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Graphs

by Madison E. CHESTER

This thesis explores graph-based entity resolution and completion within academic
knowledge graphs, focusing on the complex relationships between authors and pa-
pers and between papers themselves using Graph Neural Networks (GNNs). Raw
data sourced from the American Physical Society underwent meticulous data clean-
ing and entity resolution analysis to prepare it for the proposed network. Author
grouping strategies and citation overlap were examined, revealing distinct clusters
of researchers and insightful patterns in citation relationships. A GNN model was
developed using SAGEConv layers and heterogeneous transformations to capture lo-
cal graph structures for accurate link prediction. This model was optimized with
mini-batch loading and edge-level splits, which contributed to its high accuracy in
predicting links between authors and papers, as demonstrated in the evaluation.
The findings underscore the model’s capability to uncover hidden relationships and
trends within the academic graph. Future work could enhance the model by in-
corporating additional features, experimenting with alternative GNN architectures,
and including more detailed citation contexts and collaboration networks. Overall,
this thesis highlights the transformative potential of GNNs in entity resolution and
completion for academic knowledge graphs.
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Chapter 1

Introduction

In recent years, the advent of graph neural networks (GNNs) has revolutionized the
analysis and utilization of complex relationships and structures in data. This the-
sis focuses on the development and evaluation of a GNN model for link prediction
within an academic knowledge graph. The aim is to predict the likelihood of re-
lationships, such as authorship and citations, between various entities, specifically
authors and papers, within the academic domain.

Knowledge graphs represent data in a highly interconnected manner, capturing
the rich relationships between entities. In academic knowledge graphs, these entities
can include authors, papers, and the citation relationships between them. Accurate
link prediction in such graphs has significant implications for a variety of appli-
cations, including recommender systems, information retrieval, and understanding
the evolution of academic fields. Traditional methods often fall short in capturing
the intricate dependencies and multi-relational nature of these graphs, which under-
scores the need for advanced techniques like GNNs (Kipf and Welling, 2016).

GNNs have emerged as a powerful tool for learning on graph-structured data,
leveraging the connectivity patterns to enhance predictive performance. By using
neural networks to capture the dependencies between nodes, GNNs can effectively
model the complex relationships inherent in knowledge graphs. This capability
makes them particularly suitable for tasks such as graph completion, where the goal
is to infer missing links or predict future ones based on observed data. In the con-
text of academic knowledge graphs, this can lead to the discovery of new potential
collaborations, the identification of influential works, and the mapping of evolving
research trends.

The primary objectives of this thesis are twofold: first, to explore and analyze the
structure of an academic knowledge graph derived from real-world data; and sec-
ond, to develop and evaluate a novel GNN model tailored for link prediction tasks
within this graph.

The dataset used from the American Physical Society consists of tabular data rep-
resenting authors, papers, and their relationships extracted from academic databases.
The pre-processing steps to convert this tabular data into a structured knowledge
graph are detailed, including data cleaning, entity resolution, and integration of ci-
tation relationships. Emphasis is placed on ensuring data integrity and preparing
the graph for subsequent analysis and modeling.

Author grouping strategies and citation overlap analysis are then delved into,
which are critical for understanding the connectivity patterns within the knowledge
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graph. Citation overlap analysis examines the degree of similarity between papers
based on their citation profiles.

The final chapter focuses on the development and implementation of the GNN
model for link prediction. The model architecture, including the use of SAGEConv lay-
ers and heterogeneous transformations, is detailed. SAGEConv (GraphSAGE Convo-
lutional Layer) aggregates information from a node’s local neighborhood, allowing
the model to learn representations that capture the local graph structure effectively.
The model is trained using efficient data handling techniques such as mini-batch
loading and edge-level splits to accommodate large-scale heterogeneous graphs.

The training procedures and evaluation metrics for assessing the model’s per-
formance are outlined. These procedures offer a comprehensive evaluation of the
model’s ability to predict links accurately and reliably, considering the diverse rela-
tionships and node types within the academic knowledge graph. Finally, a detailed
analysis of the experimental results is presented, highlighting the strengths and lim-
itations of the proposed approach.

The code supporting this thesis can be found in the following GitHub repository:
Graph-Based Entity Resolution and Completion for Academic Knowledge Graphs.

https://github.com/madisonechester/Graph-Based-Entity-Resolution-and-Completion-for-Academic-Knowledge-Graphs
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Chapter 2

Background

2.1 Contents

In this chapter, the concept and construction of knowledge graphs are explored, with
a particular focus on academic knowledge graphs. Knowledge graphs are structured
representations of information where entities, such as authors and papers, are con-
nected by relationships, such as authorship and citation, in a graph format. These
graphs integrate diverse types of data into a unified framework, facilitating data re-
trieval and knowledge discovery. Academic knowledge graphs capture bibliometric
data, including publications, authors, affiliations, and research topics, to support
advanced analyses like author disambiguation, citation analysis, and collaboration
discovery. The methodology for creating these graphs is discussed, encompassing
data collection from multiple sources, data integration, and entity resolution tech-
niques. Additionally, the application of machine learning methods to enhance entity
resolution and graph completion is delved into. Techniques such as link predic-
tion, node classification, and graph embeddings are highlighted for their roles in en-
riching graph utility and uncovering hidden relationships within academic research
landscapes.

2.2 Knowledge Graphs

Knowledge graphs are structured representations of information, where entities (nodes)
are connected by relationships (edges) in a graph format. They are designed to en-
code and integrate diverse types of data into a unified framework, facilitating data
retrieval, reasoning, and knowledge discovery. Knowledge graphs can represent a
vast array of domains, including general knowledge (such as Google’s Knowledge
Graph), domain-specific knowledge (such as medical knowledge graphs), and orga-
nizational knowledge (such as enterprise knowledge graphs) (Hogan et al., 2021).

These graphs leverage ontologies and schemas to define entity and relationship
types, enabling semantic queries and inference. For instance, a knowledge graph can
represent an academic paper as an entity, connected to author entities, institution
entities, and other papers through relationships like "written by," "affiliated with,"
and "cites" (Ehrlinger and Wöß, 2016). This structured representation allows for the
application of graph algorithms to extract meaningful insights, such as identifying
influential papers, detecting research trends, and uncovering hidden relationships
between different research areas (Ji et al., 2021).
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2.3 Academic Knowledge Graphs

Academic knowledge graphs are specialized in the academic domain, capturing in-
formation about publications, authors, affiliations, research topics, and their inter-
connections. These graphs are constructed by integrating bibliometric data from
various sources, including digital libraries, journal databases, conference proceed-
ings, institutional repositories, and open academic data sources such as OpenAlex.
OpenAlex is a distinctly large and openly accessible dataset that provides structured
information on scholarly works, authors, institutions, and more, thereby facilitating
the creation and enrichment of academic knowledge graphs (OpenAlex, 2024). Al-
though OpenAlex is a leading example of an academic knowledge graph, our anal-
yses use data from the American Physical Society database due to the high level of
noise in OpenAlex data. The value of academic knowledge graphs lies in their ability
to link diverse entities and reveal complex relationships, which supports advanced
bibliometric analyses and enhances academic search engines (Tang et al., 2008).

The nodes in academic knowledge graphs typically represent entities such as
papers, authors, institutions, and research topics, while the edges represent relation-
ships like authorship, citation, and co-authorship. By organizing and connecting
these entities, academic knowledge graphs support various analytical tasks, includ-
ing author disambiguation, citation analysis, research trend identification, and col-
laboration discovery. For instance, citation networks, a subset of academic knowl-
edge graphs, have been extensively used to study the impact and influence of re-
search works (Radicchi, Fortunato, and Vespignani, 2011).

FIGURE 2.1: Visualization of Academic Knowledge Graph. Nodes
represent authors and papers, edges represent relationships such as
authorship (undirected) and citation (directed). Author features in-
clude institution, and paper features include publishing year (Xu et

al., 2020).

2.4 Methodology for Creating Academic Knowledge Graphs

Creating an academic knowledge graph involves several key steps:

2.4.1 Data Collection

The first step is aggregating bibliometric data from multiple sources. This involves
accessing and extracting metadata from publication databases, digital libraries, and
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other repositories. Commonly used data sources include PubMed, IEEE Xplore,
arXiv, Google Scholar, and OpenAlex. Each source provides different types of meta-
data, such as titles, abstracts, authors, affiliations, and citation counts. Collecting
data from multiple sources helps in capturing a thorough set of publications and
their attributes.

2.4.2 Data Integration

Data integration involves merging data from various sources to create a unified
dataset. This process addresses inconsistencies and redundancies, such as different
formats for author names or variations in institution names. Techniques like schema
matching, record linkage, and data fusion are employed to ensure a coherent inte-
gration of heterogeneous data sources (Dong, Halevy, and Yu, 2009). Modern data
integration frameworks leverage machine learning to automate and optimize the
schema matching and data fusion processes, enhancing the accuracy and scalability
of integration tasks (Dong et al., 2022).

2.4.3 Entity Resolution

Entity resolution is the process of identifying and merging records that refer to the
same real-world entity across different datasets. In academic knowledge graphs,
this involves resolving ambiguities in author names, paper titles, and institution
names. Effective entity resolution is crucial for creating accurate and reliable knowl-
edge graphs, as it ensures that each entity is uniquely and correctly represented.
Techniques for entity resolution include rule-based approaches, machine learning
methods, and probabilistic models. For example, machine learning models can be
trained to predict whether two records refer to the same entity based on features like
name similarity, co-authorship patterns, and publication venues (Bhattacharya and
Getoor, 2007). Advances in deep learning have further enhanced the precision and
scalability of entity resolution methods (Mudgal et al., 2018).

2.4.4 Graph Construction

Graph construction involves representing the integrated data as a graph, with nodes
for entities and edges for relationships. This step requires defining the schema and
ontology for the academic domain. Tools like RDF (Resource Description Frame-
work) and graph databases (such as Neo4j) are often used to store and query the
knowledge graph (Angles et al., 2017). The schema may include detailed definitions
for each type of entity and relationship, enabling sophisticated queries and analy-
ses. Current trends include the use of property graphs and labeled property graphs
that allow richer data representation and support for complex queries (Robinson,
Webber, and Eifrem, 2015).

2.4.5 Graph Enrichment

Graph enrichment enhances the knowledge graph with additional information, such
as keywords, abstracts, and citation contexts. This enrichment process provides
more context and supports advanced queries and analyses. Techniques like natu-
ral language processing (NLP) and machine learning are employed to extract and
link this additional information to the relevant entities and relationships (Ji et al.,
2021). For example, NLP techniques can be used to extract research topics from
paper abstracts, linking them to the corresponding paper nodes in the graph. The
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advent of transformer-based models such as BERT and GPT has significantly im-
proved the ability to understand and annotate textual data, making the enrichment
process more accurate and comprehensive (Devlin et al., 2018).

FIGURE 2.2: Academic Knowledge Graph Creation Process. The fig-
ure shows the steps involved in constructing an academic knowledge

graph depending on the type of input data. (Dong et al., 2022).

2.5 Entity Resolution

TO return to the concept of entity resolution, also known as record linkage or dedu-
plication, this is the process of identifying and linking records that refer to the same
real-world entity across different datasets. In the context of academic knowledge
graphs, entity resolution involves matching and merging entities such as authors,
papers, and institutions to create a coherent and complete graph. Techniques for en-
tity resolution include rule-based approaches, machine learning methods, and prob-
abilistic models.

Rule-based approaches use predefined rules to match entities based on attributes
such as names, titles, and affiliations. For example, a rule might state that two au-
thor records with the same name and affiliation are likely the same person. These
approaches are straightforward but can be limited by their rigidity and inability to
handle complex matching scenarios (Christen, 2011). Machine learning approaches
involve training models to predict whether two records refer to the same entity
based on various features. Supervised learning methods require labeled training
data, while unsupervised methods do not. Features used can include textual similar-
ity, co-authorship networks, citation patterns, and publication venues (Bhattacharya
and Getoor, 2007). State-of-the-art machine learning techniques leverage neural net-
works and deep learning models to capture more complex patterns and improve
matching accuracy (Mudgal et al., 2018). Probabilistic approaches estimate the like-
lihood that two records are the same entity using probabilistic models. Techniques
like Expectation-Maximization (EM) and Bayesian networks are commonly used in
this context. Probabilistic approaches can handle uncertainty and provide a flexi-
ble framework for entity resolution (Bhattacharya and Getoor, 2007). Advances in
probabilistic graphical models and Bayesian inference have further enhanced the
robustness and scalability of these approaches (Li et al., 2020).
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2.6 Machine Learning Techniques for Entity Resolution

Machine learning techniques play a significant role in entity resolution, leveraging
large datasets and complex features to improve accuracy. Common techniques in-
clude supervised learning, unsupervised learning, semi-supervised learning, and
deep learning.

Supervised learning models are trained on labeled data where entities have been
manually matched. Features may include textual similarity, co-authorship networks,
and citation patterns. Examples include decision trees, support vector machines
(SVMs), and neural networks. Supervised learning can achieve high accuracy but
requires a substantial amount of labeled data. Recent advancements in deep learn-
ing, such as convolutional neural networks (CNNs) and recurrent neural networks
(RNNs), have further improved the performance of supervised learning models in
entity resolution tasks (Li et al., 2020).

Unsupervised learning models learn to identify matching entities without la-
beled data. Clustering algorithms and density-based methods are commonly used.
Unsupervised learning can be useful when labeled data is scarce but may not achieve
the same level of accuracy as supervised learning. Techniques such as DBSCAN
(Density-Based Spatial Clustering of Applications with Noise) and hierarchical clus-
tering have been widely applied in entity resolution (Christen, 2011).

Semi-supervised learning combines both labeled and unlabeled data to improve
model performance. This approach leverages the availability of a small amount of
labeled data along with a large amount of unlabeled data, using techniques like
co-training, self-training, and multi-view learning (Bhattacharya and Getoor, 2007).
Semi-supervised learning has shown promise in improving the scalability and accu-
racy of entity resolution models (Li et al., 2020).

Deep learning utilizes neural networks to capture complex patterns in data. Ar-
chitectures such as CNNs, RNNs, and transformers have been applied to entity reso-
lution tasks with significant success. Deep learning models can automatically extract
relevant features from raw data, reducing the need for manual feature engineering.
Techniques like Siamese networks and attention mechanisms have further enhanced
the performance of deep learning models in entity resolution (Mudgal et al., 2018).

2.7 Graph-Based Techniques for Entity Resolution

Graph-based techniques for entity resolution leverage the structure of the knowl-
edge graph to improve matching accuracy.

Key techniques include graph clustering, link prediction, and graph embeddings.
Graph clustering groups entities based on their connections in the graph. Algo-
rithms such as Louvain (Blondel et al., 2008) and Girvan-Newman (Girvan and
Newman, 2002) detect communities of related entities. Graph clustering can reveal
hidden relationships and improve entity resolution by considering the broader con-
text of each entity (Zhao et al., 2018). Link prediction predicts the likelihood of a
relationship between two entities based on existing connections. Techniques such
as Adamic-Adar (Adamic and Adar, 2003), Jaccard Coefficient (Jaccard, 1901), and
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preferential attachment (Barabási and Albert, 1999) are commonly used. Link pre-
diction can help in identifying missing links and improving the completeness of
the knowledge graph (Liben-Nowell and Kleinberg, 2003). Recent advancements
in graph neural networks (GNNs) have further enhanced the performance of link
prediction models by capturing complex patterns in graph data (Zhang and Chen,
2018). Graph embeddings map entities and relationships to a continuous vector
space, preserving graph structure. Techniques like DeepWalk (Perozzi, Al-Rfou, and
Skiena, 2014), node2vec (Grover and Leskovec, 2016), and graph convolutional net-
works (GCNs) (Kipf and Welling, 2016) are commonly used. Graph embeddings can
capture the semantic similarity between entities, aiding in entity resolution tasks.
The use of graph embeddings has shown significant improvements in scalability
and accuracy for large-scale knowledge graphs (Perozzi, Al-Rfou, and Skiena, 2014).

FIGURE 2.3: Link Prediction in Knowledge Graphs. The figure shows
how graph neural networks are used to obtain edge predictions from

nodes and features (Prince, 2023, CC BY-SA 4.0.).

In summary, the combination of machine learning and graph-based techniques
provides powerful tools for entity resolution in academic knowledge graphs. These
techniques enhance the accuracy and completeness of knowledge graphs, support-
ing advanced bibliometric analyses and knowledge discovery. As the field pro-
gresses, further integration of these approaches with emerging technologies such
as deep learning and graph neural networks promises to push the boundaries of
what can be achieved in entity resolution and knowledge graph construction.
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Chapter 3

Data

3.1 Introduction

The dataset utilized in this research is sourced from the American Physical Society,
encompassing an extensive collection of scholarly articles in the field of physics.
This dataset is an invaluable resource for research across various domains, including
condensed matter physics, particle physics, and interdisciplinary studies (Society,
2023).

3.2 Properties

The APS dataset is a crucial resource for research and analysis, distinguished by sev-
eral key attributes. Firstly, its size is substantial, comprising 720,535 rows of meta-
data that provide information about scholarly articles. When expanded to represent
each paper-author pair individually, the dataset encompasses 2,571,821 rows, illus-
trating its extensive coverage.

Another significant feature of the APS dataset is its diversity. It includes 693,706
citing papers and 625,223 cited papers, reflecting a broad spectrum of scholarly in-
teractions and citations within the field of physics. This diversity enables researchers
to explore a wide array of connections and influences between different works, of-
fering rich insights into the academic landscape.

The dataset’s detail is also noteworthy. It contains extensive metadata, such as
article titles, author names, author affiliations, publication dates, etc. This wealth
of information enhances the potential for detailed analysis, allowing researchers to
investigate various facets of scholarly articles and their interconnections thoroughly.

Moreover, the APS dataset boasts impressive temporal coverage, spanning from
1893 to 2022. This extensive range offers a longitudinal view of scientific progress in
physics over more than a century. Researchers can examine trends, developments,
and shifts in the field over this substantial period, gaining valuable historical per-
spectives.

3.3 Components

The APS dataset is divided into two main components: the citation network and the
metadata. Each component contains distinct but interrelated features that are critical
for various analytical tasks.
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3.3.1 Citation Network

The citation network data is structured to reflect the relationships between citing and
cited articles, forming a database of scholarly communication. Only relationships
contained within the American Physcial Society are represented.

citing_doi cited_doi
10.1103/PhysRevSeriesI.11.215 10.1103/PhysRevSeriesI.1.1
10.1103/PhysRevSeriesI.12.121 10.1103/PhysRevSeriesI.1.166

10.1103/PhysRevSeriesI.7.93 10.1103/PhysRevSeriesI.1.166
10.1103/PhysRevSeriesI.16.267 10.1103/PhysRevSeriesI.2.35
10.1103/PhysRevSeriesI.17.65 10.1103/PhysRevSeriesI.2.112

TABLE 3.1: Sample Citation Pairs

Table 3.1 shows an example of citation pairs, illustrating the structure and format
of the DOI (Digital Object Identifier) entries in the dataset.

3.3.2 Metadata

The metadata provides detailed information about the articles and their authors,
including names and affiliations. This metadata is crucial for author-level analysis
and understanding collaboration patterns within the scientific community.

Feature Description
ID Unique identifier for the article
Title Title of the scholarly article
Publisher Name of the publisher
Journal Journal in which the article was published
Issue Issue number of the journal
Volume Volume number of the journal
Page Start Starting page number of the article
Page End Ending page number of the article
Sequence Number Sequence number of the article
Date Date when the article was published
Number of Pages Total number of pages in the article
Article Type Type of the article (e.g., research article, review)
Identifiers Unique identifiers for the article (e.g., DOI)
Rights Rights associated with the article
Authors Names of authors contributing to the article
Affiliations Institutions to which authors are affiliated
Has Article ID Indicates whether the article has an ID
Classification Schemes Classification schemes associated with the article

TABLE 3.2: Features of the Metadata

Table 3.2 lists the principal features of the metadata dataset, each providing spe-
cific information about the articles and their authors.

3.4 Exploratory Data Analysis

An initial exploratory analysis was conducted to gain familiarity with the data be-
fore proceeding with more complex analyses.
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3.4.1 Citation Network

The citation data represents a complex network of scholarly communication within
the APS dataset with a total of 9,883,191 citations. Below is a summary of basic
statistics:

citing_doi cited_doi
Unique Count 693,706 625,223
Most Frequent 10.1103/RevModPhys.83.471 10.1103/PhysRevLett.77.3865
Mean 14.17 15.73
Standard Deviation 12.69 53.70
Maximum 607 14,357

TABLE 3.3: Statistics of the Citation Network

Table 3.3 provides a summary of the basic statistics of the citation data, offering
insights into its structure and contents.

The citation distribution statistics indicate a mean of 14.17 citations per citing
DOI and 15.73 citations per cited DOI, with standard deviations of 12.69 and 53.70,
respectively. This variability underscores the diverse impact and dissemination of
research within the dataset.

The top citing papers predominantly originate from journals specializing in mod-
ern physics reviews, aligning with the dataset’s focus on contemporary scholarly
discourse. The most frequently cited paper on gradient descent highlights its broad
applicability within physics, underscoring its significant impact and relevance in the
field.

As a note, the full set of cited DOIs is contained within the set of citing DOIs.
Therefore, when an exhaustive list of papers is needed in further analysis, solely the
list of citing DOIs are referenced.

3.4.2 Metadata

Metadata provides essential contextual information about each entry, such as publi-
cation years, affiliations, and geographical locations. Understanding these metadata
elements is crucial for gaining insights into the dataset’s temporal trends, institu-
tional collaborations, and global research contributions. The APS metadata is com-
prised of articles belonging to the journals shown in Table 3.4.

Table 3.4 shows Physical Review B has the most contributions with 207,609, fol-
lowed by Physical Review Letters with 133,694 and Physical Review D with 103,017.

Once having gathered the articles from all journals, further analysis reveals that
the years 2020, 2021, and 2022 have the highest number of entries, indicating peak
publication years within the dataset. Specifically, 2020 saw 98,607 entries, 2021 had
92,835 entries, and 2022 had 90,092 entries. These peaks suggest a recent surge in
publication activity, reflecting heightened research efforts during these years.

The distribution of entries per year provides additional context on the dataset’s
publication frequency. On average, there are approximately 19,453 entries per year,
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Journal ID Journal Name Entry Count
PRB Physical Review B 207,609
PRL Physical Review Letters 133,694
PRD Physical Review D 103,017
PRA Physical Review A 88,357
PRE Physical Review E 65,626
PR Physical Review 47,940
PRC Physical Review C 43,842
PRAPPLIED Physical Review Applied 5,295
PRRESEARCH Physical Review Research 4,8 13
PRMATERIALS Physical Review Materials 3,951
PRFLUIDS Physical Review Fluids 3,524
RMP Reviews of Modern Physics 3,494
PRSTAB Special Topics - Accelerators and Beams 2,399
PRX Physical Review X 2,352
PRAB Physical Review Accelerators and Beams 1,566
PRI Physical Review (Series I) 1,469
PRPER Physical Review Physics Education Research 693
PRXQUANTUM PRX Quantum 497
PRSTPER Special Topics - Physics Education Research 368
PRXENERGY PRX Energy 29

TABLE 3.4: Top Journals by Entry Count

with a notable standard deviation of 28,193 entries. This high variability highlights
significant fluctuations in publication volume across different years, with some years
seeing substantially more activity than others.

The dataset encompasses a diverse array of affiliations, with a total of 1,292
unique affiliations identified. The top affiliations by entry count include the Centro de
Física de Materiales CSIC/UPV-EHU-Materials Physics Center in San Sebastián, Spain,
which contributes a remarkable 1,468,909 entries. This institution is followed by the
Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza
in Zaragoza, Spain, with 392,092 entries. Lastly, the Physics Department, Faculty of
Science at Al-Azhar University in Nasr City, Cairo, Egypt accounts for 171,944 entries.

The distribution of entries per affiliation provides insights into the publication
output from different institutions. On average, there are 1,939 entries per affilia-
tion, but the standard deviation is substantial at 42,812 entries, indicating significant
differences in research output across affiliations. This suggests that while some in-
stitutions are highly prolific, others contribute fewer publications. Moreover, 53,731
entries lack affiliation data.

It is important to note that an author can have multiple affiliations, leading to
the country variable being represented as a list containing all countries associated
with that author. As a result, some entries are counted under multiple countries if
the authors are affiliated with institutions in different nations.

The dataset spans 196 unique country sets, with notable contributions from the
combination of Germany and Spain, Spain individually, and Egypt. Specifically, the
combination of Germany and Spain accounts for 1,641,368 entries, Spain alone has
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472,729 entries, and Egypt contributes 172,163 entries. However, there is a notable
portion of the dataset, comprising 60,450 entries, that lacks specific country informa-
tion.

The distribution of entries per country highlights varying levels of research con-
tributions globally. The mean number of entries per country is 12,903, with a wide
standard deviation of 122,458, indicating disparities in research output among dif-
ferent nations. The maximum number of entries from a single country combination
(Germany and Spain) is 1,641,368, underscoring the collaborative research strength
of these countries.

In conclusion, this section provides a detailed analysis of the metadata extracted
from the APS dataset, offering insights into publication trends, affiliation distribu-
tions, and global contributions. Understanding these characteristics is crucial for fur-
ther exploration and analysis of the dataset. By examining these metadata elements,
we better understand the temporal, institutional, and geographical dimensions of
research activity in the dataset.

3.5 Creation of Data Tables

With the data now imported and validated, several data tables were created with
separate focuses to aid in ease of interpretation and flexibility of use for further anal-
yses.

3.5.1 Author Table

To analyze author contributions, author information was extracted, parsed from the
metadata, and stored in an author_table.

Field Details
Identifier 0

DOI 10.1103/PhysRev.1.124
Type Person

Name Lachlan Gilchrist
First Name Lachlan
Surname Gilchrist

Year 1913
Affiliation Centro de Física de Materiales, San Sebastián, Spain

Donostia International Physics Center, San Sebastián, Spain
Physics Department, Technical University of Munich, Garching, Germany

Countries [’Germany’, ’Spain’]

TABLE 3.5: First Entry of the Author Table

Table 3.5 illustrates the structure of the author_table by displaying the details of
the first entry.

The "Type" column in the author table differentiates between individual authors
and collaborative groups. There are two possible values in this column: "Person"
(2,570,491 instances) and "Collaboration" (1,330 instances). All records correspond-
ing to collaboration were disregarded for this work as the focus remained on the
contributions and disambiguation of individuals.
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3.5.2 Paper Table

A separate table, referred to as the paper_table, was created to uniquely identify
each paper based on its DOI. The structure of the paper table is presented in Table
3.6.

Identifier DOI
0 10.1103/PhysRevSeriesI.11.215
1 10.1103/PhysRevSeriesI.12.121
2 10.1103/PhysRevSeriesI.7.93
... ...

709802 10.1103/PhysRevFluids.7.093104

TABLE 3.6: Structure of the Paper Table

3.5.3 Merged Table

Finally, the merged_table used for analyses combines metadata and citation data,
linking papers by their DOI. This was achieved through a simple join operation.
The structure of the merged table is identical to the author_table with the addition
of the paper identifier value. In order to avoid overlap between author and paper
identifiers, paper identifier values are shifted to start following the maximum of the
author identifier values.

3.6 Data Quality

Unlike many open-source databases, the citation network and metadata of our dataset
have been meticulously curated by journal editors and subject matter experts. This
curation ensures higher data quality, accuracy, and completeness, which are critical
for reliable scientific analysis and research. By leveraging curated data, potential
issues such as incomplete records or misclassified information are minimized, pro-
viding a more robust foundation for scholarly investigations. Nevertheless, analyses
are still constrained by the quality of the dataset itself. These limitations arise due
to the nature of data collection, potential inaccuracies, and the completeness of the
dataset.

3.7 Summary

This chapter provides a detailed overview of the APS dataset, highlighting its key
characteristics essential for subsequent analyses. It details the exploratory data anal-
ysis undertaken to become familiarized with the dataset and the creation of struc-
tured data tables such as the author_table, paper_table, and merged_table. The
chapter concludes by recognizing both the data quality and limitations.
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Chapter 4

Author Grouping Strategies &
Citational Overlap

4.1 Introduction

In this chapter, we perform analyses to understand the relationships between papers
and their authors, providing a foundation for graph-based completion and entity
resolution. We focus on pairwise comparisons of papers for each author, author co-
sine similarities, and various author grouping strategies. To manage computational
constraints and maintain a manageable dataset size, analyses are performed only on
papers published in Physical Review E. This journal was chosen because it provides
a moderately sized dataset that is sufficient for our analysis while being feasible to
handle within our computational resources, allowing us to focus on detailed model-
ing without being overwhelmed by data volume.

4.2 Analyses for Full-Name Matching

In our approach, understanding the citation habits of authors is crucial for entity res-
olution and graph completion in academic knowledge graphs. Citation patterns can
reveal relationships between papers, indicating whether they are authored by the
same individual or authors working within similar research domains. To achieve
this, we need more than one paper per author to analyze citational overlap effec-
tively. We leverage methods from existing research, such as Schulz et al., 2014, which
demonstrates the utility of citation networks in large-scale author name disambigua-
tion.

4.2.1 Pairwise Comparisons

We begin by grouping authors based on their full-names, and we filter out groups
with fewer than two DOIs. For each group of authors, we retrieve the citations asso-
ciated with their DOIs from the citation dataset.

To facilitate pairwise comparison, we create binary matrices for each author,
where the rows represent the citing DOIs and the columns represent the cited DOIs.
Each entry in the matrix is binary, indicating whether a citation exists between the
corresponding papers. This structured representation allows us to compute vari-
ous statistical measures that highlight patterns and relationships within the citation
network.
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4.2.2 Cosine Similarities

To deepen our analysis, we use cosine similarity to compute correlation matrices for
the binary citation matrices. Cosine similarity is useful for high-dimensional sparse
data, measuring the cosine of the angle between two non-zero vectors. The formula
for cosine similarity between two vectors v1 and v2 is given by:

cosine_similarity(v1, v2) =
v1 · v2

∥v1∥∥v2∥

Multiprocessing is employed to parallelize this computation, reducing the time
required to process large datasets (Dean and Ghemawat, 2008). The resulting corre-
lation matrices are analyzed to extract meaningful patterns in citation behavior.

By examining the distribution of cosine similarities, we identify the average ci-
tation overlap between authors’ papers. This measure helps in understanding the
extent of self-citation or citation of closely related work, crucial for entity resolution
tasks where distinguishing between closely related entities is challenging (Hirsch,
2005).

The plot in Figure A.1 in the appendix displays the distribution without includ-
ing authors who possess zero citational overlap. Intuitively, this may occur when
an author has not written many papers, meaning the opportunity to cite the same
work(s) is much lower. In order to check this, we analyzed the distribution of the
number of papers for authors with minimal citational overlap (Figure A.2 in the ap-
pendix). Our intuitions are confirmed by our findings.

4.3 Additional Author Grouping Strategies

Author grouping is a critical step in ensuring accurate citation and authorship link-
ages. The analyses presented above were all performed by matching the full-name
of an entity. We went on to explore two additional author grouping strategies for
comparison: surname matching and normalized indel distance matching.

4.3.1 Surname Matching

The analyses for surname matching are identical to those performed on full-name
matching. However, rather than matching authors by their full-name before per-
forming analyses, authors are matched solely by their surname. With this relaxed
requirement, we have a smaller number of authors to analyze as more entities are
merged. This, however, also results in a larger amount of citations belonging to each
entity. Additionally, we perform the same check to ensure authors with minimal ci-
tational overlap have written few papers. The results are shown in Figure A.3 and
Figure A.4 in the appendix.

4.3.2 Normalized Indel Distance Matching

For our final author grouping strategy, we apply normalized indel distance, a string
similarity measure. Using the rapidfuzz package (Bachmann, 2024), we set a dis-
tance threshold of 80 out of 100 to identify and merge author names with minor
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discrepancies. This method is employed with the intention of mitigating issues aris-
ing from typographical errors or naming variations.

Normalized indel distance measures the number of insertions or deletions re-
quired to change one string into another, normalized by the length of the strings
(Cohen, Ravikumar, and Fienberg, 2003). Our implementation with rapidfuzz effi-
ciently computes this distance, allowing us to merge DOIs for similar names (Cohen,
Ravikumar, and Fienberg, 2003).

Authors are first grouped based on their full names, with their associated DOIs
identified and recorded. The rapidfuzz library is then used to find author names
that are similar, detecting minor variations and typographical errors. DOIs for au-
thors whose names exceed the predefined similarity threshold are merged to consol-
idate publications originally attributed to different variations of the same author’s
name. Throughout this process, records of processed authors are maintained to
avoid redundant computations and ensure efficiency. Author names merged by nor-
malized indel distance are standardized based on the first occurrence in the iteration
of matching. The results for author grouping based on normalized indel distance
matching are shown in Figures A.5 and A.6 in the appendix.

To further understand the impact of author grouping strategies, we analyze the
frequency distributions of DOIs per author using a log-log plot. This provides in-
sight into the distribution patterns and highlights differences between grouping
methods.

FIGURE 4.1: Log-Log Plot of Frequency Distributions of DOIs for Au-
thors Grouped by Full-Name and Normalized Indel Distance

From Figure 4.1, we observe that the frequency distribution resembles a power-
law pattern, which is common in many natural and social phenomena. The distri-
bution for normalized indel distance matching (red points) and full-name matching
(blue points) shows a similar trend, with deviations at higher numbers of papers.
This deviation indicates that normalized indel distance matching results in a higher
frequency of authors with a larger number of papers, reflecting the merging of more
author entities compared to full-name matching.
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4.4 Comparison of Author Grouping Strategies

We compare the original author groupings with those obtained through surname
matching and normalized indel distance matching. Key statistics include the num-
ber of authors, mean number of papers per author, and the standard deviation of
papers per author. These statistics help assess the impact of name standardization
on the dataset’s structure.

Grouping Method Author Count Mean Papers STD Papers

Full-Name 30,659 4.65 5.93
Surname 20,582 8.21 26.80
Normalized Indel Distance 24,390 6.55 9.13

TABLE 4.1: Comparison of Author Grouping Strategies

From Table 4.1, we observe that the full-name grouping method results in the
highest number of unique authors, indicating a more granular approach. In con-
trast, surname matching significantly reduces the author count while increasing the
mean and standard deviation of papers per author, reflecting the merging of more
entities under common surnames. The normalized indel distance method strikes a
balance between the two, offering moderate author count and paper metrics, which
suggests effective mitigation of minor discrepancies in author names. These varia-
tions highlight the importance of selecting a suitable author grouping strategy based
on the specific requirements of the analysis.

Finally, we construct a graph to perform a side-by-side comparison of the dis-
tribution of mean author cosine similarity for each grouping method to understand
the extent of citation overlap among authors. This analysis helps reveal how relax-
ing the matching criteria affects the citation patterns.

Higher mean cosine similarity indicates greater citation overlap, suggesting stronger
connections between papers authored by the same person or entity. Lower mean co-
sine similarity implies more diverse citation patterns, which occurs due to less pre-
cise author grouping. Our analyses reveal that full-name matching achieved a mean
author cosine similarity of 0.1557, surname matching 0.1160, and normalized indel
distance matching 0.1404.

4.5 Conclusion

In conclusion, our analyses reveal that different author grouping strategies signif-
icantly impact the structure of the dataset and the inferred citation patterns. Full-
name matching, with a mean cosine similarity of 0.1557, provides a granular view
with higher author counts and lower mean papers per author, indicating strong con-
nections and precise author grouping. This suggests higher citational overlap and
effective identification of individual authors. Surname matching, with a mean cosine
similarity of 0.1160, results in the highest author counts and the largest number of
papers per author, reflecting more diverse citation patterns due to relaxed matching
criteria, leading to lower citational overlap and potential conflation of different au-
thors. Normalized indel distance matching, with a mean cosine similarity of 0.1404,
balances precision and inclusiveness, effectively mitigating minor discrepancies in
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FIGURE 4.2: Histogram Comparison of Mean Author Cosine Similar-
ities for Different Author Grouping Strategies

author names. This approach provides moderate citational overlap, making it use-
ful for entity resolution where minor name variations occur. The choice of author
grouping strategy should be informed by the specific goals and requirements of the
analysis at hand. In subsequent analyses, full-name matching is used as the author
grouping strategy, as it is assumed to be the ground truth due to its higher precision
in identifying individual authors. We assume the dataset from APS to be of high
quality and ignore potential anomalies in the data.
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Chapter 5

Graph Neural Network

5.1 Introduction

In this chapter, the design, training, and evaluation of a Graph Neural Network
(GNN) for link prediction in an academic knowledge graph are addressed. The
process begins with the construction of the graph from tabular data, where nodes
and edges are defined to represent authors, papers, and their relationships. Subse-
quently, the edge-level splits for creating training, validation, and test sets are ex-
plained. Mini-batch loading is then covered to optimize the training process for
large-scale heterogeneous graphs. The GNN model architecture is detailed, includ-
ing the use of graph convolution layers and the classifier for link prediction. The
chapter concludes with a thorough evaluation of the model’s performance using
metrics such as AUC, precision, recall, and F1-score. Note that the dataset remains
focused exclusively on papers from the Physical Review E journal.

5.2 Foundation

Graph Neural Networks (GNNs) are a class of deep learning models designed to
handle graph-structured data. Unlike traditional neural networks that operate on
fixed-size input vectors, GNNs can process data where relationships between en-
tities are represented as edges connecting nodes in a graph. This ability makes
GNNs particularly suitable for tasks involving relational data, such as social net-
works, molecular structures, and knowledge graphs (Prince, 2023).

The fundamental operation of a GNN involves iteratively updating the repre-
sentation of each node by aggregating information from its neighbors. This process,
often referred to as message passing or graph convolution, allows nodes to learn em-
beddings that capture both their features and the structure of the graph around them
(Kipf and Welling, 2016; Gilmer et al., 2017). Typically, a GNN consists of multiple
layers of graph convolution operations, each layer enabling nodes to incorporate in-
formation from progressively larger neighborhoods (Wu et al., 2020).

In each layer, the node features are updated based on a combination of their own
features and the features of their neighboring nodes. This is achieved through oper-
ations such as weighted sums, followed by the application of non-linear activation
functions (Hamilton, Ying, and Leskovec, 2017). By stacking multiple layers, GNNs
can learn complex patterns and dependencies in the graph, making them powerful
tools for a wide range of applications, including node classification, link prediction,
and graph classification (Zhou et al., 2020).
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5.3 Graph Construction

The first step required is the construction of a knowledge graph from our tabular
data. This means integrating information about authors, papers, authorship edges,
and citation edges. The creation of this graph involves several key steps, including
mapping identifiers, assigning numeric codes, constructing edge indices, convert-
ing data to tensors, and creating a heterogeneous data object in preparation for our
model.

5.3.1 Node Definition

The first step involves mapping author identifiers and paper DOIs to unique numer-
ical IDs. The ’author_identifier’ column is initially converted to a categorical data
type, allowing each unique author to be mapped to a corresponding numerical ID.
For the papers, a mapping is created for the DOIs by concatenating the citing and
cited from the citation dataset, keeping unique values, and then enumerating them.
This process ensures that each author and paper has a unique numerical representa-
tion, which is crucial for subsequent operations. These mappings serve as our nodes
for authors and papers.

5.3.2 Feature Extraction

In addition to the basic identifiers, features for authors and papers were included
to enhance the model’s capability. Each author is associated with their respective
countries and a set of derived features. The ’countries’ feature for authors was one-
hot encoded from a list of fifteen unique countries. This encoding ensures that the
multi-national nature of an author’s affiliations is captured accurately. For papers,
the year of publication was normalized and included as a feature. These features
provide additional contextual information that aids in more accurate link prediction.

To further augment the model’s predictive power, a vector of ones of dimension
7 was also introduced as an input feature. This vector acts as a constant bias term,
ensuring that the model can effectively capture the baseline conditions or intercepts
during training. Including this feature alongside the categorical and derived fea-
tures maintains consistency across all input data points and prevents any bias from
affecting the overall performance of the model.

5.3.3 Edge Construction

The connected structure of the graph is defined by its edges, which represent re-
lationships between nodes. Two types of edge indices are initialized: citations be-
tween papers and authorship relationships between authors and papers. The cita-
tion edge index is populated by iterating over the citation dataset. For each citation,
the citing and cited DOIs are mapped to their corresponding numerical IDs based
on the previously created mapping. The authorship edge index is constructed sim-
ilarly. Each paper’s DOI and author identifier are mapped to their numerical IDs.
During this process, any missing papers or authors are tracked to ensure the in-
tegrity of the mappings. Finally, to facilitate efficient computation, the edge indices
are converted to PyTorch tensors. This conversion ensures that the data is stored in a
format suitable for high-performance computing, enabling the use of advanced ma-
chine learning algorithms. The tensors are also stored in contiguous memory, which
is a best practice for optimizing the performance of tensor operations.
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5.3.4 Heterogeneous Data Object Creation

Using the HeteroData class from PyTorch Geometric, a heterogeneous graph is cre-
ated (Fey and Lenssen, 2022a). This class allows for the definition of nodes and edges
with different types, accommodating the complexity of the academic network. Two
types of nodes are defined: paper and author, along with three types of edges: cites
(from paper to paper), written_by (from paper to author), and writes (from author
to paper). This structure effectively models the multi-relational nature of the data.

The final graph consists of 139,966 ’paper’ nodes and 192,814 ’author’ nodes.
Paper features include eight attributes, while author features include 22 attributes.
The citation edge index contains 700,250 edges, representing citation relationships
between papers. The authorship edge index contains 192,392 edges, representing
authorship relationships between authors and papers, with an additional reverse
authorship edge index containing 192,392 edges to maintain bidirectional relation-
ships in the graph.

Statistic Value
Number of ’paper’ Nodes 139,966
Number of ’author’ Nodes 192,814
Paper Feature Shape (139966, 8)
Author Feature Shape (192814, 22)
Citation Edge Index Shape (2, 700,250)
Authorship Edge Index Shape (2, 192,392)
Reverse Authorship Edge Index Shape (2, 192,392)

TABLE 5.1: Node, Feature, & Edge Statistics

5.4 Edge-Level Splits

In the context of training graph neural networks (GNNs) on large-scale heteroge-
neous graphs, it is crucial to manage data effectively to ensure efficient learning and
evaluation. This process involves splitting the dataset into training, validation, and
test sets using edge-level splits. The specific method employed for this task is the
RandomLinkSplit transform from the PyTorch Geometric library, which allows for
full data partitioning while maintaining a balanced distribution of edges and nodes
across the subsets (Fey and Lenssen, 2022b).

5.4.1 Transformation

The RandomLinkSplit transform is used to divide the dataset into training, valida-
tion, and test sets with predefined ratios for validation (10%) and test (10%) edges.
This transformation method also incorporates a disjoint training ratio (0.30) and neg-
ative sampling ratio (2.0), enhancing the model’s learning capability by providing a
mix of positive and negative examples. The disjoint training ratio ensures that a
certain portion of the edges used in the training set does not overlap with those in
the validation or test sets, reducing the risk of overfitting and improving generaliza-
tion (Kipf and Welling, 2016). The negative sampling ratio controls the proportion
of negative (non-existing) edges to positive (existing) edges in the training set, en-
suring that the model learns to distinguish between real and spurious connections
effectively.
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5.4.2 Configuration

The application of the RandomLinkSplit transform results in three distinct data sub-
sets: training, validation, and testing sets. The training set contains a specified num-
ber of positive edges, representing actual relationships. Notably, this subset does not
include negative samples, allowing the model to focus on learning the inherent pat-
terns of positive relationships without distraction (Hamilton, Ying, and Leskovec,
2017).

For the validation and test sets, the transform introduces negative sampling.
Negative samples are synthetic edges that do not exist in the original graph, simu-
lating the absence of a relationship between nodes. This approach creates a balanced
ratio of negative to positive samples, aiding the model in learning to distinguish be-
tween actual and non-existent relationships (Fey and Lenssen, 2019). The validation
set is used to tune hyperparameters and monitor the model’s performance during
training, while the test set is reserved for the final evaluation.

5.5 Mini-Batch Loading

To handle the complexity and scale of large heterogeneous graphs, the implementa-
tion employs mini-batch loading, a technique that allows for efficient and scalable
training of graph neural networks (GNNs). The LinkNeighborLoader from the Py-
Torch Geometric library is designed to sample a neighborhood of nodes and edges
from the graph to create mini-batches (Fey and Lenssen, 2022c). This loader is par-
ticularly useful for link prediction tasks where the goal is to predict the existence of
edges between nodes in the graph. The process begins by defining the seed edges,
which are the edges from the training set that the loader will sample around.

5.5.1 Theoretical Foundations

The mini-batch loading technique is grounded in the principles of stochastic gradi-
ent descent (SGD), which allows for efficient training on large datasets by updating
model parameters using small, random subsets of the data (Robbins and Monro,
1951). In the context of GNNs, mini-batch loading enables the model to learn from
localized graph structures, preserving the dependencies between nodes while reduc-
ing the computational complexity compared to full-batch training. This approach
improves the model’s robustness and generalization ability, leading to better perfor-
mance on unseen data (Mikolov et al., 2013).

5.5.2 Practical Implementation

In this implementation, the LinkNeighborLoader is configured with the following
parameters: the number of neighbors to sample at each layer (20 neighbors at the
first layer and 10 at the second layer), a negative sampling ratio of 2.0 (meaning two
negative samples for every positive sample), and a batch size of 128. These settings
ensure that each mini-batch is representative of the graph’s structure while main-
taining manageable computational loads (Hamilton, Ying, and Leskovec, 2017). In
order to ensure successful implementation, the edge label index size in the sampled
data is checked to confirm that it matches the expected size of three times the batch
size, accounting for the negative sampling ratio.
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5.6 Heterogeneous Link-Level GNN Model Definition

The implementation of the heterogeneous link-level Graph Neural Network (GNN)
model is designed to capture complex relationships in the academic knowledge
graph, focusing on the interactions between papers and authors. This section details
the definition of the GNN model, the classifier, and the overall model architecture.

5.6.1 Model Architecture

The GNN model is constructed using the SAGEConv layers from the PyTorch Geomet-
ric library, specifically leveraging the SAGEConv layer for its ability to aggregate infor-
mation from a node’s local neighborhood effectively (Fey and Lenssen, 2022d). The
model comprises four SAGEConv layers, each followed by a ReLU activation func-
tion, except for the final layer. This design allows the network to learn increasingly
abstract representations of the nodes at each layer (Hamilton, Ying, and Leskovec,
2017; Fey and Lenssen, 2019).

The choice of four layers is informed by the nature of the task. In the context
of link prediction between authors, it is essential to capture multi-hop relationships
within the graph. Each SAGEConv layer aggregates information from one-hop neigh-
bors, thus four layers allow the model to consider up to four-hop neighborhoods.
This depth is particularly useful for tasks that involve predicting connections be-
tween entities that are not directly connected but are linked through intermediate
nodes, such as co-authorship through multiple papers.

A two-hop model can effectively capture direct co-authorship relationships, where
authors have collaborated directly. However, a four-hop model extends the neigh-
borhood reach, allowing it to capture co-citation relationships as well, where authors
are indirectly connected through the papers that cite them. This broader reach is cru-
cial for understanding the more complex structures within an academic knowledge
graph.

FIGURE 5.1: Graph illustrating author-paper (undirected) and
paper-paper (directed) relationships. Orange connectors show co-

authorship, while the green connectors show paths to co-citation.
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In Figure 5.1, the orange connectors combine to form co-authorship connections
which indicate collaboration between authors on a paper. For instance, Author 1
and Author 2 are connected to Paper 1, indicating they co-authored this paper. On
the other hand, the green connectors illustrate co-citation paths, which are a com-
bination of authorship and citation edges indicating connectedness of two authors
based on their citation habits. For example, Author 4 writes Paper 2, Paper 1 and Pa-
per 2 both cite Paper 5, and Author 3 writes Paper 1. By analyzing this combination
of edges through multiple hops, we can see that Author 3 and Author 4 are indi-
rectly connected through the papers that cite their work. By analyzing both types
of relations, the model can effectively learn from both co-authorship and co-citation
connections, enhancing its predictive capabilities for link prediction tasks.

Testing of models with only 2 or 3 layers revealed significantly higher loss com-
pared to the 4-layer model, indicating that the additional layers and the ability to
capture co-citation are indeed beneficial. As seen in the results, the incorporation of
co-citation relationships has a substantial impact, demonstrating that the network is
effectively leveraging this extended information to improve performance.

In addition to the graph structure, the model incorporates various node features
to enhance its predictive capabilities. For papers, the features include normalized
publication years, while for authors, one-hot encoded country information is added.
These features provide additional contextual information that is crucial for accurate
link prediction.

The publication year for each paper is mapped and normalized to fall within a
0-1 range using MinMaxScaler. This normalized year is then concatenated with the
initial paper features. For the authors, their country information is one-hot encoded,
transforming the categorical country data into a binary vector. Each element of this
vector represents the presence or absence of a specific country. This vector is subse-
quently concatenated with the initial author features.

5.6.2 Classifier Definition

The classifier component of the model is responsible for predicting the existence of
edges between nodes, specifically between papers and authors. It does so by com-
puting the dot product of the features of the possibly connected nodes (papers and
authors) at the specified edges. This approach effectively captures the interaction
between node pairs and is suitable for link prediction tasks (Fey and Lenssen, 2019).

5.6.3 Heterogeneous Transformation

The overall model integrates the GNN with linear transformations for both paper
and author features. These transformations map the input features to a hidden space
of a dimensionality of 64. The model is then converted into a heterogeneous variant
using the to_hetero function from PyTorch Geometric, which adapts the GNN to
handle the heterogeneous nature of the data, characterized by different node types
and edge types (Radicchi, Fortunato, and Vespignani, 2011).

In the forward pass, the model first transforms the paper and author features
using linear layers. It then applies the GNN to these features and the edge indices,
propagating information through the network. Finally, the classifier predicts the
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edges based on the transformed node features, enabling the model to infer relation-
ships between papers and authors.

The choice of hidden channels and the number of layers is crucial for balancing
model complexity and computational efficiency. The hidden dimensionality, set to
64 in this implementation, is selected to provide sufficient capacity for learning in-
tricate patterns in the data without overfitting. The number of layers corresponds
to the maximum number of hops needed to connect two authors through their au-
thored papers, reflecting the depth of the graph structure considered during train-
ing.

After defining the homogeneous GNN, it is converted into a heterogeneous vari-
ant using the to_hetero function. This function adapts the GNN model to handle
multiple types of nodes and edges, creating a HeteroSAGEConv layer. The HeteroSAGEConv
layer extends the SAGEConv mechanism to heterogeneous graphs by managing dif-
ferent types of nodes and edges separately (Dong et al., 2022). This is crucial for
datasets where nodes and edges represent different entities and relationships, such
as papers and authors in an academic graph.

In the overall model, the paper and author features are first transformed us-
ing linear layers to match the input dimensions required by the GNN. These trans-
formed features are then processed through the HeteroSAGEConv layers, where the
aggregation of neighborhood information occurs separately for each type of node
and edge. This allows the model to capture the intricate relationships between dif-
ferent types of entities. Finally, a classifier predicts the edges based on the trans-
formed node features, enabling the model to infer relationships between papers and
authors with high accuracy.

To account for the varying importance of different edge types (e.g., citations
versus co-authorships), the HeteroSAGEConv layers incorporate edge type-specific
weights during the aggregation process. This adaptive weighting mechanism allows
the model to prioritize and integrate information differently based on the relevance
and context of each relationship type within the graph. By distinguishing between
edge types, the model enhances its ability to capture nuanced dependencies and im-
prove predictive performance for link prediction tasks in heterogeneous academic
knowledge graphs.

In summary, the heterogeneous link-level GNN model is carefully designed to
leverage the strengths of the SAGEConv layers and the heterogeneous capabilities of
PyTorch Geometric, providing a robust framework for link prediction tasks in the
academic knowledge graph.

5.7 Training

The training process for the heterogeneous link-level GNN model involves several
stages, including setting the model to training mode, iterating through the train-
ing data, transferring data to the computational device, computing predictions and
losses, performing backpropagation, and optimizing the model parameters. This
section outlines these steps in detail.
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5.7.1 Process Overview

Each epoch consists of the many activities aimed at optimizing the model’s pa-
rameters. At the beginning of each epoch, the model is set to training mode us-
ing model.train(). This enables the model to update its parameters based on the
computed gradients (Goodfellow, Bengio, and Courville, 2016). The training data
is then iterated through in mini-batches using the configured data loader. This pro-
cess ensures efficient and manageable computation by breaking down the data into
smaller, more manageable subsets (Bottou, 2010). Next, each mini-batch of data is
transferred to the computational device (e.g., CPU or GPU). This step ensures that
the data is available for computation on the device where the model is being trained
(Paszke et al., 2019). For each mini-batch, the model makes predictions, and the loss
is computed using a binary cross-entropy loss function. This function is suitable for
binary classification tasks, such as link prediction, where the goal is to determine
whether a link exists or not (Murphy, 2012). The gradients are computed via back-
propagation, and the model parameters are updated using the Adam optimizer, an
adaptive learning rate optimization algorithm that combines the benefits of Ada-
Grad and RMSProp to improve training efficiency and performance (Kingma and
Ba, 2014). This process minimizes the loss function, thereby improving the model’s
performance over successive epochs (Kingma and Ba, 2014).

5.7.2 Per-Epoch Activity

In order to observe per-epoch activity, after each epoch, the model’s performance is
evaluated on the validation data. An epoch refers to one complete pass through the
entire training dataset, and it is a fundamental concept in iterative machine learning
processes (Goodfellow, Bengio, and Courville, 2016). This involves setting the model
to evaluation mode, computing predictions on the validation mini-batches, and cal-
culating the average validation loss. The evaluation helps monitor the model’s gen-
eralization capability and guides hyperparameter tuning (Bishop, 2006).

The systematic training and evaluation of the heterogeneous link-level GNN
model ensure that it learns effectively from the training data while maintaining high-
levels of performance on unseen validation data. This approach leverages advanced
techniques in deep learning and graph neural networks, providing a robust frame-
work for predicting relationships in complex knowledge graphs. Four epochs were
used after observing the validation loss increase on the fifth epoch when training
continued.

Epoch Training Loss Validation Loss
001 0.3835 0.2305
002 0.3633 0.2266
003 0.3617 0.2253
004 0.3624 0.2236

TABLE 5.2: Training and Validation Loss per Epoch

Table 5.2 shows the training outcomes achieved using four epochs and binary
cross entropy loss.
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5.7.3 Trainable Parameters

In a graph neural network (GNN) model, parameters are primarily associated with
the linear transformation layers and the convolutional layers that operate on the
graph’s nodes and edges. Each parameter in these layers has a specific role in trans-
forming the input features into meaningful representations that the model uses to
make predictions (Kipf and Welling, 2016).

Trainable parameters are those that the optimization algorithm adjusts during
the training process. These include weights and biases in linear layers and convo-
lutional layers. The total number of trainable parameters is a direct indicator of the
model’s capacity to learn complex patterns from the data. The total number of train-
able parameters in the model is 77,408. This count includes weights and biases from
both the linear layers and the convolutional layers within the GNN architecture.

5.8 Evaluation

The evaluation of the graph neural network (GNN) model is a crucial step to assess
its performance and generalization capability. This section describes the evaluation
process, the metrics used to quantify the model’s performance, and the results ob-
tained.

5.8.1 Process Overview

Before making predictions, LinkNeighborLoader is applied to the test set, and the
model is set to evaluation mode using model.eval(). This step disables certain lay-
ers that behave differently during training and evaluation, such as dropout layers,
ensuring that the model’s performance is evaluated accurately.

Using the test data loader, the model generates predictions for each mini-batch of
test data. The predictions are compared against the ground truth labels to compute
various evaluation metrics. The primary task is link prediction, where the model
predicts whether a link between two nodes exists (Kipf and Welling, 2016).

5.8.2 Evaluation Metrics

Several metrics are used to evaluate the model’s performance, including the Area
Under the Receiver Operating Characteristic Curve (AUC), the confusion matrix,
and a detailed classification report. These metrics provide an extensive view of the
model’s accuracy, precision, recall, and F1-score.

The AUC is a widely used metric for binary classification tasks. It measures the
model’s ability to distinguish between positive and negative classes, with higher
values in range [0,1] indicating better performance. The AUC for the test set was
computed to be 0.9771, suggesting that the model has a high capability to correctly
classify positive and negative links (Fawcett, 2006).

The confusion matrix provides a detailed breakdown of the model’s predictions,
showing the number of true positive, true negative, false positive, and false negative
predictions. The confusion matrix for the test set is as follows:
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Predicted Negative Predicted Positive
Actual Negative 36,628 1,850
Actual Positive 869 18,370

TABLE 5.3: Confusion Matrix for Test Data

Table 5.3 shows that out of 38,478 actual negative examples of author-paper rela-
tions, the model correctly identified 36,628 and incorrectly identified 1,850. Similarly,
out of 19,239 actual positive examples of author-paper relations, the model correctly
identified 18,370 and incorrectly identified 869. These results indicate a high level
of accuracy and a good balance between precision and recall (Provost, Fawcett, Ko-
havi, et al., 1998).

The classification report provides a detailed summary of precision, recall, and F1-
score for both classes (negative and positive). Precision is the ratio of true positive
predictions to the total number of positive predictions. Recall is the ratio of true
positive predictions to the total number of actual positive examples. F-1 score is the
harmonic mean of precision and recall, providing a single metric that balances both
aspects. The classification report for the test set is as follows:

Precision Recall F1-Score
Negative 0.98 0.95 0.96
Positive 0.91 0.95 0.93

TABLE 5.4: Classification Report for Test Data

These metrics reveal that the model achieves a precision of 0.98 for negative pre-
dictions and 0.91 for positive predictions. The recall is 0.95 for negatives and 0.95
for positives, resulting in F1-scores of 0.96 and 0.93, respectively. The overall accu-
racy of the model is 0.95, indicating robust performance across both classes (Powers,
2020).

5.8.3 Results Discussion

The evaluation results demonstrate that the GNN model performs exceptionally
well on the test set, achieving high scores across various metrics. The high AUC
value indicates strong discriminative power, while the precision, recall, and F1-
scores suggest a good balance between identifying true positives and avoiding false
positives. The confusion matrix and classification report further validate the model’s
effectiveness in predicting both positive and negative links, with a slightly better
performance in identifying negative links. This is expected given the higher support
(number of instances) for the negative class, which is common in many real-world
datasets where non-relationships outnumber relationships (Chawla et al., 2002).

The inclusion of the country and publication year as features did not significantly
improve performance, likely due to the relatively young age of the Physical Review E
journal. Since the journal’s publication history aligns well with the careers of its au-
thors, the year feature might not add substantial discriminative value. Nonetheless,
the model did show a slight improvement with the addition of these features. To fur-
ther enhance the model’s performance, it is suggested to incorporate affiliations as
nodes and countries as features of these nodes. This approach could provide addi-
tional context, capturing more nuanced relationships and collaborations within the
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academic community.

Overall, the evaluation metrics indicate that the GNN model is well-suited for
the link prediction task in the academic knowledge graph, providing reliable and
accurate predictions that can be used for further analysis and applications.

5.9 Conclusion

This chapter detailed the construction, training, and evaluation of a Graph Neural
Network (GNN) for link prediction in an academic knowledge graph. The GNN,
featuring four SAGEConv layers, effectively captured multi-hop relationships neces-
sary for predicting links between authors and papers. The evaluation demonstrated
the model’s robust performance, with an AUC of 0.9771 indicating strong discrimi-
native power. Precision and recall scores were high, with F1-scores of 0.96 for neg-
ative links and 0.93 for positive links, confirming the model’s accuracy and balance
in predictions. The confusion matrix further validated the model’s effectiveness in
distinguishing between actual and non-existent links. In summary, the GNN model
developed in this chapter proved highly effective for link prediction in academic
knowledge graphs, delivering accurate and reliable results.
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Chapter 6

Conclusion

This thesis has explored the application of graph neural networks (GNNs) for link
prediction within an academic knowledge graph, focusing on the intricate relation-
ships between authors and papers. Through a study encompassing data pre-processing,
exploratory analysis, and model development, several key findings and contribu-
tions have emerged.

The foundation of this thesis rests on the recognition of academic knowledge
graphs as complex, interconnected networks that capture the dynamic relationships
between entities such as authors and papers (Hamilton, Ying, and Leskovec, 2017).
Traditional methods often struggle to effectively model the heterogeneous and multi-
relational nature of these graphs. In contrast, GNNs have demonstrated their effi-
cacy in capturing and leveraging the structural dependencies inherent in such data,
thereby enhancing link prediction accuracy (Kipf and Welling, 2016).

The initial phase of this study involved the construction of an academic knowl-
edge graph from raw tabular data sourced from the American Physical Society. This
process encompassed meticulous data cleaning and entity resolution analysis. By
ensuring data integrity and consistency, the resulting graph provided a reliable foun-
dation for subsequent analyses and modeling efforts.

A critical aspect of this thesis was the exploration of author grouping strategies
and citation overlap analysis within the knowledge graph. Author grouping re-
vealed distinct clusters of researchers based on full-name, surname, and normalized
indel distance matching. Meanwhile, citation overlap analysis provided deeper in-
sights into the mean author cosine similarities achieved based on the author group-
ing strategy used.

The central focus of this study was the development and evaluation of a GNN
model tailored specifically for link prediction tasks within the academic knowledge
graph. The model architecture leveraged advanced techniques such as SAGEConv lay-
ers and heterogeneous transformations to capture local graph structures effectively.
By aggregating information from a node’s local neighborhood, the model could dis-
cern complex patterns and dependencies crucial for accurate link prediction.

Training procedures were optimized using mini-batch loading and edge-level
splits to accommodate the scale and complexity of the knowledge graph, ensuring
efficient processing and model scalability. The model’s performance was evaluated
across multiple metrics, including AUC, precision, recall, and F1-score. These met-
rics collectively demonstrated the model’s high accuracy and reliability in predicting
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links between authors and papers, highlighting its potential to uncover latent rela-
tionships.

The GNN model developed in this thesis represents a minimal yet sufficient
framework that can be easily expanded to incorporate additional features and com-
plexities. Future work could explore the integration of more detailed paper and
author attributes to further enhance the model’s predictive power. Additionally, the
flexibility of the GNN architecture allows for the consideration of alternative layers
and transformations, such as Graph Attention Networks (GAT) or Graph Convo-
lutional Networks (GCN), to better capture the nuanced relationships within the
knowledge graph.

The inclusion of more granular citation contexts and author collaboration net-
works could also improve the model’s ability to predict emerging research trends
and influential works. Furthermore, the development of more sophisticated training
techniques, such as self-supervised learning and transfer learning, could enhance
the model’s scalability and applicability to larger, more diverse datasets.

Overall, the flexibility and extensibility of the GNN framework presented in this
study pave the way for future advancements in the analysis of academic knowledge
graphs. By continually refining and expanding upon this foundational model, re-
searchers can unlock new opportunities for understanding and leveraging the com-
plex web of academic relationships that drive scientific progress.

In conclusion, this thesis underscores the transformative potential of graph neu-
ral networks in modeling and analyzing complex relational data within academic
knowledge graphs. By bridging the gap between data-driven insights and action-
able knowledge, GNNs offer a powerful framework for advancing research in di-
verse fields, from recommender systems and information retrieval to the study of
evolving academic landscapes. The culmination of this thesis serves as a testament
to the capabilities of graph neural networks in unlocking hidden patterns and rela-
tionships within vast, interconnected datasets.
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Appendix A

Figures

FIGURE A.1: Distribution of Mean Author Cosine Similarities for
Full-Name Matching

FIGURE A.2: Distribution of Number of Papers for Authors with Zero
Citational Overlap for Full-Name Matching
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FIGURE A.3: Distribution of Mean Author Cosine Similarities for Sur-
name Matching

FIGURE A.4: Distribution of Number of Papers for Authors with Zero
Citational Overlap for Surname Matching
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FIGURE A.5: Distribution of Mean Author Cosine Similarities for
Normalized Indel Distance Matching

FIGURE A.6: Distribution of Number of Papers for Authors with Zero
Citational Overlap for Normalized Indel Distance Matching
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