 𝑈 based on the distances between data points and centroids

 Step 3: Until

 3.1: Convergence (the centroids don’t change)

5.2. CLUSTER EVALUATION METHODS

As previously observed, clustering algorithms aim to classify data into clusters. All these

algorithms, except for DBSCAN, require a predefined number of clusters before their execution.

Although this number can be determined subjectively, there are specific techniques that help

identify the optimal number of clusters more accurately. These techniques are known as cluster

evaluation methods. This section presents the cluster evaluation methods applied to the previous

cluster algorithms which are (i) the Elbow method, (ii) the Average silhouette method, (iii) the

Davies-Bouldin index, and (iv) the Calinski-Harabasz index.

24 Cuscó Rovira, Sara

5.2.1. Elbow method

The Elbow Method is an approach used to determine the optimal number of centroids (𝑘) for

a clustering algorithm by iteratively evaluating the within-cluster-sum of squares (WCSS) value,

also known as inertia (I), for different values of k ranging from 1 to 𝑛 (where 𝑛 is a hyperparameter

chosen based on requirements).[36] The inertia, I, is calculated using the formula (8).

 (8) 𝐼 = ∑ ∑ ‖𝑥 − 𝜇𝑖‖2
𝑥∈𝐶𝑖

𝐾
𝑖=1

Here 𝐾 is the number of clusters, 𝐶𝑖 is the set of data points assigned to cluster 𝑖, µ𝑖 is the

centroid (mean) of cluster 𝑖, and ∣∣𝑥 -μ𝑖∣∣2 is the squared Euclidean distance between a data point

𝑥 and the centroid μ𝑖 of its cluster.

Subsequently, we generate an elbow graph plotting the WCSS values (on the y-axis) against

different values of 𝑘 (on the x-axis). The optimal value for 𝑘 is identified at the point where the

graph exhibits an elbow, indicating a significant drop in the cost followed by a plateau as 𝑘

increases further. With increasing 𝑘, the average distortion decreases, and the samples become

closer to the centroids. The 𝑘 value corresponding to the elbow signifies the point where the

improvement in distortion diminishes the most, suggesting an optimal number of clusters.[37]

5.2.2. Average silhouette method

The Average silhouette method determines the optimal number of clusters (𝑘) by identifying

the k that maximizes the mean silhouette coefficient across all observations. This method

evaluates how similar an object is to its own cluster compared to other clusters, providing an

effective measure of clustering quality.

The silhouette coefficient (s𝑖) for each sample xi in the dataset X is calculated using two main

metrics: the average distance within the cluster (a𝑖) and the average distance to the nearest

neighboring cluster (b𝑖). The formula for the silhouette coefficient is as follows:

(9) 𝒔𝒊 =
𝑏𝑖−𝑎𝑖

𝐦𝐚 𝐱(𝑎𝑖,𝑏𝑖)

The silhouette normalized coefficient ranges from -1 to 1:

• A value close to 1 indicates that the sample is well matched to its own cluster and

poorly matched to neighboring clusters.

Novel Machine Learning Tools for data treatment in STM Break-Junction Technique 25

• A value close to 0 indicates that the sample is on or very close to the decision

boundary between two neighboring clusters.

• A negative value indicates that the sample might have been assigned to the wrong

cluster.[38]

5.2.3. Davies Bouldin Index

Davies-Bouldin Index (DBI) is utilized as an internal cluster evaluation scheme, assessing the

quality of cluster results based on both the quantity and proximity between clusters. The DBI

measures cluster validity by considering cohesion, defined as the sum of the proximity of data

points to the center point of their respective clusters, and separation, which is based on the

distance between cluster center points. The optimal number of clusters is determined by

identifying the clustering solution that yields the lowest DBI value.[39] Mathematically, the Davies-

Bouldin Index is calculated as follows:

(10) 𝑫𝑩𝑰 =
1

𝑛
∑ 𝒎𝒂𝒙𝑖≠𝑗

𝑛
𝑖=1 (

𝜎𝑖+𝜎𝑗

𝑑(𝐶𝑖,𝐶𝑗)
)

Here 𝑛 is the number of clusters, σ𝑖 is the average distance between each point in cluster 𝑖

and the centroid Ci of that cluster, and d (𝐶𝑖, 𝐶𝑗) is the distance between centroids 𝐶𝑖 and 𝐶𝑗 of

clusters 𝑖 and 𝑗, respectively.[38]

5.2.4. Calinski-Harabasz index

The Calinski-Harabasz Index (CHI), also known as the Variance Ratio Criterion, is an

evaluation index used to measure the quality of a clustering result by assessing the degree of

dispersion between clusters. The index is defined as follows:

(11) 𝑪𝑯𝑰(𝑲) =
𝑊(𝐾)·(𝑁−𝐾)

𝐵(𝐾)·(𝐾−1)

Here K is the corresponding number of clusters, B(𝐾) is the inter-cluster divergence, also

called the inter-cluster covariance, W(𝐾) is the intra-cluster divergence, also called the intra-

cluster covariance, and N is the number of samples.

The between-clusters scatter matrix B(𝐾) (12) and the within-cluster scatter matrix W(𝐾) (13)

are defined as:

(12) 𝑩(𝑲) = (∑ 𝑎𝑘‖𝑥𝑘̅̅ ̅ − �̅�‖2𝐾
𝑘=1) (13) 𝑾(𝑲) = (∑ ∑ ‖𝑥𝑗 − 𝑥𝑘̅̅ ̅‖

2
𝑐(𝑗)=𝑘

𝐾
𝑘=1)

26 Cuscó Rovira, Sara

The larger the B(K) is, the higher the degree of dispersion between clusters is. The smaller

the W(K) is, the closer the relationship is in the cluster. The higher the ratio is, the larger the value

of the CH index is, that is, the better the clustering effect is.[40]

6. MACHINE LEARNING APPLIED TO STM-BJ DATA

As it has been introduced before, in the field of STM-BJ measurements, the classification of

data has traditionally relied on subjective criteria, often leading to variability in results. To address

this problem, unsupervised ML algorithms were used in this study due to its ability to find hidden

patterns and details that humans might miss. By using these techniques, a Python tool was

created to unbiasedly analyze the dataset and stablishing a standardized approach to classifying

STM-BJ data. To provide the most reliable and consistent tool for data analysis a comprehensive

comparative study of various clustering algorithms and representations was conducted.

This section describes the process of creating the Python tool for analyzing STM-BJ

measurements. It will include dataset description, preprocessing steps, features selection,

evaluation of clustering algorithms, and a final presentation of results.

6.1. ANALYZED DATA’S DESCRIPTION

Our Python tool focuses on analyzing data obtained from STM-BJ technique using both STM’s

electrodes made of Au. The measurements were acquired applying a 50 mV bias employing a

1000 nA/V amplification, and using mesitylene as liquid protective environment. As explained in

section 3.1.2.1, when the tip, initially in contact with the surface, separates, a Au-Au atomic

junction is formed by few metallic atoms shrinks up to a specific distance at which the last single-

atom bond eventually breaks. This phenomenon becomes evident in the intensity vs. time plots

of each individual junction (see Fig.12).

 As the tip initiates separation, a decay in current due to the growing distance between the

electrodes, is followed by distinctive steps consequence of the multiatomic junction. These steps,

via on their distinctive current values during the breaking events (see events Fig. 12), enable us

to discern the number of atomic units contacted in parallel between at the tip and surface. These

Novel Machine Learning Tools for data treatment in STM Break-Junction Technique 27

plots are part of individual ‘.acq’ files which the program is capable of displaying, indicating the

file selection number. It requires a previous enumeration and a preprocessing.

Figure 12. Plot Intensity vs. time of an illustrative sample. Note the variance in the current intensity due to

the consecutive atomic disconnection during the junction evolution, evidenced as the distinct steps.

6.2. DATA PROCESSING

Preprocessing data contained in binary files (‘.acq’ files) is a crucial part of this task as Python

only supports '.csv’ files by default. As a solution, a binary unpacking process has been

implemented to allow the program to process this type of data effectively. Next, the data is stored

in a data frame (two-dimensional tabular data structure).

After conversing the files, the program aims to maximize efficiency and speed, needing data

constraint. As illustrated in the Fig. 12, when intensity surpasses 2.5 nA, the current amplifier is

saturated (upper detection limit exceeded), yielding data points irrelevant to analysis. Likewise,

the current amplifier is below its lower detection limit as intensity approaches 0 when the tip is

entirely separated from the surface electrode. For this reason, two functions were created that

allows to the program to determine, based on upper and lower thresholds, when the current starts

to decrease and when it becomes null, to remove the preceding and subsequent points.

The 'find_decay_start_point' function searches for the point where the current starts

decreasing after a significant increase. It firstly finds the index where the current reaches its

maximum using the 'np.argmax(current)' function. Next, it defines a threshold for the decrease,

calculated as 33% of the maximum current. The function then looks for the index where the current

28 Cuscó Rovira, Sara

drops below this threshold from the index of the maximum current. The index found indicates the

point where the current begins to decrease after the maximum step. On the other hand, the

'decay_stop_point' function searches for the point where the current becomes negligible,

indicating complete electrode separation. Firstly, it finds the peaks of the current using the

'find_peaks(current)' function. Then, it calculates the maximum current of these peaks. The

threshold for negligibility is calculated as 0.9% of the maximum current. The function then

searches for the index where the current drops below this threshold and returns the found index,

indicating the point where the current becomes negligible. Please note that the thresholds used

in these functions may need adjustment depending on the specific employed current amplifiers

or setup.

The above descrived approach enables the creation of a new Data Frame with the specific

data required for analysis. Again, the program can display individual files, indicating the file

selection number, as shown in Fig 13.

 (a) (b)

Figure 13. Plots Intensity vs. time of samples after preprocessing removing the points before the decay start

point and after the decay stop point.

Visualizing the data individually facilitates thorough preprocessing, otherwise, a collective

visualization is essential to capture the global trend of the measurements. Thus, in Fig. 14 (a)

linear and (b) semi-logarithmic 1D histograms the whole dataset has been built. Initial

observations from the plots indicate that the acquired data shows the expected behavior for Au-

Au atomic contacts, mostly single-traces of 1 Go (one trapped Au atom) but occasionally they are

preceded by 2 Go (two trapped Au atoms).

Novel Machine Learning Tools for data treatment in STM Break-Junction Technique 29

 (a) (b)

Figure 14. 1D lineal and semi-logarithmic conductance histograms of the whole analyzed dataset.

6.3. FEATURES EXTRACTION

Once the preprocessing is done, it is necessary to extract variables from the dataset to classify

it into various groups using subsequent clustering algorithms. The aim of this process is to identify

distinct features that make traffic patterns distinguishable from each other, aiming to create a new

set of features F based on the original set. This is applied to the training dataset to produce a

mapping function capable of transforming any future examples x into the same feature space.

Feature extraction is based on trial and error, where results and graphical representations

play a key role. Initially, a series of variables were carefully selected based on their potential

influence on data classification and their relevance to the experiment, which were mean current,

current kurtosis, noise, current skewness, slope, time, standard deviation, and coefficient

of variation. Take note that all data must be normalized to ensure consistency across the

analysis.

Below, a description of each variable and its purpose in characterizing the current data are

described:

• Current Kurtosis: Helps understand the shape of the current distribution, useful

for identifying significant patterns.

• Noise: Represents external and instrumental fluctuations affecting current stability,

ensuring data reliability.

30 Cuscó Rovira, Sara

• Current Skewness: Measures asymmetry in current distribution, revealing

potential deviations with respect of the rest of dataset.

• Slope: Indicates the rate of change in the current, important for detecting abrupt

changes and characterizing process kinetics.

• Time: Captures the temporal evolution of the current, essential for tracking changes

over time.

• Standard Deviation: Quantifies data dispersion, complementing mean and range

information.

• Current Mean: Provides the central value of the current distribution, offering a

general understanding of the typical current magnitude observed.

• Coefficient of Variation: Measures data variability relative to the mean, useful for

detecting anomalies.

Subsequently, clustering was performed which organized the data into groups according to

criteria based on the implemented variables. Many variables have been selected, so it was

necessary to observe which ones provide relevant information and which ones are redundant. To

carry out a detailed study, two types of representations were made: plot histograms for each

feature across each cluster, and plot correlation matrices for each cluster across each feature.

Histograms of each feature provide insights into the distribution of variables within each

cluster. Fig. 15 shows that the histograms for "noise" and "coef_variation" evidence a clear

correlation and thus they are redundant. It enables us to exclude one. In contrast,

"current_skewness" shows a broad range, potentially affecting cluster dispersion.

The global correlation matrix (Fig. 16) confirms these observations, also revealing a

correlation between "time_duration" and "current_std" with a correlation coefficient over 0.5.

Based on these observations and various trials, the features selected were coefficient of

variation, time, slope, current kurtosis, and current mean. These selected features aim to

enhance the accuracy and reliability of our clustering results, providing deeper insights into the

STM-BJ experiments.

Novel Machine Learning Tools for data treatment in STM Break-Junction Technique 31

Figure 15. Histogram for each feature across each cluster.

Feature #0: current_mean
Feature #1: time_duration
Feature #2: coef_variation
Feature #3: current_kurtosis
Feature #4: noise
Feature #5: current_skewness
Feature #6: slope
Feature #7: current_std

Figure 16. Global correlation matrix.

32 Cuscó Rovira, Sara

6.4. CLUSTERING EVALUATION

After selecting the variables that will represent the initial dataset, the data classification

process, the clustering, begins. The clustering algorithms, described in Section 5, were

implemented in the tool with the aim of determining the most appropriate criterion and the most

reliable method for processing STM-BJ data. Except for the DBSCAN algorithm, which does not

require an initial number of clusters, the procedure followed for the other algorithms is identical.

Below, the protocol followed for the selection of the optimal number of clusters is described

using the K-means method as an example, employing different cluster evaluation methods.

Each cluster evaluation method is implemented by executing the K-means algorithm with an

initial number of clusters 𝑘, iterating up to a maximum number of clusters. When applying the

Elbow method, an optimal result of 𝑘=5 is obtained, indicating that this is the most appropriate

number of clusters to execute the algorithm. This is determined by representing the WCSS values

as a function of the number of clusters. As observed in Fig. 17, when 𝑘=1, the WCSS value is

high. As 𝑘 increases to 2, the WCSS value decreases. However, when choosing 𝑘=5, the

reduction in WCSS stabilizes, forming a plateau. Finally, the WCSS equals zero when each point

has its own cluster, as the centroid is exactly at the point, making the distance between them

zero. Identifying the point where the elbow starts to stabilize is a complex process, but the

program can determine it automatically.

Figure 17. Representation of Elbow method applied to k-means algorithm.

Subsequently, the Average silhouette method was implemented in a similar manner, obtaining

an optimal value of 𝑘=4, but that is not sufficient to select the optimal 𝑘. The following conditions

should be checked to pick the right ‘𝑘’ using the Silhouette plots.

Novel Machine Learning Tools for data treatment in STM Break-Junction Technique 33

Initially, the average silhouette score for each value of 𝑘 is calculated, representing the mean

silhouette coefficient across all points for each cluster (Fig. 18). The highest average silhouette

score indicates the best clustering configuration, where points are well matched within their

clusters and poorly matched with neighboring clusters.

Figure 18. Representation of Average silhouette method applied to k-means algorithm.

Additionally, visualizing the silhouette plots for different numbers of clusters helps to

understand the quality of the clustering. Each plot displays the silhouette coefficient of each point,

sorted within their respective clusters. This visualization aids in confirming the number of clusters

chosen by the program or exploring other potential configurations. As shown in Fig. 19, when

𝑘=4, a very large group of points is formed, and the remaining clusters are relatively small. In

contrast, when 𝑘=5, the largest cluster remains dominant, but a fifth cluster emerges, which can

provide additional insights into the data. Since the elbow method had determined 5 clusters, this

configuration is the most reliable.

Figure 19. Additional representation of Average silhouette method.

34 Cuscó Rovira, Sara

In addition to the Elbow method and Average silhouette method, other clustering evaluation

techniques were employed to further assess the quality of the clustering results. These methods

are the Davies-Bouldin index and the Calinski-Harabasz index.

The DBI measures the average similarity between each cluster and its most similar cluster,

considering both the scatter within clusters and the separation between clusters. After applying

this method, a value 𝑘=4 was obtained for the clusters (Fig 20a).

On the other hand, the CHI, also known as the variance ratio criterion, evaluates clustering

quality based on the ratio of the between-cluster dispersion to the within-cluster dispersion. Upon

calculation, a value 𝑘=5 was obtained for the clusters (Fig 20b).

(a) (b)

Figure 20. Representation of DBI and CHI Index applied to k-means algorithm.

Due to two of the proposed methods yielding a value of 𝑘=4 and two others yielding a value

of 𝑘=5, it was decided to try the algorithm with both configurations to determine which one

produces better results.

As has been mentioned earlier, the procedure followed for each clustering algorithm is like

the one described above. Table 1 compiles the information from each clustering algorithm with

each cluster evaluation method and the final chosen number of clusters. It is important to

emphasize that the selection of the optimal number of clusters involves a subjective assessment,

which relies primarily on the coherence of the results obtained from various cluster evaluation

methodologies and their subsequent analysis. Additionally, it is worth noting that the effectiveness

of cluster evaluation techniques can vary significantly depending on the clustering algorithm

employed. Some methodologies may demonstrate superior performance in assessing the quality

of clustering, while others may not offer as reliable results.

Novel Machine Learning Tools for data treatment in STM Break-Junction Technique 35

Cluster algorithm
Elbow

method

Average silhouette

method
DBI CHI Optimal k

Hard Clustering

K-means 5 4 4 5 4-5

Single linkage 2 2 3 2 2

Complete linkage 4 2 2 4 4

Average linkage 2 2 4 2 2

Ward’s method 5 5 5 6 5

DBSCAN ---- ---- ---- ---- 4

Soft clustering FCM 6 4 6 5 5-6

Table 1. Comparison of the optimal number of clusters for different clustering algorithms using various cluster

evaluation methods.

Observing Table 1, we can discard two methods of agglomerative clustering for data

classification: the Average linkage method and the Single linkage method. Both the Single

method and the Average method have yielded an optimal number of clusters of 2. However, these

methods are not suitable for our STM-BJ data classification task due to their tendency to create

clusters based solely on proximity or distance metrics, which may not adequately capture the

underlying patterns and complexities present in our data.

6.4.1. Dimensionality reduction

After determining the optimal number of clusters for each clustering algorithm, we define the

value of 𝑘 for each algorithm and execute them. To facilitate the understanding of data

classification, we employ dimensionality reduction techniques to visualize the clusters. Below, the

following visualizations are presented: (a) UMAP, (b) t-SNE, and (c) PCA, for each method— K-

means (Fig. 21), Complete linkage (Fig. 22), Ward's method (Fig. 23), DBSCAN (Fig. 24), and

FCM (Fig. 25).

36 Cuscó Rovira, Sara

(a) (b) (c)

Figure 21. Dimensionality reduction representations for K-means.

(a) (b) (c)

Figure 22. Dimensionality reduction representations for Complete linkage.

(a) (b) (c)

Figure 23. Dimensionality reduction representations for Ward’s method.

(a) (b) (c)

Figure 24. Dimensionality reduction representations for DBSCAN.

Novel Machine Learning Tools for data treatment in STM Break-Junction Technique 37

(a) (b) (c)

Figure 25. Dimensionality reduction representations for Fuzzy-c means.

After evaluating the results obtained through PCA, UMAP, and t-SNE, it is observed that each

method offers a unique perspective on the underlying structure of the data. While PCA provides

a quick dimensionality reduction and preserves the global structure of the data, both UMAP and

t-SNE stand out for their ability to capture both global and local structures, which is especially

relevant in nonlinear datasets. Therefore, based on the complexity of the data, both UMAP and t-

SNE are considered to play a fundamental role in understanding the data structure, providing

detailed and insightful perspectives.

Observing the set of visualizations, we can see those three methods (K-means, Ward's

method, and FCM) reflect a good distribution of the data. In contrast, DBSCAN and Complete

linkage exhibit a disordered distribution. In the later, smaller populations are encompassed within

larger ones, indicating a lack of clear differentiation between them.

The DBSCAN algorithm does not perform well with our STM-BJ data. This method primarily

focuses on detecting anomalies and forming clusters based on density. As observed in our

visualizations, DBSCAN creates an external cluster that surrounds the data and several internal

clusters. This indicates that DBSCAN struggles with the varying densities present in STM-BJ

measurements, which can lead to an overemphasis on detecting noise rather than forming

coherent clusters. The nature of STM-BJ data, which includes intricate patterns and variations,

does not align well with DBSCAN's density-based clustering approach.

Similarly, the Complete linkage method also fails to provide a meaningful clustering solution.

It detects one very large cluster and three much smaller groups with very few points, leading to

an uneven and uninformative clustering structure. This method tends to create clusters by

maximizing the distance between the most distant points within a cluster. For STM-BJ data, this

38 Cuscó Rovira, Sara

results in merging dissimilar clusters and forming disproportionately large clusters. This approach

is not well-suited for our data, which contains subtle but important variations that are crucial for

accurate clustering.

Therefore, due to these observations and the specific characteristics of STM-BJ data, we can

anticipate that both, DBSCAN and Complete linkage, are not suitable for our clustering needs.

6.5. VALIDATION

To validate of each clustering method, we generated final 2D conductance histograms. Below,

the clusters formed by each algorithm are described and compared to select the optimal clustering

method according to the phenomenology and characteristics of atomic junctions’ evolution.

K-means achieved its best classification with five clusters, as shown in Fig. 26. Cluster 1, with

a 45.7% of selected traces, reflects the most common scenario, junctions of 2 Go and 1 Go

conductance values[3], due to the sequential disconnection from two to single atoms during

junction evolution. Cluster 2 also shows a trend of 1 Go and 2 Go signatures but with step-lengths

10 times longer than Cluster 1, highlighting stability in the junctions, and thus less common.

Cluster 3 involves junctions due to common electrode-solvent interactions, forming Au-C-Au

bonds, with short steps at ca. 0.3 Go. Cluster 4 represents the simplest and most unlikely condition

with a single Au atom junction at 1 Go. Finally, Cluster 5 comprises residual data with shorter

lifetimes and thus datapoints.

FCM also classified the data into five clusters, as shown in Fig. 27, following the same criteria

as the K-means algorithm but with notable differences in the populations. The most remarkable

difference is in Cluster 4, comprising 17.8% of the data with only 1 Go compared to 7.5% in K-

means. This indicates that K-means combined some single-step data with multiple-step data,

hindering the analysis, and FCM successfully distinguished them. Also, the percentage of residual

data in Cluster 5 increased significantly, indicating FCM's higher capacity to detect poorly defined

traces, helping discard data that do not accurately reflect the experiment's behavior.

Ward's method also resulted in five clusters, as shown in Fig. 28. The organization of most

clusters differed from the previous algorithms except for Cluster 3. Cluster 2, which contains long

steps, had a very low percentage, while Cluster 1 presented more than 50% of the data. This

suggests that the method failed to distinguish between step durations, combining long and short

steps. On the other hand, Cluster 4 was very similar to the Cluster 4 in the K-means algorithm,

Novel Machine Learning Tools for data treatment in STM Break-Junction Technique 39

again not effectively separating samples with a single step as FCM did. Lastly, if we compare

Cluster 4 and Cluster 5, which in the previous algorithms was the residual cluster, Cluster 5

surpass in population Cluster 4 with a similar length step. We can conclude that the algorithm

created two minority groups very similar without obtaining a discrimination between the clusters.

Ward’s method achieved a proper discrimination between clusters but not a good assignment.

This analysis confirms that FCM clustering is the most effective method for analyzing STM-

BJ data, providing clear and organized groupings. The success of FCM can be attributed to its

approach of testing each data point against multiple cluster centers, ensuring the most accurate

and nuanced classification. This ability to discern subtle differences in data patterns and to detect

poorly defined traces underlines FCM's superior performance in handling complex datasets.

 Cluster 1 (45,7%) Cluster 2 (18,5%) Cluster 3 (22,2%)

 Cluster 4 (7,5%) Cluster 5 (6,2%) Whole dataset (100%)

Figure 26. Lineal 2D histograms representations for each cluster applying K-means.

40 Cuscó Rovira, Sara

 Cluster 1 (28,5%) Cluster 2 (19,1%) Cluster 3 (22,1%)

 Cluster 4 (17,7%) Cluster 5 (12,6%) Whole dataset (100%)

Figure 27. Lineal 2D histograms representations for each cluster applying FCM.

 Cluster 1 (51,7%) Cluster 2 (8,4%) Cluster 3 (22,7%)

 Cluster 4 (7,4%) Cluster 5 (9,8%) Whole dataset (100%)

Figure 28. Lineal 2D histograms representations for each cluster applying Ward’s method.

Novel Machine Learning Tools for data treatment in STM Break-Junction Technique 41

7. CONCLUSIONS

The development of a Python tool based on ML for analysing data from STM-BJ

measurements has proven to be highly effective and objective in understanding the diverse

patterns and trends in electron transport through Au atomic junctions. Unsupervised learning

offered great potential for classifying data, adapting to various datasets, and producing consistent

results that surpass the limitations of traditional human classification, which often leads to

scattered and variable outcomes.

The extensive range of ML algorithms for clustering allowed for a detailed and thorough study

to achieve the most accurate comparison between them. By testing our tool on a acquired STM-

BJ dataset in the host lab, DBSCAN, Complete linkage, Single linkage, and Average linkage,

were found to be ineffective in capturing the complex patterns in our data. Conversely, algorithms

like K-means, FCM, and Ward’s method proved to be highly effective, adapting to the complexity

of the dataset and providing valuable insights into the mathematical data’s parametrisation.

Among all the algorithms, FCM significantly stood out for its efficiency, producing clear and

organized clusters that reflected the behaviours of atomic junctions. The identified clusters

revealed relevant information about the conductance of electrons at the atomic level,

distinguishing the number of junctions, the duration of conductance steps, and even possible

interactions with the solvent. We speculate that fuzzy algorithms represent the most suitable

framework since the subtle of atomic junctions’ phenomenology. Our work opens new avenues

for exploring complex patterns and subtle details for atomic junctions in ways that were not

previously achievable.

42 Cuscó Rovira, Sara

11. REFERENCES AND NOTES
1. Kaliginedi, V. et al. Promising anchoring groups for single-molecule conductance measurements.

Physical Chemistry Chemical Physics 16, 23529–23539 (2014).
2. Kuznetsov, A. & Ulstrup, J. Electron Transfer in Chemistry and Biology: An Introduction to the Theory.

(1999).
3. Chen, F., Hihath, J., Huang, Z., Li, X. & Tao, N. J. Measurement of Single-Molecule Conductance.

Annual Review of Physical Chemistry 58, 535–564 (2007).
4. Starr, R. Reactivity in the Single Molecule Junction. (2021).
5. Janssens, T. V. W. et al. Insights into the reactivity of supported Au nanoparticles: combining theory and

experiments. Topics in Catalysis 44, 15–26 (2007).
6. Zeng, B.-F. et al. Quantitative studies of single-molecule chemistry using conductance measurement.

Nano Today 47, 101660 (2022).
7. Dief, E. M., Low, P. J., Díez-Pérez, I. & Darwish, N. Advances in single-molecule junctions as tools for

chemical and biochemical analysis. Nature Chemistry 15, 600–614 (2023).
8. Nichols, R. J. et al. The experimental determination of the conductance of single molecules. Physical

Chemistry Chemical Physics 12, 2801 (2010).
9. Wang, L., Wang, L., Zhang, L. & Xiang, D. Advance of Mechanically Controllable Break Junction for

Molecular Electronics. Topics in Current Chemistry 375, 61 (2017).
10. Chen, J. Introduction to Scanning Tunneling Microscopy: Second Edition. American Journal of Physics

62, 23-25 (1994).
11. Lv, S.-L. et al. Recent Advances in Single-Molecule Sensors Based on STM Break Junction

Measurements. Biosensors 12, 565 (2022).
12. Gorenskaia, E. & Low, P. Methods for the analysis, interpretation, and prediction of single-molecule

junction conductance behaviour. Chemical Science (2024)
13. Komoto, Y., Fujii, S., Iwane, M. & Kiguchi, M. Single-molecule junctions for molecular electronics.

Journal of Materials Chemistry C 4, 8842–8858 (2016).
14. Wold, D. J. & Frisbie, C. D. Fabrication and Characterization of Metal−Molecule−Metal Junctions by

Conducting Probe Atomic Force Microscopy. Journal American Chemistry Society 123, 5549–5556
(2001).

15. Komoto, Y., Ryu, J. & Taniguchi, M. Machine learning and analytical methods for single-molecule
conductance measurements. Chemical Communications 59, 6796–6810 (2023).

16. Mahesh, B. Machine Learning Algorithms -A Review. (2019).
17. Russell, S. J. & Norvig, P. Artificial Intelligence: A Modern Approach. (2016).
18. Bi, Q., Goodman, K. E., Kaminsky, J. & Lessler, J. What is Machine Learning? A Primer for the

Epidemiologist. American Journal of Epidemiology 188, 2222–2239 (2019).
19. Y C a, P., Pulabaigari, V. & B, E. Semi-supervised learning: a brief review. International Journal of

Engineering & Technology 7, 81 (2018).
20. James, G., Witten, D., Hastie, T. & Tibshirani, R. An Introduction to Statistical Learning: With

Applications in R. (2021)
21. Shugara, R., Ernawati, E. & Andreswari, D. Implementation of the Fuzzy C-Means Clustering Algorithm

and Simple Additive Weighting in the Provision of Assistance for the Residential Area Quality
Improvement Program. Pseudocode 3, 91–97 (2016).

Novel Machine Learning Tools for data treatment in STM Break-Junction Technique 43

22. Usama, M. et al. Unsupervised Machine Learning for Networking: Techniques, Applications and

Research Challenges. IEEE Access 7, 65579–65615 (2019).
23. Petrus,J., Ermatita and Sukemi, Soft and Hard Clustering for Abstract Scientific Paper. in 2019

International Conference on Informatics, Multimedia, Cyber and Information System (ICIMCIS) 131-136
(2019).

24. Van der Maaten, L. & Hinton, G. Viualizing data using t-SNE. Journal of Machine Learning Research 9,
2579–2605 (2008).

25. Wang, Y., Chen, L., Jo, J. & Wang, Y. Joint t -SNE for Comparable Projections of Multiple High-
Dimensional Datasets. IEEE Transactions on Visualization and Computer Graphics 28, 623–632 (2022).

26. McInnes, L., Healy, J., Saul, N. & Großberger, L. UMAP: Uniform Manifold Approximation and
Projection. Journal of Open Source Software 3, 861 (2018).

27. Kodinariya, T. & Makwana, P. Review on Determining of Cluster in K-means Clustering. International
Journal of Advance Research in Computer Science and Management Studies 1, 90–95 (2013).

28. Morissette, L. & Chartier, S. The k-means clustering technique: General considerations and
implementation in Mathematica. Tutorials in Quantitative Methods for Psychology 9, 15–24 (2013).

29. Murtagh, F. & Contreras, P. Algorithms for hierarchical clustering: an overview. WIREs Data Mining and
Knowledge Discovery 2, 86–97 (2012).

30. Müllner, D. Modern hierarchical, agglomerative clustering algorithms. arXiv 1, 1-12 (2011).
31. Yim, O. & Ramdeen, K. T. Hierarchical Cluster Analysis: Comparison of Three Linkage Measures and

Application to Psychological Data. The Quantitative Methods for Psychology 11, 8–21 (2015).
32. Deng, D. DBSCAN Clustering Algorithm Based on Density. in 2020 7th International Forum on Electrical

Engineering and Automation (IFEEA) 949–953 (2020).
33. Cretulescu, R., Morariu, D., Breazu, M. & Volovici, D. DBSCAN Algorithm for Document Clustering.

International Journal of Advanced Statistics and IT&C for Economics and Life Sciences 9, 58–66 (2019).
34. Ester, M., Kriegel, H.-P., Sander, J. & Xu, X. A density-based algorithm for discovering clusters in large

spatial databases with noise. in Proceedings of the Second International Conference on Knowledge
Discovery and Data Mining 226–231 (1996).

35. Suganya, R. & Shanthi, R. Fuzzy C- Means Algorithm- A Review. International Journal of Scientific and
Research Publications 2, 440-442 (2012).

36. Milligan, G. W. & Cooper, M. C. An examination of procedures for determining the number of clusters in
a data set. Psychometrika 50, 159–179 (1985).

37. Ketchen, D. J. & Shook, C. L. The Application of Cluster Analysis in Strategic Management Research:
An Analysis and Critique. Strategic Management Journal 17, 441–458 (1996).

38. Arbelaitz, O., Gurrutxaga, I., Muguerza, J., Pérez, J. M. & Perona, I. An extensive comparative study of
cluster validity indices. Pattern Recognition 46, 243–256 (2013).

39. Mughnyanti, M., Efendi, S. & Zarlis, M. Analysis of determining centroid clustering x-means algorithm
with davies-bouldin index evaluation. Materials Science and Engineering 725, 012128 (2020).

40. Wang, X. & Xu, Y. An improved index for clustering validation based on Silhouette index and Calinski-
Harabasz index. Materials Science and Engineering 569, 052024 (2019).

44 Cuscó Rovira, Sara

12. ACRONYMS

BJ: Break Junction

STM-BJ: Scanning Tunneling Microscope Break-Junction

PZT: piezoelectric transducer

MCBJ: Mechanically Controllable Break Junctions

CP-AMF-BJ: Conducting Probe Atomic-Force-Microscope Break-Junction

ML: Machine Learning

AI: Artificial Intelligence

PCA: Principal Component Analysis

UMAP: Uniform Manifold Approximation and Projection

t-SNE: t-distributed Stochastic Neighbor Embedding

KL: Kullback-Leibler

DBSCAN: Density-Based Spatial Clustering of Applications with noise

FCM: Fuzzy C-Means

WCSS: within-cluster-sum of squares

DBI: Davies-Bouldin Index

CHI: Calinski-Harabasz index

Novel Machine Learning Tools for data treatment in STM Break-Junction Technique 45

APPENDICES

APPENDIX 1: STM-BJ TOOL (FUZZY-C MEANS)

IMPORT MODULES

#import modules
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from scipy.signal import find_peaks
import glob
import os
import math
from tqdm.notebook import tqdm, trange
from tqdm import tqdm
import struct
from scipy.signal import butter, filtfilt
from sklearn.cluster import KMeans
from sklearn.metrics import silhouette_score
from sklearn.metrics import silhouette_samples
import sklearn.metrics as metrics
from sklearn.preprocessing import StandardScaler
from joblib import Parallel, delayed
from scipy.stats import kurtosis, skew, linregress
!pip install kneed
from kneed import KneeLocator
import warnings
warnings.filterwarnings("ignore")
!pip install umap-learn
from sklearn.manifold import TSNE
import umap
from sklearn.decomposition import PCA
from yellowbrick.cluster import SilhouetteVisualizer
from yellowbrick.cluster import KElbowVisualizer
from sklearn.metrics import davies_bouldin_score, calinski_harabasz_score
!pip install scikit-fuzzy
import skfuzzy as fuzz
from sklearn.datasets import make_blobs

EXPERIMENTAL PARAMETERS

#Experimental Parameters Introduction
Vbias = float(input("Enter the bias value in mV: ")) # potential applied between the two electrodes
Vbias = Vbias/1000
bins_1D = int(input("Enter the number of bins for 1D: "))
Amplification = float(input("Enter the amplification value in nA/V: "))
VtoG = (((Amplification)*1E-9) / 77.4E-6) * (1/Vbias) # output voltage in V

LOADING DATA

Get the path of the "results" folder on the desktop
folder_path = os.path.join(os.path.expanduser("~"), "Desktop", "results")

Get all .acq files in the "results" folder
acq_files = sorted(glob.glob(os.path.join(folder_path, '*.acq')))

Display the number of files found
print(f"Number of .acq files found in the 'results' folder on the desktop: {len(acq_files)}")

Check if .acq files were found
if not acq_files:
 print("No .acq files found in the 'results' folder on the desktop.")

READ BINARY FILES

Read .acq binary files
def getDataframe(filename):
 binary = open(filename, "rb").read()
 number_of_points = struct.unpack("@I", binary[0:4])[0]
 datafile = struct.unpack("@" + "d" * number_of_points, binary[4:4 + number_of_points * 8])
 time_interval = struct.unpack("@d", binary[4 + number_of_points * 8 + 16:])[0]
 return pd.DataFrame({"time": [time_interval * i for i in range(number_of_points)], "current": datafile})

FILE SELECTION

data = []
for filename in acq_files:
 df = getDataframe(filename)
 df["current"] = df["current"].abs() # Take absolute values (log...)
 df['current'] = df['current'] * VtoG
 data.append(df)

Select a file from the list
file_selected = int(input("Select the file number to visualize: ")) - 1
df_acq = data[file_selected]

Plot intensity vs time
plt.figure(figsize=(10, 6))
plt.plot(df_acq['time'], df_acq['current'], color='blue')
plt.title('Intensity vs Time')
plt.xlabel('Time')
plt.ylabel('Intensity')
plt.grid(True)
plt.show()

FILTER DATA

#Signal Filtering Parameters
N = 2 # Butterworth filter order
Wn = 7000 # Cutoff frequency
fs = 30000 # Sampling rate

#Function to find the decay start point
def find_decay_start_point(time, current):
 # Find the index where the current starts decreasing after a significant increase
 start_index = np.argmax(current) # Index of the maximum current
 max_current = current[start_index]
 # Define a threshold for the decrease
 threshold = 0.33 # You may need to adjust this threshold based on your data
 # Find the index where the current drops below the threshold
 decay_start_index = start_index + np.argmax(current[start_index:] < max_current * (1 - threshold))
 return time[decay_start_index], current[decay_start_index]

Function to find the decay stop point
def decay_stop_point(time,current):
 peaks, _ = find_peaks(current)
 peak_max= max(current[peaks])
 threshold= 0.009 * peak_max
 for i in range(len(current)):
 if current[i]<threshold:
 decay_stop_point_index = i
 break
 return time[decay_stop_point_index], current[decay_stop_point_index]

Functions to "coerce" or adjust the data to the decay start point and decay stop point
def coerce1(time, current):
 decay_start_time, decay_start_current = find_decay_start_point(time, current) # Get the coordinates of
the decay start point
 return decay_start_time, decay_start_current # Return the coordinates of the decay start point

def coerce2(time, current):
 decay_stop_time, decay_stop_current = decay_stop_point(time, current) # Get the coordinates of the
decay stop point
 return decay_stop_time, decay_stop_current # Return the coordinates of the decay stop point

Read data from all capture files
data = [] #List to store valid files

invalid_files = [] # List to store invalid files
for filename in acq_files:
 df = getDataframe(filename)
 df["current"] = df["current"].abs() # Take absolute values (log...)

 # Filtering
 B, A = butter(N=N, Wn=Wn, btype='lowpass', output='ba', fs=fs)
 df["current"] = filtfilt(B, A, df["current"])

 # Find the saturation point of the current and the inflection point
 saturation_current = df['current'].max()
 inflection_point_1 = coerce1(df['time'], df['current'])
 inflection_point_2 = coerce2(df['time'], df['current'])

 # Remove the saturation region
 df = df.loc[df['time'] >= inflection_point_1[0]]
 df = df.loc[df['time'] <= inflection_point_2[0]]
 df['time'] = df['time'] - df['time'].min()
 df['current'] = df['current'] * VtoG #Convert current to the Go scale

 # Check if the dataframe is empty after processing
 if df.empty:
 invalid_files.append(filename) # Add filename to the list of invalid files
 continue # Skip further processing for this file

 data.append(df)

Print invalid files
if invalid_files:
 print("\033[4m\033[1mInvalid files (empty dataframes):\033[0m\n")
 for file in invalid_files:
 print(file)

Concatenate all DataFrames
allinone = pd.concat(data, axis=0, ignore_index=True)

#Select a file from the list
file_selected = int(input("Select the file number to visualize: ")) - 1
df_acq = data[file_selected]

#Current vs. time plot for preprocesing files
plt.figure(figsize=(5, 6))
plt.plot(df_acq['time'], df_acq['current'], color='blue')
plt.title('Intensity vs Time')
plt.xlabel('Time')
plt.ylabel('Intensity')
plt.grid(True)
plt.show()

PLOT WHOLE DATASET

print('The plots of the data represented as a function of current are as follows:')

Histograms linear and logarihtmic
fig, axes = plt.subplots(1, 2, figsize=(12, 5))
sns.histplot(data=allinone["current"], x=None, log_scale=False, bins=500, ax=axes[0], element="poly",
color="blue")
axes[0].set_title('Linear scale')
axes[0].set_xlabel('Conductance(G/Go)')

sns.histplot(data=allinone["current"], x=None, log_scale=True, bins=500, ax=axes[1], element="poly",
color="red")

axes[1].set_title('Logarithmic scale')
axes[1].set_xlabel('Conductance(G/Go)')
axes[1].set_xlim(0.01, 4)
axes[1].set_xscale('log')
plt.tight_layout()

plt.show()

FEATURES EXTRACTION

Function to extract features from all DataFrames using parallel processing (WITH progress bar)
def extract_features_parallel(data):
 features = Parallel(n_jobs=-1)(delayed(extract_features)(df) for df in tqdm(data, desc='Feature
Extraction'))
 return np.array(features)

Function to extract features from a single DataFrame
def extract_features(df):
 current_mean = df['current'].mean() # Current mean
 time_duration = df['time'].max() - df['time'].min() # Time duration of capture
 current_kurtosis = kurtosis(df['current']) # Kurtosis of current
 current_std = df['current'].std() # Standard deviation of current
 slope, _, _, _, _ = linregress(df['time'], np.exp(df['current'])) # Calculate the slope of the linear
regression line of current vs. time
 coef_variacion = current_std / current_mean
 return [coef_variacion,time_duration ,current_kurtosis, slope, current_mean]

List of feature names
feature_names = ['time_duration','coef_variacion', 'current_kurtosis', 'slope', 'current_mean']

Extract features from the data
features = extract_features_parallel(data)

Normalize the features
scaler = StandardScaler()
features_scaled = scaler.fit_transform(features)

CLUSTERING

ELBOW METHOD

Elbow method
print("\033[4m\033[1mElbow Method:\033[0m\n")
wcss = []
for i in range(2, 11):
 cntr, u, u0, d, jm, p, fpc = fuzz.cluster.cmeans(
 data=features_scaled.T, c=i, m=2, error=0.005, maxiter=1000, init=None, seed=42)
 distances = np.min(d, axis=0)
 wcss.append(np.sum(distances ** 2))

Determine the optimal number of clusters
kl = KneeLocator(range(2, 11), wcss, curve='convex', direction='decreasing')
elbow_point = kl.elbow

#Plot elbow
plt.figure(figsize=(10, 6))
plt.plot(range(2, 11), wcss, marker='o', linestyle='-')
plt.axvline(x=elbow_point, color='r', linestyle='--', label=f'Optimal Clusters: {elbow_point}')
plt.title('Elbow Method for Optimal Clusters (FCM)')
plt.xlabel('Number of Clusters')
plt.ylabel('WCSS')
plt.legend()
plt.show()
print('Optimal number of clusters (Elbow Method):', elbow_point)

AVERAGE SILHOUETTE METHOD

#Average Silhouette method
print("\033[4m\033[1mSilhouette Method:\033[0m")

Calculate the Silhouette Score for different numbers of clusters
min_clusters = 2
max_clusters = 10
silhouette = []

for n_clusters in range(min_clusters, max_clusters + 1):
 cntr, u, u0, d, jm, p, fpc = fuzz.cluster.cmeans(
 data=features_scaled.T, c=n_clusters, m=2, error=0.005, maxiter=1000, init=None, seed=42)
 cluster_labels = np.argmax(u, axis=0)
 silhouette_avg = metrics.silhouette_score(features_scaled, cluster_labels, metric='euclidean')
 silhouette.append(silhouette_avg)
Determine the optimal number of clusters

optimal_num_clusters = np.argmax(silhouette) + min_clusters

Plot Silhouette scores
plt.figure(figsize=(7, 4), dpi=80)
plt.plot(range(min_clusters, max_clusters + 1), silhouette, label='Silhouette vs K')
plt.xlabel('Number of clusters')
plt.ylabel('Silhouette Score')
plt.legend(loc='upper right')
plt.title('Silhouette Score for different number of clusters')
plt.show()
print("Optimal number of clusters by the silhouette method:", optimal_num_clusters)

silhouette = []
fig, axs = plt.subplots(6, sharex=True, figsize=(20, 12))

for i in range(2, 8): # Modify according to your results
 cntr, u, u0, d, jm, p, fpc = fuzz.cluster.cmeans(
 data=features_scaled.T, c=i, m=2, error=0.005, maxiter=1000, init=None, seed=42)
 cluster_labels = np.argmax(u, axis=0)
 silhouette_samples = metrics.silhouette_samples(features_scaled, cluster_labels, metric='euclidean')
 silhouette.append(silhouette_samples)
 axs[i - min_clusters].plot(silhouette_samples, label=f'K={i}')
 axs[i - min_clusters].set_title("Silhouette average score for K={}: {:.3f}".format(i,
np.mean(silhouette_samples)))
 axs[i - min_clusters].legend()
plt.show()

DAVIES BOULDIN SCORE

Davies-Bouldin Score
print("\n\033[4m\033[1mDavies-Bouldin Score:\033[0m\n")
davies_bouldin_scores = []
for i in range(2, 11):
 cntr, u, u0, d, jm, p, fpc = fuzz.cluster.cmeans(
 data=features_scaled.T, c=i, m=2, error=0.005, maxiter=1000, init=None, seed=42)
 cluster_labels = np.argmax(u, axis=0)
 db_score = davies_bouldin_score(features_scaled, cluster_labels)
 davies_bouldin_scores.append(db_score)

optimal_db_index = np.argmin(davies_bouldin_scores) + 2
print('Optimal number of clusters (Davies-Bouldin):', optimal_db_index)

Plot Davies-Bouldin Score
plt.figure(figsize=(10, 6))
plt.plot(range(2, 11), davies_bouldin_scores, marker='o', linestyle='-')
plt.axvline(x=optimal_db_index, color='r', linestyle='--', label=f'Optimal Clusters: {optimal_db_index}')
plt.title('Davies-Bouldin Score vs. Number of Clusters (FCM)')
plt.xlabel('Number of Clusters')
plt.ylabel('Davies-Bouldin Score')
plt.legend()
plt.show()

CALINSKI-HARABASZ SCORE

Calinski-Harabasz Score
print("\n\033[4m\033[1mCalinski-Harabasz Score:\033[0m\n")

Calculate Calinski-Harabasz Score for different numbers of clusters
ch_scores = []
for i in range(3, 11):
 cntr, u, u0, d, jm, p, fpc = fuzz.cluster.cmeans(
 data=features_scaled.T, c=i, m=2, error=0.005, maxiter=1000, init=None, seed=42)
 cluster_labels = np.argmax(u, axis=0) # Get cluster labels
 ch_score = calinski_harabasz_score(features_scaled, cluster_labels)
 ch_scores.append(ch_score)

optimal_ch_index = np.argmax(ch_scores) + 3
print('Optimal number of clusters (Calinski-Harabasz):', optimal_ch_index)

Plot Calinski-Harabasz Score
plt.figure(figsize=(10, 6))
plt.plot(range(3, 11), ch_scores, marker='o', linestyle='-')
plt.title('Calinski-Harabasz Score vs. Number of Clusters')
plt.xlabel('Number of Clusters')

plt.ylabel('Calinski-Harabasz Score')
plt.axvline(x=optimal_ch_index, color='r', linestyle='--', label='Optimal Number of Clusters')
plt.legend()
plt.show()

CLUSTERING LOOP

def fuzzy_cmeans(features_scaled, n_clusters):
 cntr, u, u0, d, jm, p, fpc = fuzz.cluster.cmeans(
 features_scaled.T, n_clusters, 2, error=0.005, maxiter=1000, init=None)

 #Assigning samples to a single cluster based on maximum membership
 labels_soft = np.argmax(u, axis=0)

 # Visualize fuzzy membership of samples to clusters
 fig, ax = plt.subplots(figsize=(35, 6))
 for i in range(n_clusters):
 ax.plot(u[i], label=f'Cluster {i+1}')
 ax.set_xlabel('Sample')
 ax.set_ylabel('Fuzzy Membership')
 ax.set_title('Fuzzy Membership of Samples to Clusters')
 ax.legend()
 plt.show()
 return labels_soft

num_clusters= 5 #Adjust to your result
Perform soft clustering using c-fuzzy means
print("\n\033[4m\033[1mSoft Clustering (Fuzzy C-Means):\033[0m\n")
labels = fuzzy_cmeans(features_scaled, num_clusters)

Create list of dataframes for each cluster
cluster_data = [[] for _ in range(num_clusters)]
for i, df in enumerate(data):
 cluster_data[labels[i]].append(df)

DIMENSIONALITY REDUCTION REPRESENTATIONS

UMAP

Apply UMAP for dimensionality reduction
umap_model = umap.UMAP(n_components=2, random_state=0)
umap_result = umap_model.fit_transform(features_scaled)

Plot UMAP representation colored by cluster labels
plt.figure(figsize=(8, 6))
plt.scatter(umap_result[:, 0], umap_result[:, 1], c=labels, cmap='viridis', marker='o', alpha=0.5)
plt.title('UMAP Representation of Clusters')
plt.xlabel('UMAP Dimension 1')
plt.ylabel('UMAP Dimension 2')
plt.colorbar(label='Cluster Label')
plt.show()

t-SNE

Apply t-SNE for dimensionality reduction
tsne = TSNE(n_components=2, random_state=0)
features_tsne = tsne.fit_transform(features_scaled)

Plot t-SNE representation colored by cluster labels
plt.figure(figsize=(8, 6))
plt.scatter(features_tsne[:, 0], features_tsne[:, 1], c=labels, cmap='viridis', marker='o', alpha=0.5)
plt.title('t-SNE Representation of Clusters')
plt.xlabel('t-SNE Dimension 1')
plt.ylabel('t-SNE Dimension 2')
plt.colorbar(label='Cluster Label')
plt.show()

PCA

Apply PCA for dimensionality reduction
pca = PCA(n_components=2)
pca_result = pca.fit_transform(features_scaled)

Plot PCA representation colored by cluster labels

plt.figure(figsize=(8, 6))
plt.scatter(pca_result[:, 0], pca_result[:, 1], c=labels, cmap='viridis', marker='o', alpha=0.5)
plt.title('PCA Representation of Clusters')
plt.xlabel('PCA Component 1')
plt.ylabel('PCA Component 2')
plt.colorbar(label='Cluster Label')
plt.show()

FILES PER CLUSTER

Create a dictionary to store the file numbers per cluster
file_numbers_by_cluster = {i: [] for i in range(num_clusters)}

Associate each file number with its respective cluster
for i, label in enumerate(labels):
 # Ensure label is within the valid range
 if label < num_clusters:
 file_numbers_by_cluster[label].append(i + 1) # Add 1 to start file numbers from 1

Print the file numbers per cluster
print("\033[4m\033[1mFiles per Cluster:\033[0m \n")
for cluster, file_numbers in file_numbers_by_cluster.items():
 print(f"\033[1mCluster {cluster + 1}:\033[0m {file_numbers}\n")

CLUSTERING REPORT

Print information for each cluster with data
print("\033[4m\033[1mCluster Information:\033[0m \n")
for cluster, file_numbers in file_numbers_by_cluster.items():
 if len(file_numbers) > 0:
 print(f"\033[1mCluster {cluster + 1}:\033[0m")
 print(f"Number of captures: {len(file_numbers)}\n")
 print("\033[1mFeature Information (Min-Max):\033[0m")
 for feature_name, feature_values in zip(feature_names, np.vstack((np.min(features_scaled[labels
== cluster], axis=0), np.max(features_scaled[labels == cluster], axis=0))).T):
 print(f"{feature_name}: ({feature_values[0]:.2f} , {feature_values[1]:.2f})")
 print("\n")

Plot histograms for each cluster with data
num_features = len(feature_names)
colors = ['blue', 'green', 'orange', 'red', 'purple', 'brown', 'pink', 'gray', 'olive', 'cyan',
'magenta']
fig, axes = plt.subplots(len(file_numbers_by_cluster), 1, figsize=(6, 4 * len(file_numbers_by_cluster)))

for cluster, file_numbers in file_numbers_by_cluster.items():
 if len(file_numbers) > 0:
 ax_index = list(file_numbers_by_cluster.keys()).index(cluster)
 for j, feature_name in enumerate(feature_names):
 cluster_features = features_scaled[labels == cluster, j]
 axes[ax_index].hist(cluster_features, bins=20, color=colors[j], alpha=0.5,
label=feature_name)

 axes[ax_index].set_title(f'Cluster {cluster+1}')
 axes[ax_index].set_xlabel('Value')
 axes[ax_index].set_ylabel('Frequency')
 axes[ax_index].grid(True)
 axes[ax_index].legend()
plt.tight_layout()
plt.show()

FEATURES REPORT

Plot histograms for each feature across all clusters
num_clusters = len(cluster_data)
num_features = len(feature_names)
colors = ['blue', 'green', 'orange', 'red', 'purple', 'brown', 'pink', 'gray', 'olive', 'cyan',
'magenta']

fig, axes = plt.subplots((num_features + 1) // 2, 2, figsize=(15, 25))

for j, feature in enumerate(feature_names):
 row = j // 2
 col = j % 2
 for i, cluster_df in enumerate(cluster_data):

 cluster_features = features[labels == i]
 axes[row, col].hist(cluster_features[:, j], bins=20, color=colors[i], alpha=0.5)
 axes[row, col].set_title(f'{feature}')
 axes[row, col].set_xlabel('Value')
 axes[row, col].set_ylabel('Frequency')
 axes[row, col].grid(True)

Remove the last axis if the number of features is odd
if num_features % 2 != 0:
 fig.delaxes(axes[(num_features) // 2, 1])

Add a global legend in a box
handles = [plt.Line2D([0], [0], color=colors[i], lw=4) for i in range(num_clusters)]
labels = [f'Cluster {i+1}' for i in range(num_clusters)]
fig.legend(handles, labels, loc='upper right', bbox_to_anchor=(1.15, 0.5), ncol=1, frameon=True,
title="Clusters")

plt.tight_layout(rect=[0, 0, 0.85, 1]) # Adjust layout to prevent the legend from overlapping
plt.show()

CORRELATION MATRIX

Plot correlation matrices for each cluster in a row
fig, axs = plt.subplots(1, num_clusters+1, figsize=((num_clusters+2)*9, 9))
for i in range(num_clusters):
 # Extract features for current cluster
 cluster_features = [features[j] for j in range(len(features)) if labels[j] == i]
 cluster_data_scaled = scaler.fit_transform(cluster_features)

 # Plot correlation matrix for current cluster
 corr_matrix = pd.DataFrame(cluster_data_scaled).corr()
 sns.heatmap(corr_matrix, annot=True, cbar=False, ax=axs[i])
 axs[i].set_title(f"Correlation matrix for cluster #{i+1}")

 # Compute global correlation matrix
 if i == num_clusters - 1:
 global_data_scaled = scaler.fit_transform(features)
 global_corr_matrix = pd.DataFrame(global_data_scaled).corr()
 sns.heatmap(global_corr_matrix, annot=True, cbar=False, ax=axs[num_clusters], center=None)
 axs[num_clusters].set_title("Global correlation matrix")

plt.show()
print()

for i in range(len(feature_names)):
 print("Feature #{}: {}".format(i, feature_names[i]))

CURRENT LINEAL HISTOGRAMS (2D)

Define x-axis limits for histogram scaling
x_limits1D = [0, 3]
bins1D = 200
bins2D = 200
saturation2D = 25

Create subplots for each cluster
fig, axs = plt.subplots(num_clusters+1, 3, figsize=(4*3, 4*(num_clusters+1)))

Calculate percentages for each cluster
percentages = [(len(cluster_data[i]) / len(acq_files)) * 100 for i in range(num_clusters)]
rounded_percentages = [round(p, 1) for p in percentages]

Adjust the last percentage to ensure the sum is exactly 100%
percentage_sum = sum(rounded_percentages)
if percentage_sum != 100:
 adjustment = 100 - percentage_sum
 rounded_percentages[-1] += adjustment

Plot histograms for each cluster
for i in range(num_clusters):
 # Plot 1D histogram of current
 all_currents = np.concatenate([df['current'] for df in cluster_data[i]])
 axs[i, 0].hist(all_currents, alpha=0.5, label=f"Cluster {i+1}: {rounded_percentages[i]} % samples",
range=x_limits1D, bins=bins1D)
 axs[i, 0].set_xlim(x_limits1D)

 axs[i, 0].set_xlabel("Current")
 axs[i, 0].set_ylabel("Frequency")
 axs[i, 0].legend()

 # Plot 2D histogram of all captures in each cluster
 all_currents = np.concatenate([df['current'] for df in cluster_data[i]])
 all_times = np.concatenate([df['time'] for df in cluster_data[i]])
 axs[i, 1].hist2d(all_times, all_currents, cmap=plt.cm.hot, density=False, bins=bins2D,
cmax=saturation2D)
 axs[i, 1].set_xlabel("Time")
 axs[i, 1].set_ylabel("Current")

 # Plot all captures in each cluster
 for df in cluster_data[i]:
 axs[i, 2].plot(df['time'], df['current'], alpha=0.5)
 axs[i, 2].set_xlabel("Time")
 axs[i, 2].set_ylabel("Current")

Plot histograms for the entire dataset
Plot 1D histogram of current
all_currents = np.concatenate([df['current'] for df in data])
axs[num_clusters, 0].hist(all_currents, alpha=0.5, range=x_limits1D, label="Whole dataset",
density=False, bins=bins1D)
axs[num_clusters, 0].set_xlim(x_limits1D)
axs[num_clusters, 0].set_xlabel("Current")
axs[num_clusters, 0].set_ylabel("Frequency")
axs[num_clusters, 0].legend()

Plot 2D histogram of all captures in the entire dataset
all_currents = np.concatenate([df['current'] for df in data])
all_times = np.concatenate([df['time'] for df in data])
axs[num_clusters, 1].hist2d(all_times, all_currents, cmap=plt.cm.hot, density=True, bins=bins2D,
cmax=saturation2D)
axs[num_clusters, 1].set_xlabel("Time")
axs[num_clusters, 1].set_ylabel("Current")

Plot all captures in the entire dataset
for df in data:
 axs[num_clusters, 2].plot(df['time'], df['current'], alpha=0.5)
axs[num_clusters, 2].set_xlabel("Time")
axs[num_clusters, 2].set_ylabel("Current")

plt.tight_layout()
plt.show()

CURRENT LOGARITHMIC HISTOGRAMS (2D)

Define x-axis limits for histogram scaling
G_limit = [-1, 0.5]
bins1D = 100
bins2D = 200

df['log_current'] = np.log10(df['current'])

Ensure 'log_current' column is present in all dataframes
filtered_cluster_data = []

for i in range(num_clusters):
 filtered_cluster_data.append([])
 for df in cluster_data[i]:
 if 'log_current' not in df.columns:
 df['log_current'] = np.log10(df['current'])
 filtered_cluster_data[i].append(df[(df['log_current'] >= G_limit[0]) & (df['log_current'] <=
G_limit[1])])

Concatenate all clusters
all_cluster_data = pd.concat([pd.concat(cluster) for cluster in filtered_cluster_data])

Calculate percentages for each cluster
percentages = [(len(cluster) / len(data)) * 100 for cluster in filtered_cluster_data]
rounded_percentages = [round(p, 1) for p in percentages]

Adjust the last percentage to ensure the sum is exactly 100%
percentage_sum = sum(rounded_percentages)
if percentage_sum != 100:

 adjustment = 100 - percentage_sum
 rounded_percentages[-1] += adjustment

Create subplots for each cluster
fig, axs = plt.subplots(num_clusters + 1, 3, figsize=(4 * 3, 4 * (num_clusters + 1)))

Plot histograms for each cluster
for i in range(num_clusters):
 # Plot 1D histogram of current
 all_currents = np.concatenate([df['log_current'] for df in filtered_cluster_data[i]])
 axs[i, 0].hist(all_currents, alpha=0.5, label=f"Cluster {i+1}: {rounded_percentages[i]} % samples",
bins=bins1D)
 axs[i, 0].set_xlabel("Current")
 axs[i, 0].set_ylabel("Frequency")
 axs[i, 0].legend()

 # Plot 2D histogram of all captures in each cluster
 all_times = np.concatenate([df['time'] for df in filtered_cluster_data[i]])
 valid_indices = ~np.isnan(all_times) & ~np.isnan(all_currents)
 axs[i, 1].hist2d(all_times[valid_indices], all_currents[valid_indices], cmap=plt.cm.hot,
density=False, bins=bins2D)
 axs[i, 1].set_xlabel("Time")
 axs[i, 1].set_ylabel("Current")
 axs[i, 1].set_xlim([min(all_times), max(all_times)])

 # Plot all captures in each cluster
 for df in filtered_cluster_data[i]:
 axs[i, 2].plot(df['time'], df['log_current'], alpha=0.5)
 axs[i, 2].set_xlabel("Time")
 axs[i, 2].set_ylabel("Current")

Plot histograms for the entire dataset
Plot 1D histogram of current
all_currents = all_cluster_data['log_current']
axs[num_clusters, 0].hist(all_currents, alpha=0.5, label="Whole dataset", density=False, bins=bins1D)
axs[num_clusters, 0].set_xlabel("Current")
axs[num_clusters, 0].set_ylabel("Frequency")
axs[num_clusters, 0].legend()

Plot 2D histogram of all captures in entire dataset
all_times = all_cluster_data['time']
valid_indices = ~np.isnan(all_times) & ~np.isnan(all_currents)
axs[num_clusters, 1].hist2d(all_times[valid_indices], all_currents[valid_indices], cmap=plt.cm.hot,
density=True, bins=bins2D)
axs[num_clusters, 1].set_xlabel("Time")
axs[num_clusters, 1].set_ylabel("Current")
axs[num_clusters, 1].set_xlim([min(all_times), max(all_times)])

Plot all captures in entire dataset
for df in data:
 axs[num_clusters, 2].plot(df['time'], df['log_current'], alpha=0.5)
axs[num_clusters, 2].set_xlabel("Time")
axs[num_clusters, 2].set_ylabel("Current")

plt.tight_layout()
plt.show()

