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Abstract

One line of research in set theory aims at deriving large cardinal axioms from strength-
ened forms of reflection principles. This research is often motivated by the foundational goal
of justifying the large cardinal axioms. The most comprehensive attempt in this direction is
the program of structural reflection (SR), initiated by Joan Bagaria, whose ultimate goal is
to formulate all large cardinal axioms as instances of a single, general structural reflection
principle that is conceptually compelling.

The basic version of SR already gives the hierarchy of large cardinals from supercompact
cardinals, through C(n)-extendible cardinals, up to Vopěnka’s Principle. A stronger version
of SR, the exact structural reflection principle (ESR), is studied by Bagaria and Philipp
Lücke, which gives almost huge cardinals, and beyond. However, ESR differs in form from
the basic version of SR, rather than being direct generalization of the same principle.

In this thesis we formulate the level by level version and the capturing version of SR
(CSR). CSR is a direct generalization of the basic version of SR. We introduce and study
the m-supercompact cardinals, the C(n)-m-fold extendible cardinals, and the capturing
version of VP, and show that the pattern of correspondence between large cardinals and the
basic version of SR also extends to the higher realm. We also apply our results to answer
several open questions concerning ESR. Finally, we note that CSR, when generalized to its
ω-version, leads to inconsistency.
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Chapter 0

Foundational Background

In this chapter, we discuss issues in the foundations of mathematics that motivate the
work on the relation between large cardinals and reflection principles, and we place the
thesis work in context.

0.1 Gödel’s program and large cardinals

The Zermelo-Frankel set theory with the axiom of choice (ZFC) is the standard founda-
tion of all of mathematics. As far as we know, all mathematical statements can be suitably
translated to the language of ZFC, and all mathematical theorems are provable from the
axioms of ZFC and its extensions.

Due to Gödel’s incompleteness theorem, however, we have known that ZFC is incomplete.
Indeed, numerous fundamental questions from a wide range of mathematical fields were
shown, typically by using the powerful techniques of inner models and forcing, to be
unsettled by the axioms of ZFC. These include famous examples from cardinal arithmetic,
such as the continuum hypothesis, from combinatorics and order theory, such as Suslin’s
hypothesis, from group theory, such as Whitehead’s problem, from topology, such as the
normal Moore space conjecture, from measure theory, such as the Borel conjecture, and
from descriptive set theory, such as projective determinacy.

A research program central to modern set theory known as Gödel’s Program (see [35]
for a discussion), initially suggested by Gödel in [19], seeks to find well-justified axioms in
addition to ZFC to settle the important questions left undecided by ZFC.

Among the proposed candidates, the most important ones are the strong axioms of
infinity, also known as the large cardinal axioms. These are the assertions that declare
the existence of infinite cardinals with rich and complicated properties that make them
extraordinarily large. These large cardinals are the higher infinite, as referred to in the title
of [21], which is a classic text on large cardinals.

The large cardinal axioms have remarkable consequences, settling many independent
questions, including the Marin-Steel result of projective determinacy (see [26]), Woodin’s
proof of ADL(R) (see [44]), and Solovay’s result on singular cardinal arithmetic (see [33]).
Moreover, numerous applications to various areas of mathematics were found, such as
applications to topology (see [9] and [16]), to category theory (see [3] and [43]), and to
group theory (see [8] and [14]).

The enormous success suggests that the large cardinal axioms definitely satisfy the
criterion of settling many independent problems. The question, then, is whether they are
well-justified principles of set theory. Indeed, the power and success may themselves be
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taken to provide such a justification, as suggested in the often-quoted passage by Gödel in
[19, p.261]:

There might exist axioms so abundant in their verifiable consequences, shedding
so much light upon a whole field, and yielding such powerful methods for solving
problems (and even solving them constructively, as far as that is possible) that,
no matter whether or not they are intrinsically necessary, they would have to
be accepted at least in the same sense as any well-established physical theory.

This kind of justification is referred to by Gödel as extrinsic justification. On the other
hand, it is arguably more desirable, and at least more in line with the traditional notion of
mathematical axioms, if large cardinals axioms enjoy some form of intrinsic justification,
namely as principles that are derivable directly from the conception of the universe of sets,
so that they can be seen as merely “unfold the content of the concept of set” ([19]). Indeed,
some authors may go so far as to claim that intrinsic justification is the only viable form of
justification (see for example [37]). Gödel himself also appears to take intrinsic justification
as the more fundamental form of justification.

0.2 Reflection principles

It is in the context described above that reflection principles enter the picture. The
simplest form of reflection principle, known as the Levy-Montague reflection principle,
asserts that for any formula ϕ(x0, . . . , xk−1) in the language of set theory, if it is true in the
set-theoretic universe V , then it is already true in some initial segment Vα of the universe
V . Namely, for any sets a0, . . . , ak−1, we have

V |= “ϕ(a0, . . . , ak−1)” → ∃α Vα |= “ϕ(a0, . . . , ak−1)”.

This form of reflection is already provable in ZF, and in fact is claimed to capture the essence
of ZF, as a variant of this form of reflection, known as the principle of complete reflection,
was shown by Levy in [23] to be, modulo the axioms of extensionality, comprehension, and
regularity, equivalent to the rest of ZF.

More importantly, the reflection principle is seen to explicate the idea that the universe
V is extremely rich and complicated, such that no single formula is able to define it, so
that any formula that holds in V already holds at some initial segment Vα. Indeed, this
idea of the undefinability of the universe, which can already be traced back to Cantor, is
seen by many set theorists as being part of the conception of V as being as rich as possible,
such that any axiom that is derivable from such an idea can be seen as having intrinsic
justification. Gödel even explicitly claimed (see [41]) that reflection principle is the “central
principle” in formulating axioms of set theory, while other principles are “only heuristic
principles”. In particular, reflection principle should be the only source of axioms of infinity,
as quoted in [41, p.285]:

Generally I believe that, in the last analysis, every axiom of infinity should be
derivable from the (extremely plausible) principle that V is undefinable, where
definability is to be taken in [a] more and more generalized and idealized sense.

Thus a natural idea is to strengthen the reflection principle by taking (un)definability
to more and more generalized and idealized sense, and attempt to derive large cardinal
axioms from the resulting strengthened reflection principles.

An intuitive approach is to formulate reflection principles in higher-order logic. Thus
informally, we may assert that for any higher-order formula ϕ, possibly with higher-order
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parameters, that if V satisfies ϕ, so does some initial segment Vα. Now by claiming that
this higher-order reflective property of V itself holds at some initial segment Vα, we are
in fact claiming that Vα is an indescribable cardinal, which is precisely defined as having
these higher-order reflective properties with respect to lower initial segments Vβ. This
higher-order approach has been taken by a number of authors, including for example
William Tait (see for example [36]), and was studied, with a largely negative appraisal, in
an influential discussion by Peter Koellner in [22]. Without going into the precise details,
we can already summarise the serious difficulties faced by this approach (for details and
more discussions see [22] and section 1 of [2]).

The first difficulty is conceptually straightforward. On the standard iterative conception
of the universe of sets as consisting of sets that are iteratively generated in stages, and
nothing else, it simply does not make sense to ask whether V satisfies some higher-order
formulas, as this requires the resources of the power class, or the power class of power
class, of V , which on this conception simply do not exist. The second difficulty is that, as
shown by Koellner, even we allow talks of higher-order reflection principles, these principles,
when precisely formulated, fall into the dichotomy of being either too weak (weaker than
the least Erdös cardinal, κ(ω)), or outright inconsistent. Since κ(ω) is not strong enough
to deliver the results mentioned in section 1, including the projective determinacy, and
is in fact compatible with the axiom V = L, it is not sufficient, from a modern point of
view, for a strong foundation of mathematics. Koellner thus concluded with the challenge
to “formulate a strong reflection principle which is intrinsically justified on the iterative
conception of set and which breaks the κ(ω) barrier”.

0.3 The structural reflection program

If the only way to interpret the undefinability of V in a “more and more generalized
sense” is to go higher-order in the style of Tait, then perhaps we are led to a skeptical
attitude to the prospect of intrinsic justification for large cardinals. However, various other
formulations of reflection principles have been proposed by many authors, for examples
Reinhardt (see [30]), Marshall (see [29]), Welch (see [42]), Roberts (see [31]), and Mccallum
(see [27]).

Arguably the most systematic proposal so far is that of Joan Bagaria’s (see [2]). Bagaria
proposed another interpretation of the underfinability of V , partly inspired by the following
quote of Gödel ([41]):

The universe of sets cannot be uniquely characterized (i.e., distinguished from
all its initial segments) by any internal structural property of the membership
relation in it which is expressible in any logic of finite or transfinite type,
including infinitary logics of any cardinal number.

Bagaria’s idea is that, instead of reflecting the theory of V , we may take what is reflected
to be the structural content of V , namely the class of structures that satisfy, as the above
quote suggests, some structural property. More precisely, we may assert that, for any
“structural property” ϕ, there must be some initial segment Vα, such that V cannot be
distinguished from Vα in terms of its storage of structures that satisfy ϕ, in the sense that
for any structure B with ϕ(B) holds, there is already some structure A in Vα, with ϕ(A)
holds, that is very similar to B. The notion of structural similarity here is explicated
using the idea that A is isomorphic to some elementary substructure of B, i.e., there is
an elementary embedding j from A to B. Thus we are led to the following formulation of
reflection principle (first formulated in [1]):

9



SR: (Structural Reflection) For every definable, in the first-order language of set
theory, possibly with parameters, class C of relational structures of the same
type there exists an ordinal α that reflects C, i.e., for every B in C there exist
A in C ∩ Vα and an elementary embedding from A into B.

It turns out that the above principle, taken as a schema, is equivalent to the very strong
large cardinal axiom of Vopěnka’s Principle (VP). Moreover, Π1-SR, which is the above SR
restricted to Π1-definable classes in the Levy Hierarchy, is equivalent to the existence of
a proper class of supercompact cardinals, while Πn+1-SR, for n ≥ 1, is equivalent to the
existence of a proper class of C(n)-extendible cardinals.

Thus if we agree that SR follows from the conception of the undefinability of V , then
arguably we can conclude that VP is intrinsically justified. In particular, since VP is very
strong, it is much more than sufficient to secure the examples of desirable consequences we
mentioned in section 1, such as projective determinacy.

In fact Bagaria has much greater ambition: he initiated the research program of finding
different forms of structural reflection principles that characterize all large cardinals ([2]):

Each of these results should be regarded as a small step towards the ultimate
objective of showing that all large cardinals are in fact different manifestations
of a single general reflection principle.

Moreover, this program comes with the goal of even providing a definition of a large
cardinal ([11]):

As a consequence, they may, also, fill up an outstanding, and somewhat embar-
rassing, definitional void in the theory of large cardinals, i.e., the definition of
‘large cardinal’ itself.

Indeed, Bagaria and many collaborators have contributed to this research program, and
successfully obtained many results. These include, but are not limited to, the work with
Väänänen (see [12]), Gitman-Schindler (see [4]), Wilson (see [13]), and Lücke (see [6], [7],
see also [24]).

In these results (surveyed in [2]), various formulations of structural reflection were
proposed, and were shown to correspond in some way or another to large cardinals in different
regions of the large cardinal hierarchy. For instance, the principle SR− corresponds to
small large cardinals (inaccessible, Mahlo, weakly compact); PSR (product SR) corresponds
to large cardinals from strong to Woodin cardinals; GSR (Generic SR) and Strong GSR
correspond to large cardinals from almost remarkable to virtually extendible cardinals;
WSR (Weak SR) corresponds to large cardinals between strongly unfoldable and subtle;
while ESR (Exact SR) corresponds to large cardinals beyond Vopěnka’s Principle, up to
the level of I1 embeddings.

Note that whether Bagaria’s ambition is completely fulfilled depends on detailed evalu-
ation of at least three questions. The question of Universality is whether it is true that
all large cardinal axioms can indeed be formulated in terms of structural reflection. The
question of Unification is whether these various forms of structural reflection can really be
claimed to be “different manifestations of a single general reflection principle”. The question
of Intrinsicality is whether these principles can really be claimed to be justified based on
the conception of the universe of sets. For a discussion of some of these issues see [11].

0.4 Higher reaches of structural reflection

I tend to agree that SR is, or at least a priori appears to be, a reasonable and very
elegant formulation of the idea that V is undefinable. But regardless of whether one agrees
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with the justifiability of SR or not, still one of the most interesting questions about the
whole program of SR is how high can one go in climbing the large cardinal hierarchy through
SR, namely: what are the strongest structural reflection principles that are intrinsically
justified? This is so because, from the point of view of justification, if a stronger principle
is justified, then the weaker principles derivable from it are, a fortiori, also justified.

As hinted in the previous section, the strongest principles on offer so far are the
principles of exact structural reflection (ESR), formulated in [6]. The exact structural
reflection principle for some class of structures C asserts that there are some cardinals κ < λ
such that, for any structure B ∈ C of rank λ, there is some structure A ∈ C of rank κ with
an elementary embedding j : A→ B. It is shown in [6] that ESR restricted to Π1-definable
classes implies many almost huge cardinals, making it stronger than Vopěnka’s Principle.
In [6] the sequential forms of ESR were also considered.

Definition 0.4.1. Let 0 < η ≤ ω and let L be a first-order language containing unary
predicate symbols

#»

P = ⟨Ṗi : i < η⟩.
1. Given a sequence #»µ = ⟨µi : i < η⟩ of cardinals with supremum µ, an L-structure A

has type #»µ (with respect to
#»

P ) if the universe of A has rank µ and rk(ṖA
i ) = µi for

all i < η.

2. Given a class C of L-structures, the sequential ESR for C of length (η+1) asserts that
there is a strictly increasing sequence

#»

λ = ⟨λi : i < 1 + η⟩ of cardinals, such that for
every structure B in C of type ⟨λi+1 : i < η⟩, there exists an elementary embedding
of a structure A ∈ C of type ⟨λi : i < η⟩ into B.

It was shown that the sequential ESR imply even stronger large cardinals, with sequential
ESR of length ω implying rank-into-rank embeddings.

It is certainly true that ESR and its sequential forms are natural and interesting
reflection principles in their own right. However, it seems that it is less clear, compared
to the case of SR, if it is reasonable to consider ESR to be intrinsically justified. The
rationale behind SR is that V is complicated enough so that the structural content of V
for any definable class C must reflects to some Vα. But it is less clear why there should be
two cardinals κ < λ such that the class C at precisely the level λ should reflects to C at
precisely the level κ. Much less clear still is the justifiability for sequential forms of ESR,
where it is asserted that there are many cardinals such that the class C is required to reflect
in precisely the way as prescribed in the above definition. Indeed, this was suggested by
Bagaria himself and Claudio Ternullo ([11, section 5]):

The only SRPs which would, thus, be prone to the objection are those yielding
large cardinals stronger than VP; hence, by this argument’s lights, it would only
be ESR (again, see section 4), and the corresponding large-cardinal notions,
that would be lacking intrinsic evidence.

Furthermore, in other forms of SR, the least relevant large cardinals can be characterized
as the least cardinals that witness the relevant forms of SR. For example, in the basic form
of SR, the least supercompact cardinal is the least κ that reflects all Π1-definable, without
parameters, class C of structures, while the least C(n)-extendible cardinal is the least κ
that reflects all Πn+1-definable, without parameters, class C of structures, for n ≥ 1. This
phenomenon continues to hold in other cases, and it is conjectured that this is a universal
phenomenon ([11, section 4]):

Conjecture 2 A cardinal κ is the least cardinal satisfying some large-cardinal
notion iff κ is the least cardinal satisfying some Structural Reflection Principle
that implies (in some inner model) κ is (weakly) inaccessible.
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In the case of ESR, the relevant large cardinals proposed are the weakly parametrically
n-exact cardinals and the parametrically n-exact cardinals (for precise definitions see [6] or
see Chapter 6 of the thesis). Indeed it was shown that, for n ≥ 1, the least κ that is weakly
parametrically n-exact for some λ coincides with the least κ that satisfies Πn-ESR(κ, λ) for
some λ, and that the least κ that is parametrically n-exact for some λ coincides with the
least κ that satisfies Σn+1-ESR(κ, λ) for some λ.

However, the global form of this characterization was an open question, namely if the
least κ that is weakly parametrically n-exact for a proper class of λ coincides with the least
κ that satisfies Πn-ESR(κ, λ) for a proper class of λ, and if the least κ that is parametrically
n-exact for a proper class of λ coincides with the least κ that satisfies Σn+1-ESR(κ, λ) for
a proper class of λ. In Chapter 6 we show that, assuming stronger large cardinal, that this
global characterization provably fails. Thus not only (at least this instance of) the above
conjecture does not hold, it contradicts the existence of large cardinals, the very objects
that the program of SR aims to secure.

Finally let us note that, the same nice pattern of structural reflection phenomenon
occurs repeatedly in different regions of the large cardinal hierarchy. In particular, it was
shown in [7] that the same pattern of SR that holds between a supercompact and a Vopěnka
cardinal, and between a strong and a Woodin cardinal, also holds between a strongly
unfoldable and a subtle cardinal. This was expressed in [7] by the following equation:

Vopěnka
Supercompact

=
Woodin
Strong

=
Subtle

Strongly unfoldable

The same pattern of structural reflection does not, however, appear at the level of ESR
and exact cardinals.

0.5 Outline of the thesis

Given all the discussions in the previous sections, the present thesis is thus motivated
by the question of whether there exists an ideal way to extend the structural reflection
program to higher levels. More precisely, if there are natural structural reflection principles
and large cardinal notions that are

1. as well-justified as the basic form of SR,

2. stronger than the basic form of SR,

3. satisfy Conjecture 2,

4. exhibit the same pattern as in the equation above.

It turns out that the answer is positive. Recall that the idea of the basic form of SR is
that for any class C, there exists some Vα that reflects C, in the sense that for any A ∈ C
there is some B ∈ C ∩ Vα that is very similar to A. The notion of structural similarity is
explicated using elementary embeddability. Indeed, Bagaria writes ([2]):

Since, in general, A may be much larger than any B in Vα , the closest re-
semblance of B to A is attained in the case B is isomorphic to an elementary
substructure of A, i.e., B can be elementarily embedded into A.

The thought is that, short of isomorphism, the most we can ask for structural similarity is
elementary embeddability.

12



The way we strengthen SR is thus to search for a stronger notion of structural similarity
that can hold between two non-isomorphic structures, a notion that we call capturing.

Let us outline the content of each chapter.
In Chapter 1, we introduce our structural reflection principles. We first introduce the

level by level structural reflection (LSR). Then we introduce the notion of capturing, and
argue that it is a natural notion of structural similarity. Then we introduce the principle of
capturing structural reflection (CSR), and argue that it is well-justified, precisely because
it uses the same conceptual resources as SR, the only difference being that it employs a
stronger notion of structural similarity. We also introduce the corresponding Vopěnka’s
principles, the LVP and CVP. We note that LSR and CSR are essentially equivalent.

In Chapter 2, we introduce the large cardinal notions that correspond to CSR. We
introduce the hierarchies of m-supercompact cardinals, the C(n)-m-hyperhuge cardinals,
and the C(n)-m-fold extendible cardinals. The cardinals are natural higher analogues of
supercompact cardinals and C(n)-extendible cardinals. They are formulated in model-
theoretic terms, but we give combinatorial characterizations of these cardinals, using the
idea of m-supercompact measure. We deduce basic properties of these cardinals, and
determine their consistency strength. We show that for m ≥ 1, the C(n)-m-hyperhuge
cardinals are equivalent to the C(n)-(m + 1)-fold extendible cardinals. This answers an
open question of Sato Kentaro asked in [32].

In Chapter 3, we show that LSR and CSR, which are natural extensions of SR, correspond
to 2-supercompact cardinals, C(n)-2-fold extendible cardinals, LVP and CVP, which are
natural extensions of supercompactness, C(n)-extendibility, and VP, in exactly the same
pattern we found in the correspondence between SR, VP, supercompact cardinals, and
C(n)-extendible cardinals.

In Chapter 4, we introduce a further strengthening of capturing that we call δ-capturing,
which is formulated in a game-theoretic way. In particular, 0-capuring is the same as
elementary embeddability. Based on this notion, we formulate the principles of δ-CSR
and δ-CVP. We show that, for finite δ, we again see the same pattern of correspondence
between δ-CSR, δ-CVP, (δ+1)-supercompactness, and C(n)-(δ+1)-fold extendibility. This
further supports the idea that δ-CSR is the “correct” way to strengthen SR. We further
show that for infinite δ, δ-CSR is provably false in ZF.

In Chapter 5, we give a characterization and clarification of the relevant large cardinals
using the general notion of Σn-m-supercompact cardinals, which encompasses other notions.
We generalize the work of Bagaria-Goldberg in [5], which gave C(n)-extendible cardinals
an ultrafilter characterization, by showing that the Σn-m-supercompact cardinals can be
characterized by the notion of n-reflecting m-supercompact measures.

In Chapter 6, we answer several open questions about ESR and exact cardinals asked
by Bagaria-Lücke in [6]. The answers turn out to be quite unexpected. Firstly, the strength
of ESR and exact cardinals turns out to be lower than expected, and occupies a region
of the large cardinal hierarchy that was previously unexplored. Secondly, as remarked in
the previous section, we show that the instance of Conjecture 2 for the global version of
ESR fails. In particular, assuming large cardinals, we show that for all n ≥ 1, the least
κ such that Σn+1-ESR(κ, λ) holds for a proper class of λ is less than the least κ that is
parametrically n-exact for a proper class of λ. This is proved by application of the theory
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developed in previous chapters. Our results also generalize to the sequential forms of ESR.

In the concluding Chapter 7 we go back to the foundational considerations presented in
this chapter. We note that, on the one hand, our results fulfill the expectations of finding
natural extensions of SR to higher levels, while on the other hand, our results also constitute
a challenge for the SR program as currently formulated, namely the problem of extendibility
to inconsistency.
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Chapter 1

Higher Structural Reflection

In this chapter we present and motivate two ways of formulating natural structural
reflection principles of higher strength than Vopěnka’s Principle. The first way is to employ
the idea of level by level reflection, which is more in the spirit of the idea of exactness
considered in [6]. The second way is to use the model-theoretic notion of capturing, which
is generally applicable to all mathematical structures, that we will introduce below.

Recall that the original structural reflection principle (see [1] and [2]) is formulated as
follows.

SR: (Structural Reflection) For every definable, in the first-order language of
set theory, possibly with parameters, class C of relational structures of the
same type there exists an ordinal δ that reflects C, i.e., for every B in C
there exists A in C ∩ Vδ and an elementary embedding from A into B.

SR is conceptually very compelling, motivated by the idea that for any definable class
C of structures, there is some Vδ such that the class Vδ ∩ C is as rich as C, in the sense
that for any B ∈ C there is some A ∈ Vδ ∩ C that is structurally very similar to B, namely
elementarily embeddable into B.

1.1 Level by Level

A natural idea to strengthen SR is to assert that for any class C of structures, there is
some δ that not only reflects C, but does so in an exact, level by level way.

LSR: (Level by Level Structural Reflection) For every definable, in the first-order
language of set theory, possibly with parameters, class C of relational
structures of the same type there exists an ordinal δ that reflects C level
by level, i.e., for any ordinal β there is some ordinal α < δ such that for
every B in C of rank β there exists A in C of rank α and an elementary
embedding from A into B.

LSR is motivated by the idea that there is a stronger analogy between the structural
richness of C and that of Vδ ∩ C, to the extent that for any β, the elements of C of rank β
can all be matched by elements of C of rank α, for some α < δ.

Of course, due to the undefinability of definability, LSR cannot be formulated in ZFC.
Thus what we really work with are the following versions of LSR, formulated for any natural
number n:
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Σn-LSR: (Σn-Level by Level Structural Reflection) For every Σn-definable, with
parameters, class C of relational structures of the same type there is an
ordinal α that reflects C level by level.

Πn-LSR may be similarly formulated. Furthermore, we consider the lightface, i.e.,
parameter-free versions of LSR. Namely,

Σn-LSR: (Σn-Level by Level Structural Reflection) For every Σn-definable, with-
out parameters, class C of relational structures of the same type there
exists an ordinal α that reflects C level by level.

Similarly for the lightface Πn-LSR.

Definition 1.1.1. For a natural number n and an ordinal α, LSR(α,Σn) holds if for any
Σn-definable, without parameters, class C of relational structures of the same type, α reflects
C level by level. Similarly for LSR(α,Πn).

Similarly, LSR(α,Σn) holds if for any Σn-definable, with parameters in Vα, class C of
relational structures of the same type, α reflects C level by level. Similarly for LSR(α,Πn).

We first state two easy propositions.

Proposition 1.1.2. If Γ is either Σn or Πn, then the following are equivalent:

1. Γ-LSR.

2. There is some α such that LSR(α,Γ) holds.

Proposition 1.1.3. If Γ is either Σn or Πn, then the following are equivalent:

1. Γ-LSR.

2. There is a proper class of α such that LSR(α,Γ) holds.

Using the same idea of level by level reflection, a natural strengthening of Vopěnka’s
Principle can be formulated.

Definition 1.1.4. For any natural number n, LVP(Σn) holds if for any Σn-definable,
without parameters, proper class C of relational structures of the same type, there exist
α ̸= β with C ∩ (Vα+1 \ Vα) ̸= ϕ and C ∩ (Vβ+1 \ Vβ) ̸= ϕ such that for any B ∈ C of rank
β there is some A ∈ C of rank α and an elementary embedding j : A → B. Similarly for
LVP(Πn).

Similarly, LVP(Σn) and LVP(Πn) are the corresponding assertions with parameters
allowed in the definition of C.

The idea behind the original VP is that if we have a proper class C of structures, then
C must repeat itself: there is bound to be two structures in C with one similar to the other.
The idea behind LVP is that if we have a proper class C of structures, then C must repeat
itself in a strong way: there is bound to be two levels α, β of the cumulative hierarchy,
where for any structure in C of level β, there is already some structure in C of level α similar
to it.
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1.2 Capturing

When there is an elementary embedding e from some structure A to another structure
B in the same language, an equivalent statement is that there is an isomorphism between A
and an elementary substructure of B. Thus there is a sense in which the structural properties
of A are similar to those of B, or that A is able to capture a lot of structural information
of B. Indeed the fact that elementary embedding expresses a notion of structural similarity
or capturing is one of the reasons SR can be seen as a plausible principle of set theory.

A closer inspection of the concept of elementary embedding suggests, in our opinion, a
natural way of strengthening it. If e : A→ B is an elementary embedding and b ∈ rang(B),
then a = e−1(b) can be seen as a sort of counterpart of b, an “A’s version of b”, where a
plays the same role in A as b plays in B, with respect to all definable structural properties.
We may say in this case that A captures b with a.

From this perspective, if e : A→ B is elementary, then any b ∈ ran(e) is captured by
a = e−1(b) ∈ A. Usually we do not know what elements of B are in the range of e. In other
words, we do not know which elements of B admit counterparts in A. Thus we may define
the following notion:

Definition 1.2.1. For structures A and B of the same type and b ∈ B, we say A captures
b if there is an elementary embedding e : A→ B with b ∈ ran(e).

We say A captures B if every element of B is captured by A.

Thus from the perspective above, to say that A captures B is to say that for any b ∈ B,
there is some counterpart of b in A that plays the same structural role. Another way to see
it is that for any b ∈ B, A is isomorphic to an elementary substructure of B that contains b.
This gives a stronger expression of the idea that the structure of B as a whole is captured
by, or reflected in, the structure of A.

Note that the notion of capturing is a general model-theoretic notion, applicable to all
mathematical structures. Although the primary interest in this thesis is to abstractly study
strong structural reflection principles using the notion of capturing, let us try to give some
basic and concrete examples.

Example 1.2.2. Consider three structures in the same language. The first one is N0 =
(N, 0, S), where S is the successor function, which looks like

0 → S(0) → SS(0) → SSS(0) → . . . ,

and the second one, N1, which includes N0 and an additional, disjoint and nonstandard
“Z-chain”, which looks like

0 → S(0) → SS(0) → SSS(0) → . . .

· · · → S−2(a) → S−1(a) → a→ S(a) → SS(a) → . . . ,

finally N2 includes N1, and a further additional disjoint Z-chain, which looks like

0 → S(0) → SS(0) → SSS(0) → . . .

· · · → S−2(a) → S−1(a) → a→ S(a) → SS(a) → . . . ,

· · · → S−2(b) → S−1(b) → b→ S(b) → SS(b) → . . . ,

where a ̸= b.
Let T = Th(N0), T is axiomatized (see [15], section 3.1) by the set of sentences that

consists of ∀xS(x) ̸= 0, ∀x, y(S(x) = S(y) → x = y), ∀y(y ̸= 0 → ∃xy = S(x)), and
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the schema ∀xSn(x) ̸= x, for all natural numbers n. Thus all three structures model T .
Moreover, T admits quantifier elimination (again see [15]), and is thus model complete, so
any embedding between models of T is elementary.

Thus N0 is elementarily embeddable into N1, and N1 is elementarily embeddable into
N2, simply because N0 ≺ N1 ≺ N2, yet all three structures are non-isomorphic. However,
there seems to be a sense in which N1 resembles N2 more than N0 resembles N2, as it is N1

rather than N0 that looks more like N2. Although the notion of capturing is not designed
for this example, this difference can indeed be expressed by the notion of capturing. N0

does not capture either N1 or N2, in particular N0 does not capture a, since any elementary
embedding from N0 to N1 or N2 would fix the standard naturals. On the other hand, N1

does capture N2: for any y ∈ N2, if y is standard or Sm(a) for some integer m, then let e
be the identity function, and if y is Sm(b) for some integer m, then let e : N1 → N2 be the
function that fixes the standard part, and send Sk(a) to Sk(b) for all integers k. It follows
that e is an embedding, and thus elementary.

It seems that the notion of capturing is a natural strengthening of elementary embed-
dability, and is meaningful in mathematical contexts other than set theory, thus we believe
that this notion, or some variants of it, will perhaps have other applications. In Chapter 4
we will introduce a further strengthening of capturing.

In this thesis we will mainly use capturing to study strong structural reflection principles
in set theory. Recall that the idea of SR is that for any class C of structures, there is some
α such that for any B ∈ C, there is some A ∈ C ∩ Vα such that A is structurally similar
to B, where similarity is explicated by the notion of elementarary embeddability. Given
that capturing is, as we have suggested, a strengthened notion of structural similarity, it is
natural to consider the following strengthening of SR.

CSR (Capturing Structural Reflection) For every definable, in the first-order
language of set theory, possibly with parameters, class C of relational
structures of the same type there exists an ordinal δ that capture-reflects
C, i.e., for any B ∈ C there exists A ∈ C ∩ Vδ that captures B.

Of course, the correct formulation in ZFC is the following, for any natural number n:

Σn-CSR: (Σn-Capturing Structural Reflection) For every Σn-definable, with pa-
rameters, class C of relational structures of the same type there is an ordinal
α that capture-reflects C. Similarly for Πn-CSR. Moreover, Σn-CSR and
Πn-CSR are the corresponding lightface versions, i.e., with parameters
disallowed in the definition of C.

Definition 1.2.3. For any natural number n, CSR(α,Σn) holds if for any Σn-definable,
without parameters, class C of relational structures of the same type, α capture-reflects C.

Similarly, CSR(α,Σn) holds if for any Σn-definable, with parameters in Vα, class C of
relational structures of the same type, α capture-reflects C. Also similarly for CSR(α,Πn).

Given the above conceptual analysis, it seems plausible to think that if SR can be seen
as intrinsically plausible, then this plausibility also extends to CSR. In Chapter 3 and 4, we
will further pursue the idea that CSR is the “correct” strengthening of SR by showing that
the pattern of correspondence between SR, supercompact cardinals, and C(n)-extendible
cardinals is exactly the same as the pattern of correspondence between (higher analogues
of) CSR, and higher analogues of supercompact cardinals and C(n)-extendible cardinals.
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The corresponding stengthening of VP can also be formulated, with the idea being that
when one has too many structures, one of them may be very similar to one of the others,
to the extent that the latter is captured by the former:

Definition 1.2.4. For any natural number n, CVP(Σn) holds if for any Σn-definable,
without parameters, proper class C of relational structures of the same type, there exist
A,B ∈ C with A ̸= B and A captures B. Similarly for CVP(Πn).

Similarly, CVP(Σn) and CVP(Πn) are the corresponding assertions with parameters
allowed in the definition of C.

1.3 Convergence

A pleasing fact about LSR and CSR is that, as we will see, these two natural ways of
strengthening SR actually converge.

Theorem 1.3.1. For any n ≥ 1 and any ordinal α, the following are equivalent:

1. LSR(α,Πn) holds.

2. CSR(α,Πn) holds.

Similarly, LSR(α,Πn) and CSR(α,Πn) are equivalent.

The above theorem is a consequence of results we will prove later. Similarly, we have
the convergence of their VP version:

Theorem 1.3.2. For any n ≥ 1, the following are equivalent:

1. LVP(Πn) holds.

2. CVP(Πn) holds.

Similarly, LVP(Πn) and CVP(Πn) are equivalent.

One direction of Theorem 1.3.1 follows from the following proposition. The other
direction requires more work, and will be shown in later chapters.

Proposition 1.3.3. For any natural number n and ordinal α, if CSR(α,Πn) holds, then

1. CSR(α,Σn+1) holds, and

2. LSR(α,Σn+1) holds.

Similarly if CSR(α,Πn) holds, then both CSR(α,Σn+1) and LSR(α,Σn+1) hold.

Proof. Given some natural number n and ordinal α, suppose CSR(α,Πn) holds.
(1): To show that CSR(α,Σn+1) holds, let C = {B : ϕ(B, b0, . . . , bk−1)} be a class of

structures of the same type, where ϕ(x, y0, . . . , yk−1) is Σn+1 and b0, . . . , bk−1 ∈ Vα. Given
some B ∈ C, we must find some A ∈ C ∩ Vα that captures B.

Define C∗ to be the class of structures of the form (M,∈, X, b0, . . . , bk−1), where M is a
transitive set that is Σn-correct, namely M ≺Σn V , and X is any set in M . Note that C∗ is
Πn-definable with the parameters b0, . . . , bk−1.

Now consider the structure (Vλ,∈, B, b0, . . . , bk−1), for λ large enough and λ ∈ C(n+1).
Clearly we have (Vλ,∈, B, b0, . . . , bk−1) ∈ C∗. By CSR(α,Πn) there is some structure

19



(M,∈, A, b0, . . . , bk−1) ∈ C∗ that captures (Vλ,∈, B, b0, . . . , bk−1). Thus for any b ∈ B there
is some elementary embedding

j : (M,∈, A, b0, . . . , bk−1) → (Vλ,∈, B, b0, . . . , bk−1)

with b ∈ ran(j). By the elementarity of j, we have j−1(b) ∈ A and type(B) = type(A).
Moreover, for any formula ψ(z0, . . . , zl−1) in the language of A and B and for any
c0, . . . , cl−1 ∈ A we have

A |= ψ(c0, . . . , cl−1) ↔ (M,∈, A, b0, . . . , bk−1) |= “A |= ψ(c0, . . . , cl−1)”
↔ (Vλ,∈, B, b0, . . . , bk−1) |= “B |= ψ(j(c0), . . . , j(cl−1)))”
↔ B |= ψ(j(c0), . . . , j(cl−1)),

so j↾A : A→ B is elementary. Lastly, by elementarity we have

(M,∈, A, b0, . . . , bk−1) |= “ϕ(A, b0, . . . , bk−1)”.

Thus by the upward-absoluteness of Σn+1-formulas for Σn-correct structures we have that
ϕ(A, b0, . . . , bk−1) holds and so A ∈ C, hence A ∈ C ∩ Vα captures B, as desired.

(2): To show that LSR(α,Σn+1) holds, again let C = {B : ϕ(B, b0, . . . , bk−1)} be a
class of structures of the same type, where ϕ(x, y0, . . . , yk−1) is Σn+1 and b0, . . . , bk−1 ∈ Vα.
Given some β, we must find some γ < α such that for any B ∈ C of rank β there is
some A ∈ C of rank γ that is elementary embeddable into B. Now define C∗ to be
the class of structures of the form X = (M,∈, δ, b0, . . . , bk−1), where M is transitive,
δ is an ordinal, and M is Σn-correct. Again C∗ is Πn-definable with the parameters
b0, . . . , bk−1. Let (Vλ,∈, β, b0, . . . , bk−1) be such that λ ∈ C(n+1) and λ large enough. Thus
(Vλ,∈, β, b0, . . . , bk−1) ∈ C∗.

It follows from CSR(α,Πn) that there exists some (M,∈, γ, b0, . . . , bk−1) ∈ C∗ that
captures (Vλ,∈, β, b0, . . . , bk−1). We claim that the γ here is as desired. To see this, note
that for any structure B ∈ C of rank β, we have B ∈ Vλ, so there is some elementary
embedding

j : (M,∈, γ, b0, . . . , bk−1) → (Vλ,∈, β, b0, . . . , bk−1),

with some A ∈M such that j(A) = B. Thus since

(Vλ,∈, β, b0, . . . , bk−1) |= “ϕ(B, b0, . . . , bk−1) ∧ rank(B) = β”,

we have by elementarity that

(M,∈, γ, b0, . . . , bk−1) |= “ϕ(A, b0, . . . , bk−1) ∧ rank(B) = γ”,

thus ϕ(A, b0, . . . , bk−1) holds by upward-absoluteness, and A ∈ C is of rank γ. Also as
before we have j↾A : A→ B is elementary, as desired.

To conclude, note that it is clear that similar proofs work for the case CSR(α,Πn),
without considering parameters.
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Chapter 2

Very Large Cardinals

In this chapter we study some very large cardinal notions, which are higher analogues
of supercompactness and extendibility. In the next chapter we will show that these large
cardinals correspond to the higher structural reflection principles we proposed in the
previous chapter in exactly the same pattern that supercompact and extendible cardinals
correspond to the original SR. In section 1.3 we answer a question of Sato Kentaro in [32].

2.1 Higher supercompactness

The notion of supercompact cardinals is a central notion in the theory of large cardinals,
having numerous applications. Magidor gave a characterization of supercompactness in
terms of elementary embeddings between the Vα’s:

Theorem 2.1.1. (Magidor [25]) A cardinal κ is supercompact if and only if for any λ > κ
and y ∈ Vλ there is some λ̄ < κ, x ∈ Vλ̄ and an elementary embedding j : Vλ̄ → Vλ with
j(x) = y and j(crit(j)) = κ.

We introduce here direct strengthenings of the above formulation, as follows:

Definition 2.1.2. For a natural number m ≥ 1 and cardinal κ, κ is m-supercompact if for
any λ > κ and y ∈ Vλ, there is some λ̄ < κ and x ∈ Vλ̄ with some elementary embedding
j : Vλ̄ → Vλ with j(x) = y and jm(crit(j)) = κ.

In particular, 1-supercompactness is just supercompactness.

Remark Given the usual definition of supercompact cardinals in terms of some elementary
embedding j : V →M , a more intuitive way of strengthening supercompactness may be
to assert that for any λ ≥ κ, κ is the critical point of j : V → M with λ < j(κ) and
jm(λ)M ⊆M . This is the notion of m-hyperhugeness, which will be discussed in the next
section.

However, it is the notion of m-supercompactness that in many respects resembles
supercompactness more, including its relation to higher structural reflection principles
and higher analogues of Löwenheim-Skolem-Tarski theorem for higher-order logics, its
characterization in terms of reflective measures (more on this in chapter 4), and more. On
the other hand, we will show that, answering a question of Sato Kentaro, m-hyperhuge
cardinals are actually higher analogues of extendibible cardinals, and they inherit many
properties of extendible cardinals. These points will become clearer later. Thus arguably
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it is the Magidor characterization that better captures (some aspects of) the conceptual
essence of supercompactness∗.

The formulation of m-supercompactness is essentially model-theoretic in nature. How-
ever, we now show that this notion can be given purely combinatorial characterization in
terms of ultrafilters.

Definition 2.1.3. For a natural number m ≥ 1, cardinal κ, and sequences κ0, . . . , κm−1 = κ
and λ0, . . . , λm−1 = λ ≥ κ, we say U is an m-supercompact measure for (κ, λ) if U is a
κ0-complete normal ultrafilter over P(λ) such that

1. {x ∈ P(λm−1) : ot(x ∩ κi+1) = κi} ∈ U for any 0 ≤ i ≤ m− 2,

2. {x ∈ P(λm−1) : ot(x ∩ λi+1) = λi} ∈ U for any 0 ≤ i ≤ m− 2, and

3. {x ∈ P(λm−1) : ot(x ∩ λ0) < κ0} ∈ U .

We will sometimes mention κ0, . . . , κm−1 and λ0, . . . , λm−1 as the target sequences.

Note that if m = 1, the first two clauses of the above definition are trivial. Moreover,
there is some 1-supercompact measure for (κ, λ) if and only if there is some normal measure
on Pκλ.

A feature of the above definition is that, unlike most ultrafilter characterizations of
"m-fold" versions of large cardinals, for instance the ultrafilter characterization for the
m-huge cardinals, where the large cardinal κ is the first entry in the target sequence, here
the large cardinal κ is characterized as the last entry of the target sequences.

Theorem 2.1.4. For natural number m ≥ 1 and cardinal κ, κ is m-supercompact if and
only if for any λ ≥ κ there is an m-supercompact measure U for (κ, λ).

Proof. To prove the forward direction, suppose that m ≥ 1 is a natural number and κ is
m-supercompact. First define the class function F : Ord→ Ord by

F (α) = the least β ≥ α such that there is no m-supercompact measure U for
(α, β), provided that there is any such β. Otherwise let F (α) = 0.

Suppose for contradiction that our conclusion fails, namely there is some β ≥ κ, such
that there is no m-supercompact measure for (κ, β), thus F (κ) ≥ κ. Now take λ to be
some limit ordinal greater than F (κ), and let λ̄ be such that there is some elementary
embedding j : Vλ̄ → Vλ with crit(j) = µ and jm(µ) = κ. Since whether a set U is an
m-supercompactness measure for (κ, F (κ)) can be checked in Vλ, it follows that

Vλ |= “∃β ≥ κ(F (κ) = β)".

By the elementarity of j we have

Vλ̄ |= “∃β ≥ jm−1(µ)(F (jm−1(µ)) = β)".

Note that the quoted statement is also true in V , and thus also in Vλ, since the relevant
normal ultrafilters are all in Vλ̄. But note that since we are supposing that λ̄ < κ = jm(µ),
we have that

Vλ |= “∃β(jm−1(µ) ≤ β < jm(µ) ∧ F (jm−1(µ)) = β)",
∗Note that the similar name m-fold supercompactness is used in [32] to refer to what we call (m− 1)-

hyperhugeness here. For reasons explained above, we reserve the word "supercompact" for the notion
of m-supercompactness. Given that 2-fold supercompact cardinals are also called hyperhuge cardinals
by Toshimichi Usuba in [40], we use the terminology of (m− 1)-hyperhugeness for m-fold supercompact
cardinals.
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thus by elementarity again,

Vλ̄ |= “∃β(jm−2(µ) ≤ β < jm−1(µ) ∧ F (jm−2(µ)) = β)"

which is true in V and in Vλ. Iterating this argument, we will eventually get

Vλ̄ |= “∃β(µ ≤ β < j(µ) ∧ F (µ) = β)".

Let β = F (µ), we have

jm−1(β) = jm−1(F (µ)) = F (jm−1(µ)),

and note that we have seen that F (jm−1(µ)) < λ̄. But now it makes sense to define

U = {X ⊆ P(jm−1(β)) : j“jm−1(β) ∈ j(X)}.

One can verify that U is a µ-complete normal ultrafilter over P(jm−1(β)). Moreover,
we have, for any 0 ≤ i ≤ (m− 2), that

1. ot(j“jm−1(β) ∩ ji+2(µ)) = ji+1(µ) implies {x ∈ P(jm−1(β)) : ot(x ∩ ji+1(µ)) =
ji(µ)} ∈ U .

2. ot(j“jm−1(β) ∩ ji+2(β)) = ji+1(β) implies {x ∈ P(jm−1(β)) : ot(x ∩ ji+1(β)) =
ji(β)} ∈ U .

3. ot(j“jm−1(β) ∩ j(β)) = β < j(µ) implies {x ∈ P(jm−1(β)) : ot(x ∩ β) < µ} ∈ U .

It follows that U is an m-supercompactness measure for (jm−1(µ), jm−1(β)) (with
target sequences µ, j(µ), . . . , jm−1(µ) and β, j(β), . . . , jm−1(β)), contradicting the fact that
F (jm−1(µ)) = jm−1(β).

For the converse direction, given any η ≥ κ, take λ > η to be a ℶ-fixed point, so that
|Vλ| = λ. Suppose for contradiction that we have some y ∈ Vλ so that

there is no δ < κ with some x ∈ Vδ and an elementary embedding k : Vδ → Vλ
such that km(crit(k)) = κ and k(x) = y.

Now take κ0, . . . , κm−1 = κ and λ0, . . . , λm−1 = λ such that there is anm-supercompactness
measure U over P(λ) for (κ, λ).

Take the ultrapower embedding j : V → Ult(V,U) ∼=M given by U . Thus [id]U = j“λ,
so λM ⊆M , and we have for any 0 ≤ i ≤ m− 2

1. {x ∈ P(λm−1) : ot(x ∩ κi+1) = κi} ∈ U implies j(κi) = κi+1,

2. {x ∈ P(λm−1) : ot(x ∩ λi+1) = λi} ∈ U implies j(λi) = λi+1, and

3. {x ∈ P(λm−1) : ot(x ∩ λ0) < κ0} ∈ U implies λ0 < j(κ0).

It also follows from the above by elementarity that λi < j(κi) for any 0 ≤ i ≤ m− 1.
Moreover we have crit(j) = κ0. Also by the elementarity of j we have

M |= “there is no δ < j(κ) with some x ∈ Vδ and an elementary embedding
k : Vδ → Vj(λ) such that km(crit(k)) = j(κ) and k(x) = j(y)".

Now since |Vλ| = λ, an argument by induction will show that Vλ = (Vλ)
M . Moreover,

since |j↾Vλ
| = |Vλ| = λ, we have k = j↾Vλ

∈M . However, note that we have
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1. k : Vλ → (Vj(λ))
M is elementary,

2. λ < j(κ),

3. km(crit(k)) = jm(crit(j)) = jm(κ0) = j(κm−1) = j(κ), and

4. y ∈ Vλ with k(y) = j(y),

thus k is exactly the embedding that is supposed to be missing in M , a contradiction. This
completes the proof.

Note that in the forward direction of the proof of the above theorem, we did not consider
y and x as in the definition of m-supercompactness, thus we have the following:

Corollary. For a natural number m ≥ 1, a cardinal κ is m-supercompact if for any λ > κ
there is λ̄ < κ and an elementary embedding j : Vλ̄ → Vλ with jm(crit(j)) = κ.

Note that the assertion "there is an m-supercompact measure for (α, β)" is a ∆2-
statement with parameters α and β, since it is equivalent to both

∀X(X = Vβ+5 → X |= “there is an m-supercompact measure for (α, β)", and

∃X(X = Vβ+5 ∧X |= “there is an m-supercompact measure for (α, β)".

It follows by Theorem 2.1.4 that "α is m-supercompact" is a Π2-statement.

Now we show that the m-supercompact cardinals form a proper hierarchy in a strong
sense, both in terms of relative consistency strength and the relative sizes of least instances.

Let us first recall the notions of C(n)-cardinals. C(n) is defined to be the class of ordinals
α such that Vα ≺Σn V , namely Vα is a Σn-elementary substructure of V . C(n) is a club
class for each natural number n, and the statement “α ∈ C(n)” is Πn-definable. Moreover,
the class C(1) consists of precisely the ℶ-fixed point, namely uncountable cardinals κ such
that Vκ = Hκ For more details see [1].

Theorem 2.1.5. For natural numbers 1 ≤ n < m, if κ is an m-supercompact cardinal, then

1. κ is n-supercompact,

2. κ ∈ C(2),

3. Vκ |= ZFC+"there is a proper class of n-supercompact cardinals", and

4. κ is a limit of n-supercompact cardinals.

Proof. For (1), suppose 1 ≤ n < m are natural numbers and κ is m-supercompact. Let
λ = ℶλ > κ, and by Theorem 2.1.4, let U be an m-supercompact measure for (κ, λ), with
target sequences κ0, . . . , κm−1 = κ and λ0, . . . , λm−1 = λ. Let j : V → Ult(V,U) ∼= M
be the ultrapower embedding given by U , we then have crit(j) = κ0, j(κi) = κi+1 and
j(λi) = λi+1 for 0 ≤ i ≤ m− 2, and λM ⊆M .

For any δ = δ0 < j(κ0), we have jn−1(δ0) < jn(κ0) = κn ≤ κm−1 < λ. Let δi = ji(δ0)
for 0 ≤ i ≤ n− 1. Now define the ultrafilter

U∗ = {X ⊆ P(δn−1) : j“δn−1 ∈ j(X)},

24



one can check that U∗ is an n-supercompact measure for (κn−1, δn−1), with target
sequences κ0, . . . , κn−1 and δ0, . . . , δn−1. Now since δn−1 < λ = ℶλ and λM ⊆M , we have
U∗ ∈M , so

M |= “there is an n-supercompact measure for (κn−1, δn−1)",

so by elementarity we have an n-supercompact measure for (κn−2, δn−2), which is again
true in M . By applying elementarity (n− 1)-times, we get that there is an n-supercompact
measure for (κ0, δ0). Now since δ0 < κ1 is arbitrarily chosen, we have that for any δ < κ1,
there is an n-supercompact measure for (κ0, δ). This can be checked in Vκ1 , which implies
that

Vκ1 |= “κ0 is n-supercompact".

By applying elementarity we have

(Vj(κm−1))
M |= “κm−1 is n-supercompact".

Now note that we have (Vλ)
M = Vλ. It follows that it is true in V that κm−1 is at least

δ-n-supercompact for any δ < λ. But the λ from the beginning is arbitrarily chosen, thus
κm−1 = κ is n-supercompact, which proves (1).

It follows from (1) that in particular κ is supercompact, thus κ ∈ C(2), which proves
(2).

For (3), we continue to work in the same setting. Define

U ′ = {X ⊆ κ0 : κ0 ∈ j(X)},

note that the fact that Vκ1 |= “κ0 is n-supercompact" also implies that

{µ < κ0 : Vκ0 |= “µ is n-supercompact"} ∈ U ′,

which gives

Vκ0 |= “there is a proper class of n-supercompact cardinals".

By applying elementarity (m − 1)-times and the fact that Vκm−1 = (Vκm−1)
M , it follows

that
Vκm−1 |= “there is a proper class of n-supercompact cardinals",

which gives (3).
Since κ ∈ C(2) and "µ is n-supercompact" is Π2, it follows that it is true in V that κ is

a limit of n-supercompact cardinals, which proves (4).

It follows that clause (2) of the above theorem is optimal. In particular, the least
m-supercompact cardinal κ cannot be in C(3), otherwise Vκ satisfies the Σ3-statement
"there is an m-supercompact cardinal", which gives a real m-supercompact cardinal below
κ, contradicting its minimality.

Thus the least m-supercompact cardinal κ is less than any cardinal in C(3). On the
other hand, the least extendible cardinal, if it exists, is in C(3), so is greater than κ. On
the other hand, the consistency strength of m-supercompact cardinals, for m ≥ 2, is much
greater than the strength of extendible cardinals, as shown in the next theorem.

To compare the strength of m-supercompact cardinals with familiar large cardinals,
recall that κ is m-huge with target sequence κ = λ0, . . . , λm if there is an elementary
embedding j : V → M for some transitive M with crit(j) = κ, ji(κ) = λi for 0 ≤ i ≤ m,
and λmM ⊆ M . κ is m-superhuge if κ is huge with a proper class of target sequence
λ0, . . . λm. hugeness is characterized in terms of ultrafilters:
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Proposition 2.1.6. (Theorem 24.8 in [21]) For a natural number m ≥ 1, a cardinal κ is
m-huge if and only if κ > ω and there is a κ-complete normal ultrafilter over some P(λ)
with κ = λ0 < λ1 < . . . λm = λ so that for each i < m,

{x ∈ P(λ) : ot(x ∩ λi+1) = λi} ∈ U .

Note that the proof of the above proposition shows that the ultrafilter U can also be
assumed to be on Pλm−1λ.

We may strengthen hugeness by saying κ is C(n)-m-huge, for some natural numbers
m ≥ 1 and n, if κ is m-huge with target sequence κ = λ0, . . . , λm such that λ1 ∈ C(n).
Similarly, κ is C(n)-m-superhuge if κ is C(n)-m-huge with a proper class of target sequence
κ = λ0, . . . , λm.

Theorem 2.1.7. If m ≥ 2 and κ is m-supercompact, then for any natural number n, Vκ is
a model of ZFC plus "there is a proper class of C(n)-(m− 1)-superhuge cardinals".

Proof. Suppose m ≥ 2 and κ is m-supercompact, take some κ̄ < κ and some elementary
embedding j : Vκ̄+1 → Vκ+1 with jm(crit(j)) = κ. Let crit(j) = µ, then we have
jm−1(µ) = κ̄. Note that since jm−1(µ) is inaccessible, we have P(Pjm−2(µ)j

m−1(µ)) ⊆ Vκ̄+1.
So we may define

U = {X ⊆ Pjm−2(µ)j
m−1(µ) : j“jm−1(µ) ∈ j(X)},

it follows from standard verification that U is a µ = crit(j)-complete normal ultrafilter
over Pjm−2(µ)j

m−1(µ). Moreover the fact that ot(j“jm−1(µ) ∩ ji+1(µ)) = ji(µ) for any
0 ≤ i ≤ (m− 1) implies that

{x ∈ Pjm−2(µ)j
m−1(µ) : ot(x ∩ ji+1(µ)) = ji(µ)} ∈ U

for any 0 ≤ i ≤ (m − 1), which shows that µ is (m − 1)-huge with target sequence
µ, j(µ), . . . jm−1(µ). Define the normal ultrafilter on µ induced by j, namely

U∗ = {X ⊆ µ : µ ∈ j(X)},

since U ∈ Vκ+1, it holds in Vκ+1 that µ is (m−1)-huge with target sequence µ, j(µ), . . . jm−1(µ),
so we have

T0 := {λ < µ : Vκ̄+1 |= “λ is (m− 1)-huge with target sequence λ, µ, . . . jm−2(µ)"} ∈ U∗,

but the quoted statement above is true also in Vκ+1, so we get that for any λ ∈ T0, since
j(λ) = λ,

T1 := {δ < µ : Vκ̄+1 |= “λ is (m− 1)-huge with target sequence λ, δ, µ, . . . jm−3(µ)"} ∈ U∗.

By repeatedly applying this argument we will get T0, . . . , Tm−1 ∈ U∗ such that given any
λ0, . . . , λm−1 with λi ∈ Ti for 0 ≤ i ≤ (m − 1), we have λ0 is (m − 1)-huge with target
sequences λ0, . . . , λm−1.

Now since Vµ is a model of ZFC, we have for nay natural number n,

C(n)
µ = {α < µ : Vµ |= “α is in C(n)"}

is a club set in µ. Since U∗ is a normal measure, we have C(n)
µ ∈ U∗. Thus for any

0 ≤ i ≤ (m − 1) we have C(n)
µ ∩ Ti ∈ U∗. Thus for any λ0 ∈ T0 and λ0 < α < µ we
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may pick λi ∈ Cµ
n ∩ Ti all greater than α for 1 ≤ i ≤ (m − 1). It follows that λ0 is

C(n)-(m− 1)-superhuge in Vµ, thus we have

Vµ |= “there is a proper class of C(n)-m-superhuge cardinals".

Finally, by applying elementarity m-times, we have

Vκ |= “there is a proper class of C(n)-m-superhuge cardinals",

as desired.

Corollary. If κ is 2-supercompact, then for any natural number n, Vκ is a model of ZFC
plus "there is a proper class of C(n)-superhuge cardinals".

An upper bound of the strength of 2-supercompact cardinals is a hyperhuge cardinal,
to which we now turn our attention.

2.2 Hyperhugeness

In this section we study the m-hyperhuge cardinals, together with their C(n)-versions.
As mentioned in section 2.1, m-hyperhuge cardinals were first introduced and known as
(m+ 1)-fold supercompact cardinals in [32].

Hyperhuge cardinals have important applications, as they are first used by Toshimichi
Usuba in [40] to prove his seminal result in set-theoretic geology that the mantle is a ground
of V ∗.

Definition 2.2.1. For a natural number m, a cardinal κ is λ-m-hyperhuge if there is
an elementary embedding j : V → M , M transitive, with crit(j) = κ, λ < j(κ), and
jm(λ)M ⊆ M . κ is m-hyperhuge if κ is λ-m-hyperhuge for all (equivalently, for a proper
class of) λ.

κ is λ-C(n)-m-hyperhuge, for a natural number n, if κ is λ-m-hyperhuge as above,
and additionally j(κ) ∈ C(n). κ is C(n)-m-hyperhuge if κ is λ-C(n)-m-hyperhuge for all
(equivalently, for a proper class of) λ.

Note that we allow m = 0, in which case m-hyperhuge cardinals are just supercompact
cardinals. 1-hyperhuge cardinal will simply be called hyperhuge cardinals.

Here we state a lemma which is simple but will be used repeatedly.

Lemma 2.2.2. If λ is an ordinal and M is a transitive model of ZFC, δM ⊆M for any
δ < λ, and M |= “|Vλ| = λ", then Vλ = (Vλ)

M , thus |Vλ| = λ.

Proof. By induction on α < λ we show that Vα = (Vα)
M . Suppose this holds for α, then

since M |= “|Vα| < λ", it is true in V that |Vα| < λ, thus if X ⊆ Vα then |X| < λ, so
X ∈M . It follows that Vα+1 = (Vα+1)

M . The limit case is immediate.

Proposition 2.2.3. For m ≥ 1, if κ is m-hyperhuge, then κ is C(1)-m-hyperhuge.

Proof. Take any λ ≥ κ, and let j : V →M witnesses that κ is λ-m-hyperhuge. Since κ ∈
C(1), by elementarity we have (j(κ) ∈ C(1))M , namely (|Vj(κ)| = j(κ))M . By Lemma 2.2.2
and j(λ)M ⊆M , we have (Vj(κ))

M = Vj(κ) and |Vj(κ)| = j(κ), thus indeed j(κ) ∈ C(1).

∗An inner model W is a ground of V if V is a set-forcing extension of W , and the mantle is the
intersection of all grounds of V . For more see [17] and [40].
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The above proposition does not hold when m = 0, in which case C(n)-0-hyperhuge
cardinals are also known as the C(n)-supercompact cardinals, first introduced by Bagaria in
[1]. In [20], Yair Hayut, Menachem Magidor and Alejandro Poveda studied the Identity
Crisis of C(n)-supercompact cardinals. They showed (assuming stronger large cardinal
hypotheses) that, on the one hand, it is consistent that the first supercompact cardinal is
less than the first C(1)-supercompact cardinal, while on the other hand, it is consistent that
the first strongly compact cardinal is the first C(n)-supercompact cardinal, simultaneously
for all n.

Interestingly, m-hyperhugeness can also be combinatorially characterized in terms of
m-supercompact measures: m-supercompact cardinals are the last entries of the target
sequences of m-supercompact measures, while m-hyperhuge cardinals are the first entries
of the target sequences of (m+ 1)-supercompact measures.

Theorem 2.2.4. For a natural number m and cardinals κ < λ, κ is λ-m-hyperhuge if and
only if there are κm < λm and an (m+1)-supercompact measure U for (κm, λm) with target
sequences κ = κ0, . . . , κm and λ = λ0, . . . , λm.

Proof. For the forward direction, suppose κ < λ and κ is λ-m-hyperhuge, witnessed by
j : V →M with crit(j) = κ, λ < j(κ) and jm(λ)M ⊆M . Define

U = {X ⊆ P(jm(λ)) : j“jm(λ) ∈ j(X)},

it is not hard to verify that U is an (m+ 1)-supercompactness measure for (jm(κ), jm(λ))
with target sequences κ, . . . , jm(κ) and λ, . . . , jm(λ).

Conversely, suppose there are κm < λm and an (m + 1)-supercompact measure for
(κm, λm) with target sequences κ = κ0, . . . , κm and λ = λ0, . . . , λm. Then let j : V →
Ult(V,U) ∼=M be the ultrapower embedding given by U . It follows that crit(j) = κ0 = κ,
j(κ) > λ0 = λ, jm(λ) = λm and jm(λ)M ⊆M , witnessing that κ is λ-m-hyperhuge.

In light of the above characterization, we will also use the following terminology:

Definition 2.2.5. If κ ≤ λ and U is a (m+ 1)-supercompact measure for some (κm, λm)
with target sequences κ = κ0, . . . , κm and λ = λ0, . . . , λm, we will also say that U is
an m-hyperhuge measure for (κ, λ) (with the same target sequence κ = κ0, . . . , κm and
λ = λ0, . . . , λm).

Corollary. Given natural numbers m ≥ 1, n, and cardinal κ. For λ ≥ κ, κ is λ-C(n)-m-
hyperhuge if and only if there are κm < λm and an m-hyperhuge measure U for (κ, λ) with
target sequences κ = κ0, . . . , κm, λ = λ0, . . . , λm, and κ1 ∈ C(n). We will sometimes call
such a measure U a C(n)-m-hyperhuge measure for (κ, λ).

If m = 0, then the C(n)-supercompact cardinals (i.e., C(n)-0-hyperhuge cardinals) can
be characterized via the existence of certain long extenders. It follows that for n ≥ 1 and
λ ≥ κ, "κ is λ-C(n)-supercompact" is Σn+1-expressible, and thus "κ is C(n)-supercompact"
is Πn+2. For details see section 5 of [1].

Note that unlike "there is an m-supercompact measure for (κ, λ) with target sequences
κ0, . . . , κm−1 = κ and λ0, . . . , λm−1 = λ", which we have seen is ∆2, "there is an m-
hyperhuge measure for (κ, λ) with target sequences κ = κ0, . . . , κm and λ0, . . . , λm" is Σ2,
but not Π2.

Thus it follows from the above corollary that for n ≥ 1 andm, "κ is λ-C(n)-m-hyperhuge"
is Σn+1, and "κ is C(n)-m-hyperhuge" is Πn+2. In particular "κ is m-hyperhuge" is Π3.

As in the case of m-supercompact cardinals, the C(n)-m-hyperhuge cardinals form a
proper hierarchy in a strong sense, where usually if we decrease either m or n, we get a
notion both weaker in consistency strength and smaller in size of the least instance.
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Proposition 2.2.6. For natural numbers m,n ≥ 1, if κ is a C(n)-m-hyperhuge cardinal,
then the following hold:

1. κ is C(n′)-m′-hyperhuge for any m′ ≤ m and n′ ≤ n,

2. κ ∈ C(n+2),

3. Vκ |= ZFC+"there is a proper class of C(n)-m′-hyperhuge cardinals", and κ is a limit
of C(n)-m′-hyperhuge cardinals, for any m′ < m, and

4. If n ≥ 2, Vκ |= ZFC+"there is a proper class of C(n′)-m-hyperhuge cardinals", and κ
is a limit of C(n′)-m-hyperhuge cardinals, for any n′ < n.

Proof. (1) follows simply by definition.
For (2), note that if λ > κ and |Vλ| = λ, then if j : V → M witnesses the C(n)-

m-hyperhugeness of κ, with λ < j(κ) ∈ C(n), it follows that (Vj(λ))
M = Vj(λ), thus

j↾Vλ : Vλ → Vj(λ) is elementary and witness that κ is λ-C(n)-extendible. Thus κ is
C(n)-extendible, and is in C(n+2) by Proposition 3.4 of [1].

For (3), note that κ is clearly almost m-huge, so (3) follows from Theorem 2.2.9 below.
For (4), note that we require n ≥ 2, because as Proposition 2.2.3 shows, m-hyperhugeness,

C(0)-m-hyperhugeness and C(1)-m-hyperhugeness are all the same. Now to prove (4), if
n ≥ 2 and n′ < n, then as remarked before, "κ is C(n′)-m-hyperhuge" is Πn′+2-expressible,
so "there exists some C(n′)-m-hyperhuge cardinal" is Σn′+3, therefore also Σn+2, so by
(2) this is true in Vκ. Now given α < κ such that Vκ |= “α is C(n′)-m-hyperhuge", the
statement "there exists some C(n′)-m-hyperhuge cardinal greater than α" is Σn+2 with the
parameter α, and is true in V witnessed by κ itself, so the statement is again true in Vκ. It
follows that there are unboundedly many α < κ such that Vκ |= “α is C(n′)-m-hyperhuge",
and α is C(n′)-m-hyperhuge in V , as desired.

In particular, hyperhuge cardinals are in C(3). Given that "there exists a C(n)-m-
hyperhuge cardinal" is Σn+3, it follows that clause (2) of the previous theorem is optimal.

Proposition 2.2.7. For natural numbers m,n ≥ 1, if there is an C(n+2)-m-hyperhuge
cardinal, then there is a proper class of C(n)-m-hyperhuge cardinals.

Proof. Given such m,n ≥ 1 and some C(n+2)-m-hyperhuge κ, by Proposition 2.2.6, it is
true in Vκ that there is a proper class of C(n)-m-hyperhuge cardinals. Note that "there is
a proper class of C(n)-m-hyperhuge cardinals" is Πn+4-expressible, so it holds in V given
that κ ∈ C(n+4).

Let us observe that, if m,n ≥ 1, then a C(n+1)-m-hyperhuge cardinal κ does not imply
that there is some C(n)-m-hyperhuge cardinal λ > κ, for if it does, then the C(n+1)-m-
hyperhugeness of κ would reflects down to Vλ, given that λ ∈ C(n+2) and "κ is C(n+1)-m-
hyperhuge" is Πn+3, hence we would be proving the consistency of a C(n+1)-m-hyperhuge
cardinal.

The next proposition shows that, in terms of consistency strength, m-hyperhuge cardinals
are strictly stronger than (m+ 1)-supercompact cardinals.

Proposition 2.2.8. For a natural number m ≥ 1, if κ is m-hyperhuge, then

1. κ is (m+ 1)-supercompact and a limit of (m+ 1)-supercompact cardinals.

2. Vκ is a model of ZFC plus "there is a proper class of (m+1)-supercompact cardinals".
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Proof. For any δ > κ, let λ > δ with |Vλ| = λ, and let U be an m-hyperhuge measure for
(κ, λ), with target sequences κ = κ0, . . . , κm and λ = λ0, . . . , λm. Let j : V → Ult(V,U) ∼=
M be the ultrapower embedding. We have crit(j) = κ, λ < j(κ) and jm(λ)M ⊆ M .
By applying elementarity and Lemma 2.2.2 repeatedly, it follows that |Vλi

| = λi for any
0 ≤ i ≤ m, and Vjm(λ) = (Vjm(λ))

M .
Note that since jm(δ) < jm(λ), letting

U∗ = {X ⊆ P(jm(δ)) : j“jm(δ) ∈ j(X)},

it follows that U∗ is an (m + 1)-supercompact measure for (jm(κ), jm(δ)), and U∗ is in
Vjm(λ) = (Vjm(λ))

M . By elementarity, there is an (m + 1)-supercompact measure for
(jm−1(κ), jm−1(δ)) in Vjm−1(λ) ⊆M . By applying elementarity (m−1) more times, there is
an (m+1)-supercompact measure for (κ, δ). Since δ > κ is arbitrary, it follows from Theorem
2.1.4 that κ is (m+ 1)-supercompact. Moreover, since "there is an (m+ 1)-supercompact
cardinal" is Σ3, we have by Proposition 2.2.6 that there is some (m + 1)-supercompact
cardinal α < κ. Again "there is some (m+ 1)-supercompact cardinal greater than α" is Σ3

with the parameter α, so it is reflected in Vκ. Thus there are unboundedly many α < κ
that are (m+ 1)-supercompact in Vκ, and also in V . Thus (1) and (2) follow.

Now we give an upper bound on the strength of C(n)-m-hyperhuge cardinals. We say a
cardinal κ is almost m-huge, for m ≥ 1, if there is an elementary embedding j : V → M
with crit(j) = κ and λM ⊆M for any λ < jm(κ).

Theorem 2.2.9. For m ≥ 1, if κ is almost m-huge, then for any natural number n, Vκ is
a model of ZFC plus "there is a proper class of C(n)-(m− 1)-hyperhuge cardinals".

Proof. Ifm = 1, then C(n)-(m−1)-hyperhuge cardinals are the C(n)-supercompact cardinals,
and our conclusion follows from Theorem 2.21 of [38].

Now suppose m ≥ 2 and κ is almost m-huge, witnessed by some elementary embedding
j : V →M with crit(j) = κ and λM ⊆M for any λ < jm(κ).

For any λ < j(κ), we have jm−1(λ) < jm(κ), so by the closure property of M we have
j“jm−1(λ) ∈M , so it makes sense to define

U = {X ⊆ P(jm−1(λ)) : j“jm−1(λ) ∈ j(X)}

which is an m-supercompact measure for (jm−1(κ), jm−1(λ)), namely an (m−1)-hyperhuge
measure for (κ, λ), with target sequences κ, . . . , jm−1(κ) and λ, . . . , jm−1(λ). It follows
that U ∈ Vjm(κ) = (Vjm(κ))

M , by Lemma 2.2.2. So we have

M |= “∀λ < j(κ) there is an (m− 1)-hyperhuge measure for (κ, λ) in Vjm(κ)

with some target sequences α and β of length (m− 1) with α0 = κ and α1 = j(κ)",

Let U∗ be the induced normal ultrafilter on κ by j, namely U∗ = {X ⊆ κ : κ ∈ j(X)}. By
elementarity, we have

D = {µ < κ : ∀λ < κ there is an (m− 1)-hyperhuge measure for (µ, λ) in Vjm−1(κ)

with some target sequences α and β of length (m− 1) with α0 = µ and α1 = κ} ∈ U∗,

Since all the measures mentioned above are in M , we have for any µ ∈ D that

Dµ = {δ < κ : ∀λ < δ there is an (m− 1)-hyperhuge measure for (µ, λ) in Vjm−2(κ)

with some target sequences α and β of length (m− 1) with α0 = µ and α1 = δ} ∈ U∗.
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By letting C(n)
κ = {α < κ : Vκ |= “α ∈ C(n)"}, we get that Dµ ∩ C(n)

κ ∈ U∗. Now it
follows by applying elementarity (m−2) more times that we will get that for any µ ∈ D and
µ < β < κ, there is some β < δ ∈ C

(n)
κ such that there is an (m− 1)-hyperhuge measure

for (µ, δ) in Vκ with some target sequences α and β of length (m − 1) with α0 = µ and
α1 = δ. It follows that Vκ |= “there is a proper class of C(n)-(m− 1)-hyperhuge cardinals",
as desired.

Corollary. For any natural number n and cardinal κ, if κ is almost 2-huge, then Vκ is a
model of ZFC plus "there is a proper class of C(n)-hyperhuge cardinals".

In particular, so far we have shown that in terms of consistency strength,

supercompact < almost huge < C(n)-superhuge
< 2-supercompact < hyperhuge < almost 2-huge.

2.3 Higher extendibility

In this section we consider m-fold extendible cardinals (which were first introduced in
[32]) and their C(n) versions. Our definition of m-fold extendibility is slightly different but
equivalent to the definition in [32].

Definition 2.3.1. For a natural number m ≥ 1, a cardinal κ is η-m-fold extendible if
there is some elementary embedding j : Vjm−1(κ+η) → Vδ for some δ, with crit(j) = κ and
κ+ η < j(κ).

κ is m-fold extendible if it is η-m-fold extendible for all (equivalently, a proper class of)
η.

Moreover, for a natural number n, κ is η-C(n)-m-fold extendible if it is η-m-fold
extendible as above, but additionally we have j(κ) ∈ C(n). κ is C(n)-m-fold extendible if it
is η-C(n)-m-fold extendible for all η.

Note that the 1-fold extendible cardinals are just extendible cardinals. Moreover, it is
not difficult to see that m-fold extendible cardinals, C(0)-m-fold extendible cardinals, and
C(1)-m-fold extendible cardinals are the same.

Both m-hyperhuge cardinals and m-fold extendible cardinals, without the C(n) variants,
were studied by Sato in [32], but the precise relation between the two was unknown. Sato
asked the following question∗:

Question 2.3.2. Are the statements "there is an m-hyperhuge cardinal" and "there is an
(m+ 1)-fold extendible cardinal" equiconsistent, for m ≥ 1?

Based on the analysis of the reflective properties of the C(n)-m-hyperhuge cardinals in
the previous section, it follows that the answer is positive, and more: it turns out that the
two notions, even their C(n) versions, are not only equiconsistent, but provably equivalent.

Theorem 2.3.3. For natural numbers m,n ≥ 1, a cardinal κ is C(n)-m-hyperhuge if and
only if κ is C(n)-(m+ 1)-fold extendible.

Proof. For the forward direction, suppose κ is C(n)-m-hyperhuge, but not C(n)-(m+1)-fold
extendible. Let λ = |Vλ| be such that κ is not λ-C(n)-(m+1)-fold extendible, and let U be an
m-hyperhuge measure for (κ, λ), with target sequences κ = κ0, . . . , κm and λ = λ0, . . . , λm,
with κ1 ∈ C(n).

∗Phrased in our terms, where we use "m-hyperhuge" instead of "(m+ 1)-fold supercompact".
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Let j : V → Ult(V,U) ∼= M be the ultrapower embedding, we have crit(j) = κ,
λ < j(κ) = κ1 ∈ C(n), and jm(λ)M ⊆ M . By elementarity, M |= “|Vj(λ)| = j(λ)", so by
Lemma 2.2.2 |Vj(λ)| = j(λ), thus again M |= “|Vj2(λ)| = j2(λ)", which is true in V if m ≥ 2.
By repeating the same argument we have (Vjm(λ))

M = Vjm(λ) and |Vjm(λ)| = jm(λ).
Now note that the statement "κ is not λ-C(n)-(m+ 1)-fold extendible" is Πn+1 with

parameters κ and λ, since it is equivalent to

¬∃δ, j(j : Vjm(λ) → Vδ is elementary, crit(j) = κ, and λ < j(κ) ∈ C(n)).

Since j(κ) ∈ C(n), the above statement is reflected in Vj(κ) = (Vj(κ))
M . By Proposition

2.2.6, κ ∈ C(n+1), so by elementarity M |= “j(κ) ∈ C(n+1)", thus

M |= “κ is not λ-C(n)-(m+ 1)-fold extendible".

However, we have j↾Vjm(λ) : Vjm(λ) → (Vjm+1(λ))
M ∈M , which is after all the required

embedding in M to witness the λ-C(n)-(m+ 1)-fold extendibility of κ. Contradiction.

For the converse direction, suppose κ is C(n)-(m+ 1)-fold extendible and λ = κ+ λ.
Let η > λ, and let j : Vjm(η) → Vδ, with crit(j) = κ and η < j(κ) ∈ C(n).

Since λ < η, jm(λ) < jm(η), we may define

U = {X ⊆ P(jm(λ)) : j“jm(λ) ∈ j(X)}

and one can verify that this is a C(n)-m-hyperhuge measure for (κ, λ), with target sequences
κ, . . . , jm(κ) and λ, . . . , jm(λ). Since λ can be chosen to be arbitrarily large, κ is C(n)-m-
hyperhuge.

Note that the above is also true if n = 0. Also note that if m = 0, the converse
direction of the above theorem says that C(n)-extendible cardinals are C(n)-supercompact,
which also holds, by Corollary 2.29 of [38]. Also, the forward direction for m = 0 is
provably false. Poveda showed in [28] that for any n, any C(n)-extendible cardinal is a limit
of C(n)-supercompact cardinals, which also implies that consistencywise, C(n)-extendible
cardinals are stronger than C(n)-supercompact cardinals.

It follows from the above theorem that our analysis of properties and consistency
strength of C(n)-m-hyperhuge cardinals in the previous section carry over directly to
C(n)-(m+ 1)-fold extendible cardinals.
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Chapter 3

Correspondence

As remarked in Chapter 1, the research program of structural reflection (for a survey
see [2]) has shown that the same pattern of correspondence holds between different forms
of structural reflection principles and large cardinal axioms of various levels of consistency
strength, as emphasized in [7]. However, although the region between supercompactness
and Vopěnka’s Principle is the first region in which such a pattern of correspondence was
discovered (initially presented in [1]), subsequent developments have centered on weaker
principles. Although stronger forms of structural reflection principles were proposed (see
[6]), the same pattern of correspondence between them and large cardinals no longer holds.

In this chapter we show that the higher structural reflection principles introduced
in chapter 1, namely LSR and CSR, which we have argued are natural and motivated
principles, correspond to the very large cardinals we introduced in chapter 2 in exactly
the same pattern desired, advancing the pattern of correspondence to large cardinals of
much greater strength than before. In particular, Π1-LSR and Π1-CSR correspond to
2-supercompact cardinals as Π1-SR corresponds to supercompact cardinals, and Πn+1-LSR
and Πn+1-CSR correspond to C(n)-2-fold extendible cardinals as Πn+1-SR corresponds to
C(n)-extendible cardinals, for all n ≥ 1.

3.1 The Π1 case

LVP(Π1) is very strong, implying the existence of some 2-supercompact cardinal, thus
by Theorem 2.1.7 has stronger strength than a proper class of C(n)-superhuge cardinals,
for all n.

Theorem 3.1.1.

1. If LVP(Π1) holds, then there exists a 2-supercompact cardinal.

2. If LVP(Π1) holds, then there exists a proper class of 2-supercompact cardinals.

Proof. For (1): suppose LVP(Π1) holds, but there are no 2-supercompact cardinals. Then
define the function F : Ord→ Ord as in Theorem 2.1.4, namely F (α) = the least β > α
such that there is no 2-supercompact measure U for (α, β), provided that there is any such
β. Otherwise let F (α) = 0. Define a class D of ordinals such that γ ∈ D if and only if α is
closed under F , namely

∀α < γ∃β < γF (α) = β.

Thus under our assumption we have α < F (α) for any ordinal α.
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Now define a class C of structures of the form (Vα,∈, α, δ, f) such that δ < α ∈ C(1), α
is a limit point of D, and f is a function with domain ω and range unbounded in α. We
claim that C is Π1-definable without parameters. To see this, note that X ∈ C if and only
if X is of the form (X0, X1, X2, X3, X4) such that

(i) X2, X3 are ordinals and X3 ∈ X2,

(ii) X2 ∈ C(1),

(iii) X0 = VX2 ,

(iv) X1 =∈ ↾X0,

(v) ∃x ∈ X0(x = ω ∧ dom(f) = x ∧ ∀y ∈ X2∃z ∈ x(y < f(z))), and

(vi) ∀x ∈ X2∃y ∈ X2(x ∈ y ∧X0 |= “y ∈ D”).

The point is that for any ordinal η < α, η ∈ D if and only if Vα |= “η ∈ D”, since the
relevant normal ultrafilters are all in Vα. The role of f is to ensure that α is of countable
cofinality.
Claim 3.1.2. C is a proper class.

Proof. For any ordinal ξ, we describe a function G as follows: let ξ0 = ξ, and given
ξi, let ξ0i ≥ supα≤ξi F (α), and let ξ1i be the least element of C(1) above ξi. Then set
ξi+1 = max{ξ0i , ξ1i }. Let G(ξ) = supi∈ω ξi ∈ D. Let α = {Gi(ξ) : i ∈ ω}. Then we have
cf(α) = ω and there is some structure X ∈ C of rank α > ξ. Since ξ is arbitrary, this
implies that C forms a proper class.

Thus by LVP(Π1), there are α ≠ β with C∩(Vα+1\Vα) ̸= ϕ and C∩(Vβ+1\Vβ) ̸= ϕ such
that for any B ∈ C of rank β there is some A ∈ C of rank α and an elementary embedding
j : A→ B. Thus we have α < β. Now consider the structure (Vβ,∈, β, α, f) ∈ C, where f
is any cofinal function from ω to β. It follows that there is some (Vα,∈, α, δ, g) ∈ C with an
elementary embedding

j : (Vα,∈, α, δ, g) → (Vβ,∈, β, α, f).

Note that since δ < α = j(δ), we have crit(j) ≤ δ. But crit(j) cannot be δ, since we
have

(Vβ,∈, β, α, f) |= cf(α) = ω,

so by elementarity
(Vα,∈, α, δ, g) |= cf(δ) = ω,

but crit(j) is inaccessible. Thus let crit(j) = µ, we have µ < δ.
Claim 3.1.3. {δ, µ, j(µ)} ⊆ lim(D).

Proof. To see that δ ∈ lim(D), note that since α ∈ lim(D), we have (Vβ,∈, β, α, f) |=
“α ∈ lim(D)”, so by elementarity we have (Vα,∈, α, δ, g) |= “δ ∈ lim(D)”, which is true in
V .

To see that µ ∈ lim(D), suppose not. Then since D is a club class, there must be some
η < µ such that there is no element in D strictly between η and µ. But then note that since
D is definable in both (Vα,∈, α, δ, g) and (Vβ,∈, β, α, f), and the least element ξ ∈ D above
µ is below δ, we have by elementarity that j(ξ) is the least element of D above j(η) = η,
which is ξ, but then we have j↾Vξ+2 : Vξ+2 → Vξ+2 is a nontrivial elementary embedding,
contradicting the Kunen Inconsistency.

Lastly, since (Vα,∈, α, δ, g) |= “µ ∈ lim(D)”, we have j(µ) ∈ lim(D) by elementarity.
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Now let η = min{δ, j(µ)}. Since δ, j(µ) ∈ D, it follows that there is some λ < η such
that F (µ) = λ, namely there is no 2-supercompact measure U for (µ, λ). But since λ < δ,
we have j(λ) < j(δ) = α. Moreover we have λ < j(µ), so if we define

U = {X ⊆ P(j(λ)) : j“j(λ) ∈ j(X)},

then one can verify that U is a 2-supercompact measure U for (j(µ), j(λ)), with target
sequences µ, j(µ) and λ, j(λ). Since U ∈ Vβ , by the elementarity of j we have

(Vα,∈, α, δ, g) |= “There is a 2-supercompact measure U for (µ, λ)”

which is true in V , but this contradicts the definition of F . Thus there must indeed exist
some 2-supercompact cardinal.

(2): Suppose that the class of 2-supercompact cardinals is bounded in Ord, then let η
be such that there is no 2-supercompact cardinal above η. Now argue similarly as in (1):
define D to be the class of limit ordinals γ such that

η < γ ∧ ∀α < γ[(η < α) → (∃β < γF (α) = β)].

Then proceed as before, and define the class C of structures of the form (Vα,∈, α, δ, η, f) such
that η < δ < α, α ∈ C(1)∩ lim(D), and f is a function with domain ω and range unbounded
in α. Again C is Π1-definable with the parameter η, and can be shown to be a proper class
as before. Thus by LVP(Πn+1) there are α < β and (Vα,∈, α, δ, η, g), (Vβ,∈, β, α, η, f) ∈ C
with some elementary embedding

j : (Vα,∈, α, δ, η, g) → (Vβ,∈, β, α, η, f).

Arguing as in (1), and noting the fact that j(η) = η, we have crit(j) = µ > η. Similarly
we have some λ < min{j(µ), δ} such that F (µ) = λ but there is some 2-supercompact
measure U for (µ, λ), contradiction.

Conversely, a 2-supercompact cardinal κ implies that CSR(κ,Σ2) holds.

Theorem 3.1.4. If κ is 2-supercompact, then CSR(κ,Σ2) holds.

Proof. Suppose that κ is 2-supercompact but CSR(κ,Σ2) fails. Let λ > κ be such that
Vλ is sufficiently correct (for example λ ∈ C(5) is more than enough) so that Vλ |=
“CSR(κ,Σ2) fails”.

By Theorem 2.1.4, let U be a 2-supercompact measure for (κ, λ), with some target
sequences κ̄, κ and λ̄, λ. Let j : V → Ult(V,U) ∼= M be the conrresponding ultrapower
embedding. We then have crit(j) = κ̄, λ̄ < j(κ̄) = κ, j(λ̄) = λ, and λM ⊆ M . Since
|Vλ| = λ we have Vλ = (Vλ)

M , so

M |= “Vλ |= “CSR(κ,Σ2) fails” ”

hence by the elementarity of j we have Vλ̄ |=“CSR(κ̄,Σ2) fails”. So there are b0, . . . , bk−1 ∈
Vκ̄ and some Σ2-formula ϕ such that

Vλ̄ |= “ϕ(X, b0, . . . , bk−1) defines a class of structures of the same type”,

(though it does not immediately follow that the quoted statement is true in V ), yet there is
some B ∈ Vλ̄ such that

Vλ̄ |= “ϕ(B, b0, . . . , bk−1) holds and
there is no A ∈ Vκ̄ with ϕ(A, b0, . . . , bk−1) holds that captures B”.
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By elementarity and the fact that j(bi) = bi for all 0 ≤ i ≤ (k − 1), it is also true in
Vλ that ϕ(X, b0, . . . , bk−1) defines a class of structures of the same type. Moreover, since
M |= “λ ∈ C(1)”, we have λ̄ ∈ C(1) by elementarity, so by the upward-absoluteness of
Σ2-formula, we have ϕ(B, b0, . . . , bk−1) holds in V , and also in Vλ. By elementarity we have

Vλ |= “ϕ(j(B), b0, . . . , bk−1) holds and
there is no A ∈ Vκ with ϕ(A, b0, . . . , bk−1) holds that captures j(B)”

and it follows that B and j(B) are of the same type. Since B ∈ Vλ̄ ⊆ Vκ, it follows that
B does not capture j(B), so there is some y ∈ j(B) such that there is no elementary
embedding k : B → j(B) with y ∈ ran(k). By elementarity we have

M |= “There is no elementary embedding k : j(B) → j2(B) with j(y) ∈ ran(k)”

but note that since |j(B)| < |Vλ| = λ and λM ⊆M , we have k = j↾j(B) : j(B) → j2(B) is
elementary, and is in M . But we have k(y) = j(y), so y ∈ ran(k) so k is the elementary
embedding that is supposed to be missing in M , a contradiction. Thus CSR(κ,Σ2) must
hold.

Next we show that in general CVP implies LVP:

Proposition 3.1.5. For any natural number n ≥ 1, if CVP(Πn) holds, then LVP(Πn)
holds. Similarly if CVP(Πn) holds, then LVP(Πn) holds.

Proof. Suppose CVP(Πn) holds. To show that LVP(Πn) holds, given a proper class of
structures C = {B : ϕ(B, b0, . . . , bk−1)}, where ϕ(x, y0, . . . , yk−1) is Πn, we must find α ̸= β
with C ∩ (Vα+1 \ Vα) ̸= ϕ and C ∩ (Vβ+1 \ Vβ) ̸= ϕ for any B ∈ C of rank β there is some
A ∈ C of rank α and an elementary embedding j : A→ B. Define the class C∗ of structures
of the form (Vδ,∈, δ, α, b0, . . . , bk−1), where δ > α are ordinals, δ is the least element of
C(n) above α, and C ∩ (Vα+1 \Vα) ̸= ϕ. C∗ is Πn-definable with the parameters b0, . . . , bk−1,
since X ∈ C∗ if and only if X = (X0, X1, X2, X3, X4, . . . , Xk+3), where

(i) X2, X3 are ordinals, with X3 < X2,

(ii) X0 = VX2 ,

(iii) X1 =∈ ↾X0,

(iv) X4+i = bi for 0 ≤ i ≤ k − 1,

(v) X2 ∈ C(n) ∧ ∀β ∈ X2(X3 < β → X0 |= “β /∈ C(n)”), and

(vi) X0 |= “∃B(rank(B) = X3 ∧ ϕ(B,X4, . . . , Xk+3) holds”.

Since C is a proper class, it is clear that C∗ is also a proper class, thus by CVP(Πn) there
are X ≠ Y ∈ C∗ such that X captures Y , where X is of the form (Vδ,∈, δ, α, b0, . . . , bk−1),
and Y is of the form (Vµ,∈, µ, β, b0, . . . , bk−1). It follows that α ̸= β, otherwise we have
δ = µ by the definition of C∗, which implies that X = Y . But now for any B ∈ C of rank β,
we have B ∈ Vµ, and so there is an elementary embedding

j : (Vδ,∈, δ, α, b0, . . . , bk−1) → (Vµ,∈, µ, β, b0, . . . , bk−1)

with B ∈ ran(j). But then letting j(A) = B, we have

(Vµ,∈, µ, β, b0, . . . , bk−1) |= “rank(B) = β ∧ ϕ(B, b0, . . . , bk−1) holds”
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so by elementarity

(Vδ,∈, δ, α, b0, . . . , bk−1) |= “rank(A) = α ∧ ϕ(A, b0, . . . , bk−1) holds”

which implies that A ∈ C. Moreover, j↾A : A→ B is elementary. It follows that α, β are as
desired, so LVP(Πn) holds.

That CVP(Πn) implies LVP(Πn) can be proved similarly, without considering parameters.

Corollary. The following statements are equivalent:

1. LVP(Π1).

2. LSR(κ,Σ2) holds for some κ.

3. CVP(Π1).

4. CSR(κ,Σ2) holds for some κ.

5. There exists a 2-supercompact cardinal.

Proof. (1) implies (5) by Theorem 3.1.1. (5) implies (4) by Theorem 3.1.4. (4) implies (3)
and (2) implies (1) straightforwardly by definitions. (3) implies (1) by Proposition 3.1.5,
which implies (5), which then implies (4), which implies (2) by Proposition 1.3.3. This
closes the cycle.

Similarly we obtain the boldface version of the equivalence.

Corollary. The following statements are equivalent:

1. LVP(Π1).

2. LSR(κ,Σ2) holds for a proper class of κ.

3. CVP(Π1).

4. CSR(κ,Σ2) holds for a proper class of κ.

5. There exists a proper class of 2-supercompact cardinals.

LSR can also be used to characterize the least 2-supercompact cardinal:

Theorem 3.1.6. If κ is the least ordinal such that LSR(κ,Π1) holds, then κ is 2-
supercompact.

Proof. Suppose κ is the least ordinal such that LSR(κ,Π1) holds, but is not 2-supercompact.
Then there is no 2-supercompact cardinals ≤ κ, otherwise we have, by Theorem 3.1.4, some
α < κ such that CSR(α,Π1) holds, which by Proposition 1.3.3 implies LSR(α,Π1) holds,
contradicting the minimality of κ.

Thus D := {α : ∃λ ≤ κ such that there is a 2-supercompact measure for (λ, α)} is a
bounded class of ordinals, so we can take some β > max{κ, supD} where Vβ is sufficiently
correct (say β ∈ C(4)) and cf(β) = ω. Now define the class C of structures of the form
(Vγ ,∈, γ, ξ, η, f), where η < ξ < γ, γ ∈ C(1), and f : ω → γ is cofinal. It is clear that C is
Π1-definable without parameters.

Now by LSR(κ,Π1), there is some α such that for any B ∈ C of rank β there is some
A ∈ C of rank α elementarily embeddable into B. So consider some (Vβ,∈, β, κ, α, f) ∈ C,
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which exists since cf(β) = ω. Thus we get some (Vα,∈ α, λ, η, g) ∈ C with elementary
embedding

j : (Vα,∈ α, λ, η, g) → (Vβ,∈, β, κ, α, f).

As before, we have crit(j) ≤ η, which implies crit(j) < η given that cf(α) = ω. Let
crit(j) = µ < η.
Claim 3.1.7. j(µ) ≤ λ.

Proof. Suppose for contradiction that j(µ) > λ. Since we are supposing that κ is the least
ordinal with LSR(κ,Π1) holds and that Vβ is sufficiently correct, this property of κ is
reflected in Vβ , thus by elementarity

(Vα,∈ α, λ, η, g) |= “λ is the least ordinal such that LSR(λ,Π1) holds”,

now since we have j(µ) > λ, we have

(Vβ,∈, β, κ, αf) |= “Vα |= “∃ξ < j(µ) LSR(ξ,Π1) holds” ”,

which gives
(Vα,∈ α, λ, η, g) |= “Vη |= “∃ξ < µ LSR(ξ,Π1) holds” ”.

Let ξ < µ be such a witness. We have, by elementarity, that

(Vα,∈ α, λ, η, g) |= “LSR(j(ξ),Π1) holds”,

and finally
(Vβ,∈, β, κ, α, f) |= “LSR(j2(ξ),Π1) holds”.

Thus, by the correctness of Vβ, it is true in V that j2(ξ) = ξ < κ is such that LSR(ξ,Π1)
holds, contradicting the minimality of κ.

Claim 3.1.8. If γ = min{η, j(µ)}, then there is a 2-supercompact measure for (µ, ξ) for any
ξ with µ ≤ ξ < γ.

Proof. Let ξ be such that µ ≤ ξ < γ. Since ξ < η, we have j(ξ) < α. So we define

U = {X ⊆ P(j(ξ)) : j“j(ξ) ∈ j(X)}

and one can verify that U is a 2-supercompact measure for (j(µ), j(ξ)) with target sequences
µ, j(µ) and ξ, j(ξ). Since U ∈ Vβ , we have by elementarity that

(Vα,∈, α, λ, η, g) |= “There is a 2-supercompact measure U for (µ, ξ)”

which is true in V .

Claim 3.1.9. There is some natural number i such that α < ji(µ).

Proof. Suppose not, then we have µω = supi∈ω j
i(µ) < α, which implies µω < λ, thus

j : Vµω+2 : Vµω+2 → Vµω+2 contradicts the Kunen Inconsistency.

Now we distinguish between two cases, both giving rise to a contradiction.
Case 0: γ = η.

In this case, observe that we have Vη |= “µ is 2-supercompact”, so we have

Vα |= “j(µ) is 2-supercompact”
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and thus Vβ |= “j2(µ) is 2-supercompact”, which implies that it is true in V that j2(µ)
is 2-supercompact, since Vβ ≺Σ2 V . But since j(µ) ≤ λ, we have j2(µ) ≤ κ, which is a
contradiction.
Case 1: γ = j(µ).

In this case we have Vj(µ) |= “µ is 2-supercompact”. Let i ≥ 2 be the least with
ji(µ) ≥ α. Note that we have Vµ ≺ Vj(µ), so by elementarity we have Vjk(µ) ≺ Vjk+1(µ) for
any 0 ≤ k < i. It follows that Vji(µ) |= “µ is 2-supercompact”. Since for any ξ < α, the
witnessing 2-supercompact measure for (µ, ξ) is in Vα, we have Vα |= “µ is 2-supercompact”,
implying Vβ |= “j(µ) is 2-supercompact”, which also holds in V . But since j(µ) < κ, this
is a contradiction.

Thus it follows that κ must be 2-supercompact, which concludes the proof.

Corollary. The following are equivalent for every cardinal κ:

1. κ is the least 2-supercompact cardinal.

2. κ is the least ordinal such that CSR(κ,Σ2) holds.

3. κ is the least ordinal such that CSR(κ,Π1) holds.

4. κ is the least ordinal such that LSR(κ,Σ2) holds.

5. κ is the least ordinal such that LSR(κ,Π1) holds.

Proof. The three properties of κ, CSR(κ,Σ2), CSR(κ,Π1) and LSR(κ,Σ2), all imply that
LSR(κ,Π1) holds, where CSR(κ,Π1) implies LSR(κ,Π1) by Proposition 1.3.3. But the least
ordinal κ such that LSR(κ,Π1) holds is 2-supercompact by Theorem 3.1.6, which implies
that all of the three properties above hold at κ. It follows that (1)-(5) are all equivalent.

We also have a boldface version of the above corollary:

Corollary. The following are equivalent for every cardinal κ:

1. κ is either 2-supercompact cardinal or a limit of 2-supercompact cardinals.

2. CSR(κ,Π1).

3. LSR(κ,Π1).

Proof. Observe that if κ is a limit of ordinals α such that CSR(α,Π1) holds, then we also
have CSR(κ,Π1) holds. It follows that (1) implies (2). (2) implies (3) by Proposition 1.3.3.
To see that (3) implies (1), suppose for a contradiction that (3) holds but there is some
ν < κ such that for any γ with ν ≤ γ ≤ κ, γ is not 2-supercompact. Now we can argue
similarly as in the proof of Theorem 3.1.6 as follows. In the proof, define instead that
D = {α : ∃λ(η ≤ λ ≤ κ) such that there is some 2-supercompact measure for (λ, α)}. Let
C of the structures of the form (Vγ ,∈, γ, ξ, η, ν, f), where the conditions except for ν are
the same as in the proof. C is then a Π1-definable class with the parameter ν < κ. Thus
we may proceed similarly, and we are ensured that the critical point µ as in the proof is
greater than ν, which is fixed by j, thus as in both Case 0 and Case 1, we find some ordinal
in the interval [ν, κ] to be 2-supercompact, contradicting the assumption.
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3.2 The Πn case

In this section we consider the general Πn versions of LSR and CSR, for n ≥ 2.

Theorem 3.2.1. For any natural number n ≥ 1,

1. If LVP(Πn+1) holds, then there exists a C(n)-2-fold extendible cardinal.

2. If LVP(Πn+1) holds, then there exists a proper class of C(n)-2-fold extendible cardinals.

Proof. (1): suppose LVP(Πn+1) holds, but there are no C(n)-2-fold extendible cardinals.
Define a class D of ordinals such that α ∈ D if and only if

(i) α ∈ C(n+1), and

(ii) For any β < α, there is some γ with β ≤ γ < α such that β is not γ-C(n)-2-fold
extendible.

We claim that D is a Πn+1-definable, without parameters, class of ordinals. To see this,
first note that clause (i) is Πn+1-definable, and note that clause (ii) is equivalent to

α ∈ C(n+1)∧∀β ∈ α∃γ ∈ α(β ≤ γ∧∀X(X = Vα → X |= “β is not γ-C(n)-2-fold extendible”))

which is a Πn+1-statement. The reason of the equivalence is that “β is γ-C(n)-2-fold
extendible” is a Σn+1-statement, since it is equivalent to

∃δ∃j(j : Vj(β+γ) → Vδ is elementary ∧ crit(j) = β ∧ j(β) > β + γ ∧ j(β) ∈ C(n))

so it holds in V if and only if it holds in Vα, which is Σn+1-correct.
Now define a class C of structures of the form (Vα,∈, α, δ) such that δ < α, α is a limit

point of D with cf(α) = ω. C is Πn+1-definable, as X ∈ C if and only if X is of the form
(X0, X1, X2, X3) such that

(i) X2, X3 are ordinals and X3 ∈ X2,

(ii) X0 = VX2 ,

(iii) X1 =∈ ↾X0,

(iv) ∀x ∈ X2∃y ∈ X2(x ∈ y ∧ y ∈ D).

(v) cf(X2) = ω,

and we have seen that y ∈ D is Πn+1-definable.

Claim 3.2.2. C is a proper class

Proof. To see this, note that since we are supposing that there are no C(n)-2-fold extendible
cardinals, so if α ∈ C(n+2), then for any β < α, the Σn+2-statement “β is not C(n)-m-fold
extendible” reflects down to Vα, so indeed there is some γ ≥ β less than α such that β is
not γ-C(n)-2-fold extendible. Thus in fact we have C(n+2) ∩ {α : cf(α) = ω} ⊆ D, so D is
a proper class, implying that C is also a proper class.
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Now by LVP(Πn+1), there are α ̸= β with C ∩ (Vα+1 \ Vα) ̸= ϕ and C ∩ (Vβ+1 \ Vβ) ̸= ϕ
such that for any B ∈ C of rank β there is some A ∈ C of rank α and an elementary
embedding j : A→ B. Thus we have α < β. Now consider the structure (Vβ,∈, β, α) ∈ C.
It follows that there is some (Vα,∈, α, δ) ∈ C with an elementary embedding

j : (Vα,∈, α, δ) → (Vβ,∈, β, α).

Note that since δ < α = j(δ), we have crit(j) ≤ δ, which implies, since cf(δ) = ω by
elementarity, that crit(j) = µ < δ.
Claim 3.2.3. {δ, µ, j(µ)} ⊆ D.

Proof. First note that D is a closed and unbounded class definable in both Vα and Vβ , since
α, β ∈ C(n+1).

Since we have (Vβ,∈, β, α) |= “α ∈ D” and j(δ) = α, by elementarity and the correctness
of Vα we have δ ∈ D.

Now suppose µ /∈ D, then there is some λ < µ such that there is no λ′ ∈ D with
λ ≤ λ′ < µ. However since α ∈ lim(D), the least η ∈ D above λ is less than α. Thus by
elementarity we have

j(η) = j(the least ordinal in D above λ) = the least ordinal in D above j(λ)

which is again η, but then j↾Vη+2 : Vη+2 → Vη+2 would contradict the Kunen Inconsistency.
Lastly j(µ) ∈ D follows again from elementarity and the fact that α, β ∈ C(n+1).

Now let η = min{δ, j(µ)}, since δ, j(µ) ∈ D, it follows that there is some λ = µ+ λ < η
such that µ is not λ-C(n)-2-fold extendible. But since λ < δ, we have j(λ) < α. Moreover
we have λ < j(µ), and j(µ) ∈ D ⊆ C(n). Thus in fact j↾Vj(λ) : Vj(λ) → Vj2(λ) is elementary
and witnesses that µ is λ-C(n)-2-fold extendible, which is a contradiction.

(2): Suppose that the class of C(n)-2-fold extendible cardinals are bounded in Ord, then
let η be such that there is no C(n)-2-fold extendible cardinals above η. Now argue similarly
as in (1): define D to be the class of ordinals such that α ∈ D if and only if

(i) α ∈ C(n+1),

(ii) α > η, and

(iii) For any β < α such that η < β there is some γ with β ≤ γ < α such that β is not
γ-C(n)-2-fold extendible,

which is Πn+1-definable with the parameter η. Then proceed as before, and define the class
C of structures of the form (Vα,∈, α, δ, η) such that η < δ < α, α is a limit point of D with
cf(α) = ω. Again C is Πn+1-definable with the parameter η, and can be shown to be a proper
class as before. Thus by LVP(Πn+1) there are α < β and (Vα,∈, α, δ, η), (Vβ,∈, β, α, η) ∈ C
with some elementary embedding

j : (Vα,∈, α, δ, η) → (Vβ,∈, β, α, η).

Now argue as before, noting that j(η) = η implies crit(j) = µ > η. It follows that µ has
some degree of C(n)-2-fold extendibility that leads to a contradiction.

Theorem 3.2.4. For any natural number n and cardinal κ, if κ is C(n)-hyperhuge, then
CSR(κ,Σn+2) holds. In particular, if κ is hyperhuge, then CSR(κ,Σ3) holds.
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Proof. Given a natural number n, suppose that κ is C(n)-hyperhuge. Let C = {B :
ϕ(B, b0, . . . , bk−1)} be a class of structures of the same type, where ϕ(x, y0, . . . , yk−1) is
Σn+2 and b0, . . . , bk−1 ∈ Vκ. For any B ∈ C, we must find A ∈ Vκ ∩ C that captures B. We
may assume rk(B) > κ, otherwise the conclusion trivially holds.

Suppose for contradiction that there is no A ∈ C ∩ Vκ that covers B. Now since
ϕ(x, y0, . . . , yk−1) is of the form ∃zψ(z, x, y0, . . . , yk−1), where ψ(z, x, y0, . . . , yk−1) is Πn+1,
there is some a such that ψ(a,B, b0, . . . , bk−1) holds in V .

Let λ > max{rank(a), rank(B)} be such that λ ∈ C(1), and by Corollary 2.2, let U be
a hyperhuge measure for (κ, λ) with target sequences κ, κ′ and λ, λ′ with κ′ ∈ C(n). Let
j : V → Ult(V,U) ∼= M be the ultrapower embedding, we then have crit(j) = κ, j(κ) =
κ′ > λ, j(λ) = λ′, and j(λ)M ⊆M .

Since |Vλ| = λ we have (Vj(λ))
M = Vj(λ). Moreover, by elementarity we have |Vj(λ)| =

j(λ) is true in M , thus also in V . Now since rank(B) < λ < j(κ), we have B ∈ Vj(κ) ⊆M .
Claim 3.2.5. M |= “ϕ(B, b0, . . . , bk−1) holds.”

Proof. Note that since rank(a), rank(B) < j(κ) ∈ C(n) and ψ(a,B, b0, . . . , bk−1) is a
Πn+1-statement, it reflect down to Vj(κ), thus we have

Vj(κ) |= “ψ(a,B, b0, . . . , bk−1) holds”.

Furthermore, by Proposition 2.2.6 we have κ ∈ C(n+1) (in fact κ ∈ C(n+2)), so by elemen-
tarity we have that

M |= “j(κ) ∈ C(n+1)”,

thus Vj(κ) is Πn+1-correct in M , which implies that

M |= “ϕ(B, b0, . . . , bk−1)”,

as desired.

Now since we are supposing that there is no A ∈ C∩Vκ that captures B, by elementarity,

M |=“there is no A ∈ Vj(κ) with ϕ(A, b0, . . . , bk−1) holds such that A captures j(B)”.

By the above claim and the definition of capturing, it follows that

M |=“there is some b ∈ j(B) such that
there is no elementary embedding k : B → j(B) with b ∈ ran(k)”.

Let b be as above, it follows by the closure property of M that it is true in V that there
is no elementary embedding k : B → j(B) with b ∈ ran(k). Thus again by elementarity we
have

M |=“there is no elementary embedding k : j(B) → j2(B) with j(b) ∈ ran(k)”.

However, since rank(j(B)) < j(λ), we have |j↾j(B)| = |j(B)| < |Vj(λ)| = j(λ), so
k = j↾j(B) : j(B) → j2(B) is in M . But k is an elementary embedding with k(b) = j(b) in
its range, which is what M is supposed to be missing, contradiction.

The last part of the theorem then follows from the fact that every hyperhuge cardinal is
C(1)-hyperhuge.

Corollary. The following are equivalent for every natural number n ≥ 1:
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1. LVP(Πn+1).

2. LSR(κ,Σn+2) holds for some κ.

3. CVP(Πn+1).

4. CSR(κ,Σn+2) holds for some κ.

5. There exists a C(n)-hyperhuge cardinal.

6. There exists a C(n)-2-fold extendible cardinal.

Proof. That (1) implies (6) is Theorem 3.2.1. (6) implies (5) by Theorem 2.3.3, and (5)
implies (4) by Theorem 3.2.4. That (4) implies (3) is straightforward from the definitions.
To see that (3) implies (2), first note that (3) implies (1) by Proposition 3.1.5, then (1)
implies (4), which implies (2) by Proposition 1.3.3. Lastly, that (2) implies (1) is also
straightforward from the definitions.

Corollary. The following statements are equivalent:

1. LVP(Π2).

2. LSR(α,Σ3) holds for some α.

3. CVP(Π2).

4. CSR(α,Σ3) holds for some α.

5. There exists a hyperhuge cardinal.

6. There exists a 2-fold extendible cardinal.

Corollary. The following are equivalent for every natural number n ≥ 1:

1. LVP(Πn+1).

2. LSR(κ,Σn+2) holds for a proper class of κ.

3. CVP(Πn+1).

4. CSR(κ,Σn+2) holds for a proper class of κ.

5. There exists a proper class of C(n)-hyperhuge cardinals.

6. There exists a proper class of C(n)-2-fold extendibles cardinals.

Theorem 3.2.6. If n ≥ 1 and κ is the least ordinal with LSR(κ,Πn+1) holds, then κ is
C(n)-2-fold extendible.

Proof. Suppose κ is the least ordinal with LSR(κ,Πn+1) holds but is not C(n)-2-fold ex-
tendible, then there are no C(n)-2-fold extendible cardinals ≤ κ, since if η < κ is C(n)-2-fold
extendible, then by Theorem 2.3.3, η is C(n)-hyperhuge, so by Theorem 3.2.4, CSR(η,Πn+1)
holds, so by Proposition 1.3.3, LSR(η,Πn+1) holds, contradicting the minimality of κ.

Take some β > κ so that Vβ is sufficiently correct, say β ∈ C(n+4), and cf(β) = ω. Let
C be the Πn+1-definable class of structures of the form (Vα,∈, α, ξ, η) where η < ξ < α ∈
lim(C(n+1)) and cf(α) = ω.

By LSR(κ,Πn+1), there is some α such that for any B ∈ C of rank β there is some
A ∈ C of rank α elementarily embeddable into B. Let (Vβ,∈, β, κ, α) ∈ C and let (Vα,∈
α, ξ, η) ∈ C with elementary embedding j : (Vα,∈ α, ξ, η) → (Vβ,∈, β, κ, α). As before, we
have µ = crit(j) ≤ η, implying µ < η.
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Claim 3.2.7. j(µ) ≤ ξ.

Proof. Similarly as in Theorem 3.1.6, suppose j(µ) > ξ. By the correctness of Vβ and the
elementarity of j, we get

(Vα,∈ α, ξ, η) |= “ξ is the least ordinal with LSR(ξ,Πn+1) holds”

which implies that

(Vβ,∈, β, κ, α) |= “Vα |= “∃ν < j(µ) LSR(ν,Πn) holds” ”

which gives
(Vα,∈ α, ξ, η) |= “Vη |= “∃ν < µ LSR(ν,Πn) holds” ”.

Let ν < µ be such a witness, we have by applying elementarity twice that

(Vβ,∈, β, κ, α) |= “LSR(j2(ν),Πn) holds”

thus it is true in V that j2(ν) = ν and LSR(ν,Πn) holds, contradicting the minimality of
κ.

Claim 3.2.8. If γ = min{η, j(µ)}, then µ is ν-C(n)-2-fold extendible for any ν < γ.

Proof. First note that since C(n) is a club class, similar arguments as in Theorem 3.2.1
show that µ and j(µ) are both in C(n). For any ν < γ, we have j(µ + ν) < α, so
j↾Vj(µ+ν) : Vj(µ+ν) → Vj2(µ+ν) witnesses that µ is ν-C(n)-2-fold extendible.

Now we distinguish between two cases, both give rise to a contradiction.
Case 0: γ = η.

Note that since Vβ |= “α ∈ C(n+1)” and j(η) = α, we have by elementarity that it is
true in Vα and hence in V that η ∈ C(n+1). For any ν < η, the assertion “µ is ν-C(n)-2-fold
extendible” is Σn+1 with parameters µ and ν, so it reflects in Vη. It follows that we
have Vη |= “µ is C(n)-2-fold extendible”, so Vα |= “j(µ) is C(n)-2-fold extendible”, and thus
Vβ |= “j2(µ) is C(n)-2-fold extendible”, which is true in V . But since j(µ) ≤ ξ, we have
j2(µ) ≤ κ, which is a contradiction.
Case 1: γ = j(µ).

In this case we can argue as in Case 0 that Vj(µ) |= “µ is C(n)-2-fold extendible”. There
is some least natural number i ≥ 2 with ji(µ) ≥ α. Again noting that Vjk(µ) ≺ Vjk+1(µ)

for any 0 ≤ k < i, we have Vji(µ) |= “µ is C(n)-2-fold extendible”. It follows that Vα |=
“µ is C(n)-2-fold extendible”, thus it is true in Vβ and also in V that j(µ) is C(n)-2-fold
extendible, which is a contradiction since j(µ) < κ.

Corollary. The following are equivalent for every natural number n ≥ 1 and cardinal κ:

1. κ is the least C(n)-2-fold extendible cardinal.

2. κ is the least C(n)-hyperhuge cardinal.

3. κ is the least ordinal such that CSR(κ,Σn+2) holds.

4. κ is the least ordinal such that CSR(κ,Πn+1) holds.

5. κ is the least ordinal such that LSR(κ,Σn+2) holds.

6. κ is the least ordinal such that LSR(κ,Πn+1) holds.
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Proof. Among the six properties mentioned, LSR(κ,Πn+1) is implied by all of the other
five. But by Theorem 3.2.6, the least κ such that LSR(κ,Πn+1) holds has all the other five
properties, thus (1)-(6) are all equivalent.

Similarly as in the Π1 case, we have the boldface version of the above corollary:

Corollary. The following are equivalent for every natural number n ≥ 1 and cardinal κ:

1. κ is either a C(n)-2-fold extendible cardinal or a limit of C(n)-2-fold extendible cardi-
nals.

2. κ is either a C(n)-hyperhuge cardinal or a limit of C(n)-hyperhuge cardinals

3. CSR(κ,Πn+1).

4. LSR(κ,Πn+1).

Proof. (1) implies (2) Theorem 2.3.3. (2) implies (3) by Theorem 3.2.4 plus the fact that
the class of α such that CSR(α,Πn+1) holds is closed under limits. (3) implies (4) by
Proposition 1.3.3.

To see that (4) implies (1), suppose for contradiction that (4) holds but there is some
ν < κ such that for any γ with ν ≤ γ ≤ κ, γ is not C(n)-2-fold extendible. Now we can
argue similarly as in the proof of Theorem 3.2.6 as follows. In the proof, let C instead be
the structures of the form (Vα,∈, α, ξ, η, ν), where ν < η and the rest of the conditions are
the same as in the proof. C is then a Πn+1-definable class with the parameter ν < κ. Thus
we may proceed similarly, and we are ensured that the critical point µ as in the proof is
greater than ν, which is fixed by j, thus as in both Case 0 and Case 1, we find some ordinal
in the interval [ν, κ] to be C(n)-2-fold extendible, contradicting the assumption.
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Chapter 4

Still Higher Reflection

In Chapter 3 we extended the pattern of structural reflection phenomena to the level of
2-supercompact cardinals, C(n)-hyperhuge cardinals and C(n)-2-fold extendible cardinals.
This immediately gives rise to the question:

Question 4.0.1. Are there natural structural reflection principles that correspond, in the
same pattern, to m-supercompact cardinals, C(n)-m-hyperhuge cardinals and C(n)-m-fold
extendible cardinals in general, for every natural number m?

In this chapter we give a positive answer to the above question. We introduce natural
game-theoretic extensions of the notion of capturing, and use them to formulate the principle
δ-CSR, which are extensions of CSR, that correspond to the relevant large cardinals in
the desired pattern, thus extending the same pattern of structural reflection phenomena
to what is close to the upper limit of the large cardinal hierarchy, up to the region just
below rank into rank axioms. Moreover, the original principle SR and the principle CSR in
previous chapters are the special cases of 0-CSR and 1-CSR, respectively, so the results
and proofs in this chapter also cover those special cases.

4.1 The capturing game

Recall that we say A captures B if for any b ∈ B there is an elementary embedding
e : A→ B with b ∈ ran(e), namely there is some a ∈ A with e(a) = b. Conceptually, a can
be seen as a counterpart of b in A.

Imagine that some person PA wants to demonstrate that the structural properties of B
are captured by A, so that when given any b ∈ B by person PB, PA is able to show some
a ∈ A, and promises the existence of an elementary embedding e : A→ B with e(a) = b.
What if PB is still unsatisfied, and propose another b′ ∈ B, demanding PA to find another
a′ ∈ A, such that there is an elementary e : A → B with not only e(a) = b, but also
e(a′) = b′, to demonstrate how well A captures B? If PA succeeds in showing such a′, what
if PB, still unsatisfied, proposes still another b′′, and so on, for many, even infinitely many
steps?

Let us describe a game. Given two structures A and B of the same type and some
ordinal δ, the δ-capturing game of length δ on A and B, denoted by Capδ(A,B), is described
as follows. There are two players, PB and PA. At stage α, where α < δ, PB chooses some
element bα ∈ B, and then PA chooses some element aα ∈ A. After δ many steps, two
sequences of elements #»a = (aα : α < δ) and

#»

b = (bα : α < δ) have been chosen, and the
pair ( #»a ,

#»

b ) is the play. We say the play ( #»a ,
#»

b ) is a win for player PA, or PA wins the play,
if there is some elementary embedding e : A→ B with e(aα) = bα for all α < δ. Otherwise,
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we say ( #»a ,
#»

b ) is a win for player PB, or PB wins the play. Note that in the case δ = 0,
there is only one play, namely (ϕ, ϕ), on the game Capδ(A,B), and PA wins if there simply
exists some elementary embedding e : A→ B.

A strategy σ for the player PA on the game Capδ(A,B) is a function that, given partial
plays at stages α < δ, when it is the turn for PA to move, outputs a choice aα for PA.
Namely, given a pair of sequences ( #»a ,

#»

b ), where #»a = (aβ : β < α) and
#»

b = (bβ : β ≤ α),
where α < δ, such that {aβ : β < α} ⊆ A and {bβ : β ≤ α} ⊆ B, we have σ(( #»a ,

#»

b )) is
an element of A, to be chosen as aα. A winning strategy σ for the player PA in the game
Capδ(A,B) is a strategy such that, whenever a play is played by PA according to the
strategy σ, PA wins the play. In other words, for any play ( #»a ,

#»

b ) on Capδ(A,B), if for any
α < δ we have σ(( #»a ↾α,

#»

b ↾(α+ 1))) = aα, then PA wins the play ( #»a ,
#»

b ). A strategy for
PB is similarly defined.

With the notion of the capturing game, we can formulate the intuitive idea that the
better PA is able to repeatedly answer PB’s challenge, the better A can be said to capture
the structure of B.

Definition 4.1.1. For all structures A and B of the same type and some ordinal δ, we say
A δ-captures B if the player PA has a winning strategy in the game Capδ(A,B).

Thus A 0-captures B if and only if there is some elementary embedding e : A → B.
This is the case where PB is very permissive, not challenging PA at all, and is satisfied with
any elementary embedding.

Note that if |A| = κ < λ = |B|, then trivially PB has a winning strategy for the game
Capλ(A,B), simply by enumerating all elements of B. Also if |A| = |B| = κ, then if A ∼= B
then PA has a winning strategy for the game Capκ(A,B), by choosing according to some
isomorphism. Otherwise PB has a winning strategy, by enumerating the elements of B.

We also give here some basic examples to illustrate the notion of δ-capturing by extending
Example 1.2.2:

Example 4.1.2. Recall that the model N0 = (N, 0, S) is the standard natural numbers
equipped with a distinguished element 0 and the successor function S. N1 is N0 plus an
additional disjoint “Z-chain”, and N2 is N1 plus yet another disjoint Z-chain. In general we
may let Nκ be the model which includes N0 and κ-many disjoint Z-chains, for any cardinal
number κ, finite or infinite. For α < κ < λ, we may without loss of generality assume that
the αth Z-chain in Nκ and the αth Z-chain in Nλ are identical, since any two Z chains are
isomorphic. Thus let Zα denote the αth Z-chain in Nκ, for any κ > α. Moreover we may
assume that for any ordinal α, Zα is of the form

· · · → S−2(oα) → S−1(oα) → oα → S(oα) → S(S(oα)) → . . .

for some oα.

Claim 4.1.3. If m < n are natural numbers, then Nm m-captures Nn, but Nm does not
(m+ 1)-capture Nn.

Proof. To see that Nm m-captures Nn, let us describe a strategy for PA: for the first pick
b0 of PB, if b0 is some standard natural number k, then let a0 = k as well. If b0 is of the
form Sk(oj) for some natural number j < n and some integer k, then let a0 be Sk(o0).

In general, at each stage i < m, there are three possibilities for bi.
If bi is some standard natural number k, then let ai = k.
If bi is from some Z-chain already picked before, namely bi is of the form Sk(oj) for

some natural number j < n and some integer k, such that there is some bs for some s < i
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such that bs = Sl(oj) for some integer l, then as must come from some Zt for some t < m
(if in the previous stages PA has played according to our strategy), and we let bi be Sk(ot).

If bi is from some new Z-chain, namely bi is of the form Sk(oj) for some natural number
j < n and some integer k, such that there is no bs for some s < i such that bs = Sl(oj) for
some integer l, then we let t be the least natural number less than m such that there is no
as that comes from Zt for all s < i, and let ai be Sk(ot). Such a t must exists, because we
have only played for less than i < m many rounds, so the available Z-chains in Nm have
not been exhausted.

If PA plays accordingly, then in the end we may define the map e : A→ B as follows.
There are three possibilities for elements of A. Firstly let e be the identity on N. Secondly
for any i < m, if there is some j < m such that aj is of the form Sk(oi) for some integer k,
namely if the chain Zi was invoked in the choosing process, then bj must be of the form
Sk(ot) for some t < n, and we define e(Sl(oi)) = Sl(ot) for any integer l, namely e is the
natural isomorphism between Zi and Zt. Thirdly, consider

A′ := {i < m : there is no j < m such that aj is of the form Sk(oi) for some integer k},

namely the set of indexes of Z-chains in Nm not invoked before, then there must also be
at least |A′| many Z-chains in Nn not invoked before. Thus for i ∈ A′, we may let e the
natural isomorphism between Zi and some Zt for some t < n, where Zt was not invoked
before.

It follows that e as defined is an embedding from A into B, hence also an elementary
embedding from A into B, such that e(ai) = bi for all i < m. Thus Nm m-captures Nn.

To see that Nm does not (m+1)-capture Nn, we describe a winning strategy for PB : at
each stage i < (m+1), PB simply chooses some elements from Zi, no matter what PA chooses.
In the end, if there exists some e : A→ B with e(ai) = bi for all i < (m+1), then since Nm

only has m Z-chains, there must be some j, s < (m+ 1) such that bj and bs come from, by
our strategy, different Z-chains, while aj and as come from the same Z-chain, say aj = Sk(ot)
and as = Sl(ot) for some natural number t < m and some integers k and l. Without loss of
generality assume k < l, we have Nm |= “as can be reached from aj in (l − k) steps”, but
it fails in Nn that bs can be reached from bj in (l− k) steps, thus e is not elementary. Thus
Nm does not (m+ 1)-capture Nn.

In fact the above argument can be generalized:
Claim 4.1.4. For any finite or infinite cardinals κ < λ and any ordinal α < κ+, Nκ

α-captures Nλ, but Nκ does not κ+-capture Nλ.

Proof. This is proved by modifying the proof for the previous claim. To see that Nκ

α-captures Nλ, we first order the Z-chains in Nκ in order-type α. Now we describe a
strategy for PA as follows. At each stage β < α, if bβ is standard, let aβ = bβ . If bβ is from
some chain Zγ such that there is already some η < β with bη ∈ Zγ , then aη is from some
Zξ for some ξ < α, and we let aβ be the element in Zξ that corresponds to the position of
bβ in Zγ . If bβ is from some new Z-chain, then let γ < α be the least such that there is no
aη, for some η < β, that comes from Zγ . Such a γ must exists, if PA plays according to our
strategy. It follows that there is in the end an elementary embedding e : A → B that is
defined in the natural way, similarly as in the previous claim.

One way to see that Nκ does not κ+-captures Nλ, if κ is infinite, is that PB can employ
the strategy of enumerating κ+ elements in Nλ. Another way to see it is that PB can use
the strategy of choosing, at each stage β < κ+, some element from the chain Zβ , so that in
the end there will be many aβ ’s that come from the same chain, so any map that sends aβ
to bβ , for all β < κ+, cannot be elementary.
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As remarked in Chapter 1, although our primary interest in this thesis is in formulating
structural reflection principles, and we only consider basic examples here, it seems that the
notion of δ-capturing may have applications in other mathematical contexts. In any case,
there are many basic properties of the capturing games that merit further investigations.

To conclude the section, note that the following proposition is intuitively straightforward
and not difficult to prove. However, it makes it easier for later arguments to go through,
and we will use this proposition repeatedly.

Proposition 4.1.5. For all natural numbers n and for all structures A,B of the same type,
the following are equivalent:

1. A n-captures B.

2. ∀b0 ∈ B ∃a0 ∈ A . . .∀bn−1 ∈ B ∃an−1 ∈ A such that there is an elementary embedding
e : A→ B with e(ai) = bi for 0 ≤ i < n. In particular, A 0-captures B if and only if
there is some elementary embedding e : A→ B.

4.2 δ-CSR

With the notion of δ-capturing, the natural step to take is to formulate CSR using the
more general δ-capturing in place of capturing.

Σn-δ-CSR: (Σn-δ-Capturing Structural Reflection) For every Σn-definable, with
parameters, class C of relational structures of the same type there is
an ordinal α that δ-capture-reflects C.,i.e., for any B ∈ C there is some
A ∈ C ∩ Vα that δ-captures B.
Similarly for Πn-δ-CSR. Moreover, Σn-δ-CSR and Πn-δ-CSR are the
corresponding lightface versions, i.e., with parameters disallowed in the
definition of C.

Definition 4.2.1. For every natural number n, δ-CSR(α,Σn) holds if for every Σn-definable,
without parameters, class C of relational structures of the same type, α δ-capture-reflects C.
Similarly for δ-CSR(α,Πn).

δ-CSR(α,Σn) holds if for any Σn-definable, with parameters in Vα, class C of relational
structures of the same type, α δ-capture-reflects C. Also similarly for δ-CSR(α,Πn).

Thus the original SR is just 0-SR, and CSR is 1-SR. Now recall that a part of the
supposed justification for the original SR comes from the idea of taking the notion of
elementary embeddability to express the informal notion of structural similarity, and we
argued in Chapter 1 that, since capturing is a stronger notion of structural similarity, any
justification for SR seems to carry over to CSR. Now given that δ-capturing seems to be a
yet stronger notion of structural similarity, which naturally extends the notion of capturing,
it would seem that the justification that supports SR and CSR would also support δ-CSR
as well.

Moreover, in the next section we show that there are indeed reasons to think that
δ-capturing is the natural way to extend capturing, by showing that m-CSR, for all natural
number m, corresponds to (m+1)-supercompact cardinals and C(n)-(m+1)-fold extendible
cardinals in completely the same way CSR corresponds to 2-supercompact cardinals and
C(n)-2-fold extendible cardinals.

We can also formulate the Vopěnka’s Principle version:
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Definition 4.2.2. For any natural number n, δ-CVP(Σn) holds if for any Σn-definable,
without parameters, proper class C of relational structures of the same type, there exist
A,B ∈ C with A ̸= B and A δ-captures B. Similarly for δ-CVP(Πn).

Similarly, δ-CVP(Σn) and δ-CVP(Πn) are the corresponding assertions with parameters
allowed in the definition of C.

Note that VP is just 0-CVP and CVP is 1-CVP.
Let us remark that, using similar ideas behind the formulation of δ-CSR, we can in

fact formulate strengthenings of level by level structural reflection principles that relate to
δ-CSR just as LSR relate to CSR, but it seems to me that the CSR versions are the more
natural and general versions, so we focus on the CSR versions here.

Let us first summarize the strength of δ-CSR. On the one hand, the results in the
next secion implies that the strength of the axiom schema m-CSR, for finite m ≥ 1, is
strictly between an m-huge cardinal and an (m+ 1)-huge cardinal, so the whole hierarchy
of m-CSR, for all finite m, occupies the region of large cardinal hierarchy that is essentially
cofinal below an I3 embedding. On the other hand, the principle Σ0-δ-CSR, for any infinite
δ, is outright inconsistent.

Theorem 4.2.3. For any ordinal α, ω-CSR(α,Σ0) fails.

Proof. Suppose that there is some ordinal α such that ω-CSR(α,Σ0) holds. Consider
the Σ0-definable class C of structures of the form (M,∈), where M is transitive. Let
β > α, and consider B = (Vβ,∈) ∈ C. Then there is some A = (M,∈) ∈ C ∩ Vα such
that A ω-captures B. Now let σ be a winning strategy for PA in the game Capω(A,B),
and we define recursively the sequence (δi : i ∈ ω) as follows. Let δ0 = o(M), namely
the least ordinal not in M . Since δ0 < α, we have δ0 ∈ Vβ. Given δ0, . . . , δi, consider
the partial play p := ((δj : 1 ≤ j ≤ i), (δk : 0 ≤ k ≤ i)) on the game Capω(A,B), we
let δi+1 be σ(p) ∈ A ⊆ B. By our construction of the sequence, there is an elementary
embedding j : A→ B such that j(δi) = δi−1 for all 1 ≤ i < ω. But note that δ1 ∈M , so
δ1 < o(M) = δ0, so by elementarity δi+1 < δi for all 0 ≤ i < ω, namely (δi : i ∈ ω) is an
infinite descending chain, which is a contradiction.

Note that the above proof actually shows that for all transitive M,N such that o(M) <
o(N), M does not ω-capture N . Also note that the the proof does not use the axiom of
choice, instead the principle ω-CSR(α,Σ0) directly contradicts the well-foundedness of the
ordinals.

4.3 General Correspondence

In this section we show that, generalizing Bagaria’s results and our previous results
in Chapter 3, if δ is a finite ordinal, namely a natural number, then δ-CSR relates to
(δ + 1)-supercompact cardinals and C(n)-(δ + 1)-fold extendible cardinals in the desired
pattern, which answers our Question 4.0.1.

The proofs will be briefer in this section when we use similar methods as in the proofs
of previous chapters.

Theorem 4.3.1. For every natural number m,

1. If m-CVP(Π1) holds, then there exists an (m+ 1)-supercompact cardinal.
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2. If m-CVP(Π1) holds, then there exists a proper class of (m + 1)-supercompact
cardinals.

Proof. For (1): suppose m-CVP(Π1) holds, but there are no (m+1)-supercompact cardinals.
Then define the function F (α) = the least β > α such that for any ξ ≤ α there is no
(m+ 1)-supercompact measure U for (ξ, β), provided that there is any such β. Otherwise
F (α) = 0. Define a class D of ordinals such that γ ∈ D if and only if for any α < γ there is
some β < γ with F (α) = β.

Consider the Π1-definable, without parameters, class C of structures of the form (Vα,∈
, α, δ) such that δ < α ∈ C(1), α is the least limit point of D above δ. Since under our
assumption we have α < F (α) for any ordinal α, it is clear that C is a proper class. Moreover,
note that if (Vα,∈, α, δ) ∈ C, then cf(α) = ω. This is because D is a club class, so if δ < α
and cf(α) ≥ ω1, there must be some δ < α′ < α with cf(α′) = ω but α′ ∈ lim(D).

By m-CVP(Π1), there are A ̸= B, both in C, such that A = (Vα,∈, α, δ) m-captures
B = (Vβ,∈, β, η). It follows that δ ≠ η, otherwise α = β, and so A = B. Thus we have
δ < η, which implies that δ < α ≤ η < β, since if α > η, then the least limit point of D
above η would not be β.

Now if m ≥ 1, we construct recursively the sequences (xi : i < m) and (yi : i < m) in a
“diagonal” way as follows. Let y0 = α. By Proposition 4.1.5 we have

∃x0 ∈ A∀y1 ∈ B∃x1 ∈ A, . . . ,∀ym−1 ∈ B∃xm−1 ∈ A

∃j : A→ B is elementary and j(xi) = yi for 0 ≤ i ≤ (m− 1).

Choose such an x0 as above. In general given (xi : 0 ≤ i ≤ k) and (yi : 0 ≤ i ≤ k), for
k + 1 < m, we may inductively assume that

∀yk+1 ∈ B∃xk+1 ∈ A, . . . ,∀ym−1 ∈ B∃xm−1 ∈ A

∃j : A→ B is elementary and j(xi) = yi for 0 ≤ i ≤ (m− 1)

and we pick yk+1 to be precisely xk (this makes sense since we have xk ∈ A ⊆ B), and
choose any xk+1 that satisfies the displayed statement above. If m = 0 then we skip this
choosing process.

By the way we construct the sequences (xi : i < m) and (yi : i < m), there is in the end
some elementary embedding j : (Vα,∈, α, δ) → (Vβ,∈, β, η) with j(δ) = η and j(xi) = yi for
all 0 ≤ i < m. It follows that we have j(xi) = yi = xi−1 for any i ≥ 1, and j(x0) = y0 = α.
By applying elementarity iteratively, this implies that all the xi’s and yi’s are all ordinals
of countable cofinality, and xi < j(xi) for any 0 ≤ i < m. Also j(δ) = η > δ. Thus j is
nontrivial and we have that crit(j) = µ ≤ xm−1 (in case m > 0 so xm−1 exists), and thus
crit(j) < xm−1, since µ is regular.
Claim 4.3.2. {α, x0, . . . , xm−1, µ, j(µ)} ⊆ D.

Proof. That α ∈ D is already given. Note that in general the statement “x ∈ D” can be
decided in Vν , for any ordinal ν and x ∈ Vν , so since α = y0 ∈ D, we have (Vβ,∈, β, η) |=
“α ∈ D”. By elementarity and the fact that j(x0) = α, we have x0 ∈ D as well. By applying
elementarity repeatedly and the fact that j(xi) = xi−1 for any 1 ≤ i < m, it follows that
{α, x0, . . . , xm−1} ⊆ D.

To see that µ ∈ D, note that since D is a club class, if µ /∈ D, there is some λ < µ such
that there is no λ′ ∈ D with λ ≤ λ′ < µ. However since α ∈ lim(D), the least ξ ∈ D above
λ is less than α. Thus since λ is fixed by j and ξ is definable from λ, we have j(ξ) = ξ,
which gives j↾Vξ+2 : Vξ+2 → Vξ+2 as a nontrivial elementary embedding, which impossible
by the Kunen Inconsistency.

Lastly j(µ) ∈ D follows from elementarity.
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Now let ξ = min{xm−1, α, j(µ)} (note that ξ = α is possible only if m = 0, so there
are no (xi : i < m) and (yi : i < m) from the beginning). By the above claim there is some
γ < ξ such that there is no (m+ 1)-supercompact measure U for (µ, γ).

However, since γ < xm−1, we have jm(γ) < jm(xm−1) = j(x0) = y0 = α (where j0(γ)
is defined to be γ). Thus define

U = {X ⊆ P(jm(γ)) : j“jm(γ) ∈ j(X)}

one can verify that U is an (m+ 1)-supercompact measure for (jm(µ), jm(γ)) (with target
sequences µ, j(µ), . . . , jm(µ) and γ, j(γ), . . . , jm(γ)). Since U ∈ Vβ, so by elementarity,
there must be some (m+ 1)-supercompact measure for (jm−1(µ), jm−1(γ)) which is again
in Vβ . By applying elementarity repeatedly we get some (m+ 1)-supercompact measure for
(µ, γ), which is a contradiction.

(2): Suppose that the class of (m+ 1)-supercompact cardinals is bounded in Ord, then
let ν be such that there is no (m+ 1)-supercompact cardinal above ν. Now argue similarly
as in (1): define D to be the class of ordinals γ > ν such that any α < γ with ν < α
there is some β < γ with F (α) = β. Then proceed as before, and define the class C of
structures of the form (Vα,∈, α, δ, ν) such that ν < δ < α, and α is a limit point of D.
Again C is Π1-definable with the parameter η, and can be shown to be a proper class. Thus
by m-CVP(Π1) there is some (Vα,∈ α, δ, ν) ∈ C that m-captures some (Vβ,∈, β, η, ν) ∈ C.
Arguing as before, and noting that j(ν) = ν, we have that crit(j) = µ > ν has some degree
of (m+ 1)-supercompactness that leads to a contradiction.

Theorem 4.3.3. For every natural number m and cardinal κ, if κ is (m+1)-supercompact,
then m-CSR(κ,Σ2) holds.

Proof. We prove the case where m = 3. It will be clear how the general case can be proved
similarly, although the notation will become more cumbersome and less readable.

Suppose that κ is 4-supercompact but 3-CSR(κ,Σ2) fails. Let λ > κ be such that Vλ is
sufficiently correct, say λ ∈ C(5), so that Vλ |= “3-CSR(κ,Σ2) fails”.

Let U be a 4-supercompact measure for (κ, λ), with target sequences (κ0, κ1, κ2, κ3 = κ)
and (λ0, λ1, λ2, λ3 = λ). Let j : V → Ult(V,U) ∼= M be the conrresponding ultrapower
embedding. We then have crit(j) = κ0, j(κi) = κi+1 and j(λi) = λi+1 for 0 ≤ i ≤ 2, and
λM ⊆M .

Since |Vλ| = λ it follows that Vλ = (Vλ)
M , so M |= “Vλ |= “CSR(κ,Σ2) fails” ”, so by

applying elementarity 3 times we have Vλ0 |=“CSR(κ0,Σ2) fails”.
Thus there are b0, . . . , bk−1 ∈ Vκ0 and some Σ2-formula ϕ such that

Vλ0 |= “ϕ(X, b0, . . . , bk−1) defines a class of structures of the same type,
and there is some B with ϕ(B, b0, . . . , bk−1) holds but
there is no A ∈ Vκ0 with ϕ(A, b0, . . . , bk−1) holds that 3-captures B”.

Let B be a witness of the above statement. By elementarity and the fact that j(bi) = bi
for all 0 ≤ i ≤ (k − 1), it is also true in Vλ1 that ϕ(X, b0, . . . , bk−1) defines a class of
structures of the same type. Moreover, we have λi ∈ C(1) for 0 ≤ i ≤ 3, so we have
ϕ(B, b0, . . . , bk−1) holds in V , and also in Vλ1 . Also,

Vλ1 |= “ϕ(j(B), b0, . . . , bk−1) holds and
there is no A ∈ Vκ1 with ϕ(A, b0, . . . , bk−1) holds that 3-captures j(B)”.
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It follows that B and j(B) are of the same type. Since B ∈ Vλ0 ⊆ Vκ1 , it follows that
B does not 3-capture j(B), so by Proposition 4.1.5, it follows that there is some fixed
y0 ∈ j(B) such that

¬∃x0 ∈ B∀y1 ∈ j(B)∃x1 ∈ B∀y2 ∈ j(B)∃x2 ∈ B

∃k : B → j(B) is elementary with k(xi) = yi for all 0 ≤ i < 3.

By elementarity we have

M |= “¬∃x0 ∈ j(B)∀y1 ∈ j2(B)∃x1 ∈ j(B)∀y2 ∈ j2(B)∃x2 ∈ j(B)

∃k : j(B) → j2(B) is elementary with k(x0) = j(y0) and k(xi) = yi for all 1 ≤ i < 3”

which is true in V by the closure property of M . Note that the reason for the “k(x0) = j(y0)”
above is because y0 is a set that is already fixed. Now note that since y0 ∈ j(B), it follows
that there is some fixed y1 ∈ j2(B) such that

¬∃x1 ∈ j(B)∀y2 ∈ j2(B)∃x2 ∈ j(B)

∃k : j(B) → j2(B) is elementary with k(y0) = j(y0) and k(xi) = yi for all 1 ≤ i < 3

By elementarity we have

M |= “ ¬∃x1 ∈ j2(B)∀y2 ∈ j3(B)∃x2 ∈ j2(B)

∃k : j2(B) → j3(B) is elementary with k(j(y0)) = j2(y0), k(x1) = j(y1) and k(x2) = y2”

which is true in V . Again this is the result of fixing some y1. But since y1 ∈ j2(B), this
implies that there is some fixed y2 ∈ j3(B) such that

¬∃x2 ∈ j2(B)∃k : j2(B) → j3(B) is elementary

with k(j(y0)) = j2(y0), k(y1) = j(y1) and k(x2) = y2.

Finally, we have by elementarity that

M |= “¬∃x2 ∈ j3(B) ∃k : j3(B) → j4(B) is elementary

with k(j2(y0)) = j3(y0), k(j(y1)) = j2(y1) and k(x2) = j(y2)”.

However, letting k := j↾j3(B) : j3(B) → j4(B), we have k is elementary, and |k| =
|j3(B)| < |Vj3(λ0)| = λ. Thus k ∈M by λM ⊆M . Moreover, we have k(j2(y0)) = j3(y0),
k(j(y1)) = j2(y1) and k(y2) = j(y2). Thus k is exactly the embedding that is missing in
M , contradiction.

Corollary. The following are equivalent for every natural number m:

1. m-CVP(Π1).

2. m-CSR(κ,Σ2) holds for some κ.

3. There exists an (m+ 1)-supercompact cardinal.

Corollary. The following are equivalent for every natural number m:

1. m-CVP(Π1).

2. m-CSR(κ,Σ2) holds for a proper class of κ.
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3. There exists a proper class of (m+ 1)-supercompact cardinals.

Corollary. The following are equivalent for every natural number m and cardinal κ:

1. κ is either an (m + 1)-supercompact cardinal or a limit of (m + 1)-supercompact
cardinals.

2. m-CSR(κ,Π1) holds.

Moreover, the least κ such that m-CSR(κ,Π1) holds is the least (m + 1)-supercompact
cardinal.

Proof. This can be proved by combining the methods in the proofs of Theorem 3.1.6 and
Theorem 4.3.1.

Theorem 4.3.4. For all natural numbers n ≥ 1 and m:

1. If m-CVP(Πn+1) holds, then there exists a C(n)-(m+ 1)-fold extendible cardinal.

2. If m-CVP(Πn+1) holds, then there is a proper class of C(n)-(m+ 1)-fold extendible
cardinals.

Proof. (1): Suppose m-CVP(Πn+1) holds, but there is no C(n)-(m + 1)-fold extendible
cardinal. Define a class D of ordinals such that α ∈ D if and only if

(i) α ∈ lim(C(n+1)), and

(ii) For any β < α, there is some γ with β ≤ γ < α such that for any ξ ≤ β, ξ is not
γ-C(n)-(m+ 1)-fold extendible.

D is a Πn+1-definable, without parameters, class of ordinals. To see this, note that clause
(i) is equivalent to

α ∈ C(n+1) ∧ ∀X(X = Vα → X |= “∀β∃γ ≥ β(γ ∈ C(n+1))”)

and clause (ii) is equivalent to the conjunction of α ∈ C(n+1) and

∀X(X = Vα → X |= “∀β∃γ ≥ β∀ξ ≤ β(ξ is not γ-C(n)-(m+ 1)-fold extendible)”).

Now let C be the class of structures of the form (Vα,∈, α, δ) such that α is the least
limit point of D above δ. C is Πn+1-definable without parameters. Moreover, since we are
supposing that there are no C(n)-(m+1)-fold extendible cardinals, we have C(n+2) ⊆ D, thus
D is a proper club class, which implies that C is a proper class. Note that if (Vα,∈, α, δ) ∈ C,
then cf(α) = ω.

Thus by m-CVP(Πn+1), there are A = (Vα,∈, α, δ), B = (Vβ,∈, β, η) ∈ C with A ̸= B
such that A m-captures B. It follows that δ ̸= η, otherwise α = β so A = B. Thus we
have δ < η, which implies that δ < α ≤ η < β. Now if m ≥ 1, we construct recursively
the sequences (xi : i < m) and (yi : i < m) in exactly the same way as in Theorem 4.3.1,
which result in sequences (xi : i < m) and (yi : i < m), such that there is some elementary
embedding j : (Vα,∈, α, δ) → (Vβ,∈, β, η) with j(xi) = yi = xi−1 for any i ≥ 1, and
j(x0) = y0 = α. Similarly as in Theorem 4.3.1, the xi’s and yi’s are ordinals with countable
cofinality, and xi < j(xi) for any 0 ≤ i < m. Also j(δ) = η > δ. Thus j is nontrivial and
we have that crit(j) < xm−1.
Claim 4.3.5. {α, x0, . . . , xm−1, µ, j(µ)} ⊆ D.
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Proof. That α ∈ D is already given. That xi ∈ D for 0 ≤ i < m is shown similarly as in
Theorem 4.3.1, by noting that D is definable in both Vα and Vβ , since α, β ∈ C(n+1). That
µ, j(µ) ∈ D is also shown similarly.

Now let ξ = min{xm−1, α, j(µ)} (ξ = α can only happen if m = 0). By the above claim
there is some γ < ξ such that µ is not γ-C(n)-(m+ 1)-fold extendible.

However, since µ + γ < xm−1, we have jm(µ + γ) < jm(xm−1) = j(x0) = y0 = α.
So in fact k = j↾Vjm(µ+γ) : Vjm(µ+γ) → Vjm+1(µ+γ) is elementary, with crit(k) = µ,
k(µ) ∈ D ⊆ C(n), and µ+γ < ξ ≤ j(µ) = k(µ), so k witnesses that µ is γ-C(n)-(m+1)-fold
extendible, which is a contradiction.

(2) is shown similarly as before, noting that if ν is such that there is no C(n)-(m+1)-fold
extendible cardinal above ν, then we use the parameter ν in the definition of some class
C and the critical point of j : A→ B, for some A,B ∈ C, will be greater than ν, and has
some degree of C(n)-(m+ 1)-fold extendibility that leads to a contradiction.

Theorem 4.3.6. For all natural numbers n ≥ 1 and m, and for every cardinal κ, if κ is
C(n)-(m+ 1)-fold extendible, then m-CSR(κ,Σn+2) holds.

Proof. We prove the case where m = 3, where the general case can be proved similarly.
Suppose that κ is C(n)-4-fold extendible. Let C = {B : ϕ(B, b0, . . . , bk−1)} be a class of
structures of the same type, where ϕ(x, y0, . . . , yk−1) is Σn+2 and b0, . . . , bk−1 ∈ Vκ. For
any B ∈ C, suppose for contradiction there is no A ∈ C ∩ Vκ that 3-captures B. Since
ϕ(x, y0, . . . , yk−1) is of the form ∃zψ(z, x, y0, . . . , yk−1), where ψ(z, x, y0, . . . , yk−1) is Πn+1,
there is some a such that ψ(a,B, b0, . . . , bk−1) holds in V . We may suppose that rk(B) > κ.

Let λ > max{rank(a), rank(B)}, and let j : Vj3(κ+λ) → Vδ witnesses that κ is λ-C(n)-
4-fold extendible, with crit(j) = κ, κ + λ < j(κ), and j(κ) ∈ C(n). Since κ ∈ C(n+2)

by Proposition 2.2.6, it follows that there is no A ∈ Vκ such that Vκ |= “A ∈ C” and A
3-captures B.

By elementarity, there is no A ∈ Vj(κ) such that Vj(κ) |= “A ∈ C” and A 3-captures
j(B). Now since B, a ∈ Vj(κ), the Πn+1 statement ψ(a,B, b0, . . . , bk−1) reflects to Vj(κ),
thus Vj(κ) |= “ϕ(B, b0, . . . , bk−1) holds”, so B does not 3-capture j(B). By Proposition 4.1.5
it follows that there is some fixed y0 ∈ j(B) such that

¬∃x0 ∈ B∀y1 ∈ j(B)∃x1 ∈ B∀y2 ∈ j(B)∃x2 ∈ B

∃k : B → j(B) is elementary with k(xi) = yi for all 0 ≤ i < 3”.

Now we proceed exactly as in the proof of Theorem 4.3.3 to reach a contradiction.

Corollary. The following are equivalent for all natural numbers n ≥ 1 and m:

1. m-CVP(Πn+1).

2. m-CSR(κ,Σn+2) holds for some κ.

3. There exists a C(n)-(m+ 1)-fold extendible cardinal.

Corollary. The following are equivalent for all natural numbers n ≥ 1 and m:

1. m-CVP(Πn+1).

2. m-CSR(κ,Σn+2) holds for a proper class of κ.

3. There is a proper class of C(n)-(m+ 1)-fold extendible cardinals.
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Corollary. The following are equivalent for all natural numbers n ≥ 1 and m, and every
cardinal κ:

1. κ is either a C(n)-(m + 1)-fold extendible cardinal or a limit of C(n)-(m + 1)-fold
extendible cardinals.

2. m-CSR(κ,Πn+1) holds.

Moreover, the least κ such that m-CSR(κ,Πn+1) holds is the least C(n)-(m + 1)-fold
extendible cardinal.

Proof. This can be proved by combining the techniques in the proofs of Theorem 3.2.6 and
Theorem 4.3.4.
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Chapter 5

Characterization

In this short chapter we give a synthesis and clarification of the relevant large cardi-
nal notions by showing that the notion of C(n)-m-fold extendible cardinals and C(n)-m
hyperhuge cardinals can be characterized by the more general notion of Σn-m-supercompact
cardinals. This notion of large cardinals is a generalization of both the m-supercompact
cardinals introduced in Chapter 3 and the Σn-supercompact cardinals introduced by Joan
Bagaria and Alejandro Poveda in [10], which are used to characterize C(n)-extendible
cardinals.

Moreover, in [5], Joan Bagaria and Gabriel Goldberg introduced the notion of reflecting
measures, and used them to give C(n)-extendible cardinals a characterization in terms of
ultrafilters, which was the first formulation of extendible and C(n)-extendible cardinals in
terms of measures. Generalizing this result, we show that Σn-m-supercompact cardinals
can be characterized in terms of generalizations of reflecting measures.

5.1 The general notion

Definition 5.1.1. Given natural numbers m ≥ 1, n and cardinal κ, for λ ∈ C(n) greater
than κ, we say κ is λ-Σn-m-supercompact if for any y ∈ Vλ, there is λ̄ < κ and x ∈ Vλ̄, with
λ̄ ∈ C(n) and some elementary embedding j : Vλ̄ → Vλ with j(x) = y and jm(crit(j)) = κ.

κ is Σn-m-supercompact if κ is λ-Σn-m-supercompact for any λ ∈ C(n) greater than κ.

In the paper [1] where SR was first introduced, Bagaria used the notion of C(n)+-
extendible cardinal in order to study the equivalence between SR and large cardinals, where
κ is C(n)+-extendible if for any λ ∈ C(n) greater than κ, κ is λ-C(n)-extendible, witnessed
by some j : Vλ → Vδ with the additional requirement that δ ∈ C(n). It was not known what
is the precise relation between C(n)+-extendible cardinals and C(n)-extendible cardinals.

Later it was shown independently by Konstantinos Tsaprounis in [39] and Victoria
Gitman and Joel Hamkins in [18] that the two notions are equivalent. See also [3].

One can also define similar notions in the m-fold case:

Definition 5.1.2. For natural numbers m ≥ 1, n, cardinal κ and ordinal η ∈ C(n), we say
κ is η-C(n)+-m-fold extendible if there is some elementary embedding j : Vjm−1(κ+η) → Vδ
with crit(j) = κ, κ+ η < j(κ), and {δ, η, j(η), . . . jm−1(η), κ, j(κ), . . . , jm(κ)} ⊆ C(n).

κ is C(n)+-m-fold extendible if κ is η-C(n)+-m-fold extendible for any η ∈ C(n).

This may seem to be a stronger definition, but it turns out that again this C(n)+

strengthening is equivalent to the original notion:

Corollary. For natural numbers m ≥ 1, n and cardinal κ, the following are equivalent:
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1. κ is C(n)-m-fold extendible.

2. κ is C(n)+-m-fold extendible.

This will be a corollary of the following theorem, which gives a more complete picture
of the relevant large cardinal notions:

Theorem 5.1.3. For natural numbers m,n ≥ 1 and cardinal κ, the following are equivalent:

1. κ is Σn+1-(m+ 1)-supercompact.

2. κ is C(n)-m-hyperhuge.

3. κ is C(n)-(m+ 1)-fold extendible.

Moreover, we have

(i) If m = 0 and n = 0, then (1) and (2) are still equivalent, but (3) is strictly stronger.

(ii) If m ̸= 0 but n = 0, then (2) and (3) are still equivalent, but (1) is strictly weaker.

(iii) If m = 0 but n ̸= 0, then (1) and (3) are still equivalent, but (2) is strictly weaker.

Proof. For m,n ≥ 1, Theorem 2.3.3 already shows that (2) and (3) are equivalent. We now
show that for natural numbers n ≥ 1 and m, (1) and (3) are equivalent.

(1) implies (3): We will actually show that (1) implies that κ is C(n)+-(m + 1)-fold
extendible, to give the above corollary. Define an ordinal function F by letting F (α) be
the least η ∈ C(n) above α such that α is not η-C(n)+-(m+ 1)-fold extendible, if there is
such an η, and F (α) = 0 otherwise.

Suppose for a contradiction F (κ) = η > κ. Let λ ∈ C(n+1) be greater than η, and
λ̄ ∈ C(n+1) less than κ, with some elementary embedding j : Vλ̄ → Vλ and jm+1(crit(j)) = κ.
Let crti(j) = µ.

By noting that C(n) is a club class and λ̄ ∈ lim(C(n)), one can use similar argument as
in Theorem 3.1.4 to show that {µ, j(µ), . . . jm+1(µ)} ⊆ C(n), otherwise there is a violation
of Kunen Inconsistency.

Note that “F (κ) = η” is ∆n+2 (this is where we need n ≥ 1), since it is equivalent to
the conjunction of the Σn+1-assertion

κ < η ∈ C(n) ∧ ∀η′ < η[(κ < η′ ∧ η′ ∈ C(n)) → κ is η′-C(n)+-(m+ 1)-fold extendible]

and the Πn+1-assertion “κ is not η-C(n)+-(m+1)-fold extendible”. Given that Vλ̄ ≺Σn+1

V and Vλ ≺Σn+1 V , the formula “F (α) = β” is absolute between Vλ̄, Vλ, and V .
Thus the assertion “F (κ) = η” reflects down to Vλ. By elementarity

Vλ̄ |= “∃ξ > jm(µ)F (jm(µ)) = ξ”,

which implies, by ξ < λ̄ < κ and absoluteness, that

Vλ |= “∃ξ(jm(µ) < ξ < jm+1(µ) ∧ F (jm(µ)) = ξ)”,

now similarly as in Theorem 2.1.4, by applying elementarity iteratively we get some
ν = F (µ) with µ < ν < j(µ). Note that we have jm(ν) = jm(F (µ)) = F (jm(µ)) < λ̄,
so since ν ∈ C(n), by elementarity we have {ν, j(ν), . . . , jm+1(ν)} ⊆ C(n). Also we have
seen that {µ, j(µ), . . . , jm+1(µ)} ∈ C(n), so j↾Vjm(ν) : Vjm(ν) → Vjm+1(ν) witnesses that µ
is ν-C(n)+-(m+ 1)-fold extendible, a contradiction.
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(3) implies (1): Suppose for contradiction that λ > κ, λ ∈ C(n+1), and y ∈ Vλ but
there is no λ̄ < κ with λ̄ ∈ C(n+1) and x ∈ Vλ̄ with some elementary k : Vλ̄ → Vλ with
km+1(crit(k)) = κ and k(x) = y. Let λ′ > λ with λ′ ∈ C(1), and j : Vjm(λ′) → Vδ witnesses
the λ′-C(n)-(m+ 1)-fold extendibility of κ.

Since κ ∈ C(n+1) by Proposition 2.2.6 and Theorem 2.3.3, we have

Vjm(λ′) |= “There is no λ̄ < κ with Vκ |= “λ̄ ∈ C(n+1)” and x ∈ Vλ̄

with some elementary k : Vλ̄ → Vλ with km+1(crit(k)) = κ and k(x) = y”

which implies that

Vδ |= “There is no λ̄ < j(κ) with Vj(κ) |= “λ̄ ∈ C(n+1)” and x ∈ Vλ̄

with some elementary k : Vλ̄ → Vj(λ) with km+1(crit(k)) = j(κ) and k(x) = j(y)”.

Since j(κ) ∈ C(n), Vj(κ) |= “λ ∈ C(n+1)”. It follows that there is no elementary k : Vλ →
Vj(λ) with km+1(crit(k)) = j(κ) and k(y) = j(y).

Now by applying elementarity m-more times, we get that there is no elementary
k : Vjm(λ) → Vjm+1(λ) with km+1(crit(k)) = jm+1(κ) and k(jm(y)) = jm+1(y), which
contradicts the existence of k = j↾Vjm(λ).

Now for (i), note that if m,n = 0 then (1) and (2) are both asserting that κ is
supercompact, by observing the fact that if j : Vλ̄ → Vλ is elementary and λ ∈ C(1), then
λ̄ ∈ C(1). Also, (3) says that κ is extendible, which has stronger consistency strength and a
larger least instance.

For (ii), note that if m ̸= 0 but n = 0, then the equivalence of (2) and (3) follows from
Theorem 2.3.3, the fact that m-hyperhugeness is the same as C(1)-m-hyperhugeness, and
similarly for (m+1)-fold extendibility and C(1)-(m+1)-fold extendibility. (1) is the notion
of m-supercompactness, which by Proposition 2.2.8 is weaker in strength and with a smaller
least instance.

For (iii), note that if m = 0 but n ̸= 0, (1) and (3) both say that κ is C(n)-extendible,
since our argument above does not assume that m ≥ 1. Also (1) is the notion of C(n)-
supercompactness, which as remarked before, was shown in [28] to be weaker in strength
and with a smaller least instance.

As in Corollary 2.1, the above also gives the following:

Corollary. For every natural numbers m ≥ 1 and n, a cardinal κ is Σn-m-supercompact
if for any λ ∈ C(n) greater than κ, there is λ̄ < κ, with λ̄ ∈ C(n) and some elementary
embedding j : Vλ̄ → Vλ with jm(crit(j)) = κ.

Corollary. ([10]) For natural number n ≥ 1, κ is C(n)-extendible if and only if κ is
Σn+1-supercompact.

5.2 Reflecting measures

We now define the notion of an n-reflecting m-supercompact measure that generalizes
the notion of n-reflecting measure introduced in [5]. Using Theorem 5.1.3, we give charac-
terizations of m-supercompact cardinals and C(n)-m-fold extendible cardinals in terms of
n-reflecting m-supercompact measures, generalizing the results in [5].
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Definition 5.2.1. Given natural numbers m ≥ 1, n, cardinal κ and λ ≥ κ, we say that an
m-supercompact measure U for (κ, λ) is n-reflecting if Tn

λ = {x ∈ P(λ) : ot(x) ∈ C(n)} ∈ U .

It was shown in [5] that a cardinal κissupercompactifandonlyifthereisa11−reflectingnormalmeasureonPPκλ(equivalently, thereisa11−
reflecting11−supercompactmeasurefor(, )(κ, λ))foranyλ ≥ κinC(1)C(1).Infactmoreistrue, namelythatanynormalmeasureonPPκλisitself11−
reflecting :

Theorem 5.2.2. For natural number m ≥ 1,

1. If κ is a cardinal and λ ≥ κ is in C(1), then every m-supercompact measure U for
(κ, λ) is 1-reflecting.

2. A cardinal κ is m-supercompact if and only if for every λ ∈ C(1) greater than or equal
to κ, there is a 1-reflecting m-supercompact measure for (κ, λ).

Proof. Note that (2) immediately follows from (1). For (1), suppose that κ ≤ λ ∈ C(1)

and U is an m-supercompact measure for (κ, λ), then let j : V :→ Ult(V,U) ∼=M be the
ultrapower embedding, with λM ⊆M . Define U∗ = {X ⊆ P(λ) : j“λ ∈ j(X)}. Then, since
we have

j(T 1
λ ) = {x ∈ PM (j(λ)) : (ot(x) ∈ C(1))M}

and also (Vλ)
M = Vλ and ot(j“λ) = λ, it follows that j“λ ∈ j(T 1

λ ), thus T 1
λ ∈ U∗. But also

X ∈ U∗ iff j“λ ∈ j(X) iff (by normality) [id]U ∈ j(X) iff {x ∈ P(λ) : x ∈ X} = X ∈ U ,

So in fact T 1
λ ∈ U = U∗.

More generally:

Theorem 5.2.3. For all natural numbers m,n ≥ 1, a cardinal κ is Σn-m-supercompact if
and only if for every λ ∈ C(n) greater or equal to κ there is an n-reflecting m-supercompact
measure for (κ, λ).

Proof. For the forward direction, using similar ideas as before, let F : Ord→ Ord be such
that F (α) is the least β ∈ C(n) above α such that there is no n-reflecting m-supercompact
measure for (α, β), if such a β exists. Otherwise F (α) = 0.

Suppose for a contradiction that κ is Σn-m-supercompact but F (κ) > κ. Let λ > F (κ)
be in C(n) and j : Vλ̄ → Vλ is elementary, for some λ̄ < κ in C(n), with jm(crit(j)) = κ.
Let crit(j) = µ and µi = ji(µ) for 0 ≤ i ≤ m

It follows by arguments similar to the direction (1) to (3) of Theorem 5.1.3 that
µm−1 < F (µm−1) < µm, which by elementarity implies that µ0 < F (µ0) < µ1 and also
that jm−1(F (µ0)) = F (µm−1). Define

U = {X ⊆ P(F (µm−1)) : j“F (µm−1) ∈ j(X)}

Since F (µm−1) = ot(j“F (µm−1)) ∈ C(n), and this reflects to Vλ, it follows that

Tn
F (µm−1)

= {x ∈ P(F (µm−1)) : ot(x) ∈ C(n)} = {x ∈ P(F (µm−1)) : Vλ̄ |= “ot(x) ∈ C(n)”} ∈ U

so U is an n-reflecting m-supercompact measure for (µm−1, F (µm−1)), with targets
sequences µ0, . . . , µm−1 and F (µ0), . . . , F (µm−1), contradicting the definition of F .

Conversely, if κ ≤ λ ∈ C(n) and U is an n-reflecting m-supercompact measure for
(κ, λ), then let j : V :→ Ult(V,U) ∼= M be the ultrapower embedding. Thus λM ⊆ M
and jm−1(crit(j)) = κ. Then, since as in Theorem 5.2.2 we have X ∈ U if and only

62



if j“λ ∈ j(X), Tn
λ ∈ U and j(Tn

λ ) = {x ∈ PM (j(λ)) : (ot(x) ∈ C(n))M} implies that
(λ ∈ C(n))M . Thus, since k = j↾Vλ ∈M ,

M |= “∃λ̄ < j(κ) with λ̄ ∈ C(n) and an elementary k : Vλ̄ :→ Vj(λ) with km(crit(k)) = j(κ)”

and so there is some λ̄ < κ with λ̄ ∈ C(n) and an elementary k : Vλ̄ → Vλ with km(crit(k)) =
κ. It follows by Corollary 5.1 that κ is Σn-m-supercompact.

Corollary. For all natural numbers n,m ≥ 1, a cardinal κ is C(n)-m-fold-extendible if
and only if for every λ ∈ C(n+1) greater than or equal to κ, there is an (n+ 1)-reflecting
m-supercompact measure for (κ, λ).

Proof. This simply follows from Theorem 5.1.3 and Theorem 5.2.3.

Corollary. ([5]) For every natural number n ≥ 1, a cardinal κ is C(n)-extendible if and only
if for all λ ∈ C(n+1) greater than or equal to κ there is an (n+ 1)-reflecting 1-supercompact
measure for (κ, λ).
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Chapter 6

On Exact Structural Reflection

In this chapter we study the principles of Exact Structural Reflection (ESR) proposed
by Joan Bagaria and Philipp Lücke in [6]. These principles are motivated by their search for
structural reflection principles with higher consistency strength than Vopěnka’s Principle.
Many basic questions remained open, including the exact strength of ESR, and the pattern
in which they correspond to large cardinals. In the following we will clarify these issues, in
particular we answer several open questions asked in the paper.

Interestingly, the answers to these questions turn out to be somewhat unexpected.
We observe some connections between ESR, exact cardinals, and our notion of Σn-m-
supercompact cardinals. Some of the questions are answered by applications of the theory
of these cardinals and their correspondence to the capturing reflection principles.

6.1 ESR and exact cardinals

We first recall some basic definitions and results, all of them from [6].

Definition 6.1.1. Given cardinals κ < λ and a class C of structures of the same type, we
say ESRC(κ, λ) holds if for any structure B ∈ C of rank λ, there is some A ∈ C of rank κ
and an elementary embedding from A to B. Given a natural number n,

1. Σn(P )-ESR(κ, λ) holds if for any C that is Σn-definable with parameters in P ,
ESRC(κ, λ) holds. If P is empty we write Σn-ESR(κ, λ).

2. Σn(P )-ESR(κ) holds if Σn(P )-ESR(κ, λ) holds for some λ > κ.

3. Σn(P )
ic-ESR(κ, λ) holds if for any C that is Σn-definable with parameters in P and

is closed under isomorphic copies, ESRC(κ, λ) holds. Similarly for Σn(P )
ic-ESR(κ).

Similarly for Πn(P )-ESR(κ, λ), Πn(P )-ESR(κ), Πn(P )
ic-ESR(κ, λ), and Πn(P )

ic-ESR(κ).

With the motivation of finding large cardinal notions that correspond to the ESR
principles, Bagaria and Lücke introduced the weakly exact cardinals and exact cardinals.
We say a set M is Πn(P )-upwards correct, for some natural number n and class P , if for any
Πn-formula ϕ(x0, . . . , xk−1) and parameters b0, . . . , bk−1 ∈M ∩P , if M |= “ϕ(x0, . . . , xk−1)”
then ϕ(x0, . . . , xk−1) holds. The notion of Πn(P )-downwards correct is similarly defined.

Definition 6.1.2. Given a natural number n ≥ 1, a cardinal κ is weakly n-exact for a
cardinal λ > κ if for any A ∈ Vλ+1, there is some transitive, Πn(Vκ+1)-upwards correct M
with Vκ ∪ {κ} ⊆M , a cardinal λ′ ∈ C(n−1) greater than ℶλ and an elementary embedding
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j :M → Hλ′ with j(κ) = λ and A ∈ ran(j). If we further require that j(crit(j)) = κ then
we say κ is weakly prarametrically n-exact for λ∗.

Weakly exact cardinals correspond to ESR for Πn-definable classes:

Theorem 6.1.3. The following statements are equivalent for all cardinals κ and all natural
numbers n > 0:

1. κ is the least regular cardinal such that Πic
n -ESR(κ) holds.

2. κ is the least cardinal such that Πn-ESR(κ) holds.

3. κ is the least cardinal such that Πn(Vκ)-ESR(κ) holds.

4. κ is the least cardinal that is weakly n-exact for some cardinal λ > κ.

5. κ is the least cardinal that is weakly parametrically n-exact for some cardinal λ > κ.

Definition 6.1.4. Given a a natural number n, a cardinal κ is n-exact for some cardinal
λ > κ if for any A ∈ Vλ+1 there is a cardinal κ′ ∈ C(n) greater than ℶκ, a cardinal
λ′ ∈ C(n+1) greater than λ, an elementary substructure X of Hκ′ , with Vκ ∪ {κ} ⊆ X, and
an elementary embedding j : X → Hλ′ with j(κ) = λ and A ∈ ran(j). If we further require
that j(crit(j)) = κ then we say that κ is parametrically n-exact for λ.

Exact cardinals correspond to ESR for Σn+1-definable classes.

Theorem 6.1.5. The following are equivalent for all cardinals κ and all natural numbers
n > 0:

1. κ is the least cardinal such that Σn+1-ESR(κ) holds.

2. κ is the least cardinal such that Σn+1(Vκ)-ESR(κ) holds.

3. κ is the least cardinal that is n-exact for some cardinal λ > κ.

4. κ is the least cardinal that is parametrically n-exact for some cardinal > κ.

Many questions remained open, two of them being the exact consistency strength of
the exact cardinals, and the pattern of correspondence between ESR and exact cardinals.
These issues will be elaborated and discussed in the following sections.

6.2 On strength

Here are three relevant results from [6] regarding the strength of exact cardinals:

Proposition 6.2.1. If κ is either parametrically 0-exact for λ or weakly parametrically
1-exact for λ, then the set of µ < κ such that µ is almost huge with target κ is stationary
in κ.

Proposition 6.2.2. If κ is the least huge cardinal, then κ is not 1-exact for any λ > κ.

Proposition 6.2.3. If κ is the critical point of some I3 embedding j : Vδ → Vδ and
l,m, n < ω, then it holds in Vδ that jl(κ) is parametrically n-exact for jl+m+n(κ).

∗The definition here is a bit different from the version of [6] that is currently published, which uses
“Πn(Vκ+1)-correct” instead of “Πn(Vκ+1)-upwards correct”. The definition here is the correct one; see the
forthcoming corrigendum.
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One naturally wonders what is the precise consistency strength of the exact cardinals,
in particular the following open question was asked in [6]:

Question 6.2.4 ([6]). Does Con(ZFC+“there is a huge cardinal”) imply Con(ZFC+“Σ2-
ESR(κ) holds for some κ”)?

The three results above show that, on the one hand, 0-exact cardinals and weakly
1-exact cardinals, which are among the weakest in the whole hierarchy, already imply many
almost huge cardinals, and the least huge cardinal κ cannot be 1-exact for any λ > κ. On
the other hand, the upper bound for the whole hierarchy given is the very strong axiom of
an I3 embedding. These results can natually be taken to indicate that the answer to 6.2.4
might be negative, as the remarks in [6] suggest.

Perhaps surprisingly, it turns out that the answer is positive in the strongest sense: a
huge cardinal is strictly stronger than the whole hierarchy of n-exact cardinals, for all n:

Theorem 6.2.5. If κ is a huge cardinal, then for any natural number n, Vκ is a model of
ZFC plus the following statement:

“There is a proper class of cardinals µ such that µ is parametrically n-exact for
a proper class of cardinals λ”.

Proof. Let n be a natural number. Let κ = κ0 be a huge cardinal with target κ1, and
let U be a witnesssing normal ultrafilter over P(κ1). Let j : V → Ult(V,U) ∼= M be
the corresponding ultrapower embedding, with crit(j) = κ0, j(κ0) = κ1, and κ1M ⊆ M .
Furthermore let j(κ1) = κ2.

First note that we have Vκ1 = (Vκ1)
M ⊆ (Vκ2)

M . Also, Vκ0 ≺ Vκ1 , so by elementarity,
we have Vκ1 ≺ (Vκ2)

M . Moreover, note that by elementarity we have (Vκ2)
M is a model of

ZFC.
Let α be such that κ1 < α < κ2 and (Vκ2)

M |= “α ∈ C(n+1)”. This makes sense since
(Vκ2)

M |= ZFC implies
(Vκ2)

M |= “C(n+1) is a club class”.

Note that it follows that M |= “α = ℶα > ℶκ1”. Now for any B ∈ Vκ1+1, let X be
an elementary substructure of (Vα)M with Vκ1 ∪ {B, κ1} ⊆ X and |X| = κ1. Note that
this is possible, since we have by elementarity, that M |= “κ1 is inacessible”, which is
true in V by the closure property of M . Thus |Vκ1 | = κ1. Now consider the mapping
k = j↾X : X → j(X). k is elementary, and we have crit(k) = κ0, k(κ0) = j(κ0) = κ1,
k(κ1) = κ2, and k(B) = j(B). Since κ1M ⊆M , we have k ∈M and

M |= “∃ Y such that Y ≺ Vβ for some β > ℶκ1 with Vβ ≺Σn+1 Vκ2 and
Vκ1 ∪ {κ1} ⊆ Y , and there is an elementary embedding k : Y → j(X) such that
j(B) ∈ ran(k), k(κ1) = κ2, and k(crit(k)) = κ1”.

By the elementarity of j, the following holds in V :

“∃ Y such that Y ≺ Vβ for some β > ℶκ0 with Vβ ≺Σn+1 Vκ1 and
Vκ0 ∪ {κ0} ⊆ Y , and there is an elementary embedding k : Y → X such that
B ∈ ran(k), k(κ0) = κ1, and k(crit(k)) = κ0”.

Take some witnessing Y, β and k as above. Observe that we have Y, β and k are all in
(Vκ2)

M . Moreover we also have Vβ ≺Σn+1 (Vκ2)
M . Also recall that X ≺ Vα ≺Σn+1 (Vκ2)

M .
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It follows that

(Vκ2)
M |= “∃ Y such that Y ≺ Vβ for some β > ℶκ0 with β ∈ C(n) and

Vκ0 ∪ {κ0} ⊆ Y , and there is an elementary embedding k : Y → Vα for some

α ∈ C(n+1) such that B ∈ ran(k), k(κ0) = κ1, and k(crit(k)) = κ0”.

Noting that Hα = Vα for any α ∈ C(1), that the B ∈ Vκ1+1 is arbitrarily chosen, and
that (Vκ1+1)

(Vκ2 )
M

= Vκ1+1, the above implies that in fact

(Vκ2)
M |= “κ0 is parametrically n-exact for κ1”.

Now define the ultrafilter U∗ on κ0 induced by j, namely

U∗ = {X ∈ P(κ0) : κ0 ∈ j(X)},

it follows that

D = {µ < κ0 : Vκ1 |= “µ is parametrically n-exact for κ0”} ∈ U∗.

Take any element µ ∈ D, since j(µ) = µ, we have

(Vκ1)
M = Vκ1 |= “j(µ) is parametrically n-exact for κ0”,

which implies that

Dµ = {λ < κ0 : Vκ0 |= “µ is parametrically n-exact for λ”} ∈ U∗.

Combining all of the above, we have

Vκ0 |= ZFC+“there is a proper class of cardinals µ such that
µ is parametrically n-exact for a proper class of cardinals λ”,

as desired.

In particular, we lower the upper bound of consistency strength significantly from an I3
cardinal to a huge cardinal.

We also give now a finer analysis of the lower bound. A cardinal κ is called an A2

cardinal (with target λ), if κ is the critical point of some elementary embedding j : Vα → Vβ
with j(κ) = λ ≤ α. This notion was introduced in [34], with consistency strength strictly
between an almost huge cardinal and a huge cardinal. We may strengthen this notion
by considering its “super” version and C(n) version. For the moment let us say that κ is
C(n)-super A2 if for any δ, κ is A2 with target λ ∈ C(n) greater than δ.

Proposition 6.2.6. If κ is either parametrically 0-exact for λ or weakly parametrically
1-exact for λ, then for any natural number n, Vκ is a model of ZFC plus “there is a proper
class of C(n)-super A2 cardinal”.

Proof. We show the case where κ is parametrically 0-exact. It should be clear how the
other case can be proved similarly. Suppose κ is parametrically 0-exact for λ > κ. Since
rk(Vλ) = λ, there is some κ′ > ℶκ, some λ′ ∈ C(1) greater than λ, some X ≺ Hκ′ , with
Vκ ∪ {κ} ⊆ X, and an elementary embedding j : X → Hλ′ with j(κ) = λ, Vλ ∈ ran(j) and
j(crit(j)) = κ. Let crit(j) = ν.
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Now let j(A) = Vλ, it follows from elementarity and Vκ ⊆ X that A = Vκ, so in fact
k = j↾Vκ : Vκ → Vλ witnesses that crit(k) = ν is A2 with target κ. But note that λ′ ∈ C(1)

implies that Vλ′ = Hλ′ , so k ∈ Hλ′ . Thus let U = {X ⊆ P(ν) : ν ∈ j(X)} be the normal
ultrafilter induced by j on ν. We get that C = {µ < ν : X |= “µ is A2 with target ν”} ∈ U .
Note that if µ ∈ C, then “µ is A2 with target ν” also holds in V and in Hλ′ . It follows
that Cµ = {δ < ν : X |= “µ is A2 with target δ”} ∈ U , and since Cn

ν = {α < ν : Vν |=
“α ∈ C(n)”} is a club set, we have Cn

ν ∈ U , thus Cµ ∩Cn
ν ∈ U . It follows that if µ ∈ C then

Vν |= “µ is a C(n)-super A2 cardinal”, So it holds in both Vν and, by elementarity, Vκ, that
there is a proper class of C(n)-super A2 cardinals, as desired.

Additionally we give some brief remarks on the strength of A2 cardinals. We say a
cardinal κ is almost huge with target λ if there is some elementary embedding j : V →M
for some transitive M , with crit(j) = κ, j(κ) = λ, and δM ⊆M for every δ < λ. Similarly
we say κ is C(n)-super almost huge, for some natural number n, if for any δ, κ is almost
huge with some target λ ∈ C(n) greater than δ.

Proposition 6.2.7. If κ is A2, then Vκ is a model of ZFC+“there is a proper class of
C(n)-super almost huge cardinals”.

Proof. Suppose j : Vα → Vβ is elementary, with crit(j) = κ and j(κ) ≤ α. For any
κ ≤ λ < j(κ), define Uλ by X ∈ Uλ if and only if X ⊆ Pκλ∧ j“λ ∈ j(X). It can be verified
that each Uλ is a normal ultrafilter over Pκλ. Moreover, by Theorem 24.11 of [21], it follows
that ⟨Uλ : κ ≤ λ < j(κ)⟩ is a coherent sequence (please see [21] for the deails) witnessing
that κ is almost huge with target j(κ). Furthermore, the almost hugeness of κ with target
j(κ) can be correctly verified by Vj(κ)+1. It follows that Vβ |= “κ is almost huge with target
j(κ)”.

Arguing similarly as in Proposition 6.2.6, we see that if U is be the ultrafilter on κ
derived from j, we have A = {γ < κ : γ is almost huge with target κ} ∈ U , which implies
{µ < κ : γ is almost huge with target µ and Vκ |= “µ ∈ C(n)”} ∈ U for any γ ∈ A, so the
conclusion follows.

Thus we have seen that, firstly, an A2 cardinal is stronger than the whole hierarchy of
C(n)-super almost huge cardinals, secondly, a parametrically 0-exact cardinal is stronger
than the hierarchy of C(n)-super A2 cardinals, and finally, a huge cardinal is stronger than
the hierarchy of parametrically n-exact cardinals. Thus interestingly, there turn out to be
rich hierarchies of large cardinals strictly between the seemingly narrow interval between
almost hugeness and hugeness. Moreover, we see that large cardinal notions prompted by
the study of structural reflection principle give rise to new regions of the large cardinal
hierarchy not studied before.

6.3 On pattern

Note that Theorem 6.1.3 and 6.1.5 only give us the correspondence between ESR and
exact cardinals in their local forms. However, usually in the study of structural reflection
principles, we are more interested in the global forms of the reflection principles, thus it is
important to know if the patterns of correspondence continue to hold, namely if Theorem
6.1.3 and 6.1.5 continue to be true globally. More precisely, the following open question
was proposed in [6]:

Question 6.3.1 ([6]). Are the following statements equivalent for every cardinal κ and every
natural number n ≥ 1?
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1. κ is the least cardinal that is weakly parametrically n-exact for a proper class of
cardinals λ.

2. κ is the least cardinal such that Πn-ESR(κ, λ) holds for a proper class of cardinals λ.

The analogous question for the Σn+1 case was also open:
Question 6.3.2 ([6]). Are the following statements equivalent for every cardinal κ and every
natural number n ≥ 1?

1. κ is the least cardinal that is parametrically n-exact for a proper class of cardinals λ.

2. κ is the least cardinal such that Σn+1-ESR(κ, λ) holds for a proper class of cardinals
λ.

In this section we answer the above two questions by applications of the theory of
Σn-m-supercompact cardinals. The answers turn out to be unexpected but quite interesting:
it is provable from ZFC that the answer to Question 6.3.1 is positive for n ≥ 2, but it is
provable, assuming the existence of a 2-supercompact cardinal, that the answer is negative
when n = 1. In fact more is true: the assertion that a 2-supercompact cardinal exists is
equivalent to the assertion that the answer is negative when n = 1.

Moreover, this pattern also holds for Question 6.3.2: for any n ≥ 1, the assertion that
a Σn-2-supercompact cardinal exists is equivalent to the assertion that the answer to the
question is negative.

We also show that weakened versions of the two questions have positive answers.
Proposition 6.3.3. For every natural number n ≥ 1, if κ is Σn-2-supercompact, then κ is
a limit of cardinals µ < κ such that Σn+1-ESR(µ, λ) holds for a proper class of cardinals λ.

Proof. Suppose κ is Σn-2-supercompact, then CSR(κ,Πn) holds. In the case n = 1 this
follows from Theorem 3.1.4. In the case n ≥ 2, first note that by Theorem 5.1.3, κ is
C(n−1)-hyperhuge, and so by Theorem 3.2.4 CSR(κ,Πn) holds.

Now for any α < κ, consider the Πn-definable, with parameter α, class C of structures
of the form (Vγ ,∈, γ, λ, α), where γ ∈ C(n) and λ < γ.

For any ordinal λ ≥ κ, we can take some γ ∈ C(n+1) greater than λ, and consider
the structure (Vγ ,∈, γ, λ, α) ∈ C. By CSR(κ,Πn), there is some (Vξ,∈, ξ, µ, α) ∈ C that
captures (Vγ ,∈, γ, λ, α).
Claim 6.3.4. Σn+1-ESR(µ, λ) holds.

Proof. For any class C∗ of structures that is Σn+1-definable without parameters, take
B ∈ C∗ of rank λ, by capturing there is some elementary embedding

j : (Vξ,∈, ξ, µ, α) → (Vγ ,∈, γ, λ, α)

and some A with j(A) = B. Since γ ∈ C(n+1) we have Vγ |= “rk(B) = λ ∧B ∈ C∗”, so by
elementarity Vξ |= “rk(A) = µ ∧A ∈ C∗”. The point here is that the definition of C∗ does
not have parameter, thus we can conclude directly from ξ ∈ C(n) and upward absoluteness
that A ∈ C∗ (if C∗ is defined with some parameter b then it can happen that j−1(b) ̸= b so it
does not follow that A ∈ C∗). Moreover, j↾A : A→ B is elementary. Thus Σn+1-ESR(µ, λ)
holds.

Note that µ < j(µ) = λ implies α < µ, thus what we have shown is this: for any α < κ
and λ ≥ κ, there is some µ between α and κ with Σn+1-ESR(µ, λ) holds. Thus there must
be some fixed µ between α and κ with Σn+1-ESR(µ, λ) holds for a proper class of λ, as
desired.
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Lemma 6.3.5. For every natural number n and cardinals κ < λ < δ, if Πn(P )-ESR(κ, λ)
holds and Πn(P )-ESR(λ, δ) holds, then Πn(P )-ESR(κ, δ) holds.

Proof. Let C be a Πn-definable, with parameters in P , class of structures of the same type.
If C ∈ C is of rank δ, then we have some B ∈ C of rank λ with j : B → C elementary. Thus
if A ∈ C is of rank κ and k : A→ B is elementary, then j ◦ k : A→ C is elementary.

Lemma 6.3.6 ([6], Corollary 5.5∗). The following statements are equivalent for all natural
numbers n > 0 and all cardinals κ < λ,

1. Πn-ESR(κ, λ) holds.

2. For all A0, . . . , Ak−1 ∈ Vλ+1 and λ < λ′ ∈ C(n) there exists a transitive, Πn(Vκ+1)-
upwards correct set M with Vκ∪{κ} ⊆M and an elementary embedding j :M → Hλ′

with j(κ) = λ and A0, . . . , Ak−1 ∈ ran(j).

Lemma 6.3.7. For every natural number n ≥ 1, if κ is the least cardinal such that Πn-
ESR(κ, λ) holds for a proper class of cardinals λ, but κ is not weakly parametrically n-exact
for a proper class of cardinals λ, then there is some cardinal ξ < κ, such that Πn-ESR(ξ, ν)
holds for some Σn-2-supercompact cardinal ν.

Proof. Suppose our assumptions hold, then for any α < κ, the β’s such that Πn-ESR(α, β)
holds are bounded, so there is some δ ∈ C(n+1) large enough such that for any α < κ,
Πn-ESR(α, β) fails for any β ≥ δ. Fix such a δ.

By assumption we can take some λ > δ such that Πn-ESR(κ, λ) holds but κ is not
weakly parametrically n-exact for λ. It follows by definition that there must be some
A ∈ Vλ+1 such that there is no transitive, Πn(Vκ+1)-upwards correct M with Vκ∪{κ} ⊆M ,
with some cardinal λ′ ∈ C(n−1) greater than ℶλ and an elementary embedding j :M → Hλ′

with j(κ) = λ, A ∈ ran(j), and j(crit(j)) = κ. Let A be such a set.
Now let λ′ ∈ C(n) be greater than λ. By Lemma 6.3.6, there is some M that is

transitive, Πn(Vκ+1)-upwards correct, with Vκ ∪ {κ} ⊆ M , and there is an elementary
embedding j : M → Hλ′ with j(κ) = λ and A, κ, δ ∈ ran(j). It follows from A ∈ ran(j)
that j(crit(j)) ̸= κ, so j(crit(j)) < κ. Let crit(j) = µ and j(ξ) = δ. Note that since
j(µ) < κ there must be some natural number i ≥ 2 such that ji(µ) > κ, otherwise there is
a violation of the Kunen Inconsistency.

Claim 6.3.8. Πn-ESR(j(µ), ji(µ)) holds.

Proof. We first show that for any k with 1 ≤ k ≤ (i− 1) we have Πn-ESR(jk(µ), jk+1(µ))
holds. Then the claim follows from Lemma 6.3.5. Now suppose 1 ≤ k ≤ (i − 1) but
Πn-ESR(jk(µ), jk+1(µ)) fails. Then let C be a Πn-definable, without parameters, class of
structures that is a counterexample. Thus it is true in Vλ′ = Hλ′ ≺Σn V that there is
some Y ∈ C of rank jk+1(µ) with no X ∈ C of rank jk(µ) and an elementary embedding
k : X → Y . By elementarity, it is true in M that there is some Y ∈ C of rank jk(µ) with
no X ∈ C of rank jk−1(µ) and an elementary embedding k : X → Y . Let Y be such a
witness. By elementarity again, it is true in Vλ′ that there is no X of rank jk(µ) with an
elementary embedding k : X → j(Y ).

But note that since M is Πn(Vκ+1)-upward absolute, Y ∈ Vκ+1 (as jk(µ) ≤ κ), and
C is Πn-definable without parameters, we have Y ∈ C holds in V , and in Vλ′ , thus
k = j↾Y : Y → j(Y ) ∈ Vλ′ is elementary, which is a contradiction.

∗This is a variant of Corollary 5.5, but inspecting the proof of Corollary 5.5 shows that this can also be
proven.
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Since j(µ) < κ and Πn-ESR(j(µ), ji(µ)) holds, it follows that ji(µ) < δ, since we
are supposing that for no α < κ and β ≥ δ can Πn-ESR(α, β) hold. Now suppose our
conclusion fails, then in particular, we have ji(µ) is not Σn-2-supercompact, since j(µ) < κ
and Πn-ESR(j(µ), ji(µ)) holds. Thus in fact ji(µ) must fail to be Σn-i-supercomact, given
that i ≥ 2, and Σn-i-supercompactness implies Σn-2-supercompactness. Now note that
“ji(µ) is not Σn-i-supercompact” is a Σn+1-statement, since it is equivalent to

∃η > ji(µ), X(η ∈ C(n) ∧X = Vη+1 ∧ there is no k, ν ∈ X such that

ν ∈ C(n), k : Vν → Vη is elementary and ki(crit(k)) = ji(µ)).

Thus, since δ ∈ C(n+1), the above statement holds in Vδ, so by elementarity and j(ξ) = δ
we have

Vξ |= “there exists η ∈ C(n) greater than ji−1(µ) such that there is no ν ∈ C(n) less than

ji−1(µ) with an elementary embedding k : Vν → Vη with ki(crit(k)) = ji−1(µ)”.

By elementarity,

Vδ |= “there is no ν ∈ C(n) less than ji(µ) such that there is an elementary embedding

k : Vν → Vj(η) with ki(crit(k)) = ji(µ)”.

But note that η < ξ < κ < ji(µ), and since λ′ ∈ C(n), we have Vλ′ |= “δ ∈ C(n)”,
thus M |= “ξ ∈ C(n)”. But since δ < λ, by elementarity ξ < κ, so by Πn(Vκ+1)-upward
absoluteness, ξ ∈ C(n), thus η ∈ C(n). It follows that j↾Vη : Vη → Vj(η) is the required
elementary embedding k, which is a contradiction.

Proposition 6.3.9. For every natural number n ≥ 1, if κ is Σn+1-2-supercompact, then κ
is weakly parametrically (n+ 1)-exact for a proper class of cardinals λ.

Proof. Suppose κ is Σn+1-2-supercompact, then by Theorem 5.1.3, κ is C(n)-2-fold ex-
tendible, which implies by Corollary 5.1 that κ is C(n)+-2-fold extendible. For any ordinal
α ∈ C(n+1) greater than κ, take δ ∈ C(n) greater than α. By assumption, we have
some elementary embedding j : Vj(δ) → Vη for some η, with crit(j) = κ, δ < j(κ), and
{δ, j(δ), j(κ), j2(κ), η} ⊆ C(n).
Claim 6.3.10. κ is weakly parametrically (n+ 1)-exact for j(κ).

Proof. For any A ∈ Vj(κ)+1, consider k = j↾Vj(α) : Vj(α) → Vj2(α) ∈ Vη. Thus

Vη |= “There is some elementary embedding k : Vj(α) → Vj2(α)

with k(j(κ)) = j2(κ), k(crit(k)) = j(κ), and j(A) ∈ ran(k)”,

so by elementarity,

Vj(δ) |= “There is some elementary embedding k : Vα → Vj(α)

with k(κ) = j(κ), k(crit(k)) = κ, and A ∈ ran(k)”.

Now since Vj(δ) |= “α ∈ C(n)”, we have Vη |= “j(α) ∈ C(n)”, which implies that j(α) ∈
C(n). Also note that we have Vα is Πn+1(Vκ+1)-upwards correct, Vκ ∪ {κ} ⊆ Vα, and since
j(α) ∈ C(1), j(α) > ℶj(κ) and Hj(α) = Vj(α). Thus since A is arbitrary, we can conclude
that κ is weakly parametrically (n+ 1)-exact for j(κ), as desired.
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Finally since α can be chosen to be arbitrarily large, κ is weakly parametrically (n+ 1)-
exact for a proper class of cardinals, as desired.

Lemma 6.3.11 ([6], Proposition 5.3). For every natural number n ≥ 1, if κ is weakly
parametrically n-exact for λ, then Πn(Vκ)-ESR(κ, λ) holds.

Combining all the previous results, now we can give a positive answer to Question 6.3.1
in the cases when n ≥ 2:

Theorem 6.3.12. For every natural number n ≥ 2 and cardinal κ, the following are
equivalent:

1. κ is the least cardinal that is weakly parametrically n-exact for a proper class of
cardinals λ.

2. κ is the least cardinal such that Πn-ESR(κ, λ) holds for a proper class of cardinals λ.

Proof. By Lemma 6.3.11, it is sufficient to show that the least κ such that Πn-ESR(κ, λ)
holds for a proper class of cardinals λ is weakly parametrically n-exact for a proper class of
cardinals λ. Suppose for contradiction that κ is a counterexample. Now by Lemma 6.3.7,
there is some cardinal ξ < κ such that Πn-ESR(ξ, ν) holds for some Σn-2-supercompact
cardinal ν. By Proposition 6.3.9, ν is weakly parametrically (n − 1)-exact for a proper
class of cardinals λ. By Lemma 6.3.11, Πn-ESR(ν, λ) holds for a proper class of λ. But
then by Lemma 6.3.5, we have Πn-ESR(ξ, λ) holds for a proper class of λ. But since ξ < κ,
this contradicts the minimality of κ. Thus κ must be weakly parametrically n-exact for a
proper class of cardinals λ.

Next we analyze the reflective properties of κ and λ when some forms of ESR(κ, λ)
holds.

Proposition 6.3.13. For every natural number n ≥ 1 and every cardinal κ,

1. For every cardinal λ > κ, if Π1(Vκ)-ESR(κ, λ) holds, then Vκ ≺ Vλ.

2. Suppose Π1(Vκ)-ESR(κ, λ) holds for a proper class of cardinals λ. Then for every
cardinal λ, if Π1(Vκ)-ESR(κ, λ) holds, then λ ∈ C(1). Moreover, κ ∈ C(3).

3. Suppose Σn+1(Vκ)-ESR(κ, λ) holds for a proper class of cardinals λ. Then for every
cardinal λ, if Σn+1(Vκ)-ESR(κ, λ) holds, then λ ∈ C(n+1). Moreover, κ ∈ C(n+3).

Proof. (1): If Π1(Vκ)-ESR(κ, λ) holds, then for any b0, . . . , bk−1 ∈ Vκ, the class of structures
of the form (Vα,∈, b0, . . . , bk−1) is Π1-definable with parameters b0, . . . , bk−1, so there
must be some elementary embedding j : Vκ → Vλ with b0, . . . , bk−1 fixed by j, so Vκ |=
“ϕ(b0, . . . , bk−1)” if and only if Vλ |= “ϕ(b0, . . . , bk−1)” for any formula ϕ(y0, . . . , yk−1). It
follows that Vκ ≺ Vλ.

(2): Suppose Π1(Vκ)-ESR(κ, λ) holds for a proper class of λ, then we first show that
κ ∈ C(1). Suppose b0, . . . , bk−1 ∈ Vκ and ϕ(a, b0, . . . , bk−1) holds in V for some a, where
ϕ(x, y0, . . . , yk−1) is Σ0, then let λ > rk(a) be such that Π1(Vκ)-ESR(κ, λ) holds. Then Vλ
satisfies ∃xϕ(x, b0, . . . , bk−1), and so does Vκ by (1). It follows that κ ∈ C(1).

Now suppose that Π1(Vκ)-ESR(κ, λ) holds, then by (1) we have λ ∈ C(1) as well.
Now we can show that κ ∈ C(3). Take any Σ3-formula ∃x∀yϕ(x, y, y0, . . . , yk−1),

where ϕ is Σ1. For every a, b0, . . . , bk−1 ∈ Vκ and Vκ |= “∀yϕ(a, y, b0, . . . , bk−1)”, then if
∀yϕ(a, y, b0, . . . , bk−1) fails in V , then ∀yϕ(a, y, b0, . . . , bk−1) fails in some λ sufficiently
large and Π1(Vκ)-ESR(κ, λ) holds. But then by (1) ∀yϕ(a, y, b0, . . . , bk−1) also fails in Vκ,
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contradiction. Conversely if b0, . . . , bk−1 ∈ Vκ and ∀yϕ(a, y, b0, . . . , bk−1) holds in V for
some a, then let λ > rk(a) be such that Π1(Vκ)-ESR(κ, λ) holds, then since λ ∈ C(1), the
Π2-formula ∀yϕ(a, y, b0, . . . , bk−1) reflects in Vλ, so ∃x∀yϕ(x, y, b0, . . . , bk−1) holds in Vλ,
and also in Vκ, as desired.

(3): This can be proved by induction on n. For n = 1, suppose Σ2(Vκ)-ESR(κ, λ) holds
for a proper class of λ, then by (2) we already have κ ∈ C(3). Now if Σ2(Vκ)-ESR(κ, λ)
holds, then if λ /∈ C(2), then since the class C of structures of the form (Vα,∈) and α /∈ C(2)

is Σ2-definable, the fact that (Vλ,∈) ∈ C and Σ2(Vκ)-ESR(κ, λ) imply that (Vκ,∈) ∈ C,
which is a contradiction. Thus λ ∈ C(2).

Now we can show that κ ∈ C(4). One direction easily follows from the fact that
κ ∈ C(3). For the other direction, if b0, . . . , bk−1 ∈ Vκ and some Σ4-formula is of the form
∃xϕ(x, y0, . . . , yk−1), with ϕ(a, b0, . . . , bk−1) holds in V for some a. Then let λ > rk(a) be
such that Σ2(Vκ)-ESR(κ, λ) holds. Thus λ ∈ C(2) and the Π3-formula ϕ(a, b0, . . . , bk−1)
reflects in Vλ, implying that ∃xϕ(x, b0, . . . , bk−1) holds in Vλ, and also in Vκ by (1).

The general case can be shown similarly, using inductive hypothesis together with the
observation that if Σn+1(Vκ)-ESR(κ, λ) holds then λ ∈ C(n+1).

Now we can answer Question 6.3.1 in the case n = 1. As remarked before, a negative
answer is equivalent to the existence a 2-supercompact cardinal. In fact more is true:

Theorem 6.3.14. The following statements are equivalent:

1. There exists a 2-supercompact cardinal.

2. There exists some cardinal κ such that Π1-ESR(κ, λ) holds for a proper class of
cardinals λ, but the least such κ does not have the property that Π1(Vκ)-ESR(κ, λ)
holds for a proper class of cardinals λ.

3. There exists some cardinal κ such that Π1-ESR(κ, λ) holds for a proper class of
cardinals λ, but the least such κ is not weakly parametrically 1-exact for a proper class
of cardinals λ.

Proof. (1) implies (2): suppose there exists some 2-supercompact cardinal, then let κ0
be the least one. By Proposition 6.3.3, there are unboundedly many κ < κ0 such that
Π1-ESR(κ, λ) holds for a proper class of cardinals λ. Let κ1 be the least such cardinal
less than κ0. Suppose for contradiction that Π1(Vκ1)-ESR(κ1, λ) holds for a proper class
of cardinals λ. Then by Proposition 6.3.13, κ1 ∈ C(3). However, note that the statement
“there exists a 2-supercompact cardinal” is Σ3 by Theorem 2.1.5, so there must be some
κ2 < κ1 < κ0, such that κ2 is really a 2-supercompact cardinal, contradicting the minimality
of κ0.

(2) implies (3): this follows from Lemma 6.3.11.
(3) implies (1): follows from Lemma 6.3.7.

In contrast, note that it is relatively consistent with ZFC that the answer to Question
6.3.1 is positive, simply because a negative answer implies large cardinals, so if ZFC alone
proves that the answer is negative, then ZFC proves its own consistency.

Although we know that in the presence of large cardinals, the least κ such that Π1-
ESR(κ, λ) holds for a proper class of cardinals λ cannot be weakly parametrically 1-exact
for a proper class of cardinals λ, we can still ask a weaker version of Question 6.3.1, namely
if the least κ such that Π1(Vκ)-ESR(κ, λ) holds for a proper class of cardinals λ is weakly
parametrically 1-exact for a proper class of cardinals λ. The answer is positive.
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Proposition 6.3.15. If κ is the least cardinal such that Π1(Vκ)-ESR(κ, λ) holds for a proper
class of cardinals λ, then for any cardinal λ, if Π1(Vκ)-ESR(κ, λ) holds, then κ is weakly
parametrically 1-exact for λ.

Proof. Suppose κ satisfies the assumption and Π1(Vκ)-ESR(κ, λ) holds, but κ is not weakly
parametrically 1-exact for λ. Then as in Lemma 6.3.7, we may choose some A ∈ Vλ+1 such
that there is no transitive, Πn(Vκ+1)-upwards correct M with Vκ ∪ {κ} ⊆ M , with some
cardinal λ′ greater than ℶλ and an elementary embedding j : M → Hλ′ with j(κ) = λ,
A ∈ ran(j), and j(crit(j)) = κ. Take λ′ ∈ C(1) greater than λ. We have by Lemma 6.3.6
some transitive, Πn(Vκ+1)-upwards correct set M with Vκ ∪ {κ} ⊆M and an elementary
embedding j : M → Hλ′ with j(κ) = λ and A, κ ∈ ran(j). Thus j(crit(j)) < κ. Let
crit(j) = µ, and let j(η) = κ.

Claim 6.3.16. There is some Σ2-2-supercompact cardinal κ′ less than κ.

Proof. First note that by (2) of Proposition 6.3.13 we have κ ∈ C(3) and λ ∈ C(1), thus
Vλ |= “κ ∈ lim(C(2))”, so by elementarity Vκ |= “η ∈ lim(C(2))”. Thus it is true in V that
η ∈ lim(C(2)).

Now we claim that µ ∈ C(2). Otherwise let ξ < µ such that there are no C(2) cardinals
between ξ and µ, and let ν < η be the least element of C(2) above µ. Then

Vη |= “ν is the least element of C(2) above ξ”

and since j(ξ) = ξ, Vκ |= “j(ν) is the least element of C(2) above ξ”. But then j(ν) = ν,
as both η and κ are in C(2). Thus j↾Vν+2 contradicts the Kunen Inconsistency.

Thus it holds in Vη that µ ∈ C(2), so by elementarity it holds in Vκ, and in V , that
j(µ) ∈ C(2).

Now for any ξ < min{η, j(µ)}, we have j↾Vj(µ+ξ) : Vj(µ+ξ) → Vj2(µ+ξ) witnesses that
µ is ξ-2-fold extendible, and since the statement “µ is ξ-2-fold extendible” is Σ2 with
parameters µ and ξ, it also holds in both Vη and Vj(µ) that µ is ξ-2-fold extendible. Now if
η ≤ j(µ), we have Vη |= “µ is a 2-fold extendible cardinal”. Otherwise, if η > j(µ), then it
holds in Vj(µ) that µ is 2-fold extendible. Let i ≥ 2 be the least natural number such that
ji(µ) ≥ η. We have by elementarity that it holds in Vji(µ) that j(i−1)(µ) is 2-fold extendible.
It follows that it is also true in Vη that j(i−1)(µ) is 2-fold extendible. So either way we have
Vη |= “There is a 2-fold extendible cardinal”. By elementarity, it holds in Vκ that there is
some 2-fold extendible cardinal κ′, which is true in V given that κ ∈ C(3), and “κ′ is 2-fold
extendible” is Π3-definable. Now by Theorem 5.1.3, κ′ is Σ2-2-supercompact.

But by Proposition 6.3.9, κ′ is weakly parametrically 2-exact for a proper class of
cardinals γ, which implies by Lemma 6.3.11 that Π1(Vκ′)-ESR(κ′, γ) holds for a proper
class of cardinals γ, contradicting the minimality of κ. Thus κ is weakly paramtrically
1-exact for λ.

The following theorem follows from the proposition above:

Theorem 6.3.17. The following are equivalent for any cardinal κ:

1. κ is the least cardinal such that Π1(Vκ)-ESR(κ, λ) holds for a proper class of cardinals
λ.

2. κ is the least cardinal that is weakly parametrically 1-exact for a proper class of
cardinals λ.
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Here are two lemmas analogous to Lemma 6.3.6 and Lemma 6.3.11, respectively:

Lemma 6.3.18 ([6], Proposition 6.4∗). The following are equivalent for all cardinals κ < λ
and natural number n ≥ 1:

1. Σn+1-ESR(κ, λ) holds.

2. For any A0, . . . , Ak−1 ∈ Vλ+1 there is some cardinal κ′ ∈ C(n) greater than ℶκ, a
cardinal λ′ ∈ C(n+1) greater than λ, some X ≺ Hκ′ with Vκ ∪ {κ} ⊆ X and an
elementary embedding j : X → Hλ′ such that j(κ) = λ and A0, . . . , Ak−1 ∈ ran(j).

Lemma 6.3.19 ([6], Proposition 6.3). For any natural number n ≥ 1, if κ is parametrically
n-exact for λ, then Σn+1(Vκ)-ESR(κ, λ) holds.

We can also prove a lemma analogous to Lemma 6.3.7:

Lemma 6.3.20. For every natural number n ≥ 1, if κ is the least cardinal such that
Σn+1-ESR(κ, λ) holds for a proper class of cardinals λ, but κ is not parametrically n-exact
for a proper class of cardinals λ, then there exists some Σn-2-supercompact cardinal.

Proof. Suppose the assumptions are satisfied. Then let δ ∈ C(n+1) be greater than κ, and
so there is no α < κ such that there is some β ≥ δ where Σn+1-ESR(α, β) holds. Let λ > δ
be such that Σn+1-ESR(κ, λ) holds, but κ is not parametrically n-exact for λ, with some
B ∈ Vλ+1 as a counterexample. It follows from Lemma 6.3.18 that there is some cardinal
κ′ ∈ C(n) greater than ℶκ, a cardinal λ′ ∈ C(n+1) greater than λ, some X ≺ Hκ′ = Vκ′

with Vκ ∪ {κ} ⊆ X and an elementary embedding j : X → Hλ′ with A, κ, δ ∈ ran(j). Let
crit(j) = µ. We have j(µ) < κ, since A ∈ ran(j) implies j(crit(j)) ̸= κ. Let j(η) = κ and
j(ξ) = δ. Let i ≥ 2 be the least natural number such that ji(µ) > κ. It follows by similar
argument as in Lemma 6.3.7 that ji(µ) < δ.

Since it holds in Vλ′ that δ ∈ C(n), by elementarity it holds in X that ξ ∈ C(n),
thus ξ ∈ C(n), given that X ≺ Hκ′ = Vκ′ ≺Σn V . Suppose for contradiction that there
is no Σn-2-supercompact cardinal. Then in particular there is no Σn-i-supercompact
cardinal, and this fact reflects in Vδ, given that δ ∈ C(n+1). So by elementarity Vξ |=
“∃ν ∈ C(n) j(i−1)(µ) is not ν-Σn-i-supercompact”, witnessed by some element y ∈ Vν . Since
ξ ∈ C(n), ν ∈ C(n), so by elementarity, there should not be some elementary embedding
k : Vν → Vj(ν) with j(y) ∈ ran(k) and ki(crit(k)) = ji(µ), contradicting the existence of
j↾Vν .

Now we can show that negative answers to Question 6.3.2 for every n ≥ 1 are also
equivalent to the existence of large cardinals.

Theorem 6.3.21. The following statements are equivalent for every natural number n ≥ 1:

1. There exists a Σn-2-supercompact cardinal.

2. There exists some cardinal κ such that Σn+1-ESR(κ, λ) holds for a proper class of
cardinals λ, but the least such κ does not have the property that Σn+1(Vκ)-ESR(κ, λ)
holds for a proper class of cardinals λ.

3. There exists some cardinal κ such that Σn+1-ESR(κ, λ) holds for a proper class of
cardinals λ, but the least such κ is not parametrically n-exact for a proper class of
cardinals λ.

∗Similarly as in Lemma 6.3.6, this is a variant of Proposition 6.4 in [6], which can be proven similarly.
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Proof. (1) implies (2): suppose that there exists some Σn-2-supercompact cardinal, then let
κ0 be the least one. By Proposition 6.3.3, there are unboundedly many κ < κ0 such that
Σn+1-ESR(κ, λ) holds for a proper class of cardinals λ. Let κ1 be the least such cardinal
less than κ0. Suppose for contradiction that Σn+1(Vκ1)-ESR(κ1, λ) holds for a proper class
of cardinals λ. Then by Proposition 6.3.13, κ1 ∈ C(n+3). However, note that the statement
“there exists a Σn-2-supercompact cardinal” is Σn+2, so there must be some κ2 < κ1 < κ0,
such that κ2 is really a Σn-2-supercompact cardinal, contradicting the minimality of κ0.

(2) implies (3): this follows from Lemma 6.3.19.
(3) implies (1): this follows from Lemma 6.3.20.

On the other hand, as in Question 6.3.1, it is relatively consistent with ZFC that the
answer to Question 6.3.2 is positive.

As in Theorem 6.3.17, a weaker version of Question 6.3.2 has a positive answer.

Proposition 6.3.22. For every natural number n ≥ 1, if κ is the least cardinal such that
Σn+1(Vκ)-ESR(κ, λ) holds for a proper class of cardinals λ, then for any cardinal λ, if
Σn+1(Vκ)-ESR(κ, λ) holds, then κ is parametrically n-exact for λ.

Proof. Suppose for contradiction that this fails. One can show similarly as in Lemma 6.3.20
that there is some cardinal κ′ ∈ C(n) greater than ℶκ, a cardinal λ′ ∈ C(n+1) greater than
λ, some X ≺ Hκ′ = Vκ′ with Vκ ∪ {κ} ⊆ X and an elementary embedding j : X → Hλ′

with κ ∈ ran(j), such that j(crit(j)) < κ. Let crit(j) = µ. Let i ≥ 2 be the least natural
number such that ji(µ) > κ.

By Lemma 6.3.13, κ ∈ C(n+3) and λ ∈ C(n+1). Now for any ξ < κ greater than j(i−1)(µ)
such that ξ ∈ C(n+2), it holds in Vλ that ξ ∈ C(n+2), and one can show similarly as in Lemma
6.3.20 that j(i−1)(µ) is ξ-Σn+2-i-supercompact. It follows that it holds in Vκ, and thus in
V , that j(i−1)(µ) is Σn+2-i-supercompact. But then by Lemma 6.3.9, we have j(i−1)(µ) is
weakly parametrically (n+ 2)-exact for a proper class of cardianls ν, which implies that
Πn+2(Vj(i−1)(µ))-ESR(j(i−1)(µ), ν) holds, and thus Σn+1(Vj(i−1)(µ))-ESR(j(i−1)(µ), ν) holds
for a proper class of cardinals ν, and so j(i−1)(µ) < κ contradicts the minimality of κ.

Theorem 6.3.23. The following are equivalent for every cardinal κ and natural number
n ≥ 1:

1. κ is the least cardinal such that Σn+1(Vκ)-ESR(κ, λ) holds for a proper class of
cardinals λ.

2. κ is the least cardinal that is parametrically n-exact for a proper class of cardinals λ.

6.4 Sequential ESR

In [6], the sequential versions of exact structural reflection principles are also introduced
and studied. Moreover, questions similar to Question 6.2.4, 6.3.1, 6.3.2 were also open
in the sequential cases (for sequences of finite length). Our solutions to Question 6.2.4,
6.3.1, 6.3.2 in the previous sections can be all generalized to the sequential versions of the
questions. We record the results in this section. For details of the relevant definitions please
consult [6]. In all the cases below, the proofs are obtained by complicating the proofs in the
non-sequential situation, but are essentially similar, and make use of our general theory of
Σn-m-supercompact cardinals, instead of the special case of Σn-2-supercompact cardinals.

The following theorem answers the sequential version of Question 6.2.4.
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Theorem 6.4.1. For every natural number m ≥ 1, if κ is an m-huge cardinal, then for
every natural number n, Vκ is a model of ZFC plus the following statement:

“There is a proper class of cardinals µ such that µ is parametrically n-exact for
a proper class of sequences

#»

λ = ⟨λi : i < m⟩”.

The following theorem answers the sequential version of Question 6.3.1 in the cases
when n ≥ 2.

Theorem 6.4.2. For natural numbers m ≥ 1, n ≥ 2 and cardinal κ, the following are
equivalent:

1. κ is the least cardinal that is weakly parametrically n-exact for a proper class of
sequences

#»

λ = ⟨λi : i < m⟩.

2. κ is the least cardinal such that there is a proper class of sequences
#»

λ = ⟨λi : i ≤ m⟩
such that Πn-ESR(

#»

λ ) holds and λ0 = κ.

The following theorem answers the sequential version of Question 6.3.1 in the case when
n = 1.

Theorem 6.4.3. The following statements are equivalent for every natural number m ≥ 1:

1. There exists an (m+ 1)-supercompact cardinal.

2. There exists some cardinal κ such that there is a proper class of sequences
#»

λ = ⟨λi :
i ≤ m⟩ such that Π1-ESR(

#»

λ ) holds and λ0 = κ, but the least such κ does not have
the property that there is a proper class of sequences

#»

λ = ⟨λi : i ≤ m⟩ such that
Π1(Vλ0)-ESR(

#»

λ ) holds and λ0 = κ.

3. There exists some cardinal κ such that there is a proper class of sequences
#»

λ = ⟨λi :
i ≤ m⟩ such that Π1-ESR(

#»

λ ) holds and λ0 = κ, but the least such κ is not weakly
parametrically 1-exact for a proper class of sequences

#»

λ = ⟨λi : i < m⟩.

A weaker version of the sequential form of Question 6.3.1, in the case n = 1, also has a
positive answer:

Theorem 6.4.4. The following are equivalent for every cardinal κ and natural number
m ≥ 1:

1. κ is the least cardinal such that there is a proper class of sequences
#»

λ = ⟨λi : i ≤ m⟩
such that Π1(Vλ0)-ESR(

#»

λ ) holds and λ0 = κ.

2. κ is the least cardinal that is weakly parametrically 1-exact for a proper class of
sequences

#»

λ = ⟨λi : i < m⟩.

The sequential form of Question 6.3.2 has a negative answer for all n ≥ 1:

Theorem 6.4.5. The following statements are equivalent for all natural numbers n,m ≥ 1:

1. There exists a Σn-(m+ 1)-supercompact cardinal.

2. There exists some cardinal κ such that there is a proper class of sequences
#»

λ = ⟨λi :
i ≤ m⟩ such that Σn+1-ESR(

#»

λ ) holds and λ0 = κ, but the least such κ does not have
the property that there is a proper class of sequences

#»

λ = ⟨λi : i ≤ m⟩ such that
Σn+1(Vλ0)-ESR(

#»

λ ) holds and λ0 = κ.
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3. There exists some cardinal κ such that there is a proper class of sequences
#»

λ =
⟨λi : i ≤ m⟩ such that Σn+1-ESR(

#»

λ ) holds and λ0 = κ, but the least such κ is not
parametrically n-exact for a proper class of sequences

#»

λ = ⟨λi : i < m⟩.

Finally, a weaker version of the sequential form of Question 6.3.2 has a positive answer:

Theorem 6.4.6. The following are equivalent for every cardinal κ and natural numbers
m,n ≥ 1:

1. κ is the least cardinal such that there is a proper class of sequences
#»

λ = ⟨λi : i ≤ m⟩
such that Σn+1(Vλ0)-ESR(

#»

λ ) holds and λ0 = κ.

2. κ is the least cardinal that is parametrically n-exact for a proper class of sequences
#»

λ = ⟨λi : i < m⟩.

79



Chapter 7

Foundational Reflections

After the endeavors in the previous chapters, let us get back to the foundational
considerations in Chapter 0. Recall that we were motivated by Gödel’s program of finding
well-justified, strong extensions of ZFC, the standard foundation of mathematics. To
provide intrinsic justification for large cardinal axioms, the most mathematically important
axiom candidates, the central approach is through formulating them in terms of reflection
principles. The higher-order approach of Tait is conceptually unwarranted, and falls into
the dichotomy theorem of Koellner.

The program of structural reflection initiated by Bagaria promises a viable approach.
The basic form of SR, as we have seen, is indeed a plausible principle. Granting this point,
it is important to explore the limit of this program, namely the strongest large cardinals
that can be formulated in terms of some well-justified form of SR.

We have seen that ESR has several problems in this respect, the most fundamental one
being that, as acknowledged by Bagaria and Ternullo, it is not clear that they really are
intrinsically justified. Furthermore, their global forms do not satisfy Conjecture 2, and
they do not exhibit the uniform pattern of correspondence we found at the lower levels of
the large cardinal hierarchy.

We thus seek to find natural structural reflection principles and large cardinal notions
that are

1. as well-justified as the basic form of SR,

2. stronger than the basic form of SR,

3. satisfies Conjecture 2, and

4. exhibits the same pattern as in the equation at the end of section 0.4.

It seems that the principle CSR does fulfill the above expectations. The points (2)-(4)
are purely mathematical facts that we have demonstrated in the previous chapters. For (1),
recall that SR and CSR use the very same conceptual resources: for any class C, there is
some Vα such that, for any B ∈ C, there is some A ∈ C ∩Vα that is structurally very similar
to B. We have suggested that the notion of capturing is arguably the correct strengthening
of elementary embeddability, and thus CSR is arguably the correct strengthening of SR. This
idea is further supported by the fact that m-CSR simply corresponds to higher analogues
of supercompact and C(n)-extendible cardinals in exactly the same way SR corresponds to
supercompact and C(n)-extendible cardinals. It seems thus that CSR is as well-justified as
SR.

However, one may on the other hand argue that the results actually present a challenge for
the current version of the SR program. This is the problem of extendibility to inconsistency.
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Since it is very plausible to think that δ-CSR correctly extends SR, if SR is intrinsically
justified, it would appear that δ-CSR is also justified, and not just for finite δ, but also
infinite δ. After all, we have seen that as δ increases, the notion of δ-capturing is simply a
stronger formulation of structural similarity. It seems unlikely that there is some principled
reason, based on the concept of the universe of sets, for us to accept δ-CSR for all finite δ,
or even some particular finite δ, but reject δ-CSR in general. However, we have seen in
Theorem 4.2.3 that δ-CSR is outright inconsistent for infinite δ. This may even be taken as
constituting a Reductio ad absurdum of the intrinsic justifiability of the basic form of SR.

Moreover, the basic form of SR is already the most conceptually compelling form of SR
among all different forms of SR currently available. Thus if the basic form of SR is not
intrinsically justified, one may further argue that the whole SR program of intrinsically
justifying large cardinals, at least as it is currently formulated, would face a problem.

In conclusion, our evaluation of the program of intrinsically justifying large cardinals by
SR is that it can be nicely extended to much higher region in the large cardinal hierarchy,
but faces the problem of extendibility to inconsistency if we push too hard. This constitutes
a possible objection against the approach, but may not be a fatal issue. Indeed, it is likely
that any way of providing theoretical justification for axioms, when inspected carefully
enough and pushed to the extremes, will run into various kinds of difficulties, and in the
end we simply have to accept our best options. In that case it is also possible that, in
the end, we feel that accepting δ-CSR for finite δ but not infinite δ is a good enough and
natural enough option to accept.

In any case, given all the investigations, what is clear is the remarkable coherence and
power of the concept of reflection, which leads us from finitude to infinity, and far, far
beyond.
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