
University Of Barcelona
Barcelona, Catalonia, Spain

2024

Final Master’s Project

Lexical Semantics in Modern Type Theory:
The challenge of selectional coercion

Author:
Stepan G. Kuznetsov

Advisors:
Peter R. Sutton & Joost J. Joosten

Faculty of Philosophy,
Master in Pure and Applied Logic

Contents
1 Introduction 3

1.1 Outline . 3
1.2 Our Proposal . 4
1.3 Structure of The Text . 6

2 Background: Simple Type Theories in Formal Semantics 6
2.1 Montague Semantics . 6
2.2 Gallin’s TY2 . 7
2.3 Intensionality . 9
2.4 Examples . 11
2.5 TY2 Limitations . 12

3 Modern Type Theories in Formal Semantics: Overview 13
3.1 Core Additions of MTT . 14

3.1.1 CNs as Types. 14
3.1.2 Coercive Subtyping . 15
3.1.3 Dependent Types and Inductive Types 17
3.1.4 Dot-Types . 18
3.1.5 Proof-theoretic Semantics and the Prop Universe 18
3.1.6 Type universes: . 20
3.1.7 Intensionality and Contexts . 21

3.2 Formal Definition: the system LFΔ . 21
3.3 Formal Semantics with MTTs . 27

3.3.1 CN-as-types in Action . 27
3.3.2 Adjectival Modification . 28
3.3.3 Dot-types for Co-predication . 33
3.3.4 Unit Types for Type Overloading 34
3.3.5 Dependent Event Types . 35

4 Proposal: MTTs and Lexicality 36
4.1 Selectional Coercions in MTTs . 36
4.2 Generative Lexicon: The Lexical Conceptual Paradigm 40
4.3 Generative Lexicon: Compositional Mechanisms 42

5 Proposal: Lexical Conceptual Paradigm in MTT’s 44
5.1 The two challenges . 45

5.1.1 Lexical records and selectional coercions 45
5.1.2 Ambiguous selectional coercions in MTT. 45

5.2 Lexical Records in MTTs . 47
5.2.1 The Lexical Conceptual Paradigm (LCP) in MTT 47
5.2.2 Event Semantics for Qualia Records 49
5.2.3 Interim Summary . 57

5.3 Formal Semantics with Lexical Records . 57
5.3.1 (The lack of a) Pure Solution . 57
5.3.2 Wrapper Functions . 58
5.3.3 Projections as Coercions and Dependent Unit Types 62

1

6 Further Research: Meta-rules 65

7 Conclusion 67

2

to Varya P.

I’m scared that at a glance
upon two equal things
I do not notice they are different,
that each lives only once.
I’m scared that at a glance
upon two equal things
I do not see they’re eagerly
trying to be alike.

A. Vvedensky
(translated by V. Pechorin)

1 Introduction

1.1 Outline

Modern Type Theory (MTT) is a framework used for natural language semantics. It
is built upon “richly-typed theories” introduced by P. Martin-Löf (Martin-Löf 1998) and
applied to formal semantics for the first time by G. Sundholm (Sundholm 1986) and U.
Mönnich (Mönnich 1985) with further studies by A. Ranta (Ranta 1995). The system
considered in this work follows Ranta’s ideas of applying Martin-Löf type theory to nat-
ural language semantics and was studied and developed by Z. Luo in his own work and
through multiple collaborations with others (e.g. Luo 1994, Luo, Soloviev, and Xue 2013,
Chatzikyriakidis and Luo 2020). The main difference of MTTs from the classic Montago-
vian approach (Montague 1970, Gallin 1975) is that MTTs are based on the many-sorted
logical system as opposed to the single-sorted simple Church type theory where only two
basic types exist. Richly-typed theories which possess more base types along with de-
pendent and inductive types allow one to analyze phenomena which are hard or even
impossible to model in the Montagovian framework.

Moreover, with presence of propositional types the system is ensured with the internal
logic which, with use of the Curry-Howard principle of “propositions as types” (Curry and
Feys 1958, Howard 1980), supplies MTTs with proof-theoretic semantics. This is very
important for the system’s decidability and hence the possibility to use proof assistants
(e.g. Coq 2010) to implement automation. Proof-theoretic semantics can be considered
as the incorporation of system’s semantics into the syntax itself which is a big advantage
over Montagovian purely set-theoretic semantics.

MTT’s rich type system is many sorted (i.e. having many base types) and has inductive
types and propositional types. A lot of new tools such as coercive subtyping and dot types
were developed to supply this system with strong proof-theoretic semantics and ability
to model a vast variety of linguistic phenomena, with one of the notable ones being a
copredication over polysemous words and quantification over them.

The research presented in my thesis aims to enrich the system described in Chatzikyri-
akidis and Luo 2020 with adoption of several ideas from the Generative Lexicon developed

3

by J. Pustejovsky (e.g. Pustejovsky 1996) in order to formalize the use of lexical informa-
tion in meaning-derivations. In the Generative Lexicon, the lexical information of words
is organized into special records, or “meta-entries”, and word meanings can be coerced
(i.e. shifted) via several compositional mechanisms to their lexical meta-properties thus
committing to the induction of the phrase meaning in a finer and at the same time more
restricted way.

1.2 Our Proposal

Linguistic coercion is a process under which the direct meaning of a word shifts to another
meaning. Sometimes this meaning is fixed by the context and sometimes one of the many
meanings inherent to the word gets chosen: When we say “Mary is a fast driver” we
mean “Mary drives fast” (or, “Mary is a person who drives fast”) - here as part of the
meaning derivation, there is arguably a coercion that shifts the noun “driver” (which
denotes humans) to the event of driving inherent to the noun, such that this event can
be modified by fast ; When we say “John picked up and read a newspaper” the newspaper
should be treated as both physical object (which is getting picked up) and informational
object (which is getting read), here coercion shifts the type of the noun “newspaper” to a
suitable connotation depending on requirements of each verb.

Pustejovsky (Pustejovsky 2008, section 1) describes how some linguistic coercions are
governed by selectional mechanisms initiated by other words in the phrase, for example
verbs and adjectives which apply to nouns and specify their meaning or adverbs which
apply to verbs and specify them. These verbs, adjectives or adverbs are able to choose
one of the meanings, meta-properties, inherently associated with the argument. These
meta-properties are, for example, process of driving of a driver, process of reading of a
book, baking of a cake, cutting of a knife. We call this type of inherent meaning shift
of a word which is governed by another word in its surroundings selectional coercion and
oppose it to contextual coercion where the inducted new meaning is hard-fixed by the
specific contextual information of the phrase. Consider two examples:

John started Ulysses;(1)
? John started a cat.(2)

Without any special context the phrase (1) is undoubtedly interpreted as “John started
reading a book” (while still using lexical context of the word “book”) while the phrase
(2) cannot be plausibly analyzed at all unless the special context of the situation is
given, such as, for instance: “John is making clay figures. Today he started a cat”. The
difference between coercions ocurring in the semantics of (1) and (2) is in the following: the
interpretations of “Ulysses” is a book and books are always associated with the processes
of reading them and therefore these processes can be used as the images the coercion
maps to without any special contexts. On the contrary, ability to “start making a cat”
belongs only to the special contextual use of the noun. By the use of selectional coercion
in (1) we imply the process under which the verb “start”, which requires an event as an
argument, can choose one of the conforming inherent lexical roles that has the noun it
acts on, thus shifting “start a book” into “start reading abook”. In its turn, the contextual
coercion happening in the phrase (2) also performs the meaning shift “a cat ↦→ clay cat”
which is only made salient by the context i.e. outside of the lexical definition of the noun
“cat” itself.

4

The goal of this work is to address the challenge of modelling selectional coercions in
frame of MTT semantics. We will claim that selectional coercions, but not contextual
coercions can be modelled via incorporating notions of lexical records and the Lecial
Conceptual Paradigm (LCP) from the Generative Lexicon (Pustejovsky 1996) (further:
GL) thus drawing the line between them:
Main Questions: What are the possible ways of integrating lexical semantics from

the Generative Lexicon for cases of linguistical coercion into
Modern Type Theory? To what extent can selectional coercion
be modelled in MTT enriched with GL-style lexical structure?

In order to address the main questions, we use methods and definitions which are
already present in Modern Type Theories: namely, Σ-types (e.g. Luo 2021), coercive
subtyping (Luo, Soloviev, and Xue 2013), unit-types (e.g. Luo 2011a, A) and dependent
event types (Luo and Soloviev 2017). This introduces a number of challenges. We briefly
describe these here and then break the Main Questions down into sub-questions (Q1)-
(Q3).

First, the proposed sketch of integrating GL-style lexical structure into MMT-semantics
in Luo 2011a turns out to be not in line with Luo’s most recent work on verbal predicates
and event semantics. We therefore need to find the best way to rework and integrate the
main notion of that construction into compositional process of meaning derivation via use
of dependent event types (Luo and Soloviev 2017) in the tradition of neo-Davidsonian
event semantics (Davidson 1967, Parsons 1990):

(Q1) Are there any viable ways of modelling lexical records in MTTs with nested Σ-types
via the use of event semantics?

Second, lexical coercion constructions and the differences between them create chal-
lenges for compositional semantics. For instance, it is non-trivial to account for the
differences between fast cat and fast driver without breaking the consistency of the type
system or defining unnecessary extensions:

(Q2) What viable ways are there of the use of the newly-defined lexical records for mod-
elling selectional coercions in MTTs in automatic compositional manner without
breaking consistency of the type system or defining unnecessary extensions?

Another question posed in this work is the possibility of allowing for some selectional
coercions to the genuinely ambiguous. For instance, when the phrase “John started a
book” is uttered, the listener cannot conclude if John started reading or writing a book
without any given context. Even phrases like “Leo Tolstoy started War and Peace” may
imply that Tolstoy started reading his own book (if he, for instance, decided to revisit his
own work after many years had passed):

(Q3) Can the ambiguity readings of selectional coercion constructions be allowed without
breaking the type theory?

Unfortunately, it will be shown in this work (Section 5.3.1), due to the coherence
property of MTTs, no purely type-theoretical solution is available for parsing said ambi-
guity cases and in the “Further Research” Section (6) we sketch possible meta-solutions
for this issue which involve changing the process of translating from syntactic structure
to semantic one.

5

1.3 Structure of The Text

In order to provide sufficient background for addressing all the main questions posed
in this work, in the subsequent two Sections (2 and 3) we give introduction to natural
language semantics with MTTs in order for the reader to be familiar with the main notions
and use possibilities of the framework:

• In Section 2 we will give a brief overview of Montagovian formal semantics for
natural languages in order to provide a historical insight as well as to later highlight
differences and merits of MTTs.

• Then, in Section 3, Modern Type Theories and their use and core advantages for
formal semantics are described. Besides, all the formal inference rules are given in
Subsection 3.2.

Section 4 describes the motivation behind adoption of Generative Lexicon for dealing
with research aims raised in (Q1)-(Q3). We explain how cases of linguistic coercion were
proposed to be modelled in MTTs and outline new ways to model it via Generative Lexicon
insights. Also we list core notions of Generative Lexicon which we are considering useful
to adopt in the proposal section of the thesis.

The main proposals and possible solutions we put forward are described in Section 5
together with a description of the limitations of the proposed solutions as well as problems
which arise from adopting them.

In Section 6 a less formal solution is discussed as possible research for the future: In
view of inability to model ambiguous meanings inside of the system itself we can look at
the meaning formation at more abstract levels and define certain “metarules” performing
selectional coercion.

In Section 7 we conclude.

2 Background: Simple Type Theories in Formal Se-
mantics

In order to describe and formally define MTTs we start with an introduction to semantics
in the tradition of Montague. A description of main ideas of the system gives a brief
overview of the roots of formal semantics and also shows the original limitations with
which Modern Type Theories successfully deal.

2.1 Montague Semantics

One of the first approaches to formalization of natural language semantics was proposed
by Richard Montague in the 1970s (e.g. Montague 1970). The general idea is to use model
theoretical semantics of the so-called Intensional Logic (IL) which acts as a bridge language
between the syntax of a phrase and its meaning i.e. individuals in a set-theoretical model
and relations between them.

The crucial concept which this approach follows is a notion of compositionality i.e. a
process of constructing the meaning of a phrase using meanings of its constituents through
a finite number of rules governing their combination. Having a combinatorial model of
syntax we can build a compositional model of semantics mirroring each syntactic rule into
a semantic one.

6

The Intensional Logic introduced by Montague is an extension of Church’s Simple
Type Theory with additional intensional operators1 and it uses two basic types, one of
them being a type of entities 𝑒 and another one being a type of truth values 𝑡. Moreover,
it has as a pseudo-type 𝑠 which is used to model itensionality: it is not a basic type as
on its own it is not a type of the system and only constructions of form 𝑠 → 𝛼 are well
formed for any other well formed type 𝛼.

But, illustrating the complexity of the original system, Barwise and Robin Cooper
1981 (p. 204) put it:

Montague had a certain job that he wanted to do and used whatever tools he
had at hand to do it. If the product looks a bit like a Rube Goldberg machine,
well, at least it works pretty well.

Later it was shown in Gallin 1975 that the intensional logic IL can be translated
into the two-sorted version of Russel’s original type theory (Russell 1903) which Gallin
denotes by TY2. It is constructed in a more elegant and comprehensible way. There the
intensional pseudo-type 𝑠 is defined as a regular basic type and this definition greatly
generalizes the system. Having 𝑠 as a full-blown basic type sounds like making system
stronger but later in Zimmermann 1989 it was proven that the fragment of TY2 which is
used as a translation of IL is actually translatable back to IL making these two systems
equivalent in a certain sense2.

2.2 Gallin’s TY2

Nowadays almost every researcher uses the TY2 system when working with Montagovian-
style formal semantics due to its approachability and equivalence to the original intensional
logic framework. In this section we give a formal definition of TY2 following handouts by
Brasoveanu 2010 and Landman n.d. and give some linguistic examples.

Types: To compose a set TYPE containing types of the two-sorted type theory TY2 we
use a set of basic types BasTyp:

BasTyp := {𝑒, 𝑡, 𝑠},

where:

• basic type 𝑒 is a type of entities i.e. individuals which exist in some possible world
at some point of time;

• basic type 𝑡 is a type of truth values ;

• basic type 𝑠 stands for possible world-time pairs.

Then, all types of TY2 are now constructed as the smallest set of strings such that:

• 𝑒, 𝑡, 𝑠 are in TYPE;

• if 𝛼, 𝛽 belong to TYPE then (𝛼 → 𝛽) belong to TYPE as well.
1Apart from the quasi-type 𝑠 used to define intensionality of an object the original Montague system

also had operators ∧ and ∨ but they are not needed in TY2 system which we describe further in this text
due to the lambda abstraction mechanism.

2Composition of the translation one way and the translation backwards does not yield an identity.

7

The arrow-types 𝛼 → 𝛽 are associated with functions from objects of type 𝛼 to objects
of type 𝛽.

Expressions (terms): A countable set CONST𝛼 = {𝑐𝛼1 , 𝑐𝛼2 , . . .} denotes a set of con-
stants for every type 𝛼 ∈ TYPE.

A countable set VAR𝛼 = {𝑥𝛼1 , 𝑥𝛼2 , . . .} denotes a set of variables for every type 𝛼 ∈
TYPE.

A set of expressions(terms) EXP𝛼 for each type 𝛼 ∈ TYPE is defined inductively as
follows:

• (Constants and variables) CONST𝛼 ∪ VAR𝛼 ⊆ EXP𝛼 for any 𝛼 in TYPE;

• (Application) if 𝜙 ∈ EXP𝛼→𝛽 and 𝜓 ∈ EXP𝛼 then 𝜙(𝜓) ∈ EXP𝛽;

• (𝜆-abstraction) if 𝑥 ∈ VAR𝛼 and 𝜙 ∈ EXP𝛽 then 𝜆𝑥.𝜙 ∈ EXP𝛼→𝛽;

• (Connectives) if 𝜙, 𝜓 ∈ EXP𝑡 then ¬𝜙, 𝜙 ∨ 𝜓, 𝜙 ∧ 𝜓, 𝜙→ 𝜓 ∈ EXP𝑡;

• (Quantifiers) if 𝑥 ∈ VAR𝛼 and 𝜙 ∈ EXP𝑡 then ∀𝑥𝜙,∃𝑥𝜙 ∈ EXP𝑡;

• (Identity) if 𝜙, 𝜓 ∈ EXP𝛼 then (𝜙 = 𝜓) ∈ EXP𝑡.

Frames and Models: For each type 𝛼 ∈ TYPE the domain 𝐷𝛼 is defined inductively
as:

• 𝐷𝑒 ̸= ∅;

• 𝐷𝑡 = {0, 1};

• 𝐷𝑠 ̸= ∅;

• 𝐷𝛼→𝛽 = {𝑓 |𝑓 : 𝐷𝛼 → 𝐷𝛽}.

In the following, both for TY2 and MTT, we will assume the right-associativity of
arrow types i.e. 𝛼 → 𝛽 → 𝛾 = 𝛼 → (𝛽 → 𝛾).

A model of TY2 is a pair ⟨𝐷, 𝐼⟩ where:

• A set 𝐷 is a collection of all domains i.e. 𝐷 := {𝐷𝛼}𝛼∈TYPE;

• An interpretation function 𝐼 is map such that 𝐼(𝑐𝛼) ∈ 𝐷𝛼 for any 𝑐𝛼 ∈ CONST𝛼.

Semantics: The semantics of TY2 are defined in the usual way:

A function 𝑔 is called an assignment if for any 𝛼 ∈ TYPE and every 𝑥 ∈ VAR𝛼 we
have 𝑔(𝑥) : 𝐷𝛼.

For any domain element 𝑑 ∈ 𝐷𝛼 and variable 𝑥 ∈ VAR𝛼 a substitution 𝑔[𝑑/𝑥] is a map
𝑔′ such that:

𝑔′(𝑥) = 𝑑

𝑔′(𝑦) = 𝑔(𝑦), if 𝑦 ̸= 𝑥.

8

Having an expression 𝐴, a model 𝑀 = ⟨𝐷, 𝐼⟩ and an assignment 𝑔 we denote the
interpretation of 𝐴 in 𝑀 under 𝑔 as |𝐴|𝑀,𝑔 or just |𝐴| and define it in the usual way:

|𝑐| := 𝐼(𝑐) if c is a constant;(3)
|𝑥| := 𝑔(𝑥) if x is a variable;
|¬𝜙| := 1− |𝜙|; (‘−’ is the usual arithmetic substitution)(4)
|𝜙 ∧ 𝜓| := min(|𝜙|, |𝜓|);
|𝜙 ∨ 𝜓| := max(|𝜙|, |𝜓|);
|𝜙→ 𝜓| := max(1− |𝜙|, |𝜓|);
|𝜙(𝜓)| := |𝜙|(|𝜓|);(5)

|∀𝑥𝛼𝜙| := min(|𝜙|𝑔[𝑑/𝑥])𝑑∈𝐷𝛼 ;(6)
|𝜆𝑥𝛼𝜙| := function 𝐹 with domain 𝐷𝛼 such that(7)

𝐹 (𝑑) := |𝜙|𝑔[𝑑/𝑥] for all 𝑑 ∈ 𝐷𝛼;

|𝜙 = 𝜓| := 1 if |𝜙| = |𝜓| and 0 otherwise.(8)

Finally we define an entailment relation |= as usual:

For sets of TY2-expressions Δ and Γ we say that Γ entails Δ if for every model 𝑀(9)
and every assignment 𝑔 it holds that: min{|𝜙|𝑀,𝑔}𝜙∈Γ ≤ max{|𝜓|𝑀,𝑎}𝜓∈Δ
and it is denoted by Γ |= Δ;

A formula 𝜙 is said valid iff |= 𝜙.(10)

2.3 Intensionality

The most crucial (and the most complicated) part of Montagovian systems is their ability
to work with intensionality. In modern studies this issue was first discussed by Frege
(Frege 1892) where he used notions of “Sinn” and “Bedeutung” which can be translated
as “sense” and “reference”. Consider the famous example of the difference between “the
morning star” and “the evening star”. Both of these terms denote the planet Venus
observable on the sky during different times of the day i.e. these terms have the same
extension (i.e. reference or bedeutung) but their intensions are different. Therefore if
terms 𝑎 and 𝑏 have coinciding references equalities of type 𝑎 = 𝑏 do not always hold. Each
sign has a designated reference but also it has a sense which is an embodiment of the
mode of presentation. We know that “the morning star is seen in the sky near sunrise”
means the same as “Venus is seen in the sky near sunrise” but the meaning of a phrase
“George knows that the morning star is seen in the sky near sunrise” may be true with
“George knows that Venus is seen in the sky near sunrise” being false. This distinction
shows a necessity to always consider the mode of presentation of words as an additional
layer on top of just an extension as intensionality largely affects the meaning derivation.

Later in time Rudolph Carnap (Carnap 1947), influenced by Wittgenstein’s Tractatus
(Wittgenstein 1922) developed a formal system which is able to model intensionality with
use of possible world semantics. Quoting Fitting 2022:

Carnap’s fundamental idea is that intensions, for whatever entities are being
considered, can be given a precise mathematical embodiment as functions on
states, while extensions are relative to a single state. This has been further
developed by subsequent researchers, of course with modern possible world

9

semantics added to the mix. The Carnap approach is not the only one around,
but it does take us quite a bit of the way into the intensional thicket. Even
though it does not get us all the way through, it will be the primary version
considered here, since it is concrete, intuitive, and natural when it works.

As it was also suggested by Frege, there is a need to differ between de dicto and de re
readings. Quine 1956 provides the following example:

Ralph believes someone is a spy.

The first possible reading is that Ralph believes that there is a certain person whom he
keeps in mind and this person is a spy - this is called de re reading i.e. “about the thing”.
The second reading is that Ralph believes there is some spy in the world, without anyone
particular in mind - this is de dicto or “about what is said”. The difference here lies in the
interpretation of the word “someone”. Two readings can be expressed respectively like so:

(𝑑𝑒 𝑟𝑒) : (∃𝑥)(Ralph believes that 𝑥 is a spy);(11)
(𝑑𝑒 𝑑𝑖𝑐𝑡𝑜) : Ralph believes that (∃𝑥)(𝑥 is a spy).(12)

Another example of a similar nature is given in Landman n.d. Consider two sentences:

Mary seeks an author of Ulysses;(13)
An author of Ulysses is an author of Finnegans Wake.(14)

It is known that an extension of “an author of Ulysses” is James Joyce and it is true
that it coincides with an extension of “an author of Finnegans Wake”. But we cannot
allow us to freely substitute these phrases with each other in all cases as in 15, which
might have been a result of using equality expressed in 14 in the phrase 13:

Mary seeks an author of Finnegans Wake.(15)

The sentence in 15 is not the same as the phrase 13 if we interpret both of them de
re as Mary might not know that these two books are written by the same author or she
might not even know who the author of Ulysses is. In the case where Mary does not know
the Ulysses’s author, even the phrase “Mary seeks James Joyce” would have a meaning
different from the meaning of 13. Considering this difference in interpretations, we can
observe that the nature of verbs like “believe” or “seek” are intensional, not extensional
(e.g., Montague 1970): extensions of pronouns or predicates might coincide but their in-
tentions, and hence the possible meanings, can be different.

To deal with intensionality the third entity, (quasi-)type 𝑠, is used in Montague’s
IL and in Gallin’s TY2. Objects of type 𝑠 → 𝛼 represent intensional maps i.e. cor-
respondences between possible worlds or moments of time and assignments of phrase
extensions. For example, for the case of the sentence 13, assume that Mary believes that
it is Samuel Beckett who wrote Finnegans Wake. Then consider the map 𝐴𝐹 (𝑤, 𝑥) of type
𝑠 → (𝑒 → 𝑡) meaning “𝑥 is an author of Finnegans Wake at world 𝑤”. During semantic
analysis the predicate will be scoped to Mary’s world 𝑤𝑀 where 𝐴𝐹 (𝑤𝑀 , 𝑥) will be true
only when applied to the entity 𝑥 corresponding to Beckett and not to Joyce, even though
such an authorship is not true for the most of other worlds and for the objective reality
we seem to live in. Having the notion of intensional functions the use of substitution
performed in the sentence 15 is automatically restricted.

10

2.4 Examples

Еven though there is no denial of the importance of intensionality, the scope of phenomena
considered in this work is different. Then, further examples will have the base type 𝑠
omitted3 in order to bring attention to parts of TY2 we are interested in. In order to
analyze the sentence we need to assign types to the words in the chosen fragment of
the language. A few basic examples (with type 𝑠 omitted) you can see in the Table 1.
There, syntactic categories CN, IV, ADJ, ADJVP and Det follow the common notation
from formal syntax (e.g. Chomsky 1957) and, informally speaking, they denote different
parts of speech: common nouns, intransitive verbs, adjectives, adverbs and determiners
respectively. The category 𝑆 denotes a well formed sentence.

Syntactic Categories Example Montague Semantics
CN man, cat man, cat: 𝑒 → 𝑡
IV walk, talk walk, talk: 𝑒 → 𝑡

ADJ handsome handsome: (𝑒 → 𝑡) → (𝑒 → 𝑡)
ADJ𝑉 𝑃 quickly quickly: (𝑒 → 𝑡) → (𝑒 → 𝑡)

Modified CN handsome man handsome(man): (𝑒 → 𝑡)
Det (Quantifier) a, the, some a, the, some: (𝑒 → 𝑡) → (𝑒 → 𝑡) → 𝑡

S a man talks ∃𝑥 : 𝑒.𝑚𝑎𝑛(𝑥)&𝑡𝑎𝑙𝑘𝑠(𝑥) : 𝑡

Table 1: Typing examples for a simply typed semantics

These types convey the following meaning:

• Common nouns are typed as 𝑒 → 𝑡 because they are treated as predicates over
entities i.e. if some entity 𝑎 of the model is a cat the expression corresponding to
this fact would be 𝑐𝑎𝑡(𝑎). It would be of type 𝑡 and actually equal to the value 1
(denoting truth) if in our model 𝑎 is indeed a cat.

• The same goes for intransitive verbs, they are typed as 𝑒 → 𝑡 because they are
treated as unary predicates displaying the state of some entity (or the absence of
it). Therefore the fact “𝐽𝑜ℎ𝑛 𝑤𝑎𝑙𝑘𝑠” would be represented by an expression 𝑤𝑎𝑙𝑘(𝑗),
where 𝑗 is a constant representing the person.

• Adjectives are defined as modifiers of common noun predicates in the sense that they
are designed to be applied to nouns and result in expressions such as ℎ𝑎𝑛𝑑𝑠𝑜𝑚𝑒(𝑝𝑒𝑟𝑠𝑜𝑛)
which are of type 𝑒 → 𝑡. Thus, the sentence “John is a handsome man” would look
like ℎ𝑎𝑛𝑑𝑠𝑜𝑚𝑒(𝑚𝑎𝑛)(𝑗) which is desirable.

• As for quantifiers, some of them can be defined through the logical language we
already have. For example, the determiner “a/an” is typed as (𝑒 → 𝑡) → (𝑒 →
𝑡) → 𝑡 and after applying a noun 𝑛 and a predicate 𝑝 to it the result would be an
expression:

𝑎(𝑛, 𝑝) = ∃𝑥(𝑛(𝑥) ∧ 𝑝(𝑥)).
3Intensionality in MTTs is modeled in another way: with the use of many-sortedness and CN-as-types

principle (3.1.1) 𝑠 is not omitted but rather embedded into the basic types themselves: 𝐵𝑎𝑐ℎ𝑒𝑙𝑜𝑟 and
𝑈𝑛𝑚𝑎𝑟𝑟𝑖𝑒𝑑_𝑀𝑎𝑛 can have the same extension but they can be distinguished by their proofs for example.
We will come back to it in more detail later.

11

In the case of the word “every”, the typing of the corresponding predicate would be
the same but the computed result will use universal quantification instead:

𝑒𝑣𝑒𝑟𝑦(𝑛, 𝑝) = ∀𝑥(𝑛(𝑥) → 𝑝(𝑥)).

In order to analyze a natural language expression with Montague semantics we gener-
ate its syntactic structure (with use of tools whose definitions are out of the scope of this
work). Then each word will become a leaf of a syntactic tree. Words (leaves) are then
translated into the TY2-typed objects corresponding to them. Each tree node, which is
a rule application, is translated to its TY2 counterpart. Then, after such transformation
we apply rules to leaves in order to obtain a freshly-generated expression at the root and
it will resemble the input phrase semantics.

For example, consider the sentence “A man smokes”. Its syntactic structure has the
following shape:

S

NP

DET

a

CN

man

VP

IV

smokes

Then after assigning a TY2 type to each word and translating all the combinatorial
syntactic rules we get a semantic tree with the desirable expression situated at the root:

∃𝑥(𝑚𝑎𝑛(𝑥) ∧ 𝑠𝑚𝑜𝑘𝑒𝑠(𝑥)) : 𝑡

𝜆𝑄∃𝑥(𝑚𝑎𝑛(𝑥) ∧𝑄(𝑥)) :
(𝑒 → 𝑡) → 𝑡

a

𝜆𝑃𝜆𝑄∃𝑥(𝑃 (𝑥) ∧𝑄(𝑥)) :
(𝑒 → 𝑡) → (𝑒 → 𝑡) → 𝑡

man

𝜆𝑥(𝑚𝑎𝑛(𝑥)) :
𝑒 → 𝑡

smokes

𝜆𝑥(𝑠𝑚𝑜𝑘𝑒𝑠(𝑥)) :
𝑒 → 𝑡

2.5 TY2 Limitations

(I) We can notice that definitions of most constituents and their behaviour in TY2 are
mirrored from formal syntax definitions. This is no coincidence because Montague’s se-
mantic system was designed in such a way that an expression describing the meaning of
a sentence can be obtainable from the syntactic structure of it. Thus, constituent types
and compositional rules in the semantics have to be somewhat similar to the syntactic
ones. But while predicative nature of adjectives or verbs does not raise any questions, the
predicative nature of common nouns causes several problems.

While syntactic systems are mostly proof-theoretic (e.g. Chomsky 1957, Lambek
1958), and therefore they have hope to be organized in a computationally decidable way,
pure Montagovian approaches to formal semantics use IL or TY2 only as intermediate

12

languages between the language syntax and set-theoretical models. This set-theoretical
model side is what makes the computational side hazy and undecidable. Moreover, using
TY2 only as a bridge does not yield a very high level of linguistic restrictions as well as
linguistic expressivity as opposed to the incorporation of more meaning into the logical
language itself. Having a proof-theoretic semantics of the formal system used for the
natural language analysis would make the formalization more rigorous as well as supply
us with well-laid computational foundations e.g. an ability to model the system with
proof-assistants such as Coq (Coq 2010).

(II) In TY2 has only model-theoretic semantics: typing system exist separately from
logical expressions and from the semantics of those expressions - that makes a system less
transparent and requires more effort for its use. For example, a (generally absurd) sentence
“a table runs” is syntactically correct and it corresponds to a well-formed TY2-expression
∃𝑥(𝑡𝑎𝑏𝑙𝑒(𝑥) ∧ 𝑟𝑢𝑛𝑠(𝑥)). This sentence cannot be judged as meaningful or meaningless
(or as true or false) without considering possible set-theoretic models for it. Unless we
provide a model in which “table” denotes a person with such a moniker, or in which the
situation happens in a fictional reality where tables run, this sentence will be simply false,
since the intersection between running things and tables is empty. However, we cannot
explain why the sentence is semantically anomalous.

We can observe that in general context the noun “table” carries a special lexical mean-
ing, it can be put only into contexts which require an object with a role of a piece of
furniture. With a knowledge of a word’s role we can conjecture immediately that “a table
runs” is generally absurd. In the same way the noun “cat” which indeed can be treated as
an entity which can run lets us easily conjecture that the phrase “a cat runs” in general
would not cause any questions. These inherent roles are absent in standard TY2 semantics
due to its two-sorted type system. Following Chatzikyriakidis and Luo 2020 (p.23) we
quote Link 1998 (preface):

Language is able to refer to a wide array of objects of different sorts, which
differ from each other in their characteristic structural properties. The uni-
verse of linguistic and philosophical discourse is thus most naturally taken as
a multi-sorted domain containing all those objects.

Having a many-sorted system would simplify the process of language analysis as well
as make it more meaningful. In the next chapter we look at such a system in the form of
Modern Type Theory and see how it addresses the Montague system’s issues mentioned
in this section and how they broaden the expressivity of the meaning induction in natural
languages.

3 Modern Type Theories in Formal Semantics: Overview
As said previously, natural language semantics in MTTs (Modern Type Theories) has a
lot of common concepts adopted from the Montagovian tradition of formal semantics but,
on the other hand, this framework has substantially departed and grown apart from the
original view. Modern Type Theories are built upon the richly-typed theory approach of
Martin-Löf (for example Martin-Löf 1984). The seminal application of such theories to
natural languages was undertaken in Ranta 1995. Then in Luo 2011b (among others), fol-
lowing developments from Luo 1994 and Luo 1999 a version of the MTT system extended

13

with coercive subtyping was applied to formal semantics for the first time. In general, in
this work we mostly follow the version of the MTT system described in the book by S.
Chatzikyriakidis and Z. Luo (Chatzikyriakidis and Luo 2020).

First, we overview key merits of Modern type theories in Section 3.1. Then we give
a formal definition of the calculus and its inference rules in Section 3.2 and in Section
3.3 we explain how natural language analysis is performed with use of MTTs giving some
examples.

3.1 Core Additions of MTT

In this section, some of the main differences and advantages of MTTs compared to pre-
viously existent compositional systems are overviewed: CNs-as-Types principle, coer-
cive subtyping, dependent and inductive types, dot-types, propositional types and proof-
theoretic semantics, type universes and intensionality.

3.1.1 CNs as Types.

All common nouns in MTTs are interpreted as distinct types due to many-sortedness of
the type theory. In TY2 all nouns are defined in a coarse manner as predicates 𝑒 → 𝑡 from
the universal domain of entities. In MTT, each common noun is interpreted (semantic
interpretation is denoted by J. . .K) as its own unique type such as:

Jℎ𝑢𝑚𝑎𝑛K = 𝐻𝑢𝑚𝑎𝑛 : 𝑇𝑦𝑝𝑒;

J𝑚𝑎𝑛K =𝑀𝑎𝑛 : 𝑇𝑦𝑝𝑒;

J𝑏𝑜𝑜𝑘K = 𝐵𝑜𝑜𝑘 : 𝑇𝑦𝑝𝑒.

Many-sortedness brings more lexicality right into the type system itself and helps the
establishment of proof-theoretic semantics: as each noun corresponds to the special type
which represents it, the formal proof of the fact that an expression is typed as some
noun (i.e. witnesses noun’s type) already contributes to the truth statement inquiry of
such assignment without a need to get into set-theoretic interpretations of it as we would
do it with use of CNs-as-predicates. Compared to the Montagovian realization where the
phrase “John is a man” is represented by the expression 𝑚𝑎𝑛(𝐽𝑜ℎ𝑛) the method of MTTs
results in a judgment 𝐽𝑜ℎ𝑛 : 𝑀𝑎𝑛 which corresponds to the proof of this typing due to
Curry-Howard propositions as proofs principle.

Moreover, with nouns interpreted as distinct types we can further constrain the typing
system. In TY2 the transitive verb “𝑘𝑖𝑠𝑠” was typed as:

𝑘𝑖𝑠𝑠 : (𝑒 → 𝑡) → (𝑒 → 𝑡) → 𝑡

and in MTT it can be typed as:

𝑘𝑖𝑠𝑠 : 𝐻𝑢𝑚𝑎𝑛→ 𝐻𝑢𝑚𝑎𝑛→ 𝑃𝑟𝑜𝑝.

We can see that the typing of “𝑘𝑖𝑠𝑠” in MTT is more strict and it immediately disallows
even a composition of expressions like 𝑘𝑖𝑠𝑠(𝑎𝑝𝑝𝑙𝑒, 𝑏𝑜𝑜𝑘) (outside of a very special context)
as it would produce a type clash because neither apple nor a book are humans. In order
to find out the absurdity of the same expression in TY2 we would have had to get one
step deeper and examine set-theoretic models of it. In MTTs this process is unnecessary
as the typing system does the checking for us earlier.

14

3.1.2 Coercive Subtyping

If we look at the previous example with the typing of the word “𝑘𝑖𝑠𝑠” we can notice
that the typing is 𝑘𝑖𝑠𝑠 : 𝐻𝑢𝑚𝑎𝑛 → 𝐻𝑢𝑚𝑎𝑛 → 𝑃𝑟𝑜𝑝 and therefore we cannot directly
form an expression 𝑘𝑖𝑠𝑠(𝐽𝑜ℎ𝑛,𝑀𝑎𝑟𝑦) as 𝐽𝑜ℎ𝑛 : 𝑀𝑎𝑛 and 𝑀𝑎𝑟𝑦 : 𝑊𝑜𝑚𝑎𝑛 and neither
of those types is equal to 𝐻𝑢𝑚𝑎𝑛. Therefore a system of subtyping relations is required
in order to describe the fact that both men and women are indeed humans and can be
used in contexts which require objects of type 𝐻𝑢𝑚𝑎𝑛. Subtyping can be understood via
an analogy to subset relations from set theory: it says that if the type 𝐴 is known to be
a subtype of the type 𝐵 then any object 𝑎 of type 𝐴 can be regarded and hence used as
an object of type 𝐵. Then, from both 𝑀𝑎𝑛 ≤ 𝐻𝑢𝑚𝑎𝑛 and 𝑊𝑜𝑚𝑎𝑛 ≤ 𝐻𝑢𝑚𝑎𝑛 we can
conclude that 𝑘𝑖𝑠𝑠(𝐽𝑜ℎ𝑛,𝑀𝑎𝑟𝑦) is a well-typed expression as we can now deduce that
𝐽𝑜ℎ𝑛 : 𝐻𝑢𝑚𝑎𝑛 and 𝑀𝑎𝑟𝑦 : 𝐻𝑢𝑚𝑎𝑛.

The naive approach to formal definition of subtyping is to define a relation “≤”
straightforwadly (and reminiscent of a subset relation) with the “subsumptive” rule as
follows:

(16)
𝑎 : 𝐴 𝐴 ≤ 𝐵

𝑎 : 𝐵 .

Unfortunately this does not work with MTTs due to its incompatibility with several
mechanisms properties. One of the properties is called “canonicity” - it serves to endow
the system with proof-theoretic clarity. Canonicity derives back to Martin-Löf studies
but was first formulated later. It says that (Luo 2011b (p.40)):

Definition 1. Canonicity: Any closed object of an inductive type is definitionally equal
to a canonical object of that type.

Canonical object, used in this definition is an element introduced via one of the intro-
duction rules of the type. For example (Ranta 1995, pp.21-22), consider the definition of
the type of natural numbers N (in a standard Peano style) with two constructors 0 : N
and 𝑠 : N → N together with the appropriate addition operation + : N → N → N. Then,
non-canonical elements like 1, 2 : N should be explicitly defined to be equal to correspond-
ing canonical elements 1 = 𝑠(0) : N, 2 = 𝑠(𝑠(0)) : N. Having canonical shapes of each
element lets us use inductive definitions of operations such as + defined only for canonical
forms as follows:{︃

𝑎+ 0 = 𝑎 : N

𝑎+ 𝑠(𝑏) = 𝑠(𝑎+ 𝑏) : N

In the scope of subsumptive subtyping, it is not possible for the canonicity property
to hold and this leads to inconsistency issues. The problem goes from the definition of
inductive types which requires any object of inductive type be equal to some canonical
object of this type and subsumptive subtyping allows one to regard same objects as
different types. If an object 𝑎 is of type 𝐴 and 𝐴 is a subtype of 𝐵 then the object 𝑎 is
of type 𝐵 as well - this is ambiguous and clearly rises problems for inductive definitions
and canonicity. To illustrate this we can quote the following example from Xue 2013:

Example 1 (Xue 2013, 3.13). Consider an inductive type 𝐿𝑖𝑠𝑡(𝑀) consisting of objects
of type 𝑀 . Then would have the following subtyping rule:

𝐴 < 𝐵
𝐿𝑖𝑠𝑡(𝐴) < 𝐿𝑖𝑠𝑡(𝐵)

15

The type list has two constructors: 𝑛𝑖𝑙(𝐴) for an empty list of type 𝐴 and 𝑐𝑜𝑛𝑠𝑀(𝑎, 𝑙)
for an 𝐴-list 𝑙 appended with the element 𝑎 : 𝐴. If subsumption rule (16) is used we can
derive:

𝑛𝑖𝑙(𝐴) : 𝐿𝑖𝑠𝑡(𝐴) 𝐿𝑖𝑠𝑡(𝐴) ≤ 𝐿𝑖𝑠𝑡(𝐵)

𝑛𝑖𝑙(𝐴) : 𝐿𝑖𝑠𝑡(𝐵)

But the object 𝑛𝑖𝑙(𝐴) is not canonical for 𝐿𝑖𝑠𝑡(𝐵) as it neither is 𝑛𝑖𝑙(𝐵) nor 𝑐𝑜𝑛𝑠(𝑏, 𝑙).

A special treatment was developed to build subtyping relations in MTTs in order to
preserve proof-theoretic properties: coercive subtyping (Luo 1997, Luo 1999). The idea of
coercive subtyping implemented in MTT is that if 𝐴 is a proper subtype of 𝐵 (i.e. 𝐴 < 𝐵)
then there is an unique coercion (map) 𝑐 from 𝐴 to 𝐵 such that an object 𝑎 of type 𝐴 can
be freely used in any context 𝒞𝐵(_) expecting the object of type 𝐵. Expression 𝒞𝐵(𝑎) is
well-typed and equal to 𝒞𝐵(𝑐(𝑎)). This makes subtyping expressions only abbreviations
as they do not state that objects of one type are objects of another one but rather mark
that there exists a well-behaved map between them.

The judgment introduced for denoting the fact of a subtyping under coercion 𝑐 is
expressed as 𝐴 ≤𝑐 𝐵 : 𝑇𝑦𝑝𝑒. Formal rules of application (𝐶𝐴) and definition (𝐶𝐷) are
the following for any object 𝑓 of type (𝐵)𝐶 (which means that it is an arrow type from
𝐵 to 𝐶) (Luo, Soloviev, and Xue 2013 p.40):

Γ ⊢ 𝑓 : (𝐵)𝐶 Γ ⊢ 𝑎 : 𝐴 Γ ⊢ 𝐴 ≤𝑐 𝐵 : 𝑇𝑦𝑝𝑒

Γ ⊢ 𝑓(𝑎) : 𝐶 𝐶𝐴

Γ ⊢ 𝑓 : (𝐵)𝐶 Γ ⊢ 𝑎 : 𝐴 Γ ⊢ 𝐴 ≤𝑐 𝐵 : 𝑇𝑦𝑝𝑒

Γ ⊢ 𝑓(𝑎) = 𝑓(𝑐(𝑎)) : 𝐶
𝐶𝐷

What these expressions tell us is that:
(𝐶𝐴): if there is a function 𝑓 which requires and object of type 𝐵 as an argument to

produce an object of type 𝐶 and we have an object 𝑎 of type 𝐴 along with the judgment
that 𝐴 is a subtype of 𝐵 under coercion map 𝑐 then we can conclude that application of
𝑓 𝑎 is well typed as an object of type 𝐶.

(𝐶𝐷): having the same function 𝑓 , object 𝑎 and a judgment about subtyping with the
coercion 𝑐 we can conclude that the object 𝑐(𝑎) (of the type 𝐶) can be freely substituted
for the object 𝑎 itself in the context of application to the function.

Now we can establish coercive subtyping relations as:

𝑀𝑎𝑛 ≤𝑐1 𝐻𝑢𝑚𝑎𝑛,𝑊𝑜𝑚𝑎𝑛 ≤𝑐2 𝐻𝑢𝑚𝑎𝑛.

Then with use of new rules we analyze “John kisses Mary” as 𝑘𝑖𝑠𝑠(𝐽𝑜ℎ𝑛,𝑀𝑎𝑟𝑦). It is
well typed due to 𝐶𝐴 and we can omit coercions from 𝑘𝑖𝑠𝑠(𝑐1(𝐽𝑜ℎ𝑛), 𝑐2(𝑀𝑎𝑟𝑦)) due to
𝐶𝐷, the proof sketch is shown below in (17)-(18).

(17)
𝑘𝑖𝑠𝑠 : 𝐻𝑢𝑚𝑎𝑛→ (𝐻𝑢𝑚𝑎𝑛→ 𝑃𝑟𝑜𝑝) 𝐽𝑜ℎ𝑛 :𝑀𝑎𝑛 𝑀𝑎𝑛 ≤𝑐1 𝐻𝑢𝑚𝑎𝑛

𝑘𝑖𝑠𝑠(𝐽𝑜ℎ𝑛) : 𝐻𝑢𝑚𝑎𝑛→ 𝑃𝑟𝑜𝑝
𝐶𝐴

(18) ()

17
𝑘𝑖𝑠𝑠(𝐽𝑜ℎ𝑛) : 𝐻𝑢𝑚𝑎𝑛→ 𝑃𝑟𝑜𝑝 𝑀𝑎𝑟𝑦 : 𝑊𝑜𝑚𝑎𝑛 𝑊𝑜𝑚𝑎𝑛 ≤𝑐2 𝐻𝑢𝑚𝑎𝑛

𝑘𝑖𝑠𝑠(𝐽𝑜ℎ𝑛,𝑀𝑎𝑟𝑦) : 𝑃𝑟𝑜𝑝
𝐶𝐴

16

A notion that ensures that the system with coercive subtyping is well behaved is called
coherence:

Definition 2 (Luo, Soloviev, and Xue 2013 Definition 2.2). The set of subtyping judge-
ments (governed by a relation LFΔ) is called coherent if:

• If Γ ⊢Δ 𝐴 ≤𝑐 𝐵 : 𝑇𝑦𝑝𝑒, then Γ ⊢Δ 𝐴 : 𝑇𝑦𝑝𝑒, Γ ⊢Δ 𝐵 : 𝑇𝑦𝑝𝑒 and Γ ⊢Δ 𝑐 : (𝐴)𝐵.

• Γ ̸⊢Δ 𝐴 ≤𝑐 𝐴, for any Γ, 𝐴 and 𝑐.

• If Γ ⊢Δ 𝐴 ≤𝑐1 𝐵 : 𝑇𝑦𝑝𝑒 and Γ ⊢Δ 𝐴 ≤𝑐2 𝐵 : 𝑇𝑦𝑝𝑒, then Γ ⊢Δ 𝑐1 = 𝑐2 : (𝐴)𝐵.

It was proven that under the coherency of the set of subtyping relations the extension
of the type system with this set of coercive subtyping relations is a conservative extension
of it (Luo, Soloviev, and Xue 2013 Theorem 3.9) and therefore the consistency of the
system is maintained.

3.1.3 Dependent Types and Inductive Types

Apart from distinct types for common nouns rich typing in MTTs has several inductive
types (Chatzikyriakidis and Luo 2020, 2.2). Here we concentrate on two of them: Σ-types
and Π-types as the other ones (such as disjoint union types, finite types) are not used in
this work. Dependent constructions of Σ and Π-types are generalizations of products and
implications. They are used, for example, to model and restrict such linguistic processes
as adjectival modification and quantification.

Π-types (Chatzikyriakidis and Luo 2020, 2.2.1) represent dependent functions. Each
object of this type is of form Π𝑥 : 𝐴.𝐵(𝑥) and it represents a 𝜆-function 𝑓 such that
applied to the object 𝑎 of type 𝐴 it yields an object 𝑓(𝑎) of the dependent type 𝐵(𝑎).
We can think of 𝐵 as a family of types depending on the argument it gets, for example
𝐶ℎ𝑖𝑙𝑑(𝑥) is a type of children of some human 𝑥 for every 𝑥 : 𝐻𝑢𝑚𝑎𝑛. Then, the type
Π𝑥 : 𝐻𝑢𝑚𝑎𝑛.𝐶ℎ𝑖𝑙𝑑(𝑥) is a type of dependent functions from humans to their children.

In case of no dependency we get the common arrow type 𝐴→ 𝐵 from Π𝑥 : 𝐴.𝐵.

Σ-types (Chatzikyriakidis and Luo 2020, 2.2.2) of dependent pairs are of the form
Σ𝑥 : 𝐴.𝐵(𝑥) where 𝐵 is a family of types depending on the object. In the case when
there is no type-dependence Σ-type acts as a product type. Σ-type consists of a pair (𝑎, 𝑏)
of objects of type 𝐴 and 𝐵(𝑎) respectively along with two projections 𝜋1 and 𝜋2 such that
𝜋1(𝑎, 𝑏) = 𝑎, 𝜋2(𝑎, 𝑏) = 𝑏. Σ-types are used for adjectival modification as follows: let 𝑀𝑎𝑛
be a type of men and ℎ𝑎𝑛𝑑𝑠𝑜𝑚𝑒 a predicate of type 𝑀𝑎𝑛 → 𝑃𝑟𝑜𝑝. Then to form the
expression corresponding to the phrase “a handsome man” we use Σ-types and get the
expression Σ𝑥 : 𝑀𝑎𝑛.ℎ𝑎𝑛𝑑𝑠𝑜𝑚𝑒(𝑥). Intuitively, objects of this Σ-type represent all the
pairs (𝑥, 𝑝) where 𝑥 is of type 𝑀𝑎𝑛 and 𝑝 is a proof of the fact that 𝑥 is handsome.

Σ-types in MTTs exist along with the existential quantification which is defined for
the system’s internal logic (see ch. 3.1.5). Keeping both mechanisms, weak and strong
sum types, makes the system more expressive as compared to Ranta’s approach of using
only Σ-types for modelling existential quantification.4

4For more detail about the merits of preserving both weak and strong sums see Luo 2021, Luo 2019.

17

3.1.4 Dot-Types

Some nouns are inherently polysemous i.e. they can have several different but inherent
lexical roles corresponding to them. For instance, the word “book ” is regarded as a physical
object in the phrase “to pick up a book ” or “to throw a book ” and as an informational object
in the phrase “to master a book ”. But at the same time it is regarded as both physical
and informational object when we say “to pick up and master a book ”. Addressing both
senses of one word at the same time is called copredication (Pustejovsky 1996).

To model polysemy in MTTs “dot-types” are used. Dot-type is defined as 𝐴 ∙ 𝐵 and
it is a subtype of both 𝐴 and 𝐵. To form it we need its components and their supertypes
to have an empty intersection (i.e. absence of objects types as both types at the same
time) which corresponds to the definition of inherent polysemy from Pustejovsky 2005:

<Inherent polysemy> is the ability to appear in selectional contexts that are
contradictory in type specification.

Types like 𝑃ℎ𝑦𝑠∙ 𝐼𝑛𝑓𝑜 are well formed while types 𝑃ℎ𝑦𝑠∙𝑃ℎ𝑦𝑠 or 𝑃ℎ𝑦𝑠∙ (𝑃ℎ𝑦𝑠∙ 𝐼𝑛𝑓𝑜)
are invalid. Proof-theoretic properties of the system will fail if we do not impose this
orthogonality restriction on the supertypes as otherwise some expressions would be able
to have several different proofs which is undesirable. If 𝐴 is a subtype of 𝐵∙𝐶 and both 𝐵
and 𝐶 have a common supertype 𝐷 then we get two possible ways to coerce from object
𝐴 to an object of 𝐷: one via coercing to 𝐵 and then to 𝐷 and another through coercing
to 𝐶 and then to 𝐷.

That said, as types 𝑃ℎ𝑦𝑠 and 𝐼𝑛𝑓𝑜 do not intersect, we can define the type 𝐵𝑜𝑜𝑘 as
as subtype of 𝑃ℎ𝑦𝑠∙𝐼𝑛𝑓𝑜 and therefore from relations (19)-(21) we can obtain 𝐵𝑜𝑜𝑘 ≤𝑐1𝑐

𝑃ℎ𝑦𝑠 and 𝐵𝑜𝑜𝑘 ≤𝑐2𝑐 𝐼𝑛𝑓𝑜.

𝐵𝑜𝑜𝑘 ≤𝑐 𝑃ℎ𝑦𝑠 ∙ 𝐼𝑛𝑓𝑜(19)
𝑃ℎ𝑦𝑠 ∙ 𝐼𝑛𝑓𝑜 ≤𝑐1 𝑃ℎ𝑦𝑠(20)
𝑃ℎ𝑦𝑠 ∙ 𝐼𝑛𝑓𝑜 ≤𝑐2 𝐼𝑛𝑓𝑜(21)

As 𝑝𝑖𝑐𝑘_𝑢𝑝 and 𝑚𝑎𝑠𝑡𝑒𝑟 are typed as 𝐻𝑢𝑚𝑎𝑛→ 𝑃ℎ𝑦𝑠→ 𝑃𝑟𝑜𝑝 and 𝐻𝑢𝑚𝑎𝑛→ 𝐼𝑛𝑓𝑜→
𝑃𝑟𝑜𝑝 we can put 𝐵𝑜𝑜𝑘 as a second argument to both of them due to coercions 𝑐1𝑐 and
𝑐2𝑐 and due to the subtyping rules.

3.1.5 Proof-theoretic Semantics and the Prop Universe

The applicability of the Curry-Howard principle (Curry and Feys 1958 and Howard 1980)
and a formal definition in style of Gentzen sequent calculus (Ranta 1995) provides MTTs
with proof-theoretic semantics which allows automatization of parsing in proof assistants
such as Coq (Coq 2010). The proof-theoretic nature of MTTs transfers them from the
position of intermediate language (as TY2) to the fundamental language of phrase seman-
tics.

A core merit of the proof-theoretic approach is the propositions-as-types principle.
Martin-Löf 1984 (p. 7) states that:

If we take seriously the idea that a proposition is defined by laying down how
its canonical proofs are formed and accept that a set is defined by prescribing
how its canonical elements are formed, then it is clear that it would only lead

18

to unnecessary duplication to keep the notions of proposition and set (and
the associated notions of proof of a proposition and element of a set) apart.
Instead, we simply identify them, that is, treat them as one and the same
notion. This is the formulae-as-types (propositions-as-sets) interpretation on
which intuitionistic type theory is based.

MTT is built around judgments which are assertions about types, either about correctness
of the formed type or about the typing assignment of some expression. Judgments have
forms of:

𝑎 :𝑀𝑎𝑛,

𝐵𝑜𝑜𝑘 : 𝑇𝑦𝑝𝑒,

𝑠𝑙𝑒𝑒𝑝𝑠(𝐽𝑜ℎ𝑛) : 𝑃𝑟𝑜𝑝

Then the whole system (for example LFΔ in Chatzikyriakidis and Luo 2020) is organized
as a calculus of judgments with a list of inference rules. A judgment is valid in the system
if and only if there is a proof of it. Moreover, both LF and LFΔ (which we discuss in
detail further) also act as type-theoretic metalanguages for defining type-theoretic object
languages. The proof-theoretic power of this approach allows us to reason about the
constitution of the type theory that we are utilising for natural language analysis. For
example the well-formedness of each type can be proven formally.

As every judgment represents an inhabitant of the type and, at the same time, as a
correct judgment is identical to the presence of its proof, we can freely identify correct
judgements with their proofs. This result is especially powerful in view of CNs-as-types
principle, since the correct typing of an object representing a noun is the proof of it, and
hence we do not have to go out to the model-theory side (which is also present in MTTs)
to check if some assertion is correct.

Logical propositions can be formed in MTTs as objects of type 𝑃𝑟𝑜𝑝, which is a “logical
universe”, - “an internal totality in the type theory” (Chatzikyriakidis and Luo 2020 p.34).
Due to impredicative nature of the 𝑃𝑟𝑜𝑝 universe (as every proposition is a type) we can
quantify over 𝑃𝑟𝑜𝑝 itself and therefore define all the usual logical operations, existential
quantifier and 𝜆-abstraction in terms of universal quantification, the introduction rule for
which is (Chatzikyriakidis and Luo 2020, A3.1):

Γ ⊢Δ 𝐴 : 𝑇𝑦𝑝𝑒 Γ, 𝑥 : 𝐴 ⊢Δ 𝑃 : 𝑃𝑟𝑜𝑝

Γ ⊢Δ ∀𝑥 : 𝐴.𝑃 : 𝑃𝑟𝑜𝑝

For example, the phrase “if a man is handsome he is not ugly” is represented by (24) with
use of two predicates as follows (Chatzikyriakidis and Luo 2020, p.26):

ℎ𝑎𝑛𝑑𝑠𝑜𝑚𝑒 : 𝐻𝑢𝑚𝑎𝑛→ 𝑃𝑟𝑜𝑝(22)
𝑢𝑔𝑙𝑦 : 𝐻𝑢𝑚𝑎𝑛→ 𝑃𝑟𝑜𝑝(23)
∀𝑥 :𝑀𝑎𝑛.(∀𝑝 : ℎ𝑎𝑛𝑑𝑠𝑜𝑚𝑒(𝑥).¬𝑢𝑔𝑙𝑦(𝑥)) : 𝑃𝑟𝑜𝑝.(24)

As the topmost clause the quantifier argument (which is ℎ𝑎𝑛𝑑𝑠𝑜𝑚𝑒(𝑥)) is typed as
𝑃𝑟𝑜𝑝 and it does not appear free in the second part we can impose a notation ⇒ to reform
an expression in a more concise manner (Chatzikyriakidis and Luo 2020 A3.2):

𝑃 ⇒ 𝑄 := ∀𝑥 : 𝑃.𝑄(25)
(24) = ∀𝑥 :𝑀𝑎𝑛(ℎ𝑎𝑛𝑑𝑠𝑜𝑚𝑒(𝑥) ⇒ ¬𝑢𝑔𝑙𝑦(𝑥)) : 𝑃𝑟𝑜𝑝.(26)

19

3.1.6 Type universes:

A Type universe is a way to denote some collection of types in order to quantify over
them. Following Martin-Löf 1998 we informally define universes as:

A type 𝑉 which will be called a universe and whose objects are to be types, to-
gether with the reflection principle which roughly speaking says that whatever
we are used to doing with types can be done inside the universe 𝑉 .

When combined with Π-type constructors, type universes allow representation of var-
ious polymorphic concepts. One of the universes used in MTTs, 𝐶𝑁 , denotes a universe
of all (representations of) common nouns (Chatzikyriakidis and Luo 2020, Section 2.3.2).
It is implemented as a type to which all noun types belong. For example 𝐻𝑢𝑚𝑎𝑛, a type
of all humans, belongs to 𝐶𝑁 - this is represented by the judgment 𝐻𝑢𝑚𝑎𝑛 : 𝐶𝑁 . Now
we can use Π types to define polymorphic verbal modifiers like “quickly” and determiners
like “some” or “a” as follows:

𝑞𝑢𝑖𝑐𝑘𝑙𝑦 : Π𝐴 : 𝐶𝑁.(𝐴→ 𝑃𝑟𝑜𝑝) → 𝑃𝑟𝑜𝑝;

𝑎, 𝑠𝑜𝑚𝑒 : Π𝐴 : 𝐶𝑁.(𝐴→ 𝑃𝑟𝑜𝑝) → 𝑃𝑟𝑜𝑝.

Here the application of the first argument (which is a type of CN universe), binds the
rest to it. This way the phrase “a man shouts” is processed as follows:

1. determiner “𝑎” is typed as above and has the form:

J𝑎K = 𝜆𝐴 : 𝐶𝑁.𝜆𝑃 : (𝐴→ 𝑃𝑟𝑜𝑝).(∃𝑥 : 𝐴.𝑃 (𝑥)).

Applying it to the word “man” (which is of type 𝑀𝑎𝑛) parameterizes the rest of the
expression resulting in 𝑎(𝑚𝑎𝑛) : (𝑀𝑎𝑛→ 𝑃𝑟𝑜𝑝) → 𝑃𝑟𝑜𝑝.

2. the verb “𝑠ℎ𝑜𝑢𝑡𝑠” is typed as 𝑠ℎ𝑜𝑢𝑡𝑠 : 𝐻𝑢𝑚𝑎𝑛 → 𝑃𝑟𝑜𝑝. As 𝑀𝑎𝑛 is a subtype
of 𝐻𝑢𝑚𝑎𝑛 we can pass the verb as a second argument to 𝑎(𝑚𝑎𝑛) giving us the
interpretation 𝑎(𝑚𝑎𝑛, 𝑠ℎ𝑜𝑢𝑡𝑠) = ∃𝑥 :𝑀𝑎𝑛.𝑠ℎ𝑜𝑢𝑡𝑠(𝑥) : 𝑃𝑟𝑜𝑝.

Another important universe is 𝐿𝑇𝑦𝑝𝑒, a universe which was introduced by Chatzikyri-
akidis and Luo 2012 to address coordination, it contains all types suitable for coordination.
After combining 𝐿𝑇𝑦𝑝𝑒 with Π-polymorphism the interpretation of coordinating words
such as “and ” can be set as:

𝑎𝑛𝑑 : Π𝐴 : 𝐿𝑇𝑦𝑝𝑒.𝐴→ 𝐴→ 𝐴.

Now the object which represents “and ” can be parametrized by any lexical type 𝐴 and
then would take a specified form of 𝐴→ 𝐴→ 𝐴.

Consider below interpretations of phrases “John walks and Mary talks” where coordi-
nated parts are formed sentences typed as 𝑃𝑟𝑜𝑝 and “John walks and talks” where verbs
are being coordinated at first before getting applied to the object (Chatzikyriakidis and
Luo 2020 p.37):

JJohn walks and Mary talksK = 𝑎𝑛𝑑(𝑃𝑟𝑜𝑝, 𝑤𝑎𝑙𝑘(𝑗), 𝑡𝑎𝑙𝑘(𝑚));

JJohn walks and talksK = 𝑎𝑛𝑑(𝐻𝑢𝑚𝑎𝑛→ 𝑃𝑟𝑜𝑝, 𝑤𝑎𝑙𝑘, 𝑡𝑎𝑙𝑘)(𝑗).

20

3.1.7 Intensionality and Contexts

There is no “base type” 𝑠 in MTTs as the one which was used in the original Montague
semantics to model intensionality and belief states. Instead, rich typing allow us to define
contexts. Contexts were proposed in Ranta 1995 as sequences of hypotheses of form:

𝑥1 : 𝑇1(𝑥1), 𝑥2 : 𝑇2(𝑥1), . . . , 𝑥𝑛 : 𝑇𝑛(𝑥1, . . . , 𝑥𝑛−1),

where 𝑥1 . . . 𝑥𝑛 are variables and 𝑇1, . . . , 𝑇𝑛 are types possibly depending on previously
declared objects. This construction is used as a set of assumptions for conducting formal
proofs of expressions i.e. notion of a linguistic context in MTTs coincide with the proof-
theoretical notion of a context. In other words, from the formal point of view, contexts
in MTTs are used as usual contexts from common formal logical systems with inference
relations.

Ranta’s definition of contexts can work only with typings of variables. In order to
deal with the need to define constants or other constructions such as subtyping relations,
signatures are used in MTTs (Luo 2014). A purpose of signatures is to describe situations
(or incomplete possible worlds) which are related to the linguistic meaning of the word
“context” as well. The notion of signature is introduced because there exist complications
of embedding constants into contexts as contexts were initially designed only for variables.
As Chatzikyriakidis and Luo 2020 (p.26) put it:

However, to add these new forms of entries into contexts is not so easy: in
particular, its meta-theoretic study is rather sophisticated and has been a
difficult open question. Instead, it is easier to add them as entries in signatures.

The problem with possible worlds (and moments of time) from Montagovian ap-
proaches is the inability to enumerate them and hence to check them all. Here, as contexts
and signatures are finite, provability can be decided in a finite time. As context and sig-
nature contain typing judgements and all the expressions (including nouns) are types we
can encapsulate all the additional information we need within them.

Now the de re reading of the example of “Mary seeks an author of Ulysses” which
we discussed on page 10 in Section 2.3 can be parsed properly because in the context of
Mary’s belief state there would be no record 𝐴𝑢𝑡ℎ𝑜𝑟_𝑂𝑓(𝐽𝑜𝑦𝑐𝑒, 𝑈𝑙𝑦𝑠𝑠𝑒𝑠) : 𝑃𝑟𝑜𝑝, where
𝐴𝑢𝑡ℎ𝑜𝑟_𝑂𝑓(𝑥, 𝑦) denotes an expression “x is an author of y”. In the context (denoted
by Γ) and signature (denoted by Δ) we would only have a records 𝑈𝑙𝑦𝑠𝑠𝑒𝑠 : 𝐵𝑜𝑜𝑘,
𝐴𝑢𝑡ℎ𝑜𝑟_𝑂𝑓 : 𝐴𝑢𝑡ℎ𝑜𝑟 → 𝐵𝑜𝑜𝑘 → 𝑃𝑟𝑜𝑝 and ∃𝑥 : 𝐴𝑢𝑡ℎ𝑜𝑟.𝐴𝑢𝑡ℎ𝑜𝑟_𝑜𝑓(𝑥, 𝑈𝑙𝑦𝑠𝑠𝑒𝑠). The
whole expression with its linguistical context would be represented (rather informally) as:

(𝑐𝑜𝑛𝑡𝑒𝑥𝑡) Γ = ∃𝑥 : 𝐴𝑢𝑡ℎ𝑜𝑟.𝐴𝑢𝑡ℎ𝑜𝑟_𝑜𝑓(𝑥, 𝑈𝑙𝑙𝑦𝑠𝑒𝑠) : 𝑃𝑟𝑜𝑝;
(𝑠𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒) Δ = 𝑈𝑙𝑦𝑠𝑠𝑒𝑠 : 𝐵𝑜𝑜𝑘,𝐴𝑢𝑡ℎ𝑜𝑟_𝑜𝑓 : 𝐴𝑢𝑡ℎ𝑜𝑟 → 𝐵𝑜𝑜𝑘 → 𝑃𝑟𝑜𝑝;

(𝑗𝑢𝑑𝑔𝑚𝑒𝑛𝑡) Γ ⊢Δ ∃𝑥 : (Σ𝑦 : 𝐴𝑢𝑡ℎ𝑜𝑟.𝐴𝑢𝑡ℎ𝑜𝑟_𝑜𝑓(𝑦, 𝑈𝑙𝑦𝑠𝑠𝑒𝑠)).𝑠𝑒𝑒𝑘𝑠(𝑀𝑎𝑟𝑦, 𝑥) : 𝑃𝑟𝑜𝑝,

If Mary is not aware that it was James Joyce who wrote “Ulysses” or if she is not aware
of the fact that he is also an author of “Finnegans Wake” then the phrase “Mary seeks an
author of Ulysses” would not be provable as an equivalent to “Mary seeks an author of
Finnegans wake” in this restricted situation.

3.2 Formal Definition: the system LFΔ

Here we give the formal definition of the core parts of the system LFΔ, following Chatzikyr-
iakidis and Luo 2020 (A5.1). LFΔ is an extension of the logical framework LF, developed

21

in the style of Martin-Löf type theory and defined in Luo 1994 (chapter 9). LFΔ differs
from LF in the presence of signatures in judgement forms and inference rules.

Both LF and LFΔ use kinds, which act as types but they are types in the metalanguage
defining type theories themselves. The metalanguage notion of kinds, while it does not
substantially differ from the object language notion of types, is useful because it prohibits
the combination of kinds and types in formal language expressions. Each object 𝐴 of
the special kind 𝑇𝑦𝑝𝑒 is defined to correspond to a kind 𝐸𝑙(𝐴) which represents all the
objects of the type 𝐴. Following Luo 1994 (p.169) when no confusion may occur we omit
the notation 𝐸𝑙(𝐴) and use just 𝐴 instead. As, for example in 𝑎 : (𝑥 : 𝐴)𝐵 in place of
𝑎 : (𝑥 : 𝐸𝑙(𝐴)) : 𝐸𝑙(𝐵) or 𝑎 : 𝐴 instead of 𝑎 : 𝐸𝑙(𝐴).

Judgements: judgements in LFΔ (Chatzikyriakidis and Luo 2020, A5.1) can be of the
following forms:

1. Δ 𝑣𝑎𝑙𝑖𝑑, asserts that the signature Δ is valid;

2. ⊢Δ Γ, asserts that the context Γ is valid under the signature Δ;

3. Γ ⊢Δ 𝐾 𝑘𝑖𝑛𝑑, asserts that that 𝐾 is a kind under the signature Δ in the context Γ;

4. Γ ⊢Δ 𝑘 : 𝐾, asserts that 𝑘 is an object of kind 𝐾 in Γ under Δ;

5. Γ ⊢Δ 𝐾1 = 𝐾2, asserts that 𝐾1 and 𝐾2 are equal kinds in Γ under Δ;

6. Γ ⊢Δ 𝑘1 = 𝑘2 : 𝐾, asserts that 𝑘1 and 𝑘2 are equal objects of kind 𝐾 in Γ under Δ.

Inference Rules: inference rules are given in this section. The empty sequence is denoted
by ⟨⟩ and 𝑑𝑜𝑚(𝑝1 : 𝐾1, . . . , 𝑝:𝐾𝑛) denotes 𝑝1, . . . , 𝑝𝑛.

• Contexts and signatures (Chatzikyriakidis and Luo 2020, A5.1):

The empty signature is well-formed; a new judgement can be added to the signature
Δ if the constant name is distinct and its kind is well-formed under Δ; judgment
from the context is valid under it:

⟨⟩ 𝑣𝑎𝑙𝑖𝑑
⟨⟩ ⊢Δ 𝐾 𝑘𝑖𝑛𝑑 𝑐 ̸∈ 𝑑𝑜𝑚(Δ)

Δ, 𝑐 : 𝐾 𝑣𝑎𝑙𝑖𝑑

⊢Δ,𝑐:𝐾,Δ′ Γ

Γ ⊢Δ,𝑐:𝐾,Δ′ 𝑐 : 𝐾

The empty context is valid under a valid signature; a new judgement can be added
to the context Γ under Δ if the variable name is distinct and its kind is well-formed
in Γ under Δ; expressions from the context are valid in it:

Δ 𝑣𝑎𝑙𝑖𝑑
⊢Δ ⟨⟩

Γ ⊢Δ 𝐾 𝑘𝑖𝑛𝑑 𝑥 ̸∈ 𝑑𝑜𝑚(Γ)

⊢Δ Γ, 𝑥 : 𝐾

⊢Δ Γ, 𝑥 : 𝐾,Γ′

Γ, 𝑥 : 𝐾,Γ′ ⊢Δ 𝑥 : 𝐾

• Equality (Chatzikyriakidis and Luo 2020, A5.1):

These rules represent reflexivity, commutativity and transitivity for both kind and
object levels:

Γ ⊢Δ 𝐾 : 𝑘𝑖𝑛𝑑
Γ ⊢Δ 𝐾 = 𝐾

Γ ⊢Δ 𝐾 = 𝐾 ′

Γ ⊢Δ 𝐾 ′ = 𝐾
Γ ⊢Δ 𝐾 = 𝐾 ′ Γ ⊢Δ 𝐾 ′ = 𝐾 ′′

Γ ⊢Δ 𝐾 = 𝐾 ′′

Γ ⊢Δ 𝑘 : 𝐾
Γ ⊢Δ 𝑘 = 𝑘 : 𝐾

Γ ⊢Δ 𝑘 = 𝑘′ : 𝐾
Γ ⊢Δ 𝑘′ = 𝑘 : 𝐾

Γ ⊢Δ 𝑘 = 𝑘′ : 𝐾 Γ ⊢Δ 𝑘′ = 𝑘′′ : 𝐾
Γ ⊢Δ 𝑘 = 𝑘′′ : 𝐾

22

An object of a kind 𝐾 is an object of 𝐾 ′ if these kinds are equal and the same about
the object equality judgment of equal kinds:

Γ ⊢Δ 𝑘 : 𝐾 Γ ⊢Δ 𝐾 = 𝐾 ′ 𝑘𝑖𝑛𝑑
Γ ⊢Δ 𝑘 : 𝐾 ′

Γ ⊢Δ 𝑘 = 𝑘′ : 𝐾 Γ ⊢Δ 𝐾 = 𝐾 ′ 𝑘𝑖𝑛𝑑
Γ ⊢Δ 𝑘 = 𝑘′ : 𝐾 ′

• The 𝑇𝑦𝑝𝑒 kind (Chatzikyriakidis and Luo 2020, A5.1):

The kind 𝑇𝑦𝑝𝑒 is defined; for each type the kind of it’s elements is defined; equal
types have equal element kinds:

Γ 𝑣𝑎𝑙𝑖𝑑
Γ ⊢Δ 𝑇𝑦𝑝𝑒 𝑘𝑖𝑛𝑑

Γ ⊢Δ 𝐴 : 𝑇𝑦𝑝𝑒

Γ ⊢Δ 𝐸𝑙(𝐴) 𝑘𝑖𝑛𝑑

Γ ⊢Δ 𝐴 = 𝐵 𝑇𝑦𝑝𝑒

Γ ⊢Δ 𝐸𝑙(𝐴) = 𝐸𝑙(𝐵)

• Dependent product kinds (Chatzikyriakidis and Luo 2020, A5.1): in LFΔ instead
of 𝜆𝑥 : 𝐾.𝑏 the notation [𝑥 : 𝐾]𝑏 is used and (𝑥 : 𝐾)𝐾 ′ is used in place of Π𝑥 : 𝐾.𝐾 ′.

Kind formation rule; kind equality rule; introduction rule; equality for objects rule:

Γ ⊢Δ 𝐾 𝑘𝑖𝑛𝑑 Γ, 𝑥 : 𝐾 ⊢Δ 𝐾 ′ 𝑘𝑖𝑛𝑑

Γ ⊢Δ (𝑥 : 𝐾)𝐾 ′ 𝑘𝑖𝑛𝑑

Γ ⊢Δ 𝐾1 = 𝐾2 Γ, 𝑥 : 𝐾1 ⊢Δ 𝐾 ′
1 = 𝐾 ′

2

Γ ⊢Δ (𝑥 : 𝐾1)𝐾
′
1 = (𝑥 : 𝐾2)𝐾

′
2

Γ, 𝑥 : 𝐾 ⊢Δ 𝑘 : 𝐾 ′

Γ ⊢Δ [𝑥 : 𝐾]𝑘 : (𝑥 : 𝐾)𝐾 ′
Γ ⊢Δ 𝐾1 = 𝐾2 Γ, 𝑥 : 𝐾1 ⊢Δ 𝑘′1 = 𝑘′2 : 𝐾

Γ ⊢Δ [𝑥 : 𝐾1]𝑘
′
1 = [𝑥 : 𝐾2]𝑘

′
2 : (𝑥 : 𝐾1)𝐾

Dependent type application rule; equality for applications; application definitions:

Γ ⊢Δ 𝑓 : (𝑥 : 𝐾)𝐾 ′ Γ ⊢Δ 𝑘 : 𝐾

Γ ⊢Δ 𝑓(𝑘) : [𝑘/𝑥]𝐾 ′
Γ ⊢Δ 𝑓 = 𝑓 ′ : [𝑥 : 𝐾]𝐾 ′ Γ ⊢Δ 𝑘1 = 𝑘2 : 𝐾

Γ ⊢Δ 𝑓(𝑘1) = 𝑓 ′(𝑘2) : [𝑘1/𝑥]𝐾
′

Γ, 𝑥 : 𝐾 ⊢Δ 𝑘′ : 𝐾 Γ ⊢Δ 𝑘 : 𝐾

Γ ⊢Δ ([𝑥 : 𝐾]𝑘′)(𝑘) = [𝑘/𝑥]𝑘′ : [𝑘/𝑥]𝐾 ′
Γ ⊢Δ 𝑓 : (𝑥 : 𝐾)𝐾 ′ 𝑥 ̸∈ 𝐹𝑉 (𝑓)

Γ ⊢Δ [𝑥 : 𝐾]𝑓(𝑥) = 𝑓 : (𝑥 : 𝐾)𝐾 ′

• Prop universe (Chatzikyriakidis and Luo 2020, A3.1):
Inferences showing that 𝑃𝑟𝑜𝑝 is a type; each object of type 𝑃𝑟𝑜𝑝 is a type:

⊢Δ Γ
Γ ⊢Δ 𝑃𝑟𝑜𝑝 : 𝑇𝑦𝑝𝑒

Γ ⊢Δ 𝑃 : 𝑃𝑟𝑜𝑝

Γ ⊢Δ 𝑃 : 𝑇𝑦𝑝𝑒

Universal quantifier formation; universal quantifier introduction; application forma-
tion; application definition:

Γ ⊢Δ 𝐴 : 𝑇𝑦𝑝𝑒 Γ, 𝑥 : 𝐴 ⊢Δ 𝑃 : 𝑃𝑟𝑜𝑝

Γ ⊢Δ ∀𝑥 : 𝐴.𝑃 : 𝑃𝑟𝑜𝑝

Γ, 𝑥 : 𝐴 ⊢Δ 𝑏 : 𝑃 Γ, 𝑥 : 𝐴 ⊢Δ 𝑃 : 𝑃𝑟𝑜𝑝

Γ ⊢Δ 𝜆𝑥 : 𝐴.𝑏 : ∀𝑥 : 𝐴.𝑃

Γ ⊢Δ 𝑓 : ∀𝑥 : 𝐴.𝑃 Γ ⊢Δ 𝑎 : 𝐴

Γ ⊢Δ 𝑓(𝑎) : [𝑎/𝑥]𝑃

Γ, 𝑥 : 𝐴 ⊢Δ 𝑏 : 𝑃 Γ ⊢Δ 𝑎 : 𝐴

Γ ⊢Δ (𝜆𝑥 : 𝐴.𝑏)(𝑎) = [𝑎/𝑥]𝑏 : [𝑎/𝑥]𝑃

23

Logic operators are defined via universal quantifier due to impredicativity of the
system i.e. of the ability to quantify over the whole 𝑃𝑟𝑜𝑝 universe:

𝑃 ⇒ 𝑄 := ∀𝑥 : 𝑃.𝑄

true := ∀𝑋 : 𝑃𝑟𝑜𝑝.𝑋 ⇒ 𝑋

false := ∀𝑋 : 𝑃𝑟𝑜𝑝.𝑋

𝑃 ∧𝑄 := ∀𝑋 : 𝑃𝑟𝑜𝑝.(𝑃 ⇒ 𝑄⇒ 𝑋) ⇒ 𝑋

𝑃 ∨𝑄 := ∀𝑋 : 𝑃𝑟𝑜𝑝.(𝑃 ⇒ 𝑋) ⇒ (𝑄⇒ 𝑋) ⇒ 𝑋

¬𝑃 := 𝑃 ⇒ false

∃𝑥 : 𝐴.𝑃 (𝑥) := ∀𝑋 : 𝑃𝑟𝑜𝑝.(∀𝑥 : 𝐴.(𝑃 (𝑥) ⇒ 𝑋)) ⇒ 𝑋

(𝑎 =𝐴 𝑏) := ∀𝑃 : 𝐴→ 𝑃𝑟𝑜𝑝.𝑃 (𝑎) ⇒ 𝑃 (𝑏)

• Subtyping and subkinding (Luo, Soloviev, and Xue 2013):

Subkinding in signatures:

⊢Δ 𝐴 : 𝑇𝑦𝑝𝑒 ⊢Δ 𝐵 : 𝑇𝑦𝑝𝑒 ⊢Δ 𝑐 : (𝑥 : 𝐴)𝐵

Δ, 𝐴 <𝑐 𝐵 𝑣𝑎𝑙𝑖𝑑

⊢Δ,𝐴<𝑐𝐵,Δ′ Γ

Γ ⊢Δ,𝐴<𝑐𝐵,Δ′ 𝐴 <𝑐 𝐵 : 𝑇𝑦𝑝𝑒

Basic subkinding rule:

Γ ⊢Δ 𝐴 <𝑐 𝐵 : 𝑇𝑦𝑝𝑒

Γ ⊢Δ 𝐸𝑙(𝐴) <𝑐 𝐸𝑙(𝐵) : 𝑇𝑦𝑝𝑒

Subkinding for dependent types:

Γ ⊢Δ 𝐾 ′
1 = 𝐾1 Γ, 𝑥 : 𝐾 ′

1 ⊢Δ 𝐾2 <𝑐 𝐾
′
2 Γ, 𝑥 : 𝐾 ′

1 ⊢Δ 𝐾 ′
2 𝑘𝑖𝑛𝑑

Γ ⊢Δ (𝑥 : 𝐾1)𝐾2 <[𝑓 :(𝑥:𝐾1)𝐾2[𝑥:𝐾′
1]]𝑐(𝑓(𝑥))

(𝑥 : 𝐾 ′
1)𝐾

′
2

Γ ⊢Δ 𝐾 ′
1 <𝑐 𝐾1 Γ, 𝑥 : 𝐾 ′

1 ⊢Δ [𝑐(𝑥)/𝑥]𝐾2 = 𝐾 ′
2 Γ, 𝑥 : 𝐾 ′

1 ⊢Δ 𝐾 ′
2 𝑘𝑖𝑛𝑑

Γ ⊢Δ (𝑥 : 𝐾1)𝐾2 <[𝑓 :(𝑥:𝐾1)𝐾2[𝑥:𝐾′
1]]𝑓(𝑐(𝑥))

(𝑥 : 𝐾 ′
1)𝐾

′
2

Γ ⊢Δ 𝐾 ′
1 <𝑐 𝐾1 Γ, 𝑥 : 𝐾 ′

1 ⊢Δ [𝑐1(𝑥)/𝑥]𝐾2 <𝑐2 𝐾
′
2 Γ, 𝑥 : 𝐾 ′

1 ⊢Δ 𝐾 ′
2 𝑘𝑖𝑛𝑑

Γ ⊢Δ (𝑥 : 𝐾1)𝐾2 <[𝑓 :(𝑥:𝐾1)𝐾2[𝑥:𝐾′
1]]𝑐2(𝑓(𝑐1(𝑥)))

(𝑥 : 𝐾 ′
1)𝐾

′
2

Structural subkinding rules:

Γ ⊢Δ 𝐾1 <𝑐 𝐾2 Γ ⊢Δ 𝐾1 = 𝐾 ′
1 Γ ⊢Δ 𝐾2 = 𝐾 ′

2 Γ ⊢Δ 𝑐 = 𝑐′ : (𝐾1)𝐾2

Γ ⊢Δ 𝐾 ′
1 <𝑐′ 𝐾

′
2

Γ ⊢Δ 𝐾 <𝑐 𝐾
′ Γ ⊢Δ 𝐾 ′ <𝑐′ 𝐾

′′

Γ ⊢Δ 𝐾 <𝑐′∘𝑐 𝐾
′′

Γ, 𝑥 : 𝐾,Γ′ ⊢Δ 𝐾1 <𝑐 𝐾2 Γ ⊢Δ 𝑘 : 𝐾

Γ, [𝑘/𝑥]Γ′ ⊢Δ [𝑘/𝑥]𝐾1 <[𝑘/𝑥]𝑐 [𝑘/𝑥]𝐾2

Γ,Γ′ ⊢Δ 𝐾1 <𝑐 𝐾2 ⊢Δ Γ,Γ′′

Γ,Γ′′,Γ′ ⊢Δ 𝐾1 <𝑐 𝐾2

Γ, 𝑥 : 𝐾,Γ′ ⊢Δ 𝐾1 <𝑐 𝐾2 Γ ⊢Δ 𝐾 = 𝐾 ′

Γ, 𝑥 : 𝐾 ′,Γ′ ⊢Δ 𝐾1 <𝑐 𝐾2

24

Coercive application rules:
Γ ⊢Δ 𝑓 : (𝑥 : 𝐾)𝐾 ′ Γ ⊢Δ 𝑘0 : 𝐾0 Γ ⊢Δ 𝐾0 <𝑐 𝐾

Γ ⊢Δ 𝑓(𝑘0) : [𝑐(𝑘0)/𝑥]𝐾
′ (CA1)

Γ ⊢Δ 𝑓 = 𝑓 ′ : (𝑥 : 𝐾)𝐾 ′ Γ ⊢Δ 𝑘0 = 𝑘′0 : 𝐾0 Γ ⊢Δ 𝐾0 <𝑐 𝐾

Γ ⊢Δ 𝑓(𝑘0) = 𝑓 ′(𝑘′0) : [𝑐(𝑘0)/𝑥]𝐾
′ (CA2)

Coercive definition rule:
Γ ⊢Δ 𝑓 : (𝑥 : 𝐾)𝐾 ′ Γ ⊢Δ 𝑘0 : 𝐾0 Γ ⊢Δ 𝐾0 <𝑐 𝐾

Γ ⊢Δ 𝑓(𝑘0) = 𝑓(𝑐(𝑘0)) : [𝑐(𝑘1)/𝑥]𝐾
′ (CD)

• Dot-Types (Chatzikyriakidis and Luo 2020, A6):

Formation rule:
⊢Δ Γ ⟨⟩ ⊢Δ 𝐴 : 𝑇𝑦𝑝𝑒 ⟨⟩ ⊢Δ 𝐵 : 𝑇𝑦𝑝𝑒 𝒞(𝐴) ∩ 𝒞(𝐵) = ∅

Γ ⊢Δ 𝐴 ∙𝐵 : 𝑇𝑦𝑝𝑒
(∙)

where 𝒞(𝐴) is a set of components defined as:

𝒞(𝑇) =

{︃
{𝑇 ′|𝑇 ≤ 𝑇 ′}, if normal form of 𝑇 is not of form 𝑋 ∙ 𝑌
{𝑋 ′|𝑋 ≤ 𝑋 ′} ∪ {𝑌 ′|𝑌 ≤ 𝑌 ′}, if normal form of 𝑇 is 𝑋 ∙ 𝑌

Introduction rule:
Γ ⊢Δ 𝑎 : 𝐴 Γ ⊢Δ 𝑏 : 𝐵 Γ ⊢Δ 𝐴 ∙𝐵 : 𝑇𝑦𝑝𝑒

Γ ⊢Δ ⟨𝑎, 𝑏⟩ : 𝐴 ∙𝐵 (∙I)

Elimination rules:
Γ ⊢Δ 𝑐 : 𝐴 ∙𝐵 : 𝑇𝑦𝑝𝑒

Γ ⊢Δ 𝑝1(𝑐) : 𝐴
(∙E1)

Γ ⊢Δ 𝑐 : 𝐴 ∙𝐵 : 𝑇𝑦𝑝𝑒

Γ ⊢Δ 𝑝2(𝑐) : 𝐵
(∙E2)

Computation rules:
Γ ⊢Δ 𝑎 : 𝐴 ⊢Δ Γ𝑏 : 𝐵 Γ ⊢Δ 𝐴 ∙𝐵 : 𝑇𝑦𝑝𝑒

Γ ⊢Δ 𝑝1(⟨𝑎, 𝑏⟩) = 𝑎 : 𝐴
(∙𝐶𝑜𝑚𝑝1)

Γ ⊢Δ 𝑎 : 𝐴 Γ ⊢Δ 𝑏 : 𝐵 Γ ⊢Δ 𝐴 ∙𝐵 : 𝑇𝑦𝑝𝑒

Γ ⊢Δ 𝑝2(⟨𝑎, 𝑏⟩) = 𝑏 : 𝐵
(∙𝐶𝑜𝑚𝑝2)

Projections as coercions:
Γ ⊢Δ 𝐴 ∙𝐵 : 𝑇𝑦𝑝𝑒

Γ ⊢Δ 𝐴 ∙𝐵 ≤𝑝1 𝐴 : 𝑇𝑦𝑝𝑒
(∙𝑃𝑟𝑜𝑗1)

Γ ⊢Δ 𝐴 ∙𝐵 : 𝑇𝑦𝑝𝑒

Γ ⊢Δ 𝐴 ∙𝐵 ≤𝑝2 𝐵 : 𝑇𝑦𝑝𝑒
(∙𝑃𝑟𝑜𝑗2)

Coercion propagation:
Γ ⊢Δ 𝐴 ∙𝐵 : 𝑇𝑦𝑝𝑒 Γ ⊢Δ 𝐴′ ∙𝐵′ : 𝑇𝑦𝑝𝑒 Γ ⊢Δ 𝐴 ≤𝑐1 𝐴

′ Γ ⊢Δ 𝐵 = 𝐵′ : 𝑇𝑦𝑝𝑒

Γ ⊢Δ 𝐴 ∙𝐵 ≤𝑑1[𝑐1] 𝐴
′ ∙𝐵′ : 𝑇𝑦𝑝𝑒

Γ ⊢Δ 𝐴 ∙𝐵 : 𝑇𝑦𝑝𝑒 Γ ⊢Δ 𝐴′ ∙𝐵′ : 𝑇𝑦𝑝𝑒 Γ ⊢Δ 𝐴 = 𝐴′ Γ ⊢Δ 𝐵 ≤𝑐2 𝐵
′ : 𝑇𝑦𝑝𝑒

Γ ⊢Δ 𝐴 ∙𝐵 ≤𝑑2[𝑐2] 𝐴
′ ∙𝐵′ : 𝑇𝑦𝑝𝑒

Γ ⊢Δ 𝐴 ∙𝐵 : 𝑇𝑦𝑝𝑒 Γ ⊢Δ 𝐴′ ∙𝐵′ : 𝑇𝑦𝑝𝑒 Γ ⊢Δ 𝐴 ≤𝑐1 𝐴
′ Γ ⊢Δ 𝐵′ ≤𝑐2 𝐵

′ : 𝑇𝑦𝑝𝑒

Γ ⊢Δ 𝐴 ∙𝐵 ≤𝑑[𝑐1,𝑐2] 𝐴
′ ∙𝐵′ : 𝑇𝑦𝑝𝑒

25

where the coercions 𝑑1, 𝑑2 and 𝑑 are defined as: 𝑑1[𝑐1](𝑥) = ⟨𝑐1(𝑝1(𝑥)), 𝑝2(𝑥)⟩,
𝑑2[𝑐2](𝑥) = ⟨𝑝1(𝑥), 𝑐2(𝑝2(𝑥))⟩ and 𝑑[𝑐1, 𝑐2](𝑥) = ⟨𝑐1(𝑝1(𝑥)), 𝑐2(𝑝2(𝑥))⟩.

• Π and Σ types(Chatzikyriakidis and Luo 2020, A2.1 and A2.2): all inductive types
(e.g. Π-types, Σ-types, disjoin union types, unit and finite types) which are used in
the full system and described with inference rules can be defined formally through
the mechanisms we already have but for convenience Π and Σ can be defined with
their own constructors by in the following rules:

– Π-types: formation; introduction; application; 𝛽-reduction:

Γ ⊢Δ 𝐴 : 𝑇𝑦𝑝𝑒 Γ, 𝑥 : 𝐴 ⊢Δ 𝐵 : 𝑇𝑦𝑝𝑒

Γ ⊢Δ Π𝑥 : 𝐴.𝐵 : 𝑇𝑦𝑝𝑒
(Π)

Γ, 𝑥 : 𝐴 ⊢Δ 𝑏 : 𝐵

Γ ⊢Δ 𝜆𝑥 : 𝐴.𝑏 : Π𝑥 : 𝐴.𝐵
(𝐴𝑏𝑠)

Γ ⊢Δ 𝑓 : Π𝑥 : 𝐴.𝐵 Γ ⊢Δ 𝑎 : 𝐴

Γ ⊢Δ 𝑓(𝑎) : [𝑎/𝑥]𝐵
(𝐴𝑝𝑝)

Γ, 𝑥 : 𝐴 ⊢Δ 𝑏 : 𝐵 Γ ⊢Δ 𝑎 : 𝐴

Γ ⊢Δ (𝜆𝑥 : 𝐴.𝐵)(𝑎) = [𝑎/𝑥]𝑏 : [𝑎/𝑥]𝐵
(𝛽)

– Σ-types: formation; introduction; projections (elimination rules); computation:

Γ ⊢Δ 𝐴 : 𝑇𝑦𝑝𝑒 Γ ⊢Δ 𝐵 : 𝑇𝑦𝑝𝑒

Γ ⊢Δ Σ𝑥 : 𝐴.𝐵 : 𝑇𝑦𝑝𝑒
(Σ)

Γ ⊢Δ 𝑎 : 𝐴 Γ ⊢Δ 𝑏 : [𝑎/𝑥]𝐵 Γ, 𝑥 : 𝐴 ⊢Δ 𝐵 : 𝑇𝑦𝑝𝑒

Γ ⊢Δ (𝑎, 𝑏) : Σ𝑥 : 𝐴.𝐵
(𝑃𝑎𝑖𝑟)

Γ ⊢Δ 𝑝 : Σ𝑥 : 𝐴.𝐵

Γ ⊢Δ 𝜋1(𝑝) : 𝐴
(𝑃𝑟𝑜𝑗1)

Γ ⊢Δ 𝑝 : Σ𝑥 : 𝐴.𝐵

Γ ⊢Δ 𝜋2(𝑝) : [𝜋1(𝑝)/𝑥]𝐵
(𝑃𝑟𝑜𝑗2)

Γ ⊢Δ 𝑎 : 𝐴 Γ ⊢Δ 𝑏 : [𝑎/𝑥]𝐵

Γ ⊢Δ 𝜋1(𝑎, 𝑏) = 𝑎 : 𝐴
(𝐶𝑜𝑛𝑣1)

Γ ⊢Δ 𝑎 : 𝐴 Γ ⊢Δ 𝑏 : [𝑎/𝑥]𝐵

Γ ⊢Δ 𝜋2(𝑎, 𝑏) = 𝑏 : [𝑎/𝑥]𝐵
(𝐶𝑜𝑛𝑣2)

– Subtyping for Σ and Π types (based on Luo 1999 (4.2)):

Γ ⊢Δ 𝐴 ≤𝑐 𝐴
′ : 𝑇𝑦𝑝𝑒 Γ, 𝑥 : 𝐴 ⊢Δ 𝐵(𝑥) ≤𝑐′[𝑥] 𝐵

′(𝑐(𝑥)) : 𝑇𝑦𝑝𝑒

Γ ⊢Δ Σ𝑥 : 𝐴.𝐵 ≤𝑑Σ Σ𝑥 : 𝐴′.𝐵′

where 𝑑Σ(𝑧) = (𝑐(𝜋1(𝑧)), 𝑐
′[𝜋1(𝑧)](𝜋2(𝑧))) for 𝑧 : Σ𝑥 : 𝐴.𝐵.

Γ ⊢Δ 𝐴′ ≤𝑐 𝐴 : 𝑇𝑦𝑝𝑒 Γ, 𝑥 : 𝐴 ⊢Δ 𝐵(𝑥) ≤′
𝑐 [𝑥]𝐵

′(𝑐(𝑥)) : 𝑇𝑦𝑝𝑒

Γ ⊢Δ Π𝑥 : 𝐴.𝐵 ≤𝑑Π Π𝑥 : 𝐴′.𝐵′

where 𝑑Π(𝑓) = 𝜆𝑥 : 𝐴′.𝑐′[𝑥](𝑓(𝑐(𝑥))) for 𝑓 : Π𝑥 : 𝐴.𝐵

– Other: LFΔ has many other inductive types such as disjoint union types, unit
and finite types and also it has manifest entries used to define equivalences.
We will not cover them as they are not needed to address the questions we are
concerned with in this work.

• 𝐿𝑇𝑦𝑝𝑒 universe (Chatzikyriakidis and Luo 2020, A4): essentially the 𝐿𝑇𝑦𝑝𝑒 uni-
verse that contains all conjoinable types and formally it is constructed of predicates

26

of form Π𝑥1 : 𝐴1. . . .Π𝑥𝑛 : 𝐴𝑛.𝑃 𝑟𝑜𝑝 (denoted by 𝑃𝑇𝑦𝑝𝑒), all the types representing
𝐶𝑁 and the universe 𝐶𝑁 itself:

𝑃𝑇𝑦𝑝𝑒 : 𝑇𝑦𝑝𝑒 𝑃𝑟𝑜𝑝 : 𝑃𝑇𝑦𝑝𝑒

𝐴 : 𝐿𝑇𝑦𝑝𝑒 𝑃 (𝑥) : 𝑃𝑇𝑦𝑝𝑒[𝑥 : 𝐴]

Π𝑥 : 𝐴.𝑃 (𝑥) : 𝑃𝑇𝑦𝑝𝑒

𝐿𝑇𝑦𝑝𝑒 : 𝑇𝑦𝑝𝑒 𝐶𝑁 : 𝐿𝑇𝑦𝑝𝑒
𝐴 : 𝐶𝑁
𝐴 : 𝐿𝑇𝑦𝑝𝑒

𝐴 : 𝑃𝑇𝑦𝑝𝑒
𝐴 : 𝐿𝑇𝑦𝑝𝑒

3.3 Formal Semantics with MTTs

In this section we give some examples of natural language semantics with MTTs.
Here is the MTT version of the table 2.4 (p. 11) which showed typing examples in

TY2:

Syntactic Categories Example MTT Semantics
CN man, cat 𝑀𝑎𝑛,𝐶𝑎𝑡 : 𝑇𝑦𝑝𝑒
IV talk talk: 𝐻𝑢𝑚𝑎𝑛→ 𝑃𝑟𝑜𝑝

ADJ handsome handsome: 𝐻𝑢𝑚𝑎𝑛→ 𝑃𝑟𝑜𝑝
ADJ𝑉 𝑃 quickly quickly: Π𝐴 : 𝐶𝑁.(𝐴→ 𝑃𝑟𝑜𝑝) → (𝐴→ 𝑃𝑟𝑜𝑝)

Modified CN handsome man handsome(man): Σ𝑥 :𝑀𝑎𝑛.ℎ𝑎𝑛𝑑𝑠𝑜𝑚𝑒(𝑥) : 𝑇𝑦𝑝𝑒
Determiner (Quantifier) a, the, some a, the, some: Π𝐴 : 𝐶𝑁.(𝐴→ 𝑃𝑟𝑜𝑝) → 𝑃𝑟𝑜𝑝

S a man talks ∃𝑥 :𝑀𝑎𝑛.𝑡𝑎𝑙𝑘𝑠(𝑥) : 𝑃𝑟𝑜𝑝

Table 2: MTT-typing examples

3.3.1 CN-as-types in Action

Now each noun, instead of being a predicate, is treated as a distinct type. This allows
other words to be typed more precisely: for example an intransitive verb “talk ” now is
typed not by 𝑡𝑎𝑙𝑘 : (𝑒 → 𝑡) which allows any entity to be passed as an argument but
rather as 𝑡𝑎𝑙𝑘 : 𝐻𝑢𝑚𝑎𝑛→ 𝑃𝑟𝑜𝑝, specifying the exact type to be let in.

We can see that CNs-as-types principle already filters out some phrases which are
meaningless in a general context a priori, as the phrase “a table runs” we mentioned
before. Now the typing is the following:

J𝑚𝑎𝑛K :=𝑀𝑎𝑛 : 𝑇𝑦𝑝𝑒

J𝑡𝑎𝑏𝑙𝑒K := 𝑇𝑎𝑏𝑙𝑒 : 𝑇𝑦𝑝𝑒

J𝑎K := (𝜆𝑇 : 𝐶𝑁.𝜆𝑃 : (𝑇 → 𝑃𝑟𝑜𝑝).(∃𝑥 : 𝑇.𝑃 (𝑥))) : (Π𝐴 : 𝐶𝑁.(𝐴→ 𝑃𝑟𝑜𝑝) → 𝑃𝑟𝑜𝑝)

J𝑟𝑢𝑛K := 𝑟𝑢𝑛 : 𝐴𝑛𝑖𝑚→ 𝑃𝑟𝑜𝑝

where 𝐴𝑛𝑖𝑚 is a type of animated entities. As there is a subtyping relation 𝑀𝑎𝑛 ≤ 𝐴𝑛𝑖𝑚
we can derive the expression ∃𝑥 :𝑀𝑎𝑛.𝑟𝑢𝑛(𝑥) from the typing judgments listed above.

J𝑎K(𝑀𝑎𝑛, 𝑟𝑢𝑛) = 𝜆𝑇 : 𝐶𝑁.𝜆𝑃 : (𝑇 → 𝑃𝑟𝑜𝑝).∃𝑥 : 𝑇.𝑃 (𝑥)(𝑀𝑎𝑛)(𝑟𝑢𝑛)

= (𝜆𝑃 : (𝑀𝑎𝑛→ 𝑃𝑟𝑜𝑝).∃𝑥 :𝑀𝑎𝑛.𝑃 (𝑥))(𝑟𝑢𝑛)

= ∃𝑥 :𝑀𝑎𝑛.𝑟𝑢𝑛(𝑥)

27

The transition from the first line to the second can be done through the application
rule of dependent product kinds. The transition from the second line to the third is done
by the subtyping 𝐴𝑛𝑖𝑚 → 𝑃𝑟𝑜𝑝 ≤ 𝑀𝑎𝑛 → 𝑃𝑟𝑜𝑝. The latter subtyping follows from
𝐴𝑛𝑖𝑚 → 𝑀𝑎𝑛 and the rule of subtyping of dependent product kinds and the inference
rule for subtyping application.

If we try to conduct a proof of the phrase “a table runs” then we would fail on the
type clash of 𝑟𝑢𝑛 : 𝐴𝑛𝑖𝑚 → 𝑃𝑟𝑜𝑝 and 𝑃 : 𝑇𝑎𝑏𝑙𝑒 → 𝑃𝑟𝑜𝑝 required by the object
𝑎(𝑡𝑎𝑏𝑙𝑒) : (𝑇𝑎𝑏𝑙𝑒→ 𝑃𝑟𝑜𝑝) → 𝑃𝑟𝑜𝑝 as there is no subtyping relation between types 𝐴𝑛𝑖𝑚
and 𝑇𝑎𝑏𝑙𝑒 nor we have separately defined coercions between them.

Here you can see sketches of a proof of 𝑟𝑢𝑛𝑠(𝑚) : 𝑃𝑟𝑜𝑝 for 𝑚 of type 𝐻𝑢𝑚𝑎𝑛 and
also a tree illustrating that the proof of 𝑟𝑢𝑛𝑠(𝑡) : 𝑃𝑟𝑜𝑝 is impossible for 𝑡 of type 𝑇𝑎𝑏𝑙𝑒:

Γ = {𝑡 : 𝑇𝑎𝑏𝑙𝑒,𝑚 :𝑀𝑎𝑛}
Δ = {𝑟𝑢𝑛𝑠 : 𝐴𝑛𝑖𝑚→ 𝑃𝑟𝑜𝑝,𝐻𝑢𝑚𝑎𝑛 ≤𝑐 𝐴𝑛𝑖𝑚 : 𝑇𝑦𝑝𝑒}

⊢Δ Γ
Γ ⊢Δ 𝑟𝑢𝑛𝑠 : 𝐴𝑛𝑖𝑚→ 𝑃𝑟𝑜𝑝

⊢Δ Γ
Γ ⊢Δ 𝑚 :𝑀𝑎𝑛

⊢Δ Γ
Γ ⊢Δ 𝑀𝑎𝑛 ≤𝑐 𝐴𝑛𝑖𝑚

Γ ⊢Δ 𝑟𝑢𝑛𝑠(𝑚) : 𝑃𝑟𝑜𝑝
(CA1)

Γ ⊢Δ 𝑟𝑢𝑛𝑠 : 𝐴𝑛𝑖𝑚→ 𝑃𝑟𝑜𝑝

(no way to apply any rule)
(*) Γ ⊢Δ 𝑡 : 𝐴𝑛𝑖𝑚

(*) Γ ⊢Δ 𝑟𝑢𝑛𝑠(𝑡) : 𝑃𝑟𝑜𝑝(27)

⊢Δ Γ
Γ ⊢Δ 𝑟𝑢𝑛𝑠 : 𝐴𝑛𝑖𝑚→ 𝑃𝑟𝑜𝑝

⊢Δ Γ
Γ ⊢Δ 𝑡 : 𝑇𝑎𝑏𝑙𝑒

(no way to apply any rule)
(*) Γ ⊢Δ 𝑇𝑎𝑏𝑙𝑒 ≤′

𝑐 𝐴𝑛𝑖𝑚

(*) Γ ⊢Δ 𝑟𝑢𝑛𝑠(𝑡) : 𝑃𝑟𝑜𝑝
(CA1)(28)

We can see that the expression Γ ⊢Δ 𝑡 : 𝐴𝑛𝑖𝑚 in the proof-tree (27) cannot be proven
as 𝑡 is fixed in the context to be of type 𝑇𝑎𝑏𝑙𝑒. There is no subtyping of the type 𝑇𝑎𝑏𝑙𝑒 to
the type 𝐴𝑛𝑖𝑚 in the signature and hence we cannot apply coercion application rule in the
proof tree (28) and these are the only possibille cases for the proof of a given judgement
Γ ⊢Δ 𝑟𝑢𝑛𝑠(𝑡) : 𝑃𝑟𝑜𝑝.

3.3.2 Adjectival Modification

To model adjectival modification in Chatzikyriakidis and Luo 2020 (p. 65) adjectives
are classified into intersective, subsective, privative and non-committal and each class is
treated differently with the use of different mechanisms provided by MTT. Typings of
each class of adjectives and examples are given in the Table 3.3.2.

Contrary to the Montagovian approach of typing adjectives as 𝐶𝑁 modifiers of type
(𝑒 → 𝑡) → (𝑒 → 𝑡), all adjectives in MTT are typed as 𝐴→ 𝑃𝑟𝑜𝑝 where 𝐴 : 𝐶𝑁 . Their
application is treated in various ways.

28

Classification Inference Example MTT-types/mechanisms
Intersective 𝐴𝑑𝑗[𝑁] ⇒ 𝑁&𝐴𝑑𝑗 handsome man Σ-types
Subsective 𝐴𝑑𝑗[𝑁] ⇒ 𝑁 large mouse Π-polymorphism
Privative 𝐴𝑑𝑗[𝑁] ⇒ ¬𝑁 fake gun disjoint union types

Non-committal𝑉 𝑃 𝐴𝑑𝑗[𝑁] ⇒ ? alleged criminal modal collection

Table 3: A classification of adjectives (Chatzikyriakidis and Luo 2020, p.65, table 3.2)

Intersective adjectives:

Intersective adjectives are those which modify expression by intersecting their denota-
tions. The quality delivered by an intersective adjective is not contingent on the type of
the noun it modifies. For example the word “black ” is an intersective adjective because a
“black cat” is the entity which is both black and a cat (while a “former president” is nei-
ther former, nor a president). Other intersective adjectives are, for example, “handsome”,
“triangular”, “English”.

In order to treat intersective adjectives the alignment with Σ-types is used. According
to Chatzikyriakidis and Luo 2020 (p. 67), such treatment was proposed in Mönnich 1985,
Sundholm 1986 and Ranta 1995 but there the solutions were incomplete due to the absense
of a fully sound subtyping mechanism. Here is the interpretation of “black cat” as done
in MTTs with coercive subtyping:

J𝑏𝑙𝑎𝑐𝑘K = 𝑏𝑙𝑎𝑐𝑘 : 𝑂𝑏𝑗𝑒𝑐𝑡→ 𝑃𝑟𝑜𝑝

J𝑐𝑎𝑡K = 𝐶𝑎𝑡 : 𝑇𝑦𝑝𝑒

J𝑏𝑙𝑎𝑐𝑘 𝑐𝑎𝑡K = Σ𝑥 : 𝐶𝑎𝑡.𝑏𝑙𝑎𝑐𝑘(𝑥) : 𝑇𝑦𝑝𝑒(29)

Due to the CNs-as-types principle, we interpret modified nouns as types as well. Hence
“black cat” is interpreted by the sigma type (29) and each object of this type would be a
pair (𝑎, 𝑏) : Σ𝑥 : 𝐶𝑎𝑡.𝑏𝑙𝑎𝑐𝑘(𝑥) where 𝑎 is of type 𝐶𝑎𝑡 and 𝑏 is a proof of 𝑏𝑙𝑎𝑐𝑘(𝑎) i.e. the
fact that 𝑎 is black.

This approach captures the behavior of intersective modifiers (i.e. the fact that we
can always deduce both properties back separately as in a black cat is both black and a
cat):

• Due to the rules governing projections of Σ-types (namely, the rule 𝑃𝑟𝑜𝑗1 on Page
26) we can choose the first projection 𝜋1 to be a coercion and it would result in the
subtyping relation

Σ𝑥 : 𝐶𝑎𝑡.𝑏𝑙𝑎𝑐𝑘(𝑥) ≤𝜋1 𝐶𝑎𝑡

meaning “a black cat is a cat”;

• As for any adjective 𝐴𝑑𝑗 an expression 𝐴𝑑𝑗(𝑥) is of type 𝑃𝑟𝑜𝑝 and every proposition
is a proof, the construction Σ𝑥 : 𝐶𝑁.𝐴𝑑𝑗(𝑥) is a pair (𝑥, 𝑝) of an object 𝑥 and a
proof of its modification 𝑝. Thus, if Σ𝑥 : 𝐶𝑎𝑡.𝑏𝑙𝑎𝑐𝑘(𝑥) is derivable, there exists
a proof of 𝑏𝑙𝑎𝑐𝑘(𝑥). Therefore, as 𝜋1(Σ𝑥 : 𝐶𝑎𝑡.𝑏𝑙𝑎𝑐𝑘(𝑥)) = 𝑥 we have a proof of
𝑏𝑙𝑎𝑐𝑘(𝜋1(Σ𝑥 : 𝐶𝑎𝑡.𝑏𝑙𝑎𝑐𝑘(𝑥))) meaning that “a black cat is black ”.

Notice that as the first projection of Σ-type is usually defined as a coercion the relation
Σ𝑥 : 𝑇.𝑃𝑟𝑜𝑝 ≤𝜋1 𝑇 still holds and therefore modified nouns still can be used in contexts

29

requiring these nouns. Setting aside the semantics of the definite article, consider the
phrase “(the) brown fox jumps” (for some known 𝑎 : 𝐹𝑜𝑥 in the context and simplified
typings). The proof of it’s correctness is in Figure 1 on the next page.

Moreover, as the first projection of Σ-types is a coercion, if 𝑗𝑢𝑚𝑝(𝑎) is true in the
model so would be 𝑗𝑢𝑚𝑝((𝑎, 𝑝)), where 𝑝 is a proof that 𝑎 is brown. It can be possible
through using the projection 𝜋1(𝑎, 𝑝) = 𝑎 as a coercion. This fact is proven in Figure 2
below.

30

Γ = {𝑎 : 𝐹𝑜𝑥, 𝑝 : 𝑏𝑟𝑜𝑤𝑛(𝑥)}
Δ = {𝑏𝑟𝑜𝑤𝑛 : 𝐹𝑜𝑥→ 𝑃𝑟𝑜𝑝, 𝑗𝑢𝑚𝑝 : 𝐹𝑜𝑥→ 𝑃𝑟𝑜𝑝,Σ𝑥 : 𝐹𝑜𝑥.𝑃𝑟𝑜𝑝 ≤𝜋1 𝐹}

Γ ⊢Δ 𝑗𝑢𝑚𝑝 : 𝐹𝑜𝑥→ 𝑃𝑟𝑜𝑝 Γ ⊢Δ (𝑎, 𝑝) : Σ𝑥 : 𝐹𝑜𝑥.𝑏𝑟𝑜𝑤𝑛(𝑥) Γ ⊢Δ Σ𝑥 : 𝐹𝑜𝑥.𝑏𝑟𝑜𝑤𝑛(𝑥) ≤𝜋1 𝐹𝑜𝑥

Γ ⊢Δ jump((a,p)) : Prop
(CA1)

Figure 1: Coercion of a modified noun

(D1)

Γ ⊢Δ 𝑗𝑢𝑚𝑝 : 𝐹𝑜𝑥→ 𝑃𝑟𝑜𝑝 Γ ⊢Δ (𝑓, 𝑝) : Σ𝑥 : 𝐹𝑜𝑥.𝑏𝑟𝑜𝑤𝑛(𝑥) Γ ⊢Δ Σ𝑥 : 𝐹𝑜𝑥.𝑏𝑟𝑜𝑤𝑛(𝑥) ≤𝜋1 𝐹𝑜𝑥

Γ ⊢Δ 𝑗𝑢𝑚𝑝((𝑓, 𝑝) = 𝑗𝑢𝑚𝑝(𝜋1(𝑓, 𝑝)) : 𝑃𝑟𝑜𝑝
(CD1)

(D2)

Γ ⊢Δ 𝑗𝑢𝑚𝑝 = 𝑗𝑢𝑚𝑝 : 𝐹𝑜𝑥→ 𝑃𝑟𝑜𝑝

Γ ⊢Δ 𝑎 : 𝐹𝑜𝑥 Γ ⊢Δ 𝑝 : 𝐵𝑟𝑜𝑤𝑛(𝑎)

Γ ⊢Δ 𝜋1(𝑎, 𝑝) = 𝑎 : 𝐹𝑜𝑥
(𝐶𝑜𝑛𝑣1)

Γ ⊢Δ 𝑗𝑢𝑚𝑝(𝜋1(𝑎, 𝑝) = 𝑗𝑢𝑚𝑝(𝑎)) : 𝑃𝑟𝑜𝑝

D1
Γ ⊢Δ 𝑗𝑢𝑚𝑝((𝑓, 𝑝) = 𝑗𝑢𝑚𝑝(𝜋1(𝑓, 𝑝)) : 𝑃𝑟𝑜𝑝

(CD1)
D2

Γ ⊢Δ 𝑗𝑢𝑚𝑝(𝜋1(𝑎, 𝑝) = 𝑗𝑢𝑚𝑝(𝑎)) : 𝑃𝑟𝑜𝑝

Γ ⊢Δ jump((a,p)) = jump(a) : Prop

Figure 2: Equality

31

Subsective adjectives

The second type of adjectives is “subsective”. It includes such words as “skilful ”,
“ large”, “heavy”. All of them depend on the noun they modify as the large mouse is
still small as an animal and some skilful typist is skilful as a typist, but not necessarily
skillful with respect to other human activities (such as, say, cooking). To deal with this
contingency the method of Π-polymorphism is used (Chatzikyriakidis and Luo 2013). If
we just adopt the approach of using a plain Σ-type pair then some unnecessary relation
would be derivable such as:

Σ𝑥 :𝑀𝑜𝑢𝑠𝑒.𝑙𝑎𝑟𝑔𝑒(𝑥) ≤ Σ𝑥.𝐴𝑛𝑖𝑚𝑎𝑙.𝑙𝑎𝑟𝑔𝑒(𝑥)

which means that large mouse is a large animal (and that is never the case without a
special context). What is done in order to avoid false generalizations is the following
polymorhphic typing:

Π𝐴 : 𝐶𝑁.(𝐴→ 𝑃𝑟𝑜𝑝).

Now having 𝑙𝑎𝑟𝑔𝑒 : Π𝐴 : 𝐶𝑁.(𝐴 → 𝑃𝑟𝑜𝑝) we interpret “ large mouse” with the same
Σ-type pair but at first we parameterize the type of the adjective:

𝑙𝑎𝑟𝑔𝑒 : Π𝐴 : 𝐶𝑁.(𝐴→ 𝑃𝑟𝑜𝑝);

J𝑚𝑜𝑢𝑠𝑒K =𝑀𝑜𝑢𝑠𝑒 : 𝑇𝑦𝑝𝑒;

𝑙𝑎𝑟𝑔𝑒(𝑀𝑜𝑢𝑠𝑒) :𝑀𝑜𝑢𝑠𝑒→ 𝑃𝑟𝑜𝑝.

Now we can form the expression

J𝑙𝑎𝑟𝑔𝑒 𝑚𝑜𝑢𝑠𝑒K = Σ𝑥 :𝑀𝑜𝑢𝑠𝑒.𝑙𝑎𝑟𝑔𝑒(𝑀𝑜𝑢𝑠𝑒, 𝑥).

Now we do not have universal predicates 𝑙𝑎𝑟𝑔𝑒 or 𝑠𝑘𝑖𝑙𝑓𝑢𝑙 as all of them are at first
parameterized by the type of the noun they modify and the large mouse will be large only
as a mouse and not as an animal because the following subtyping won’t hold:

(*) Σ𝑥 :𝑀𝑜𝑢𝑠𝑒.𝑙𝑎𝑟𝑔𝑒(𝑀𝑜𝑢𝑠𝑒, 𝑥) ≤ Σ𝑥 : 𝐴𝑛𝑖𝑚𝑎𝑙.𝑙𝑎𝑟𝑔𝑒(𝐴𝑛𝑖𝑚𝑎𝑙, 𝑥).

The subtyping does not hold as 𝑙𝑎𝑟𝑔𝑒(𝑀𝑜𝑢𝑠𝑒, 𝑥) ̸≤ 𝑙𝑎𝑟𝑔𝑒(𝐴𝑛𝑖𝑚𝑎𝑙, 𝑥) because there is no
subtyping relation (𝑀𝑜𝑢𝑠𝑒→ 𝑃𝑟𝑜𝑝) ≤ (𝐴𝑛𝑖𝑚𝑎𝑙 → 𝑃𝑟𝑜𝑝).

Privative and non-cimmittal adjectives

Two remaining classes of adjectives are privative and non-committal. Their exact na-
ture is disputable and a detailed discussion of them is outside the scope of this work.
Below, we briefly and informally describe them.

Privative adjectives are words like “fake” or “imaginary”. One of the ways to under-
stand privative adjectives is to treat them as ones which negate CNs they modify: for
example, as in “a fake gun is not a real gun”. They are modelled in MTTs in Chatzikyri-
akidis and Luo 2020 (p.65) with use of disjoint union types that can model classes of both
real and fake entities and later the presence of privative adjective reduces the typing to
the “negated” part.

32

Non-committal adjective are the ones which does not rise any inference e.g. “alleged ”,
“potential ”. An alleged murderer may be a murderer but may not be a murderer. What
non-committal adjectives convey is a certain modality as all of them imply a presence of
some person who poses a view: alleged murderer is the one who was alleged by someone.
These adjectives are modelled in MTTs with use of collections of modalities 𝐻ℎ,𝛼 (defined
with predicates of type 𝑃𝑟𝑜𝑝→ 𝑃𝑟𝑜𝑝) for each person ℎ in the context and corresponding
action 𝛼. When applied to propositions they represent what is being alleged, disputed,
doubted etc. For example, “John is an alleged murderer ” is analysed as the expression:

∃ℎ : 𝐻𝑢𝑚𝑎𝑛.𝐻ℎ,𝑎𝑙𝑙𝑒𝑔𝑒𝑑(𝐼𝑆(𝑀𝑢𝑟𝑑𝑒𝑟𝑒𝑟, 𝐽𝑜ℎ𝑛)).

3.3.3 Dot-types for Co-predication

As briefly mentioned in Section 3.1.4, nominal polysemy is a phenomena of a noun having
several orthogonal lexical roles and the case where both roles inherently correspond to one
entity can be modeled in MTT with use of dot-types which allow us to parse sentences
with co-predication. Consider the phrase “John picked up and read a book ”. Typing is the
following:

𝐽𝑜ℎ𝑛 :𝑀𝑎𝑛;

𝑎𝑛𝑑 : Π𝐴 : 𝐿𝑇𝑦𝑝𝑒.𝐴→ 𝐴→ 𝐴

𝑝𝑖𝑐𝑘_𝑢𝑝 : 𝐻𝑢𝑚𝑎𝑛→ 𝑃ℎ𝑦𝑠→ 𝑃𝑟𝑜𝑝;

𝑟𝑒𝑎𝑑 : 𝐻𝑢𝑚𝑎𝑛→ 𝐼𝑛𝑓𝑜→ 𝑃𝑟𝑜𝑝;

J𝑏𝑜𝑜𝑘K = 𝐵𝑜𝑜𝑘 : 𝑇𝑦𝑝𝑒 (𝐵𝑜𝑜𝑘 ≤𝑐 𝑃ℎ𝑦𝑠 ∙ 𝐼𝑛𝑓𝑜).

At first, due to Dot-types we can use 𝐵𝑜𝑜𝑘 in both contexts which require objects
of type 𝑃ℎ𝑦𝑠 and of type 𝐼𝑛𝑓𝑜. Here is a sketch of the proof with the type names
abbreviated to first letters for compactness:

Γ = {𝑏 : 𝐵}
Δ = {𝐽𝑜ℎ𝑛 :𝑀,𝐵 ≤𝑐 𝑃 ∙ 𝐼, 𝑝𝑖𝑐𝑘_𝑢𝑝 : 𝐻 → 𝑃 → 𝑃𝑟𝑜𝑝}

Γ ⊢Δ 𝐵 ≤𝑐 𝑃 ∙ 𝐼

Γ ⊢Δ 𝑃 ∙ 𝐼 : 𝑇𝑦𝑝𝑒

Γ ⊢Δ 𝑃 ∙ 𝐼 ≤𝑝1 𝑃 : 𝑇𝑦𝑝𝑒

Γ ⊢Δ 𝑃 ∙ 𝐼 ≤𝑝1 𝑃

Γ ⊢Δ 𝐵 ≤𝑐(𝑝1) 𝑃 Γ ⊢Δ 𝑝𝑖𝑐𝑘_𝑢𝑝(𝐽𝑜ℎ𝑛) : 𝑃 → 𝑃𝑟𝑜𝑝 Γ ⊢Δ 𝑏 : 𝐵

𝑝𝑖𝑐𝑘_𝑢𝑝(𝐽𝑜ℎ𝑛, 𝑏) : 𝑃𝑟𝑜𝑝

As we can see from the typing of the word “𝑎𝑛𝑑”, the and-coordination in MTT is
modeled with Π-polymorphism by some lexical type. This means that in order to form
the proper expression both of the arguments of “𝑎𝑛𝑑” have to be of the same type, while
types of 𝑟𝑒𝑎𝑑 and 𝑤𝑟𝑖𝑡𝑒 are not the same - one requires 𝑃ℎ𝑦𝑠 and another one 𝐼𝑛𝑓𝑜.
Thanks to the subtyping relation 𝐵𝑜𝑜𝑘 ≤𝑐 𝑃ℎ𝑦𝑠 ∙ 𝐼𝑛𝑓𝑜 and 𝑃ℎ𝑦𝑠 ∙ 𝐼𝑛𝑓𝑜 ≤𝑐1 𝑃ℎ𝑦𝑠,
𝑃ℎ𝑦𝑠 ∙ 𝐼𝑛𝑓𝑜 ≤𝑐2 𝐼𝑛𝑓𝑜, we can derive these subtypings of both of these verbs to have a

33

coinciding form:

𝑝𝑖𝑐𝑘_𝑢𝑝 :
𝐻𝑢𝑚𝑎𝑛→ 𝑃ℎ𝑦𝑠→ 𝑃𝑟𝑜𝑝 ≤ 𝐻𝑢𝑚𝑎𝑛→ 𝑃ℎ𝑦𝑠 ∙ 𝐼𝑛𝑓𝑜→ 𝑃𝑟𝑜𝑝

≤ 𝐻𝑢𝑚𝑎𝑛→ 𝐵𝑜𝑜𝑘 → 𝑃𝑟𝑜𝑝;

𝑟𝑒𝑎𝑑 :

𝐻𝑢𝑚𝑎𝑛→ 𝐼𝑛𝑓𝑜→ 𝑃𝑟𝑜𝑝 ≤ 𝐻𝑢𝑚𝑎𝑛→ 𝑃ℎ𝑦𝑠 ∙ 𝐼𝑛𝑓𝑜→ 𝑃𝑟𝑜𝑝

≤ 𝐻𝑢𝑚𝑎𝑛→ 𝐵𝑜𝑜𝑘 → 𝑃𝑟𝑜𝑝.

The scheme of the proof here is the following:

Γ ⊢Δ 𝐵 ≤ 𝑃 ∙ 𝐼

Γ ⊢Δ 𝑃 ∙ 𝐼 : 𝑇𝑦𝑝𝑒

Γ ⊢Δ 𝑃 ∙ 𝐼 ≤ 𝑃 : 𝑇𝑦𝑝𝑒
(𝑃𝑟𝑜𝑗1)

Γ ⊢Δ 𝑃 ∙ 𝐼 ≤ 𝑃
(introduction of 𝐸𝑙() which we ommit)

Γ ⊢Δ 𝐵 ≤ 𝑃
(transitivity of subkinding)

. . .
Γ ⊢Δ 𝑃 → 𝑃𝑟𝑜𝑝 ≤ 𝐵 → 𝑃𝑟𝑜𝑝 . . .

Γ ⊢Δ 𝐻 → 𝑃 → 𝑃𝑟𝑜𝑝 ≤ 𝐻 → 𝐵 → 𝑃𝑟𝑜𝑝

Now the whole phrase “John picked up and read a book ” is represented by the following
well-typed and derivable expression:

𝑎𝑛𝑑(𝐻𝑢𝑚𝑎𝑛→ 𝐵𝑜𝑜𝑘 → 𝑃𝑟𝑜𝑝, 𝑝𝑖𝑐𝑘_𝑢𝑝, 𝑟𝑒𝑎𝑑)(𝐽𝑜ℎ𝑛)(𝑏𝑜𝑜𝑘) : 𝑃𝑟𝑜𝑝.

3.3.4 Unit Types for Type Overloading

Unit types 1𝑤 (Chatzikyriakidis and Luo 2020 A2.4, Luo 2011a) are defined for each word
𝑤 and they represent singleton types i.e. types which have only one object. They can be
defined with a use of inference rules as follows:

⊢Δ Γ
Γ ⊢Δ 1𝑤 : 𝑇𝑦𝑝𝑒

⊢Δ Γ
Γ ⊢Δ 𝑤 : 1𝑤

Γ, 𝑧 : 1𝑤 ⊢Δ 𝐶(𝑧) : 𝑇𝑦𝑝𝑒 Γ ⊢Δ 𝑐 : 𝐶(𝑤) Γ ⊢Δ 𝑧 : 1𝑤
Γ ⊢Δ ℰ𝑤(𝐶, 𝑐, 𝑧) : 𝐶(𝑧)

Γ, 𝑧 : 1𝑤 ⊢Δ 𝐶(𝑧) : 𝑇𝑦𝑝𝑒 Γ ⊢Δ 𝑐 : 𝐶(𝑤)

Γ ⊢Δ ℰ𝑤(𝐶, 𝑐, 𝑤) = 𝑐 : 𝐶(𝑤)

Where two latter rules state that application of the elimination operator ℰ𝑤 computes
to 𝑐 when applied to the canonical object 𝑤.

In Luo 2011a it is explained how unit types can be used for dealing with some homony-
mous words in systems with coercive subtyping. Consider the following two phrases which
are given in the article:

John runs quickly(30)
John runs a bank(31)

34

We see that the word “run” should be interpreted differently for those two phrases as
it has two unrelated meanings:

J𝑟𝑢𝑛K1 : 𝐻𝑢𝑚𝑎𝑛→ 𝑃𝑟𝑜𝑝 (for (30))
J𝑟𝑢𝑛K2 : 𝐻𝑢𝑚𝑎𝑛→ 𝐼𝑛𝑠𝑖𝑡𝑢𝑡𝑖𝑜𝑛→ 𝑃𝑟𝑜𝑝 (for (31))

In order to automatize the sense selection in the given context a special unit type can
be defined and used as the way of modelling type-overloading :

J𝑟𝑢𝑛K : 1𝑟𝑢𝑛
1𝑟𝑢𝑛 ≤𝑐1 𝐻𝑢𝑚𝑎𝑛→ 𝑃𝑟𝑜𝑝

1𝑟𝑢𝑛 ≤𝑐2 𝐻𝑢𝑚𝑎𝑛→ 𝐼𝑛𝑠𝑡𝑖𝑡𝑢𝑡𝑖𝑜𝑛→ 𝑃𝑟𝑜𝑝

where:

𝑐𝑖(𝑟𝑢𝑛) = J𝑟𝑢𝑛K𝑖

Now the verb “run” is interpreted as an object 𝑟𝑢𝑛 of type 1𝑟𝑢𝑛 and then, depending
on the context, it is getting coerced to one of the designated typings. Note that in order to
maintain coherence (Definition 2) the method of type overloading is available only when
the word’s typings are distinct and do not have a common supertype. For cases of words
having distinct meaning but equal types other methods might be employed (for instance
local coercions from Luo 2011a ch. 4).

3.3.5 Dependent Event Types

The notion of dependent types (Chatzikyriakidis and Luo 2020 (7.2), Luo and Soloviev
2017) derives back to studies of Davidson 1967 and later in the neo-Davidsonian tradition
(e.g. Parsons 1990):

Davidson has introduced events in semantics, claiming that verbs tacitly in-
troduce existentially quantified events and that verbs and adverbial phrases
are predicates over events. (Chatzikyriakidis and Luo 2020, p. 158)

With use of a distinct type 𝐸𝑣𝑒𝑛𝑡 phrases:

John buttered the toast(32)
John buttered the toast with a knife in the kitchen(33)

can be interpreted in the Montague-style system as (with 𝑗 denoting John and 𝑡 denoting
a toast) the following respectively:

∃𝑣 : 𝐸𝑣𝑒𝑛𝑡.𝑏𝑢𝑡𝑡𝑒𝑟(𝑣) ∧ (𝑎𝑔𝑒𝑛𝑡(𝑣) = 𝑗) ∧ (𝑝𝑎𝑡𝑖𝑒𝑛𝑡(𝑣) = 𝑡)(34)
∃𝑣 : 𝐸𝑣𝑒𝑛𝑡.𝑏𝑢𝑡𝑡𝑒𝑟(𝑣) ∧ (𝑎𝑔𝑒𝑛𝑡(𝑣) = 𝑗) ∧ (𝑝𝑎𝑡𝑖𝑒𝑛𝑡(𝑣) = 𝑡) ∧ 𝑤𝑖𝑡ℎ_𝑘𝑛𝑖𝑓𝑒(𝑣)(35)
∧𝑖𝑛_𝑡ℎ𝑒_𝑘𝑖𝑡𝑐ℎ𝑒𝑛(𝑣)

Here 𝑎𝑔𝑒𝑛𝑡(𝑣) and 𝑝𝑎𝑡𝑖𝑒𝑛𝑡(𝑣) map to objects which are agents and patiens of the
event 𝑣. Agents ant patients denote two of many “thematic roles” used to describe event
semantics. Agent is the one who conducts the action denoted by the predicate and pa-
tient is the one who undergoes the action. There are several other thematic roles such

35

as “instrument” and “theme” but in the current work we consider only agent and patient
relations.

In MTTs, event types are presented in a more refined manner - as types parametrized
by agents and patients. The system is extended with the following constant definitions
(Luo and Soloviev 2017, 4.2):

𝐸𝑛𝑡𝑖𝑡𝑦 : 𝑇𝑦𝑝𝑒,

𝐴𝑔𝑒𝑛𝑡, 𝑃𝑎𝑡𝑖𝑒𝑛𝑡 : 𝑇𝑦𝑝𝑒,

𝐸𝑣𝑒𝑛𝑡 : 𝑇𝑦𝑝𝑒,

𝐸𝑣𝑡𝐴 : (𝐴𝑔𝑒𝑛𝑡)𝑇𝑦𝑝𝑒,

𝐸𝑣𝑡𝑃 : (𝑃𝑎𝑡𝑖𝑒𝑛𝑡)𝑇𝑦𝑝𝑒,

𝐸𝑣𝑡𝐴𝑃 : (𝐴𝑔𝑒𝑛𝑡)(𝑃𝑎𝑡𝑖𝑒𝑛𝑡)𝑇𝑦𝑝𝑒.

And the natural subtyping rules are defined with a coherent set of parametrized coercions
𝑐1, 𝑐2, 𝑐3, 𝑐4 as follows:

𝐸𝑣𝑡𝐴𝑃 (𝑎, 𝑝) ≤𝑐1[𝑎,𝑝] 𝐸𝑣𝑡𝐴(𝑎) 𝐸𝑣𝑡𝐴𝑃 (𝑎, 𝑝) ≤𝑐2[𝑎,𝑝] 𝐸𝑣𝑡𝑃 (𝑝)

𝐸𝑣𝑡𝐴(𝑎) ≤𝑐3[𝑎] 𝐸𝑣𝑒𝑛𝑡 𝐸𝑣𝑡𝑃 (𝑝) ≤𝑐4[𝑝] 𝐸𝑣𝑒𝑛𝑡

The following extension is conservative and therefore well-behaved and it preserves all
the properties of the original system.

4 Proposal: MTTs and Lexicality
In Section 4.1 we overview the way selectional coercion is modelled within MTTs, we pose
some issues which arise from that solution, and we suggest how they may be confronted
via adopting ideas from the Generative lexicon. Further, in Sections 4.2 and 4.3 we discuss
notions of the Generative Lexicon and Lexical Conceptual Paradigm that we will later
use in our proposal in Chapter 5.

4.1 Selectional Coercions in MTTs

As we discussed in Sections 3.1.4 and 3.3.3, dot-types were designed for so-called inher-
ent polysemy i.e. an existence of several contradictory lexical roles (and hence typings)
inherently associated with the word’s meaning. Being interpreted by a dot-type the word
can then be “coerced” to one of the type’s constituents in the MTT framework sense (i.e.
mapped to). For example a word “book ” can be assigned with the dot-type 𝑃ℎ𝑦𝑠 ∙ 𝐼𝑛𝑓
which is a pair of types representing a physical object and an informational object. Now
both phrases “thick book” and “interesting book” are well typed as well as the phrase “thick
and interesting book” due to subtyping relations 𝑃ℎ𝑦𝑠∙𝐼𝑛𝑓 ≤ 𝑃ℎ𝑦𝑠 and 𝑃ℎ𝑦𝑠∙𝐼𝑛𝑓 ≤ 𝐼𝑛𝑓
which are ensured by the dot-type definition. But note that these subtyping coercions of
a dot type to its constituents are coercions only in the MTT sense i.e. they are maps with
certain properties. These maps are usually not being linguistic coercions as both senses
of the dot-typed word inherently belong to it, no shift of a meaning is happening.

In the literature, the above-mentioned polysemy where both meanings are inherent to
the same noun representative has been differentiated from linguistic coercion, which is

36

also referred to as selectional polysemy (Pustejovsky 2008). Unlike (inherent) polysemy,
linguistic coercion is analysed in terms of meaning shifts, not specified by the dot type.
For instance, in the sentence “she started a book” where the sense of the word “book” is
being shifted to the event of “reading a book”. The canonical MTT-solution proposed in
Chatzikyriakidis and Luo 2020 is that there is a coercion map 𝑟𝑒𝑎𝑑𝑖𝑛𝑔 : 𝐵𝑜𝑜𝑘 → 𝐸𝑣𝑒𝑛𝑡
which maps objects of type 𝐵𝑜𝑜𝑘 into objects of type 𝐸𝑣𝑒𝑛𝑡 as they are required by the
typing 𝑠𝑡𝑎𝑟𝑡 : 𝐸𝑣𝑒𝑛𝑡 → 𝑃𝑟𝑜𝑝. Given that there are many other possible coercions, we
have a dictionary of such mapping rules that can be used during derivations. An approach
of having a dictionary of coercions does not complicate noun definitions but neither does
it quite correspond to the intuition of the real meaning derivation process in a strong way:
some linguistic coercions are motivated by the nature of the interaction of the verb or
adjective with the noun (as in (36) and (37) below), some are given from the context (as in
(38)) and some depend on both compositional processes and a special given situations (as
in (39)). Having all those different coercions modelled through coercive subtyping would
mix their natures as well as declare that initial noun objects are subtypes of the entities
they are being coerced to: while book is indeed a physical object and informational object
it is not an event on itself, it is shifted to it as an exception. The same holds for a typist:
someone who is a typist is not an event of typing, but it can be linguistically coerced to
this event upon being in the proper context.

“John is a skilful typist” ↦→ “John types skilfully”(36)
“John started a book” ↦→ “John started reading a book”(37)
“John ate the shell” ↦→ “John ate the shell-shaped chocolate”(38)
“John started a cat” ↦→ “John started making a clay cat” .(39)

Therefore, we will make a further distinction between coercions in the linguistic sense,
namely, those that can be resolved in any out-of-the-blue context, e.g., (36), (37), and
those that cannot, e.g., (38).5 We call the first of these selectional coercions, a modelling
of which is a main focus of this work stated on p. 5 of the Section 1.2.

Some coercions are selectional coercions, for instance, the ones which make shifts from
a “book ” to “reading a book ” in (37) and “typist” to “ability of typing” in (36). Coercions
of another type are context-dependent, contextual : in a situation where librarians are
registering new books in a database of the library and say “we started another book ” what
is implied is not reading or writing but the registering of it.

Consider the following example given in Chatzikyriakidis and Luo 2020 (pp. 58-60)
and in Asher and Luo 2013: let 𝐸𝑣𝑡𝐴(𝑎) be a type of events conducted by and agent 𝑎 of
type 𝐴𝑔𝑒𝑛𝑡. As the type of all humans, 𝐻𝑢𝑚𝑎𝑛, is a subtype of 𝐴𝑔𝑒𝑛𝑡 the type 𝐸𝑣𝑡𝐴(ℎ)
is well-formed for ℎ : 𝐻𝑢𝑚𝑎𝑛. Then typings for verbs can be defined accordingly as:

𝑠𝑡𝑎𝑟𝑡, 𝑓𝑖𝑛𝑖𝑠ℎ : Πℎ : 𝐻𝑢𝑚𝑎𝑛.(𝐸𝑣𝑡𝐴(ℎ) → 𝑃𝑟𝑜𝑝)

𝑟𝑒𝑎𝑑, 𝑤𝑟𝑖𝑡𝑒 : Πℎ : 𝐻𝑢𝑚𝑎𝑛.(𝐵𝑜𝑜𝑘 → 𝐸𝑣𝑡𝐴(ℎ))

Then in order to parse the expression “𝑀𝑎𝑟𝑦 𝑠𝑡𝑎𝑟𝑡𝑒𝑑 “𝑊𝑎𝑟 𝑎𝑛𝑑 𝑃𝑒𝑎𝑐𝑒′′” which is
interpreted as 𝑠𝑡𝑎𝑟𝑡(𝑀𝑎𝑟𝑦,𝑊&𝑃) we need to coerce 𝑊&𝑃 (which is of type 𝐵𝑜𝑜𝑘) to

5Note that the example in (39) combines both of the shift-senses we described as the coercion from
“a cat” to “a clay cat” should be given in the context but the induction of “to start making a clay cat”
from “to start a clay cat” is performed in a purely compositional manner without any more additions to
the context.

37

the type 𝐸𝑣𝑡𝐴(𝑀𝑎𝑟𝑦) required by 𝑠𝑡𝑎𝑟𝑡(𝑀𝑎𝑟𝑦,_). Coercion is defined with the following
subtyping relation which utilizes parameterized coercions :

(40)

𝐵𝑜𝑜𝑘 ≤𝑐(ℎ) 𝐸𝑣𝑒𝑛𝑡𝐴(ℎ)

𝑐(ℎ, 𝑏) =

{︃
𝑤𝑟𝑖𝑡𝑖𝑛𝑔(ℎ, 𝑏) if ℎ is an author of the book 𝑏,
𝑟𝑒𝑎𝑑𝑖𝑛𝑔(ℎ, 𝑏) otherwise.

Here 𝑐 is a family of coercions from type 𝐵𝑜𝑜𝑘 depending on the agent of the action
- if the agent is the writer of the book coercion application will result in a writing event
and it will result in a reading event otherwise. Thus, the final and intended interpretation
of the phrase in question is:

𝑠𝑡𝑎𝑟𝑡(𝑀𝑎𝑟𝑦, 𝑟𝑒𝑎𝑑𝑖𝑛𝑔(𝑀𝑎𝑟𝑦,𝑊&𝑃)).

The parameterization of a coercion map is motivated by the coherence property
of coercive subtyping: we cannot just allow two subtypings 𝐵𝑜𝑜𝑘 ≤𝑟𝑒𝑎𝑑𝑖𝑛𝑔 𝐸𝑣𝑒𝑛𝑡 and
𝐵𝑜𝑜𝑘 ≤𝑤𝑟𝑖𝑡𝑖𝑛𝑔 𝐸𝑣𝑒𝑛𝑡 as clearly 𝑟𝑒𝑎𝑑𝑖𝑛𝑔(𝑏) ̸= 𝑤𝑟𝑖𝑡𝑖𝑛𝑔(𝑏) but the equality is required by
the coherence of subtyping judgements. That is why, in the scope of employing coercive
subtyping to model linguistic coercions, the choice of the exact coercion image is needed.
But it is not unnatural for sentences with coercion to be ambiguous: we might not know
without a fixed context whether the person is starting to read or write a book. In this
cases the coercion 𝑐 stays unfolded as in:

JMary started a bookK = ∃𝑏 : 𝐵𝑜𝑜𝑘.𝑠𝑡𝑎𝑟𝑡(𝑀𝑎𝑟𝑦, 𝑐(𝑀𝑎𝑟𝑦, 𝑏)).

As we see, modelling with coercive subtyping bears several formal complications.
While we see that the judgement 𝐵𝑜𝑜𝑘 ≤𝑐 (ℎ)𝐸𝑣𝑒𝑛𝑡 allows us to successfully analyze
the phenomena we want, we argue that books are not really subtypes of events. What
actually happens is a full linguistic coercion, a real meaning shift to one of the inherent
lexical roles of the word book and this shift is motivated by the interaction of the argu-
ment with the verb. If we could conjoin each noun with its lexical entry, we can draw
fruitful linguistic generalizations from it. Notice that cases of phrases like “she started a
book” and “she started a cake” have the same nature of a coercion process happening with
objects “cake” and “book” in these contexts. The process of being read and the process
of being baked are inherent contexts for a book and a cake respectively. Here, the use
of a coercion dictionary would not reflect the common use of the verbs like “start” as
verbs which often imply the use of lexical role of their objects, rather than the objects
themselves.

Remember an example of contextual coercion we gave previously in this section about
librarians registering books. In that case, the contextual coercion, as we call it, can be
introduced into the logical context of the framework (in the case of MTTs into the signa-
ture Δ) when dealing with some particular case and it, in a certain sence, overloads the
existing relation 𝐵𝑜𝑜𝑘 ≤𝑟𝑒𝑎𝑑𝑖𝑛𝑔(ℎ) 𝐸𝑣𝑡𝐴(ℎ) with the relation 𝐵𝑜𝑜𝑘 ≤𝑟𝑒𝑔𝑖𝑠𝑡𝑒𝑟𝑖𝑛𝑔(ℎ) 𝐸𝑣𝑡𝐴(ℎ).
But we can see that selectional and contextual coercions seem to have different connec-
tions with nouns they shift: selectional coercion is applicable in every situation and it
is getting triggered by the interaction with an appropriate function or modifier e.g. a
verb or an adjective. Contextual coercion requires a special situation to occur as in the
case with librarians, or the case of “the ham sandwich is sitting at Table 20” (Nunberg

38

1979) when the ham sandwich denotes a person whose order was this sandwich. There,
we claim, the context redefines the role of the noun. But with the current realization in
MTTs both kinds of coercions are not differentiated within the formal system as they are
defined in the same way via coercive subtyping.

Thus, we might want to incorporate the description of a noun’s behavior under se-
lectional coercions into the noun definition instead of keeping the list of applicable coer-
cion maps somewhere in our corpus. Then, such verbs as the ones described above, e.g.
“to start”, will be able to be defined as ones that commonly apply themselves to the lexical
role of their objects (and hence performing a selectional coercion of these objects) rather
then the object entities via using straightforward compositional manner. Explicit use of
an external or contextual coercion then will be more visible as well as more constrained.
It will be marked as an exceptional approach used only when more common processes fail
or when the context has forcefully overloaded coercions.

Selectional coercions of a noun usually arise in the language from polysemous be-
haviour of other elements in the phrase, not from the mere polysemy of the noun. For
example, polysemous adjective “good ” can force the noun it modifies to coerce to one of
it’s properties in order to modify the property itself as in “a good knife” meaning “a knife
that is good (when used) for cutting” or a “a good driver ” meaning “a driver who is good at
driving”. Several compositional approaches were developed to model this behaviour. One
of them is described in the framework called the Generative Lexicon (Pustejovsky 1996).
There, with the use of the formalized lexical information, processes of coercion shifts are
more visible as they are driven by precise selectional mechanisms: coercions are not taken
from the detached dictionary but they are defined to reduce constituents to their lexical
roles and they are parametrized accordingly. The result of the work of Pustejovsky is the
notion of a system which meaningfully (w.r.t. the actual semantic interpretation) aligns
formal definitions and the lexicon while modelling a vast amount of linguistic phenomena
on a more precise level of detail.

The Generative Lexicon is an approach to formal semantics of natural languages pro-
posed and extensively studied by J. Pustejovsky (e.g. Pustejovsky 1996). According to
Pustejovsky 1996 (p.1) it addresses the following not-yet-studied issues of other systems:

• the creative use of words in novel contexts;

• an evaluation of lexical semantic models on the basis of compositionality.

The idea is to incorporate lexical information into a still rigorous and compositional
formal model of the language meaning. This allows way more fine grained language anal-
ysis as an access to the lexical level yields a lot of knowledge which, if efficiently aligned
and paired with compositionality, can be utilized elegantly without overwhelming the
representation and usability. Among others, the generative lexicon allows to successfully
model phenomena such as co-composition and copredication over polysemous words. Sub-
stantial part of the work on dealing with noun polysemy relies on the notion of Lexical
Conceptual Paradigm: a collection of word’s modes of explanation which is included into
the definition of the word thus making its addressing linguistically and compositionally
transparent.

An approach of adopting the notion of the Lexical Conceptual Paradigm (LCP) from

39

Pustejovsky 19966 might be suitable for an implementation inside of the framework of
MTT’s as Σ-types can let us model it. The final combination results in a richer level of
detail in the analysis at the lexical level while maintaining the merits of MTT such as
proof-theoretic semantics and decidability.

We now give an overview of Generative Lexicon in Sections 4.2, 4.3 and then we
propose our own solution for emulationg GL notions in MTTs in order to model selectional
coercions of a noun (Section 5).

4.2 Generative Lexicon: The Lexical Conceptual Paradigm

The Lexical Conceptual Paradigm was developed in order to describe a word behavior
which depended on the context and thus involve more expressive mechanisms in the
composition process. Incorporation of lexical roles into a single meta-entry associated
with a word leads to a higher expressivity as well as higher and better constraints on the
system and it effectively cuts the size of a lexicon.
Following Pustejovsky 1996 (ch 5), every lexical entry 𝛼 is a labeled record and it consists
of four components each one of them also being a labeled record:

𝛼 = ⟨𝒜, ℰ ,𝒬, ℐ⟩.

• Argument structure 𝒜 holds logical arguments of an entry;

• Event structure ℰ is a definition of an event type;

• Qualia structure 𝒬 holds modes of explanation of an entry;

• Lexical inheritance structure ℐ identifies of a relation of a current entry to others.

Qualia is the most important part of the use of the noun’s lexical meta-entry as it stores
the core information used for the parsing coersion processes as in phrases phrases like “to
start a book ”. It represents an idea of a word definition through modes of explanation,
the roles of an object which essentially define it. Qualia structure consists of four roles
which together define a record. In the case of noun:

• Constitutive: a relation between an object and its parts or marks if it is a part of
something else;

• Formal : that which distinguishes it whithin the larger domain;

• Telic: the purpose or a function;

• Agentive: factors or processes involved in its origin or “coming-into-being”.

Constitutive (or Const): this field provides information about materials or some prop-
erties of the constituence of an object and as well marks if it is a part another entity. The
first use is represented in the definition of a man, which is a male human and the second
use is illustrated by the defition of the word “hand ” which contains a fact that hand is a
part of a body:

6first definition in Pustejovsky and Anick 1988

40

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

man

𝐴𝑟𝑔 =
{︁
𝐴𝑟𝑔1 = 𝑥 : ℎ𝑢𝑚𝑎𝑛

}︁
𝑄𝑢𝑎𝑙𝑖𝑎 =

{︃
𝐶𝑜𝑛𝑠𝑡 = 𝑚𝑎𝑙𝑒(𝑥)

. . .

}︃
. . .

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

hand

𝐴𝑟𝑔 =
{︁
𝐴𝑟𝑔1 = 𝑥 : 𝑙𝑖𝑚𝑏

}︁
𝑄𝑢𝑎𝑙𝑖𝑎 =

{︃
𝐶𝑜𝑛𝑠𝑡 = 𝑝𝑎𝑟𝑡_𝑜𝑓(𝑥, 𝑦 : 𝑏𝑜𝑑𝑦)

. . .

}︃
. . .

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
Formal: If an object in the argument structure is simply typed (i.e. it is not a dot-object)
then its formal quale mirrors the Arg field as the argument exhaustively defines the word.
If the argument entry is dot-typed, then the formal field denotes a relation between
logical entities which represent the word. Below you can see sketches of argument and
formal fields of the words “cake” (unambigous) and “book ” (polysemious) (Pustejovsky
1996 p.123, p.101 respectively):

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

cake

𝐴𝑟𝑔 =
{︁
𝐴𝑟𝑔1 = 𝑥 : 𝐹𝑜𝑜𝑑

}︁
𝑄𝑢𝑎𝑙𝑖𝑎 =

{︃
𝐹𝑜𝑟𝑚𝑎𝑙 = 𝑥

. . .

}︃
. . .

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

book

𝐴𝑟𝑔 =

{︃
𝐴𝑟𝑔1 = 𝑥 : 𝑃ℎ𝑦𝑠

𝐴𝑟𝑔2 = 𝑦 : 𝐼𝑛𝑓

}︃

𝑄𝑢𝑎𝑙𝑖𝑎 =

{︃
𝐹𝑜𝑟𝑚𝑎𝑙 = ℎ𝑜𝑙𝑑(𝑥, 𝑦)

. . .

}︃
. . .

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
In the same manner as a hand references a body which it is a part of, the record for

noun “body” also references that its part is a hand.

Telic: this field defines a purpose of the noun. Pustejovsky 1996 (6.2.4) argues that it
should encapsulate both direct and purpose usages i.e. telic shows either how one can
act on an object or how this object can be used in order to commit other actions. An
example of the former is a “beer” for which it is essential to be drunk and an example of
the latter is a “knife” which is mainly used to cut:

41

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

beer

𝐴𝑟𝑔 =
{︁
𝐴𝑟𝑔1 = 𝑥 : 𝑙𝑖𝑞𝑢𝑖𝑑

}︁
𝑄𝑢𝑎𝑙𝑖𝑎 =

{︃
𝑇𝑒𝑙𝑖𝑐 = 𝑑𝑟𝑖𝑛𝑘(𝑒, 𝑦, 𝑥)

. . .

}︃
. . .

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

knife

𝐴𝑟𝑔 =
{︁
𝐴𝑟𝑔1 = 𝑥 : 𝑡𝑜𝑜𝑙

}︁
𝑄𝑢𝑎𝑙𝑖𝑎 =

{︃
𝑇𝑒𝑙𝑖𝑐 = 𝑐𝑢𝑡(𝑒, 𝑥, 𝑦)

. . .

}︃
. . .

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
Here, in telic fields, the parameter 𝑒 is of an event-type, the second parameter is an

object and second is a subject of an action. When analysing examples of selectional
coercion in Section 5.2, the telic qualia field will be our main focus for distinguishing e.g.,
started reading a book from started a book.
Agentive: According to Aristotle (Physics II), “coming into being”, the way an object is
created, is an essential mode of explanation of it. Knowing how objects are “brought to”
or created is important to distinguish them for example in the cases where other quales
coincide. In nouns the Agent field is usually an event predicate with noun’s Arg as one of
its arguments. For example, a cake is treated an artefact which is being created through
the process of baking. On the other hand, baking process in relation to potatoes is just a
change-of-state predicate and therefore it does not belong to an agentive quale of theirs:⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

cake

𝐴𝑟𝑔 =
{︁
𝐴𝑟𝑔1 = 𝑥 : 𝑓𝑜𝑜𝑑

}︁
𝑄𝑢𝑎𝑙𝑖𝑎 =

{︃
𝐴𝑔𝑒𝑛𝑡 = 𝑏𝑎𝑘𝑒(𝑒, 𝑦, 𝑥)

. . .

}︃
. . .

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
4.3 Generative Lexicon: Compositional Mechanisms

With the Qualia field, we can analyze inheritent meaning shifts of nouns. These shifts
occur when the noun itself in a phrase refers not to the material object from its Arg field
but it rather refers to one of the modes of explanation of the noun i.e. one of its lexical
roles. Consider the phrase “she started a book”. Here the shift of meaning from just “start
a book” to either “start reading a book” or “start writing a book” in the verb part is obvious
as all books are closely tied with the process of reading (or writing) them. The fact that
the predicate 𝑟𝑒𝑎𝑑(𝑥, 𝑏𝑜𝑜𝑘) forms the telic field of the record for “𝑏𝑜𝑜𝑘” conveys exactly
this idea. Then the word record of “start” combined with the word record of “book” will
be able to pull out either telic or agentive field and make itself applied to one of them
yielding a correct final interpretation of “start(reading(book))” or “start(writing(book))”
instead of “start(book)” which is ill-typed (as you can “𝑠𝑡𝑎𝑟𝑡” only something which is an
“𝑒𝑣𝑒𝑛𝑡”).

42

Pustejovsky proposes several compositional rules which can alter and compose ele-
ments of the lexical structure of constituents in order to deal with initial typing mis-
matches, constraining well-formedness of phrases by using lexical (and not only semantic)
information and provide more fine-grained analysis:

A major consequence of this <i.e. compositional> approach is that the iso-
morphism between syntactic and semantic categories cannot be maintained for
all levels of linguistic description, nor is it desirable . What this means is that
a syntactic phrase cannot be interpreted outside of the syntactic and semantic
context within which it appears. Rather, only by embedding the phrase can
the appropriate denotation be determined. (Pustejovsky 1996 p.105)

In Pustejovsky 1996 (ch. 7) three main mechanisms are given: coercion, co-composition
and selective binding.

Coercions (Pustejovsky 1996, 7.3) in the Generative Lexicon can be understood as evok-
ing a similar idea to coercions in MTTs we discussed earlier in Section 3.1.2. Coercion
in general is a shift of a constituent’s semantic type. In MTTs they are defined as maps
with certain proof-theoretic properties (such as uniqueness of the map). In the Generative
Lexicon, apart from the use in subtyping, coercions are used in a direct way: for shifting
a word’s interpretation to another one which is known to be the alias of the initial direct
meaning. The alias can be taken from the Qualia of the word e.g. in the phrase “to start
a book ” the word “book ” is coerced to events of “reading a book ” and “writing a book ”
which are both situated in the qualia and therefore aliased with the 𝐴𝑟𝑔 head (which is
the book itself) and suitable for the coercion. We see a selective nature of the meaning
generation with coercions: if a verb is combined with an argument which semantic type
does not suit the process of coercion can be started by searching lexical aliases of the
argument which, after being coerced to, will fulfil verbs argument’s typing.

Co-composition (Pustejovsky 1996, 7.2) describes one case of verbal polysemy as in
phrases:

John baked a potato.(41)
John baked a cake.(42)

We can see that in (41) the verb “bake” denoted a process while in 42 it denotes a
transition. This difference in meanings can be captured by the presence of the “bake” in
the agentive field of cake’s qualia: baking is essential for its come-to-being.

The definition which allows to formalize this phenomena without introducing type-
shift for the verb is the following (Pustejovsky 1996 p.124):

Function application with qualia:
For two expressions 𝛼 of type 𝑎→ 𝑏 and 𝛽 of type 𝑎, with qualia structures𝑄𝑆𝛼
and 𝑄𝑆𝛽, respectively, if there is a quale value shared by 𝛼 and 𝛽, [𝑄𝑆𝛼 . . . [𝑄𝑖 =
𝛾] . . .] and [𝑄𝑆𝛽

. . . [𝑄𝑖 = 𝛾] . . .], then we can define the qualia unification of𝑄𝑆𝛼
and 𝑄𝑆𝛽, 𝑄𝑆𝛼 ⊓𝑄𝑆𝛽, as the unique greatest lower bound of these two qualia
structures. Further, 𝛼(𝛽) is of type 𝑏 with 𝑄𝑆𝛼(𝛽) = 𝑄𝑆𝛼 ⊓𝑄𝑆𝛽.

Thus, the structure of the result reflects aspects of both constituents highlighting special
roles of the VP (verb phrase) head (i.e., bake in bake a cake) in the coordination with an

43

argument.

Selective binding (Pustejovsky 1996, 7.3) deals with adjectival polysemy. Consider the
following examples:

We will need a fast boat to get back in time.(43)
John is a fast typist.(44)
Fast drivers will be caught and fined.(45)

In each of these three sentences the adjective conveys different meanings. (45) says about
the potential speed of boat’s movement, (44) says about speed of committing an action of
typing the text and the phrase (45) denotes a habit of a person to drive on high speeds.
We can see that adjectives like “fast” are not globally ambiguous but their polysemy
strongly depends on the semantics of the NP head it modifies. As before that means that
the specification of different typings and definitions of words which are polysemous in this
contingent way is excessive and therefore the selective rule is proposed (Pustejovsky 1996
p. 129):

Selective binding:
If 𝛼 is of type 𝑎→ 𝑎, 𝛽 is of type 𝑏, and the qualia structure of 𝛽, 𝑄𝑆𝛽 has a
quale 𝑞 of type 𝑎, then 𝛼𝛽 is of type 𝑏, where J𝛼𝛽K = 𝛽 ∩ 𝛼(𝑞)

Now we can see that the object which is being modified by an adjective can treat the
adjective as a function and apply it to one of the conforming qualia fields it has. The
typing of the adjective stays the same and selecting mechanism finds a place for it to
get properly applied generating desired meanings such as “𝑓𝑎𝑠𝑡(𝑡𝑦𝑝𝑖𝑛𝑔)”, “𝑓𝑎𝑠𝑡(𝑑𝑟𝑖𝑣𝑖𝑛𝑔)”
etc. instead of the general style of intersective-style treatment as in “𝑡𝑦𝑝𝑖𝑠𝑡(𝑥)∧ 𝑓𝑎𝑠𝑡(𝑥)”
which, before all, does not carry as much of semantic preciseness.

5 Proposal: Lexical Conceptual Paradigm in MTT’s
In this chapter we propose a way to emulate lexical records for nouns along the ideas of
Pustejovsky just presented in Sections 4.2, 4.3 and discuss several approaches for mod-
elling selectional coercion from these nouns to their lexical roles. We propose some prima
facie plausible proposals for implementing this in MMTs, enriched with GL lexical seman-
tic structures.

Also we discuss a possibility for the implementation of ambiguity analysis in which,
for instance begin a book can be genuinely ambiguous between begin (reading) a book and
begin (writing) a book. However, we show that, unfortunately, this is not compatible
with the system both allowing ambiguity implementations and remaining coherent (see
Definition 2 for the definition of coherence). Therefore, accounting for such ambiguities
remains an challenge to be addressed within (and outside) MTT.

In Sections 5.1.2 and 5.1.1 we present the challenges outlined in Section 1.2 in more
detail.

In Section 5.2, we discuss the use of Σ-types for the purpose of defining complex
typings for nouns which would contain the lexical information in a way suitable for further
compositions. In other words, we integrate the Lexical Conceptual Paradigm into MTT
via Σ-types.

44

In 5.3, we pose two ways to use our newly defined lexical records of nouns in meaning
derivations: via wrapper functions and via coercing to secondary projections of tuples and
dependent unit types. However, we show that none of these is consistent with coherence
if we want to accommodate ambiguity analysis.

5.1 The two challenges

Here we outline the two challenges we address in our proposal.

5.1.1 Lexical records and selectional coercions

The constructions we are going to investigate in the following section of this thesis are
motivated by the integration of Qualia records from Generative Lexicon into Modern Type
Theories. This challenge consists of two main parts:

(C1) The organization of new types assigned to nouns.

(C2) Developing compositional mechanisms which would interact with newly-defined
noun-types.

A solution to (C1) would be a definition of a new type assigned to a noun interpretation
which would preserve the original system’s behaviour (e.g. CNs-as-Types principle) while
effectively organizing word’s meta-properties in a concise way along the representation
given in Generative Lexicon. Records in GL are defined as labeled sets (as well as, for
example, records from Type Theory with Records in e.g. R. Cooper 2023) and MTTs do
not have an ability to use sets in a straightforward manner. Therefore one of the puzzles
of finding a suitable solution is in the emulation of the storage of information inside of
the typing signatures of noun witnesses. Moreover, not only the record we define should
look descriptive but it should also be used for compositional meaning derivation. This
leads to the second challenge (C2).

The development of compositional mechanisms for record types and selectional coer-
cion, as stated above in (C2), is the second challenge and it is clearly interlined with (C1).
After adopting the representation of lexical information we should also adopt in a sound
manner the compositional mechanisms proposed for that records in Generative Lexicon
(we described them in Section 4.3).

Thus, by having both types emulating qualia and an automatic means of composing
those types which generate the desired meanings, we may be able to introduce an alter-
native way to model selectional coercions in MTTs. This can greatly contribute to the
lexical transparency of linguistic coercion classification and modelling as now the distinc-
tion between contextual and, additionally, selectional coercions will be visible as the use
of lexical information will be highlighted.

5.1.2 Ambiguous selectional coercions in MTT.

In this work we also consider a second challenge which follows from the first one. It
concerns the fact that some selectional coercion constructions are ambiguous.

Consider the case of the phrase “Mary starts a book” where the selectional coercion
occurs. In a standard MTT approach (e.g. Chatzikyriakidis and Luo 2020 5.2) the noun
“book” is interpreted with the type 𝐵𝑜𝑜𝑘 which is defined to be a subtype of 𝑃ℎ𝑦𝑠 ∙

45

𝐼𝑛𝑓 , a dot-type of a physical object and an informational object, and the verb “start” is
interpreted with the following type:

J𝑠𝑡𝑎𝑟𝑡K : Πℎ : 𝐻𝑢𝑚𝑎𝑛.(𝐸𝑣𝑡𝐴(ℎ) → 𝑃𝑟𝑜𝑝)

As we can see, for the constant 𝑀𝑎𝑟𝑦 of type 𝐻𝑢𝑚𝑎𝑛 denoting Mary, the domain of
𝑠𝑡𝑎𝑟𝑡(𝑀𝑎𝑟𝑦) is 𝐸𝑣𝑡𝐴(ℎ) and not 𝑃ℎ𝑦𝑠 ∙ 𝐼𝑛𝑓 . Therefore an expression 𝑠𝑡𝑎𝑟𝑡(𝑀𝑎𝑟𝑦, 𝑏),
where 𝑏 is of type 𝐵𝑜𝑜𝑘, is ill-typed as it should not be the book itself that is getting
“started” but the process of reading or writing it. In MTTs to parse the case of linguistic
coercions such as this one, a parametrized coercion map 𝑐(𝑀𝑎𝑟𝑦) = 𝑟𝑒𝑎𝑑𝑖𝑛𝑔(𝑀𝑎𝑟𝑦) :
𝐵𝑜𝑜𝑘 → 𝐸𝑣𝑡𝐴(𝑀𝑎𝑟𝑦) is utilized (Asher and Luo 2013). The linguistic coercion is mod-
elled in the fragment definition via the family of subtyping relation 𝐵𝑜𝑜𝑘 ≤𝑟𝑒𝑎𝑑𝑖𝑛𝑔(ℎ)

𝐸𝑣𝑡𝑎(ℎ) indexed by ℎ of type 𝐻𝑢𝑚𝑎𝑛. The use of the coercive subtyping results in the
following equality being well-typed:

𝑠𝑡𝑎𝑟𝑡(𝑀𝑎𝑟𝑦, 𝑏) = 𝑠𝑡𝑎𝑟𝑡(𝑀𝑎𝑟𝑦, 𝑟𝑒𝑎𝑑𝑖𝑛𝑔(𝑀𝑎𝑟𝑦, 𝑏)) : 𝑃𝑟𝑜𝑝.

We argue that in the real situation without any specified context the analysis of the
phrase above allows both of the linguistic coercions:

J𝑀𝑎𝑟𝑦 𝑠𝑡𝑎𝑟𝑡𝑠 𝑎 𝑏𝑜𝑜𝑘K1 = 𝑠𝑡𝑎𝑟𝑡(𝑚,𝑤𝑟𝑖𝑡𝑖𝑛𝑔(𝑚, 𝑏𝑜𝑜𝑘))(46)
J𝑀𝑎𝑟𝑦 𝑠𝑡𝑎𝑟𝑡𝑠 𝑎 𝑏𝑜𝑜𝑘K2 = 𝑠𝑡𝑎𝑟𝑡(𝑚, 𝑟𝑒𝑎𝑑𝑖𝑛𝑔(𝑚, 𝑏𝑜𝑜𝑘))(47)

In other words, we claim that in general, the meaning of this phrase is ambiguous. This
differs from the analysis presented in Chatzikyriakidis and Luo 2020 (pp.59-60), in which
Mary started a book is interpreted as Mary started writing a book if Mary is the author
of the book and Mary started reading a book, otherwise. I.e., it is ruled out semantically
that Mary started a book can mean Mary started reading a book if Mary wrote the book.
Given that a plausible interpretation of start a book is that it is ambiguous between ‘start
reading’ and ‘start writing’ (where the resolution of this ambiguity would be resolved
pragmatically, not semantically), an interesting question to ask is whether such an am-
biguity analysis can be implemented in MTT. The challenge this introduces, however,
relates to coherence. Without the exact context we can not choose only one of the possi-
ble meanings and therefore both interpretations (46) and (47) should be allowed even for
the phrases describing the book and its real author as in “Tolstoy started War and Peace”
(maybe it is implied that he decided to re-read his own novel before publication).

However, it is impossible to allow such ambiguity by means of the coercive subtyp-
ing method, since the coherence property should be maintained. Coherence is crucial
for coercive subtyping and it requires coercions between two types to be unique. There-
fore, as shown in Chatzikyriakidis and Luo 2020 (pp.58-60), if for some agent 𝑚 both
𝑟𝑒𝑎𝑑𝑖𝑛𝑔(𝑚) and 𝑤𝑟𝑖𝑡𝑖𝑛𝑔(𝑚) are defined as coercions then every object 𝑏 of type 𝐵𝑜𝑜𝑘
can be coerced to two different events of the same type 𝐸𝑣𝑡𝐴(𝑚). Hence both subtyp-
ings 𝐵𝑜𝑜𝑘 ≤𝑟𝑒𝑎𝑑𝑖𝑛𝑔(𝑚) 𝐸𝑣𝑡𝐴(𝑚) and 𝐵𝑜𝑜𝑘 ≤𝑤𝑟𝑖𝑡𝑖𝑛𝑔(𝑚) 𝐸𝑣𝑡𝐴(𝑚) cannot be present in the
fragment at the same time as they do not satisfy the uniqueness property of a coercion.
For that, the coercion 𝑐 described in the Definition (40) of Section 4.1 is introduced. De-
pending on both the subject and object of the action and the contextual relation between
them (namely, whether the subject wrote the book or not) the coercion 𝑐 either becomes
𝑟𝑒𝑎𝑑𝑖𝑛𝑔 or 𝑤𝑟𝑖𝑡𝑖𝑛𝑔. Parameterizing the coercion extends the expressivity as the appro-
priate coercion form can be chosen differently for each agent. However, this approach is
not compatible with a genuine ambiguity, since it prevents e.g., ‘Tolstoy started W&P’

46

from being interpreted as ‘Tolstoy started reading W&P’. In summary, the challenge of
attempting to provide an ambiguity-based analysis is how to implement this without vio-
lating coherence. We will review alternatives for addressing this challenge in the remains
of this section. However, we will show that none of the prima facie plausible alternatives
for doing so are viable. That said, even though a solution was not found, the proposed
organization of lexical information of nouns in MTTs allows us to successfully analyze
phrases which do not imply ambiguity, and so we are still able to account for some exam-
ples of selectional coercion and differentiate it as a phenomenon from contextual coercion.

5.2 Lexical Records in MTTs

In the following subsections we integrate the LCP into MTT.
In 5.2.1, we review the alignment of lexical information mentioned in Luo 2011a and

finally we define our own proposal on lexical records in the section 5.2.2.

5.2.1 The Lexical Conceptual Paradigm (LCP) in MTT

In Modern Type Theories, Σ-types allow the building of tuples of dependent types,
since Σ-types can be nested. For example, the type Σ𝑥1 : 𝐴1.Σ𝑥2 : 𝐴2(𝑥1). . . .Σ𝑥𝑛−1 :
𝐴𝑛−1(𝑥1, 𝑥2, . . .).𝐴𝑛(𝑥1, 𝑥2, . . .) can be represented as in (48):

(48)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑥1 : 𝐴1

𝑥2 : 𝐴2(𝑥1)

. . .

𝑥𝑛 : 𝐴𝑛(𝑥1, . . . , 𝑥𝑛−1)

⎫⎪⎪⎪⎬⎪⎪⎪⎭
By nesting Σ-types it may be possible to emulate records for each noun which would

organize possible objects which are available for coercing to them (in the linguistic sense).
Thus, the information about coercion will be stored “closer” to nouns and also stored
without the direct use of a coercive subtyping mechanism. This might help us in the
challenge of ambiguity analysis and more fine-grained lexical alignment of the system.

As a first step, we will integrate LCPs from the generative Lexicon into MTT (see
Section 4.2 for a description of LCP). Doing so might contribute to ambiguity analysis as
well as to help organize the system with the consideration of the lexical information of the
nouns. In Luo 2011a (5.2) it is hinted that we can consider the typing of the LCP-entry
of the noun “𝑏𝑜𝑜𝑘” realized with the use of Σ-types7:

(49) J𝑏𝑜𝑜𝑘K :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝐴𝑟𝑔 = 𝑥 : 𝑃ℎ𝑦𝑠 ∙ 𝐼𝑛𝑓

𝑄𝑢𝑎𝑙𝑖𝑎 =

⎧⎪⎨⎪⎩
𝐹𝑜𝑟𝑚𝑎𝑙 = 𝐻𝑜𝑙𝑑(𝑝1(𝐴𝑟𝑔), 𝑝2(𝐴𝑟𝑔))

𝑇𝑒𝑙𝑖𝑐 = 𝑅(𝐴𝑟𝑔)

𝐴𝑔𝑒𝑛𝑡 = ∃ℎ : 𝐻𝑢𝑚𝑎𝑛.𝑊 (ℎ,𝐴𝑟𝑔)

⎫⎪⎬⎪⎭
⎫⎪⎪⎪⎬⎪⎪⎪⎭

Here 𝑅(𝑥) stands for “𝑥 to be read” and 𝑊 (𝑥, 𝑦) stands for “𝑥 wrote 𝑦” and 𝑝1 and 𝑝2
are the corresponding projections of the dot-type.

7Note that this construction lacks the 𝑃ℎ𝑦𝑠∙𝐼𝑛𝑓_𝑙𝑐𝑝 which would have to be present in Pustejovsky’s
definition of LCP. As the argument is typed as 𝑃ℎ𝑦𝑠∙ 𝐼𝑛𝑓 in MTT it already forces a behaviour we want
due to the powerful type system of MTTs.

47

Records in the Generative Lexicon are represented by labeled sets of typed elements.
In MTTs, due to the propositions-as-types principle, objects of type 𝑃𝑟𝑜𝑝 can be stored
inside Sigma types, in a certain sense emulating the structure of a set (as propositions
are types and their objects can be considered as proofs of those propositions), formally
resulting in (following the definition (49) proposed in Luo 2011a):

𝐻𝑜𝑙𝑑 : 𝑃ℎ𝑦𝑠→ 𝐼𝑛𝑓 → 𝑃𝑟𝑜𝑝,

𝑅 : 𝐼𝑛𝑓 → 𝑃𝑟𝑜𝑝,

𝑊 : 𝐻𝑢𝑚𝑎𝑛→ 𝑃𝑟𝑜𝑝,

J𝑏𝑜𝑜𝑘K :Σ𝑎𝑟𝑔 : 𝐵𝑜𝑜𝑘.
Σ𝑓 : 𝐻𝑜𝑙𝑑(𝑝1(𝑎𝑟𝑔), 𝑝2(𝑎𝑟𝑔)).

Σ𝑡 : 𝑅(𝑎𝑟𝑔).∃ℎ : 𝐻𝑢𝑚𝑎𝑛.𝑊 (ℎ,𝐴𝑟𝑔).

Consider an object 𝑏 of the complex type we just defined. Then the projection to
the last entry of the nested Σ-typed element will be of type 𝜋2(𝜋2(𝜋2(J𝑏𝑜𝑜𝑘K))) : ∃ℎ :
𝐻𝑢𝑚𝑎𝑛.𝑊 (ℎ,𝐴𝑟𝑔) i.e. the typing of the element already holds the information that the
element is the proof of the fact that the book in question itself is written by an existing
human.

Note that such complex definitions of nouns as nested tuples still allows the usual use
of the noun-as-a-type as the first projection can be chosen as a coercion:

Σ𝑎𝑟𝑔 : (𝑃ℎ𝑦𝑠 ∙ 𝐼𝑛𝑓).(. . .) ≤𝜋1 𝑎𝑟𝑔 : (𝑃ℎ𝑦𝑠 ∙ 𝐼𝑛𝑓).

While the proposed typing helps to carry lexical information inside the type system
the compositional operations cannot be implemented in that exact manner as they are
implemented for usual MTT typings because of all the qualia are being typed as 𝑃𝑟𝑜𝑝.
There is a need for Σ-type secondary projections to be only of type 𝑃𝑟𝑜𝑝 so as to not to
lose any information, these are objects of Σ-types which are tuples of objects, not the types
themselves in the general case. Every object (𝑎, 𝑏) of some type Σ𝑥 : 𝐴.𝐵(𝑥) is a pair of
objects of types 𝐴 and 𝐵(𝑥). If 𝐵(𝑥) is a type 𝐸𝑣𝑒𝑛𝑡 we will never be able to decide which
exact object 𝑏 of this type would be in the pair (𝑎, 𝑏) and hence we would not be able
to recover the exact description of the event just by the typing of the Σ-type to which it
belongs. On the other hand, if the typing of the second tuple entry is 𝑅𝑒𝑎𝑑𝑖𝑛𝑔(𝑎) of the
universe 𝑃𝑟𝑜𝑝 then any element of this type would be a proof of the desired proposition
due to the Curry-Howard principle.

However, in order to use qualia for meaning derivation along the pattern of the analysis
already used in MTTs all the records need to be of type 𝐸𝑣𝑒𝑛𝑡 or one of its parameterized
subtypes. To satisfy the typing (50) below of the verb “start”, the second argument -
which is the event that is being started - should be of type 𝐸𝑣𝑡𝐴(ℎ). Hence, just knowing
that there is a proposition 𝑅(𝑏) associated with the book 𝑏 (as in (49)) would not help
us get the desired object of type 𝐸𝑣𝑡𝐴(ℎ): at first, the proposition does not carry any
information about the agent (in this case the reader) and most importantly it is just the
𝑃𝑟𝑜𝑝 and therefore cannot be generalized and combined with the verb.

(50) J𝑠𝑡𝑎𝑟𝑡K : Πℎ : 𝐻𝑢𝑚𝑎𝑛.(𝐸𝑣𝑡𝐴(ℎ→ 𝑃𝑟𝑜𝑝)

48

In the Generative Lexicon, on the other hand, the telic quale for “read(b)” is defined
as “𝜆𝑥.𝑟𝑒𝑎𝑑𝑖𝑛𝑔(𝑥, 𝑏)” and we can see that it is left underspecified - it requires further
composition with the sentence subject, some human 𝑥, to be completed into the shape
𝑟𝑒𝑎𝑑𝑖𝑛𝑔(𝑥, 𝑏) denoting “𝑥 is reading 𝑏” and thus carrying more semantic information. In
combination with the neo-Davidsonian approach, the quale 𝜆𝑥 : 𝐻𝑢𝑚𝑎𝑛.𝑟𝑒𝑎𝑑(𝑥, 𝑏) can be
typed as 𝜆𝑥.𝐸𝑣𝑡𝐴(𝑥). Then the resulting event can be used for subsequent combination
with other modifiers but, as we stressed before, the information about the exact event is
lost. A possible solution which manages to preserve the information is proposed in the
next section.

5.2.2 Event Semantics for Qualia Records

Given the problems just mentioned, an avenue to pursue the lexical information organi-
zation is to examine whether we can use the neo-Davidsonian approach from Luo and
Soloviev 2017 (briefly described in the Section 3.3.5 of the current work) combined with
the nested Σ-type solution to emulate Generative Lexicon’s Qualia records.

An event-semantic approach realized in a Montagovian setting uses elements of a dis-
tinct type 𝐸𝑣𝑒𝑛𝑡 which obtain a meaning in a Davidsonian way through predicates of
form 𝐸𝑣𝑒𝑛𝑡 → 𝑡 such as 𝑟𝑒𝑎𝑑𝑖𝑛𝑔(𝑥), 𝑟𝑢𝑛𝑛𝑖𝑛𝑔(𝑥) along with the adverbial modification
which is also defined as 𝐸𝑣𝑒𝑛𝑡 → 𝑡, for example 𝑞𝑢𝑖𝑐𝑘𝑙𝑦(𝑥), 𝑠𝑘𝑖𝑙𝑓𝑢𝑙𝑙𝑦(𝑥), 𝑠𝑢𝑑𝑑𝑒𝑛𝑙𝑦(𝑥).
Agents and patients of the action are marked through predicates of type 𝐸𝑣𝑒𝑛𝑡→ 𝑒 → 𝑡
such as 𝑎𝑔𝑒𝑛𝑡(𝑥, 𝑦) and 𝑝𝑎𝑡𝑖𝑒𝑛𝑡(𝑥, 𝑦). In MTTs (e.g. Luo and Soloviev 2017), as we
mentioned, agent and patient notations are incorporated into the type itself via the de-
pendent type definition while the essence of events is defined with predicates of form
𝐸𝑣𝑒𝑛𝑡 → 𝑃𝑟𝑜𝑝 or, with more alignment, as Π𝑥 : 𝑇.(𝐸𝑣𝑡𝐴(𝑥) → 𝑃𝑟𝑜𝑝), where 𝑇 is some
type of 𝐶𝑁 universe and 𝐸𝑣𝑡𝐴(𝑥) denotes and event whose Agent is 𝑥, for example,
𝑏𝑎𝑟𝑘 : Π𝑥 : 𝐷𝑜𝑔.(𝐸𝑣𝑡𝐴(𝑥) → 𝑃𝑟𝑜𝑝) ((13) in Luo and Soloviev 2017) defines an event of
barking and it is constrained only for objects of the type 𝐷𝑜𝑔.

On the other hand, when modelling linguistic coercions from nouns to events (in
Chatzikyriakidis and Luo 2020(pp. 58-60)) event-defining coercions are set to be of type
𝑟𝑒𝑎𝑑𝑖𝑛𝑔 : Π.ℎ : 𝐻𝑢𝑚𝑎𝑛.(𝐵𝑜𝑜𝑘 → 𝐸𝑣𝑡𝐴(ℎ)) in a particular example considered in that
section. There, 𝑟𝑒𝑎𝑑𝑖𝑛𝑔(ℎ) is set to be a coercion 𝐵𝑜𝑜𝑘 ≤𝑟𝑒𝑎𝑑𝑖𝑛𝑔(ℎ) 𝐸𝑣𝑡𝐴(ℎ) which fulfils
the typing of verbs like 𝑒𝑛𝑗𝑜𝑦 or 𝑠𝑡𝑎𝑟𝑡 which are of shape Πℎ.𝐻𝑢𝑚𝑎𝑛.(𝐸𝑣𝑡𝐴(ℎ) → 𝑃𝑟𝑜𝑝).
Therefore different events, like running, reading, barking, are treated as elements of cor-
responding event-types as 𝑟𝑒𝑎𝑑(𝐽𝑜ℎ𝑛) : 𝐸𝑣𝑡𝐴(𝐽𝑜ℎ𝑛) and not through predicating over
generally unspecified elements of type 𝐸𝑣𝑒𝑛𝑡.

In order to use events as parts of the lexical record of a noun we define them as
predicates of event-types into the 𝑃𝑟𝑜𝑝 universe:

𝑟𝑒𝑎𝑑 : 𝐸𝑣𝑒𝑛𝑡→ 𝑃𝑟𝑜𝑝,(51)
𝑡𝑎𝑙𝑘 : 𝐸𝑣𝑒𝑛𝑡→ 𝑃𝑟𝑜𝑝,(52)
𝑟𝑢𝑛 : 𝐸𝑣𝑒𝑛𝑡→ 𝑃𝑟𝑜𝑝.(53)

or in a more precise manner (as in Luo and Soloviev 2017) as:

𝑟𝑒𝑎𝑑 : Πℎ : 𝐻𝑢𝑚𝑎𝑛.(𝐸𝑣𝑡𝐴(ℎ) → 𝑃𝑟𝑜𝑝),(54)
𝑡𝑎𝑙𝑘 : Πℎ : 𝐻𝑢𝑚𝑎𝑛.(𝐸𝑣𝑡𝐴(ℎ) → 𝑃𝑟𝑜𝑝),(55)
𝑟𝑢𝑛 : Π𝑎 : 𝐴𝑛𝑖𝑚𝑎𝑙.(𝐸𝑣𝑡𝐴(𝑎) → 𝑃𝑟𝑜𝑝).(56)

49

Due to established subtyping relations (from Section 3.3.5) any object of one of the depen-
dent types 𝐸𝑣𝑡𝐴𝑃 (𝑎, 𝑝), 𝐸𝑣𝑡𝐴(𝑎), 𝐸𝑣𝑡𝑃 (𝑝) still fits with more general typings of predicates
(51)-(53) and 𝐸𝑣𝑡𝐴𝑃 (𝑎, 𝑝) fits typings of (54)-(56).

As we can now give events their meanings through propositional predicates and there-
fore employ the CNs-as-types principle we are able to store event information on a typing
level of Σ−entries which emulate lexical records from the Generative Lexicon. We give two
examples, skillful typist and start a book below to show how this proposal works. We will
only describe the structure of the lexical records for nouns and show that desired analyses
of the phrases are well typed. Later, in Sections 5.3.2 5.3.3 we discuss the compositional
mechanisms which can be introduced to generate those analyses.

Example: skillful typist

We consider the noun “typist” as one possessing a single quale representing the process
of typing that each typist conducts. Therefore we model the noun’s lexical record by
defining the interpretation of the noun with the type 𝑇𝑦𝑝𝑖𝑠𝑡𝑄 (the letter 𝑄 stands for
Qualia):

J𝑡𝑦𝑝𝑖𝑠𝑡K = 𝑇𝑦𝑝𝑖𝑠𝑡𝑄 = Σ𝑥 : 𝑇𝑦𝑝𝑖𝑠𝑡.Σ𝑒 : 𝐸𝑣𝑡𝐴(𝑥).𝑡𝑦𝑝𝑖𝑛𝑔(𝑥, 𝑒) : 𝑇𝑦𝑝𝑒

where:

𝑡𝑦𝑝𝑖𝑛𝑔 : Π𝑥 : 𝐴𝑔𝑒𝑛𝑡.(𝐸𝑣𝑡𝐴(𝑥) → 𝑃𝑟𝑜𝑝)

With the given definition every (canonical) object 𝑡 of type 𝑇𝑦𝑝𝑖𝑠𝑡𝑄 is a triple (𝑥, 𝑒, 𝑝)
where 𝑥 is the entity of the typist (i.e. 𝐴𝑟𝑔 field of the record), 𝑒 is some event conducted
by 𝑥 and 𝑝 is a proof that event 𝑒 is exactly the typing process of the typist 𝑥. The lack
of the exact semantic information of the event record is compensated by always keeping
the event together with the proposition which describes it (as in the neo-Davidsonian
approach). As propositions are types, the description of the event is getting fixed on the
typing level already.

If we analyze a process of meaning-derivation happening with an adjective “skilful ”
which is allowed to address the qualia of a noun it modifies we can consider an expression
(57) which may be formed along the “selective binding” rule idea from Pustejovsky 1996
and interpret an expression “skilful typist”:

Jskilful typistK = Σ𝑡 : (Σ𝑥 : 𝑇𝑦𝑝𝑖𝑠𝑡.Σ𝑒 : 𝐸𝑣𝑡𝐴(𝑥).𝑡𝑦𝑝𝑖𝑛𝑔(𝑒)).𝑠𝑘𝑖𝑙𝑓𝑢𝑙(𝜋1(𝜋2(𝑡)) : 𝑇𝑦𝑝𝑒,(57)
i.e. Jskilful typistK = Σ𝑡 : 𝑇𝑦𝑝𝑖𝑠𝑡𝑄.𝑠𝑘𝑖𝑙𝑓𝑢𝑙(𝜋1(𝜋2(𝑡)).

The expression (57) is well-typed considering 𝑠𝑘𝑖𝑙𝑓𝑢𝑙 is actually an event modifier of
type 𝐸𝑣𝑒𝑛𝑡 → 𝑃𝑟𝑜𝑝, not the subsective adjective as it was before in MTTs (along the
lines of the Section 3.3 of Chatzikyriakidis and Luo 2020):

𝑠𝑘𝑖𝑙𝑓𝑢𝑙 : 𝐸𝑣𝑒𝑛𝑡→ 𝑃𝑟𝑜𝑝

𝑡 : Σ𝑥 : 𝑇𝑦𝑝𝑖𝑠𝑡.Σ𝑒 : 𝐸𝑣𝑡𝐴(𝑥).𝑡𝑦𝑝𝑖𝑛𝑔(𝑥, 𝑒) . . .

𝜋1(𝜋2(𝑡)) : 𝐸𝑣𝑡𝐴(𝑥) 𝐸𝑣𝑡𝐴 ≤ 𝐸𝑣𝑒𝑛𝑡

𝑠𝑘𝑖𝑙𝑓𝑢𝑙(𝜋1(𝜋2(𝑡))) : 𝑃𝑟𝑜𝑝

Hence, the witness of the type Σ𝑡 : (Σ𝑥 : 𝑇𝑦𝑝𝑖𝑠𝑡.𝑒 : 𝐸𝑣𝑡𝐴(𝑥).𝑡𝑦𝑝𝑖𝑛𝑔(𝑥, 𝑒).𝑠𝑘𝑖𝑙𝑓𝑢𝑙(𝜋1(𝜋2(𝑡)))
would be a tuple ⟨⟨𝑥, 𝑒, 𝑝2(𝑒)⟩, 𝑝2(𝑒)⟩ where 𝑥 is a human who is a typist (of type 𝑇𝑦𝑝𝑖𝑠𝑡),

50

𝑒 is an event conducted by 𝑥 (this relation is fixed by the typing 𝐸𝑣𝑡𝐴(𝑥)), 𝑝1(𝑡, 𝑒) is a
proof of the fact that “𝑒 is typing” and 𝑝2 is a proof of the fact that “𝑒 is skilful”.

A more constrained version can be set by means of Π-polymorphism and dependent
event-types. We may set the predicate 𝑠𝑘𝑖𝑙𝑓𝑢𝑙 to only be applied to events conducted by
humans via the following typing:

(58) 𝑠𝑘𝑖𝑙𝑓𝑢𝑙 : Π.ℎ : 𝐻𝑢𝑚𝑎𝑛.(𝐸𝑣𝑡𝐴(ℎ) → 𝑃𝑟𝑜𝑝)

then, by contravariance and a subtyping relation 𝑇𝑦𝑝𝑖𝑠𝑡 ≤ 𝐻𝑢𝑚𝑎𝑛 the interpretation
(58) can be regarded as:

(59) 𝑠𝑘𝑖𝑙𝑓𝑢𝑙 : Π.ℎ : 𝑇𝑦𝑝𝑖𝑠𝑡.(𝐸𝑣𝑡𝐴(ℎ) → 𝑃𝑟𝑜𝑝)

and the expression 𝑠𝑘𝑖𝑙𝑓𝑢𝑙(𝑡, 𝜋1(𝜋2(𝑡))) would still be well typed as we treat 𝑠𝑘𝑖𝑙𝑓𝑢𝑙 as
in (59) and also coerce an object 𝑡 of the new compound type to 𝑥 : 𝑇𝑦𝑝𝑖𝑠𝑡 through the
first projection 𝜋1 (see the proofs in Figure (3) with contexts, signatures and entailment
relation omitted for compactness). We have shown that under certain assumptions, ‘skill-
ful typist’ is well-typed. However, as we will see in Sections 5.3.2 and 5.3.3, other puzzles
arise when we look more closely at the semantics of ‘skillful’ and try to get the expression
𝑠𝑘𝑖𝑙𝑓𝑢𝑙(𝑡, 𝜋1(𝜋2(𝑡))) from the initial ∃𝑡 : 𝑇𝑦𝑝𝑖𝑠𝑡𝑄.𝑠𝑘𝑖𝑙𝑓𝑢𝑙(𝑡) automatically.

51

Definitions:

J𝑠𝑘𝑖𝑙𝑓𝑢𝑙K = 𝑠𝑘𝑖𝑙𝑓𝑢𝑙 : Πℎ : 𝐻𝑢𝑚𝑎𝑛.(𝐸𝑣𝑡𝐴(ℎ) → 𝑃𝑟𝑜𝑝)

J𝑡𝑦𝑝𝑖𝑛𝑔K = 𝑡𝑦𝑝𝑖𝑛𝑔 : Πℎ : 𝐻𝑢𝑚𝑎𝑛.(𝐸𝑣𝑡𝐴(ℎ) → 𝑃𝑟𝑜𝑝)

J𝑡𝑦𝑝𝑖𝑠𝑡K = 𝑇𝑦𝑝𝑖𝑠𝑡𝑄 = Σ𝑥 : 𝑇𝑦𝑝𝑖𝑠𝑡.Σ𝑒 : 𝐸𝑣𝑡𝐴(𝑥).𝑡𝑦𝑝𝑖𝑛𝑔(𝑥, 𝑒)

(D)

𝑠𝑘𝑖𝑙𝑓𝑢𝑙 : Π.𝑥 : 𝑇𝑦𝑝𝑖𝑠𝑡.(𝐸𝑣𝑡𝐴(𝑥) → 𝑃𝑟𝑜𝑝) Σ𝑥 : 𝑇𝑦𝑝𝑖𝑠𝑡.(. . .) ≤𝜋1 𝑇𝑦𝑝𝑖𝑠𝑡

𝑠𝑘𝑖𝑙𝑓𝑢𝑙(𝑡) : 𝐸𝑣𝑡𝐴(𝜋1(𝑡)) → 𝑃𝑟𝑜𝑝

𝑡 : Σ𝑥 : 𝑇𝑦𝑝𝑖𝑠𝑡.Σ𝑒 : 𝐸𝑣𝑡𝐴(𝑥).(. . .)

𝜋1(𝜋2(𝑡)) : 𝐸𝑣𝑡𝐴(𝜋1(𝑡))

𝑠𝑘𝑖𝑙𝑓𝑢𝑙(𝑡, 𝜋1(𝜋2(𝑡))) : 𝑃𝑟𝑜𝑝

. . .

𝑡𝑦𝑝𝑖𝑛𝑔 : Πℎ : 𝐻𝑢𝑚𝑎𝑛.(. . .) . . . 𝑥 : 𝑇𝑦𝑝𝑖𝑠𝑡 𝑇𝑦𝑝𝑖𝑠𝑡 ≤ 𝐻𝑢𝑚𝑎𝑛

𝑡𝑦𝑝𝑖𝑛𝑔(𝑥, 𝑒) : 𝑃𝑟𝑜𝑝

Σ𝑥 : 𝑇𝑦𝑝𝑖𝑠𝑡.Σ𝑒 : 𝐸𝑣𝑡𝐴(𝑥).𝑡𝑦𝑝𝑖𝑛𝑔(𝑥, 𝑒) : 𝑇𝑦𝑝𝑒

D
𝑠𝑘𝑖𝑙𝑓𝑢𝑙(𝜋1(𝜋2(𝑡))) : 𝑃𝑟𝑜𝑝

𝑠𝑘𝑖𝑙𝑓𝑢𝑙(𝜋1(𝜋2(𝑡))) : 𝑇𝑦𝑝𝑒

Σt : (Σx : Typist.Σe : EvtA(x).typing(x, e)).skilful(𝜋1(𝜋2(t))) : Type

Figure 3: well-typedness of “skilful typist”

52

Example: start a book

As there is a selective coercion occurring in the analysis of the phrase “to start a book ”,
a definition for the noun “𝑏𝑜𝑜𝑘” which would have qualia information incorporated can be
beneficial as well. The difference from the previous example of the noun “typist” is that
here the noun “book ” has two qualia and both of them require an agent to be passed, as
we discussed earlier in this work. However, a new complex record 𝐵𝑜𝑜𝑘𝑄 which interprets
the noun can be defined in a similar way to the noun “typist”:

(60)

J𝑏𝑜𝑜𝑘K = 𝐵𝑜𝑜𝑘𝑄 = Σ𝑥 : 𝐵𝑜𝑜𝑘.Σ𝑒1 : (Πℎ : 𝐻𝑢𝑚𝑎𝑛.𝐸𝑣𝑡𝐴𝑃 (ℎ, 𝑥)).

Σ𝑒2 : (Πℎ : 𝐻𝑢𝑚𝑎𝑛.𝐸𝑣𝑡𝐴𝑃 (ℎ, 𝑥)).

Σ𝑝 : (∀𝑧 : 𝐻𝑢𝑚𝑎𝑛.𝑟𝑒𝑎𝑑𝑖𝑛𝑔(𝑧, 𝑥, 𝑒1(𝑧)).
(∀𝑧 : 𝐻𝑢𝑚𝑎𝑛.𝑤𝑟𝑖𝑡𝑖𝑛𝑔(𝑧, 𝑥, 𝑒2(𝑧)))

where:

𝑟𝑒𝑎𝑑𝑖𝑛𝑔 : Πℎ : 𝐻𝑢𝑚𝑎𝑛.Π𝑥 : 𝐼𝑛𝑓.(𝐸𝑣𝑡𝐴𝑃 (ℎ, 𝑥) → 𝑃𝑟𝑜𝑝)

𝑤𝑟𝑖𝑡𝑖𝑛𝑔 : Πℎ : 𝐻𝑢𝑚𝑎𝑛.Π𝑥 : 𝐼𝑛𝑓.(𝐸𝑣𝑡𝐴𝑃 (ℎ, 𝑥) → 𝑃𝑟𝑜𝑝)

As we can see, (underparametrized) events 𝑒1, 𝑒2 are kept in the record together with
the propositions fixing their meaning, namely, that 𝑒1, after an object of type 𝐻𝑢𝑚𝑎𝑛 is
applied to it, is a reading event and 𝑒2 is a writing event.

Informally any object 𝑏 of type 𝐵𝑜𝑜𝑘𝑄 can be expressed as a record similar to what
we’ve seen before with additional propositions fixing the nature of underspecified events
in the qualia.

𝑏 =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

𝐴𝑟𝑔 = 𝑥 : 𝐵𝑜𝑜𝑘

𝑄𝑢𝑎𝑙𝑖𝑎 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑇𝑒𝑙𝑖𝑐 = 𝑒1 : Πℎ : 𝐻𝑢𝑚𝑎𝑛.𝐸𝑣𝑡𝐴𝑃 (ℎ,𝐴𝑟𝑔)

s.t. ∀𝑧 : 𝐻𝑢𝑚𝑎𝑛.𝑟𝑒𝑎𝑑𝑖𝑛𝑔(𝑧, 𝐴𝑟𝑔, 𝑇𝑒𝑙𝑖𝑐(𝑧))
𝐴𝑔𝑒𝑛𝑡𝑖𝑣𝑒 = 𝑒2 : Πℎ : 𝐻𝑢𝑚𝑎𝑛.𝐸𝑣𝑡𝐴𝑃 (ℎ,𝐴𝑟𝑔)

s.t. ∀𝑧 : 𝐻𝑢𝑚𝑎𝑛.𝑤𝑟𝑡𝑖𝑛𝑔(𝑧, 𝐴𝑟𝑔, 𝐴𝑔𝑒𝑛𝑡𝑖𝑣𝑒(𝑧))

⎫⎪⎪⎪⎬⎪⎪⎪⎭

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
The following definition also emulates the original Generative Lexicon’s structure of the

qualia records of nouns as there the telic and agentive qualia fields contain underspecified
events: for instance an interpretation of the noun “novel”, as we mentioned before, is given
in Pustejovsky 1996(p.79) as follows:

𝜆𝑥[𝑛𝑜𝑣𝑒𝑙(𝑥) . . .telic = 𝜆𝑦.[𝑟𝑒𝑎𝑑(𝑦, 𝑥)] . . .].

Hence now by having 𝑟𝑒𝑎𝑑𝑖𝑛𝑔(𝑏) : Πℎ : 𝐻𝑢𝑚𝑎𝑛.𝐸𝑣𝑡𝐴𝑃 (ℎ, 𝑏) as the element to which
the quale unit coerces we successfully formed a “record” for the noun very close to the
proposal from Pustejovsky 1996.8

8Another proposal might be to organize noun records which have more than one quale in the shape
Σ𝑥 : 𝐴.Σ𝑞1 : (Σ𝑒 : 𝐸𝑣𝑡.𝑃𝑟𝑜𝑝).(Σ𝑒 : 𝐸𝑣𝑡.𝑃𝑟𝑜𝑝). In this way each quale would be interpreted as a pair
of event and a proposition as opposed to the definition we use in this work when at first all the qualia
events go followed by the “tail” of propositions defining them. With setting first projections as coercions
this alternative definition can be used exactly in the same way.

53

Then, if we follow the Generative Lexicon’s compositional approach we can get in-
terpretations (61) or (62), where the type 𝐵𝑜𝑜𝑘𝑄 denotes a new record-like type for the
noun “book ” from (60). The projection 𝜋1(𝜋2(𝑏)) in the expression (61) computes to the
event representing the reading of the book and projection 𝜋1(𝜋2(𝜋2(𝑏))) in (62) computes
to the event representing the reading of the book.

∃𝑏 : 𝐵𝑜𝑜𝑘𝑄.𝑠𝑡𝑎𝑟𝑡(𝑀𝑎𝑟𝑦, 𝜋1(𝜋2(𝑏))(𝑀𝑎𝑟𝑦)) : 𝑃𝑟𝑜𝑝(61)
∃𝑏 : 𝐵𝑜𝑜𝑘𝑄.𝑠𝑡𝑎𝑟𝑡(𝑀𝑎𝑟𝑦, 𝜋1(𝜋2(𝜋2(𝑏)))(𝑀𝑎𝑟𝑦)) : 𝑃𝑟𝑜𝑝(62)

with the verb “𝑠𝑡𝑎𝑟𝑡” being interpreted as before as:

J𝑠𝑡𝑎𝑟𝑡K := 𝑠𝑡𝑎𝑟𝑡 : Πℎ : 𝐻𝑢𝑚𝑎𝑛.(𝐸𝑣𝑡𝐴(ℎ) → 𝑃𝑟𝑜𝑝).

And the witness of the proposition is a proof of the fact that there is an object 𝑏 =
⟨𝑥, 𝑒1, 𝑒2, 𝑝1, 𝑝2⟩ which represents a book, two of the associated events and their descrip-
tions 𝑝1 and 𝑝2 along with the proof of 𝑠𝑡𝑎𝑟𝑡(𝑀𝑎𝑟𝑦, 𝑒1(𝑀𝑎𝑟𝑦)) or 𝑠𝑡𝑎𝑟𝑡(𝑀𝑎𝑟𝑦, 𝑒2(𝑀𝑎𝑟𝑦)).
Having two objects, the tuple representing the book and the proof of the verbal expres-
sion, we obtain knowledge about the situation expressed in the phrase, that is, a situation
where there is an object 𝑥 of type 𝐵𝑜𝑜𝑘 and the event 𝑒1(𝑀𝑎𝑟𝑦) (or 𝑒2(𝑀𝑎𝑟𝑦)) of reading
(or writing) the book 𝑥 by Mary is being started. Note that typings of 𝑒1(𝑀𝑎𝑟𝑦) and
𝑒2(𝑀𝑎𝑟𝑦) carry the information about the fact that Mary is an agent and the book 𝑥 is
a patient.

Following the syntactic structure of the phrase “Mary starts a book ” we may assume
that “starts” as a predicate has two arguments, first is the subject and the second one is an
event (to which the word book is getting linguistically coerced to). The second argument,
event, is formed in the syntactic tree independently from the first one and therefore it
may represent only an event in which a particular book is being read, but without the
information of the agent who reads it:

S

[Human]

Mary

VP

V

start

[Event]

reading a book

That being said, we might use a different typing for the interpretation of the verb
“start”, namely one which does not ask for an event conducted by the first argument, but
instead for an underspecified event of type Πℎ : 𝐻𝑢𝑚𝑎𝑛.𝐸𝑣𝑡𝐴(ℎ) as in:

𝑠𝑡𝑎𝑟𝑡 : 𝐻𝑢𝑚𝑎𝑛→ (Πℎ : 𝐻𝑢𝑚𝑎𝑛.𝐸𝑣𝑡𝐴(ℎ)) → 𝑃𝑟𝑜𝑝

Such typing still lets us disallow incorrect phrases such as “to start a typist” or “skilful
book ” from being well-typed because now qualia of these nouns wouldn’t match the cor-
responding predicate typings: one is underspecified and requires a subject to be passed
and the other one is already a (sub)type of 𝐸𝑣𝑒𝑛𝑡.

Then in order to interpret the coercion of the noun “book ” to the event in the context
of 𝑠𝑡𝑎𝑟𝑡 we just need to project it to one of the qualia it has, without applying a subject

54

to the projections as we did before in 61) and (62):

JMary starts a bookK = ∃𝑏 : 𝐵𝑜𝑜𝑘𝑄.𝑠𝑡𝑎𝑟𝑡(𝑀𝑎𝑟𝑦, 𝜋1(𝜋2(𝑏)))

= ∃𝑏 :

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑥 : 𝐵𝑜𝑜𝑘

𝑒1 : Πℎ : 𝐻𝑢𝑚𝑎𝑛.𝐸𝑣𝑡𝐴𝑃 (ℎ, 𝑥)

𝑝1 : ∀𝑧 : 𝐻𝑢𝑚𝑎𝑛.𝑟𝑒𝑎𝑑𝑖𝑛𝑔(𝑧, 𝑥, 𝑒1(𝑧))
. . .

⎫⎪⎪⎪⎬⎪⎪⎪⎭ .𝑠𝑡𝑎𝑟𝑡(𝑀𝑎𝑟𝑦, 𝑒1)

A detailed description of this example is displayed in Figure 4.

55

Definitions:

J𝑀𝑎𝑟𝑦K =𝑀𝑎𝑟𝑦 : 𝐻𝑢𝑚𝑎𝑛

J𝑠𝑡𝑎𝑟𝑡K = 𝑠𝑡𝑎𝑟𝑡 : 𝐻𝑢𝑚𝑎𝑛→ (Πℎ : 𝐻𝑢𝑚𝑎𝑛.𝐸𝑣𝑡𝐴(ℎ)) → 𝑃𝑟𝑜𝑝

J𝑟𝑒𝑎𝑑𝑖𝑛𝑔K = 𝑟𝑒𝑎𝑑𝑖𝑛𝑔 : Πℎ : 𝐻𝑢𝑚𝑎𝑛.Π𝑦 : 𝐼𝑛𝑓.(𝐸𝑣𝑡𝐴𝑃 (ℎ, 𝑦) → 𝑃𝑟𝑜𝑝)

𝐵𝑜𝑜𝑘𝑄 = Σ𝑥 : 𝐵𝑜𝑜𝑘.Σ𝑒1 : (Πℎ : 𝐻𝑢𝑚𝑎𝑛.𝐸𝑣𝑡𝐴𝑃 (ℎ, 𝑥)).

Σ𝑒2 : (Πℎ : 𝐻𝑢𝑚𝑎𝑛.𝐸𝑣𝑡𝐴𝑃 (ℎ, 𝑥)).

Σ𝑝 : (∀𝑧 : 𝐻𝑢𝑚𝑎𝑛.𝑟𝑒𝑎𝑑𝑖𝑛𝑔(𝑧, 𝑥, 𝑒1(𝑧))).
(∀𝑧 : 𝐻𝑢𝑚𝑎𝑛.𝑤𝑟𝑖𝑡𝑖𝑛𝑔(𝑧, 𝑥, 𝑒2(𝑧))) : 𝑇𝑦𝑝𝑒

J𝑡ℎ𝑒 𝑏𝑜𝑜𝑘K = 𝑏 : 𝐵𝑜𝑜𝑘𝑄

Proof:

𝜙1 = 𝑠𝑡𝑎𝑟𝑡(𝑀𝑎𝑟𝑦) : (Πℎ : 𝐻𝑢𝑚𝑎𝑛.𝐸𝑣𝑡𝐴(ℎ)) → 𝑃𝑟𝑜𝑝

𝜙2 = 𝜋1(𝜋2(𝑏)) : Πℎ : 𝐻𝑢𝑚𝑎𝑛.𝐸𝑣𝑡𝐴𝑃 (ℎ, 𝜋1(𝑏)) (from the definition of type 𝐵)

𝜙3 = Πℎ : 𝐻𝑢𝑚𝑎𝑛.𝐸𝑣𝑡𝐴𝑃 (ℎ, 𝜋1(𝑏)) ≤ Πℎ : 𝐻𝑢𝑚𝑎𝑛.𝐸𝑣𝑡𝐴(ℎ) (from the definition of dependent event type subtyping)

Γ ⊢Δ 𝜙1 Γ ⊢Δ 𝜙2 Γ ⊢Δ 𝜙3

Γ ⊢Δ 𝑠𝑡𝑎𝑟𝑡(𝑀𝑎𝑟𝑦, 𝜋1(𝜋2(𝑏))) : 𝑃𝑟𝑜𝑝
𝐶𝐴1

Figure 4: well-typedness of “Mary starts the book”

56

5.2.3 Interim Summary

In this section we have outlined a means of integrating LCP into MMT, while still re-
specting the idea that modifiers like skillful and verbs like start take events as arguments.
In the next section, we assess whether this proposal can be used together with some com-
positional rules of the type system in order to generate coerced meanings automatically.
Also we investigate if we can capture the ambiguity of selectional coercions such as start
a book mentioned in Section 5.1.2.

5.3 Formal Semantics with Lexical Records

In this section we propose several ways of working with lexical records realized through
Σ-types in previous sections. We will see that the ambiguous readings of constructions like
start a book is, unfortunately, not realizable solely through the already present inference
rules of the system (Section 5.3.1). However, we also had a second aim, which was to
account for selectional coercions in a way that demarcates them from contextual coercions.
We show that if we set ambiguity aside we can find some solutions which would make the
proposed definition work, even though for the restricted language fragment with nouns
having only one quale or qualia of distinct types.

In 5.3.2 we show how new “wrapper” definitions of noun modifiers can confront the
problem and in 5.3.3 we discuss possibilities of defining secondary projections (i.e. 𝜋2’s) to
be coercions through certain workarounds such as parametrized coercions and dependent
unit types.

5.3.1 (The lack of a) Pure Solution

In Section 5.2.2 we proposed a new typing for noun interpretations with a Σ-type tuple
consisting of a noun object (of the unique noun type as it was before in MTTs) and its
modes of explanation represented by event types together with propositions defining these
events. We described the desired use of new lexically rich typings and proved that if the
proper composition is somehow obtained it will be well-typed. The remaining challenge is
the defining compositional mechanisms which can allow linguistic coercions from a noun
to its qualia fields and hence forming desired judgments.

As outlined in Pustejovsky 1996 (Chapter 7) in the case of an initial mistyping of
an expression the Generative Lexicon system may look for the suitable qualia field of an
argument and coerce the argument to it (semantic selection) or just modify the qualia
leaving the rest of the argument structure intact (selective binding).

According to the semantic selection phenomena discussed in Pustejovsky 1996 ch. 7.4
verbs like “enjoy” due to their type polysemy actually modify the qualia rather than an
argument of a noun they apply to. It comes from the unnaturality of the verb having
several different typings in order to get parsed in Phrases (63) and (64).

John enjoys reading a book, J𝑒𝑛𝑗𝑜𝑦K : 𝑁𝑃 → 𝐸𝑣𝑒𝑛𝑡→ 𝑃𝑟𝑜𝑝(63)
John enjoys a book, J𝑒𝑛𝑗𝑜𝑦K : 𝑁𝑃 → 𝑁𝑃 → 𝑃𝑟𝑜𝑝(64)

Thus, what might be happening here is the verb choosing the appropriate qualia of the
type 𝐸𝑣𝑒𝑛𝑡 if an argument is ill-typed (i.e. if its a noun phrase and not an event). Then
the result of the selection would be a transition from 𝑒𝑛𝑗𝑜𝑦(𝑏𝑜𝑜𝑘) to 𝑒𝑛𝑗𝑜𝑦(𝑟𝑒𝑎𝑑𝑖𝑛𝑔(𝑏𝑜𝑜𝑘))

57

with the use of the coercion to the qualia field as illustrated in the following:

𝑒𝑛𝑗𝑜𝑦(𝑏𝑜𝑜𝑘)
selective coercion↦−−−−−−−−−→ 𝑒𝑛𝑗𝑜𝑦(𝑟𝑒𝑎𝑑𝑖𝑛𝑔(𝑏𝑜𝑜𝑘)).

Unfortunately, given an implementation of this process solely by means of MTTs defini-
tions and coercive subtyping (as this is the only rule which allows to identify an object
with its coercion image) would violate coherence in case of an underspecified context as
it is allowed to get both 𝑟𝑒𝑎𝑑𝑖𝑛𝑔(𝑏𝑜𝑜𝑘) and 𝑤𝑟𝑖𝑡𝑖𝑛𝑔(𝑏𝑜𝑜𝑘) coercions by the nature of the
Generative Lexicon idiom.

Γ ⊢Δ 𝑒𝑛𝑗𝑜𝑦(𝑏𝑜𝑜𝑘) = 𝑒𝑛𝑗𝑜𝑦(𝑟𝑒𝑎𝑑𝑖𝑛𝑔(𝑏𝑜𝑜𝑘)) : 𝑃𝑟𝑜𝑝(65)
Γ ⊢Δ 𝑒𝑛𝑗𝑜𝑦(𝑏𝑜𝑜𝑘) = 𝑒𝑛𝑗𝑜𝑦(𝑤𝑟𝑖𝑡𝑖𝑛𝑔(𝑏𝑜𝑜𝑘)) : 𝑃𝑟𝑜𝑝(66)
Γ ⊢Δ 𝑒𝑛𝑗𝑜𝑦(𝑟𝑒𝑎𝑑𝑖𝑛𝑔(𝑏𝑜𝑜𝑘)) = 𝑒𝑛𝑗𝑜𝑦(𝑤𝑟𝑖𝑡𝑖𝑛𝑔(𝑏𝑜𝑜𝑘)) : 𝑃𝑟𝑜𝑝(67)

Having (65) and (66) derivable with use of the hypothetical qualia coercion realization
we will get (67) derivable through transitivity of equality. The well-formedness of (67)
ruins the coherence of the subtyping relations: as 𝑟𝑒𝑎𝑑𝑖𝑛𝑔(𝑏𝑜𝑜𝑘) is the proof object of
the reading process and it surely differs from the proof object 𝑤𝑟𝑖𝑡𝑖𝑛𝑔(𝑏𝑜𝑜𝑘) of writing
it. So although we need to be able to differentiate proofs of 𝑒𝑛𝑗𝑜𝑦(𝑟𝑒𝑎𝑑𝑖𝑛𝑔(𝑏𝑜𝑜𝑘)) and
𝑒𝑛𝑗𝑜𝑦(𝑤𝑟𝑖𝑡𝑖𝑛𝑔(𝑏𝑜𝑜𝑘)), the initial 𝑒𝑛𝑗𝑜𝑦(𝑏𝑜𝑜𝑘) is assumed to be coercable to both of them,
and so they cannot be differentiated! If those objects are not violating coherence then
they will indeed be equal as objects and then the linguistic meaning is absurd as (67)
says that whenever a process of starting reading a book is the case it is also a case of
starting writing the same book and, moreover, that a book reading event implies an event
of writing it and vice versa.

One way to employ selective mechanisms and make use of the record-style noun def-
inition might be possible within the restricted case where the hypothetical ambiguity is
restricted. We will propose some approaches utilizing wrapper functions and dependent
unit types in Sections 5.3.2 and 5.3.3.

If the ability to (linguistically) coerce to several different meanings of the phrase is
valuable (e.g., if we want to allow start a book to be ambiguous between start reading a
book and start writing a book), a more abstract solution is required to implement it in
MTTs. Namely, some rule of formation of an expression which comes before the process
of checking its derivability within the inference system is needed. We discuss this in the
Section 6.

5.3.2 Wrapper Functions

If making space for the ambiguity of interpretations is not the goal, then in order to be
able to make use of definitions with lexical records we can try to consider a restricted case
of all nouns bearing no more than one qualia entry of each type (chosen by the context, for
example) as otherwise the incoherence/absurdity issue described in the previous subsec-
tion arises. For instance, we can let the record for the noun “𝑏𝑜𝑜𝑘” have either a 𝑇𝑒𝑙𝑖𝑐 or
𝐴𝑔𝑒𝑛𝑡 field, but not both, since both of them are of type Πℎ : 𝐻𝑢𝑚𝑎𝑛→ 𝐸𝑣𝑡𝐴𝑃 (ℎ,𝐴𝑟𝑔))
which gives rise to the aforementioned coherence problems.

Constructions that we are defining in the following sections would still be useful for
MTTs as they show how lexical information can be stored and used for the meaning
derivation even though lacking the complete generality of the solution (i.e. lacking the
ambiguity of certain selectional coercions).

58

The rule of selective binding, which applies the modifier to the qualia entry in case of
the initial type mismatch is used to deal with some subsective adjectives such as “fast”
or “skilful ”. These adjectives are indeed subsective but what they do is they modify some
property of the subject instead of the subject itself via sense coercion and their nature is
polysemous as properties can be different of sorts of events. This is unlike the subsective
adjective “small ” which modifies the size property of the subject instead of the subject
itself. For small, no coercion is needed as it modifies only the size and nothing else: this
connotation is already embedded in the adjective’s meaning. Thereby, a desired analysis
of “skilful typist”, where a typist 𝑡 is typed as 𝑇𝑦𝑝𝑖𝑠𝑡𝑄, a Σ-type of the entity and it’s
process of typing, should be of shape:

𝑇𝑦𝑝𝑖𝑠𝑡𝑄 := Σ𝑥 : 𝑇𝑦𝑝𝑖𝑠𝑡.Σ𝑒 : 𝐸𝑣𝑡𝐴(𝑥).𝑡𝑦𝑝𝑖𝑛𝑔(𝑥, 𝑒)

𝑠𝑘𝑖𝑙𝑓𝑢𝑙(𝑡) = Σ𝑡 : 𝑇𝑦𝑝𝑖𝑠𝑡𝑄.𝑠𝑘𝑖𝑙𝑓𝑢𝑙(𝑡𝑦𝑝𝑖𝑛𝑔_𝑜𝑓(𝑡))

One way to realize a compositional process that would allow this interpretation on
the input “skilful typist” is to use a wrapper around the noun predicate. Instead of
having an adjective interpretation typed only as 𝑠𝑘𝑖𝑙𝑓𝑢𝑙 : Π𝐴 : 𝐶𝑁.(𝐴 → 𝑃𝑟𝑜𝑝) or
𝑠𝑘𝑖𝑙𝑓𝑢𝑙 : (Π𝑥 : 𝐴𝑔𝑒𝑛𝑡.𝐸𝑣𝑡𝐴(𝑥)) → 𝑃𝑟𝑜𝑝 9 we can overload it with two definitions where
the first one is an event predicate and the second one references the first one:

J𝑠𝑘𝑖𝑙𝑓𝑢𝑙K1 : 𝐸𝑣𝑒𝑛𝑡→ 𝑃𝑟𝑜𝑝

J𝑠𝑘𝑖𝑙𝑓𝑢𝑙K2 : (Σ𝑥 : 𝐴𝑔𝑒𝑛𝑡.𝐸𝑣𝑡𝐴(𝑥)) → 𝑃𝑟𝑜𝑝

with the exact definition:
J𝑠𝑘𝑖𝑙𝑓𝑢𝑙K2 := 𝜆𝑦 : (Σ𝑥 : 𝐴𝑔𝑒𝑛𝑡.𝐸𝑣𝑡𝐴(𝑥)).J𝑠𝑘𝑖𝑙𝑓𝑢𝑙K1(𝜋2(𝑥))

Then, by using type overloading with unit types (Section 3.3.4) we can interpret the
adjective as the sole member 𝑠𝑘𝑖𝑙𝑓𝑢𝑙 of the following type:

J𝑠𝑘𝑖𝑙𝑓𝑢𝑙K := 𝑠𝑘𝑖𝑙𝑓𝑢𝑙 : 1𝑠𝑘𝑖𝑙𝑓𝑢𝑙

and then set coercions (68), (69) to both of the realizations 𝑠𝑘𝑖𝑙𝑓𝑢𝑙1 and 𝑠𝑘𝑖𝑙𝑓𝑢𝑙2.

1𝑠𝑘𝑖𝑙𝑓𝑢𝑙 ≤𝑐1 𝐸𝑣𝑒𝑛𝑡→ 𝑃𝑟𝑜𝑝(68)
𝑐1(𝑠𝑘𝑖𝑙𝑓𝑢𝑙) := J𝑠𝑘𝑖𝑙𝑓𝑢𝑙K1
1𝑠𝑘𝑖𝑙𝑓𝑢𝑙 ≤𝑐2 Σ𝑥 : 𝐴𝑔𝑒𝑛𝑡.𝐸𝑣𝑡𝐴(𝑥) → 𝑃𝑟𝑜𝑝(69)
𝑐2(𝑠𝑘𝑖𝑙𝑓𝑢𝑙) := J𝑠𝑘𝑖𝑙𝑓𝑢𝑙K2

9 Note that in this section we sometimes omit the “tails” of props at the end of noun record definitions
as we can always use the fully-specified record (i.e. a Σ-type tuple of object, some events and some
propositions about them) in the context requiring a Σ-type pair of an object and an event via the
derivable subtyping below:

⊢ 𝐴 ≤ 𝐴 𝑥 : 𝐴 ⊢ Σ𝑒 : 𝐸𝑣𝑡𝐴(𝑥).𝑃 𝑟𝑜𝑝 ≤𝜋1 𝐸𝑣𝑡𝐴(𝑥)

⊢ Σ𝑥 : 𝐴.Σ𝑒 : 𝐸𝑣𝑡𝐴(𝑥).𝑃 𝑟𝑜𝑝 ≤𝑐 Σ𝑥 : 𝐴.𝐸𝑣𝑡𝐴(𝑥) : 𝑇𝑦𝑝𝑒

This subtyping can be easily generalized to the following one:

Σ𝑥 : 𝐴.Σ𝑒1 : 𝐸1. . . .Σ𝑒𝑘 : 𝐸𝑘.Σ𝑝1 : 𝑃𝑟𝑜𝑝.𝑃 𝑟𝑜𝑝 ≤ Σ𝑥 : 𝐴.Σ𝑒1 : 𝐸1. . . . 𝐸𝑘

59

Now we can see that the expression Σ𝑥 : 𝑇𝑦𝑝𝑖𝑠𝑡𝑄.𝑠𝑘𝑖𝑙𝑓𝑢𝑙(𝑥) will be well-typed as the
realization 𝑠𝑘𝑖𝑙𝑓𝑢𝑙2 takes a noun with a qualia attached and already set to be an event
indexed by the same noun and then unwraps the pair and applies 𝑠𝑘𝑖𝑙𝑓𝑢𝑙1 to the event:

J𝑠𝑘𝑖𝑙𝑓𝑢𝑙K(𝑥) = 𝑠𝑘𝑖𝑙𝑓𝑢𝑙2(𝑥)

= 𝑠𝑘𝑖𝑙𝑓𝑢𝑙1(𝜋1(𝜋2(𝑥)))

The latter expression is well typed as previously shown in the Figure (3).
Combined with the MTT’s mechanism of the modified adjectives formation we get a

well-formed expression:

Σ𝑥 : (Σ𝑡 : 𝑇𝑦𝑝𝑖𝑠𝑡.𝑒 : 𝐸𝑣𝑡𝐴(𝑡).𝑡𝑦𝑝𝑖𝑛𝑔(𝑥, 𝑒)).𝑠𝑘𝑖𝑙𝑓𝑢𝑙(𝑒).

The typing of J𝑠𝑘𝑖𝑙𝑓𝑢𝑙K1 requires an argument to be just of type 𝐸𝑣𝑒𝑛𝑡 and therefore
acts as a quite general event modifier. Its down-point is that any event 𝑒 can be combined
with it into expression 𝑠𝑘𝑖𝑙𝑓𝑢𝑙(𝑒) possibly introducing overgeneration i.e., that events that
cannot be called skilful would be admissible. But on the other hand, we have the ability
to constrain the selectional coercion as we did in the definition of J𝑠𝑘𝑖𝑙𝑓𝑢𝑙K2: setting an
argument to be of type Σ𝑥 : 𝐴𝑔𝑒𝑛𝑡.𝐸𝑣𝑡𝐴(𝑥), we impose a requirement on the thematic
role of the coerced noun in the event, namely, we ask it to be an agent of the event
selected for adjective modification. Thus, we automatically disallow interpretation of, for
example, “skilful book” as all its qualia have the book entity acting in the thematic role
of the patient.

The case of a meaning shift forced by verbs like “enjoy”, “ like”, “start” can be treated
in the similar manner considering nouns having only one quale. The typing of the verb
and auxilary definitions should be the following:

J𝑒𝑛𝑗𝑜𝑦K := 𝑒𝑛𝑗𝑜𝑦 : 1𝑒𝑛𝑗𝑜𝑦(70)
J𝑒𝑛𝑗𝑜𝑦K1 : 𝐴𝑔𝑒𝑛𝑡→ Π𝑥 : 𝐴𝑔𝑒𝑛𝑡.(𝐸𝑣𝑡𝐴(𝑥)) → 𝑃𝑟𝑜𝑝(71)
J𝑒𝑛𝑗𝑜𝑦K2 : 𝐴𝑔𝑒𝑛𝑡→ Σ𝑥 : 𝐶𝑁.(Σ𝑒 : (Π𝑎 : 𝐴𝑔𝑒𝑛𝑡.𝐸𝑣𝑡𝐴(𝑎)).𝑃 𝑟𝑜𝑝) → 𝑃𝑟𝑜𝑝(72)
with the exact definition:
J𝑒𝑛𝑗𝑜𝑦K2(𝑥, 𝑦) := J𝑒𝑛𝑗𝑜𝑦K1(𝑥, 𝜋1(𝜋2(𝑦)(𝑥)))and with subtying relations:
1𝑒𝑛𝑗𝑜𝑦 ≤𝑐1 𝐴𝑔𝑒𝑛𝑡→ Π𝑥 : 𝐴𝑔𝑒𝑛𝑡.(𝐸𝑣𝑡𝐴(𝑥)) → 𝑃𝑟𝑜𝑝(73)
𝑐1(𝑒𝑛𝑗𝑜𝑦) = J𝑒𝑛𝑗𝑜𝑦K1
1𝑒𝑛𝑗𝑜𝑦 ≤𝑐2 𝐴𝑔𝑒𝑛𝑡→ Σ𝑥 : 𝐶𝑁.(Σ𝑒 : (Π𝑎 : 𝐴𝑔𝑒𝑛𝑡.𝐸𝑣𝑡𝐴(𝑎)).𝑃 𝑟𝑜𝑝) → 𝑃𝑟𝑜𝑝(74)
𝑐2(𝑒𝑛𝑗𝑜𝑦) = J𝑒𝑛𝑗𝑜𝑦K2

The system will be able to choose a typing of the word upon encountering the ex-
pression 𝑠𝑡𝑎𝑟𝑡(𝑀𝑎𝑟𝑦, 𝑏𝑜𝑜𝑘). As the complex typing of the noun is compatible only with
J𝑒𝑛𝑗𝑜𝑦K2 this definition would be selected via a call of the coercion 𝑐2. Then during the
computation of J𝑒𝑛𝑗𝑜𝑦K2(𝑀𝑎𝑟𝑦, 𝑏𝑜𝑜𝑘) the desired event-projection would be unfolded and
applied to the usual definition J𝑒𝑛𝑗𝑜𝑦K2. The proof of the computed expression would be
the same as shown in the Figure (4) and hence the resulting well-formed expression is
(75).

(75) ∃𝑏 :

⎧⎪⎨⎪⎩
𝑥 : 𝐵𝑜𝑜𝑘

𝑒 : Πℎ : 𝐻𝑢𝑚𝑎𝑛.𝐸𝑣𝑡𝐴𝑃 (ℎ)

𝑝 : ∀𝑧 : 𝐻𝑢𝑚𝑎𝑛.𝑟𝑒𝑎𝑑𝑖𝑛𝑔(𝑧, 𝑥, 𝑒(𝑧))

⎫⎪⎬⎪⎭ .𝑠𝑡𝑎𝑟𝑡(𝑀𝑎𝑟𝑦, 𝜋1(𝜋2(𝑏)))

60

This approach allows us to enrich the interpretation with a more fine-grained descrip-
tion as now information about aliased events is stored and displayed in the noun definition,
either in the quantification argument (in cases of “some book” etc.) or in the declaration
of a constant (when proper names as “Ulysses” are used for definite articles as in “the
book”). Therefore event information is getting carried together with the noun allowing
finely parametrized predicates to address it and, on the other hand, it does not affect
using nouns only under their 𝐶𝑁 -universe typing due to the 𝜋1-coercion.

However, while the adjective “𝑠𝑘𝑢𝑙𝑓𝑢𝑙” which seems to strongly and essentially relate
to some lexical meta-property of the noun it modifies rather than the noun itself, the
adjective “𝑓𝑎𝑠𝑡” is a modifier of some moving ability of the noun object, but that ability
to move is not always essential to the noun as a mode of explanation of it: “fast driver ”
really implies a person who drives fast and not the person who walks fast on their own
while “fast fox ” undoubtedly denotes an animal who moves fast but moving is not the
qualia of a fox i.e. not its lexical meta-property. In this case adjective “fast” acts just
as a general modifier of the moving speed and should be typed in the usual way as
Π𝐴 : 𝐶𝑁.(𝐴 → 𝑃𝑟𝑜𝑝). Therefore, adoption of an approach described before to analyze
an adjective “fast” should force us to define three typings of the noun with the following
general shapes::

J𝑓𝑎𝑠𝑡K1 : Π𝐴 : 𝐶𝑁.𝐴→ 𝑃𝑟𝑜𝑝,(76)
J𝑓𝑎𝑠𝑡K2 : 𝐸𝑣𝑒𝑛𝑡→ 𝑃𝑟𝑜𝑝,(77)
J𝑓𝑎𝑠𝑡K3 : Σ𝑥 : 𝐴𝑔𝑒𝑛𝑡.𝐸𝑣𝑡𝐴(𝑥) → 𝑃𝑟𝑜𝑝.(78)

Notice that the first interpretation (76) should be combined with the composition
principle for subsective adjectives, i.e. the modified noun “fast typist” should be translated
into MTT type Σ𝑥 : 𝑇𝑦𝑝𝑖𝑠𝑡.J𝑓𝑎𝑠𝑡K1(𝑇𝑦𝑝𝑖𝑠𝑡, 𝑥). Unlike (76) the other interpretations
(77) and (78) should be used together with the compositional principle for intersective
adjectives as we discussed before a modification of a qualia does not have to be tied to
the noun Arg type - a human who types fast is still an animal who types fast, and a fast
cyclist is still the animal who rides a bicycle fast et cetera. Therefore the result of the
interpretation “fast typist” with the complex type 𝑇𝑦𝑝𝑖𝑠𝑡𝑄 needs to be formed as Σ𝑥 :
𝑇𝑦𝑝𝑖𝑠𝑡𝑄.J𝑓𝑎𝑠𝑡K3(𝑥) i.e. without the Π-polymorphism which locks the adjective. That
said, the polymorphism of the definition of adjectives such as “fast” cannot be realized
only through unit-type coercions because the application depends on the formation rules
which are getting applied on the judgment formation level.

On the other hand, if we redefine J𝑓𝑎𝑠𝑡K2 and J𝑓𝑎𝑠𝑡K3 in the subsective manner,
namely as J𝑓𝑎𝑠𝑡K′2 and J𝑓𝑎𝑠𝑡K′3, given in (79) and (80), we will be able to treat the initial
composition in the same way as the composition of J𝑓𝑎𝑠𝑡K1 which is desirable. But,
unfortunately, if we do so, we once again get problems with (in)coherence.

J𝑓𝑎𝑠𝑡K′2 : Π.𝐴 : 𝐶𝑁.(𝐸𝑣𝑒𝑛𝑡→ 𝑃𝑟𝑜𝑝),(79)
J𝑓𝑎𝑠𝑡K′3 : Π.𝐴 : 𝐶𝑁.(Σ𝑥 : 𝐴.𝐸𝑣𝑒𝑛𝑡→ 𝑃𝑟𝑜𝑝).(80)

Note that, at first, we have to sacrifice dependency in event types in (79), (80 as we
have to parametrize adjectives by some type 𝐴 from 𝐶𝑁 and we are not sure if it would be
of type 𝐴𝑔𝑒𝑛𝑡 or not (and therefore not sure if 𝐸𝑣𝑡𝐴(𝑥) would be well-formed for 𝑥 : 𝐴).
And most importantly, the coherence would fail: consider coercions 81 and 82. Coercions
𝑐1 and 𝑐3 are fixed by us as they point the only element 𝑓𝑎𝑠𝑡 of type 1𝑓𝑎𝑠𝑡 to J𝑓𝑎𝑠𝑡K1 and

61

J𝑓𝑎𝑠𝑡K′3 respectively. Coercion 𝑐 is present due to the subtyping properties of Π-types and
the fact that the first projection of Σ-tuples is set to be a coercion.

1𝑓𝑎𝑠𝑡 ≤𝑐1 Π𝐴 : 𝐶𝑁.(𝐴→ 𝑃𝑟𝑜𝑝) ≤𝑐 Π.𝐴 : 𝐶𝑁.(Σ𝑥 : 𝐴.𝐸𝑣𝑒𝑛𝑡→ 𝑃𝑟𝑜𝑝)(81)
1𝑓𝑎𝑠𝑡 ≤𝑐′3

Π.𝐴 : 𝐶𝑁.(Σ𝑥 : 𝐴.𝐸𝑣𝑒𝑛𝑡→ 𝑃𝑟𝑜𝑝)(82)

As we see from these typings maps 𝑐 ∘ 𝑐1 and 𝑐′3 should coincide to preserve coherence
of the system but it is impossible for them to coincide.

In conclusion we can say that the pure method of using wrapper functions is appli-
cable to some very small selection of constrained cases and shows a consistent way to
use a proposed way of lexical information storage in MTTs but unfortunately it is not
generalizable to any broader scope.

5.3.3 Projections as Coercions and Dependent Unit Types

There exists another pure approach of addressing qualia of nouns from a restricted frag-
ment with only these records whose corresponding lexical records do not contain different
objects of the same type (to avoid coherence violation). In such typings we may define
qualia projections as coercions. This way, the object of a noun can naturally be coerced
to the desired event quale on its own. Here, the linguistic (and type) coercion would
be evoked by the initial type clash with the context and unlike coercing a noun entity
(of its CN-as-types type) to the event the coercion of a record to its constituent event is
happening. The difference between the two approaches is that in the first one we regard
an objective witness of the noun-type (i.e. it’s 𝐴𝑟𝑔 member) as an event (“the physical
witness of a book is also an event of reading it”) and in the second one we regard an ar-
gument together with its modes of explanation as one of those modes (“the object which
is embodied as a book and an event of reading it is also an event of reading it”). The
method of declaring secondary Σ-projections 𝜋2, 𝜋1 ∘ 𝜋2 etc. as coercions still requires
an implementation of several workarounds due to the issues promptly described in this
section.

Parametrization of Σ-projections

Consider the case when the member of a Σ-record we want to coerce to is typed as 𝐸𝑣𝑒𝑛𝑡.
The case of coercing to this object is straightforward as the noun in question is just being
associated with the event independent of any thematic roles and hence can be used in
the corresponding contexts freely via coercion Σ𝑥 : 𝐴.𝐸𝑣𝑒𝑛𝑡 ≤𝜋2 𝐸𝑣𝑒𝑛𝑡. The coercion
declaration is possible because for the type Σ𝑥 : 𝐴.𝐸𝑣𝑒𝑛𝑡 the projection 𝜋2 is well-typed
as 𝜋2 : Σ𝑥 : 𝐴.𝐸𝑣𝑒𝑛𝑡 → 𝐸𝑣𝑒𝑛𝑡 without any complications as there is no dependency of
𝐸𝑣𝑒𝑛𝑡 on 𝐴.

Speaking formally, if we regard Σ-types as ones defined through inference rules, projec-
tions 𝜋1 and 𝜋2 are not objects of a dependent type (i.e. a map) but mere notations of the
type elimination and therefore by declaring a coercion to projections we actually imply
the (homonymous) abbreviation of the wrapper map 𝜋𝑖 = 𝜆𝑥 : (Σ𝑥 : 𝐴.𝐸𝑣𝑒𝑛𝑡).𝜋𝑖(𝑥). On
the other hand, if we regard Σ-types as constants of the system LFΔ we will truly have 𝜋1
and 𝜋2 defined as the following dependent maps(Chatzikyriakidis and Luo 2020, A5.2):

𝜋1 = (𝐴 : 𝑇𝑦𝑝𝑒)(𝐵 : (𝐴)𝑇𝑦𝑝𝑒)(𝑝 : Σ𝑥 : 𝐴.𝐵)𝐴

𝜋2 = (𝐴 : 𝑇𝑦𝑝𝑒)(𝐵 : (𝐴)𝑇𝑦𝑝𝑒)(𝑝 : Σ𝑥 : 𝐴.𝐵)[𝜋1(𝑝)/𝑥]𝐵

62

with exact computations 𝜋1(𝐴,𝐵(𝑎, 𝑏)) = 𝑎 and 𝜋2(𝐴,𝐵(𝑎, 𝑏))=b.
However, coercing to dependent event types (i.e 𝐸𝑣𝑡𝐴𝑃 (𝑥, 𝑦), 𝐸𝑣𝑡𝐴(𝑥) and 𝐸𝑣𝑡𝑃 (𝑦))

is problematic as it requires the coercion to be parameterized by the object from the first
projection. To see this, consider a type Σ𝑥 : 𝐴.𝐸𝑣𝑡𝐴(𝑥). The projection 𝜋2 itself cannot
establish a subtyping relation as it maps between objects 𝑝 : Σ𝑥 : 𝐴.𝐸𝑣𝑡𝐴(𝑥) and objects
𝑒 : 𝐸𝑣𝑡𝐴(𝜋1(𝑝)) i.e. the typing of its image depends on the input object. Hence, to make
the direct coercion to projections work we might define the subtyping as follows with help
of the following parametrization:

Σ𝑥 : 𝐴.𝐸𝑣𝑡𝐴(𝑥) ≤𝑐(𝑝) 𝐸𝑣𝑡𝐴(𝜋1(𝑝)),

where the coercion 𝑐(𝑝) is defined for objects 𝑝 : Σ𝑥 : 𝐴.𝐸𝑣𝑡𝐴(𝑥) as

(83) 𝑐(𝑝) := 𝜆𝑝′ : (Σ𝑥 : 𝐴.𝐸𝑣𝑡𝐴(𝜋1(𝑝))).𝜋2(𝑝
′)

We can see from these definitions that for any object 𝑝 of the type Σ𝑥 : 𝐴.𝐸𝑣𝑡𝐴(𝑥) the
coercion 𝑐(𝑝) will be well defined and the full application would result in 𝑐(𝑝, 𝑝) = 𝜋2(𝑝).

Furthermore, the defined families of coercions between types Σ𝑥 : 𝐴.𝐸𝑣𝑡𝐴(𝑥) and
𝐸𝑣𝑡𝐴(𝑎) for each 𝑎 : 𝐴 are coherent as shown in the following proposition.

Proposition 1. Consider an arbitrary object 𝑝 : Σ𝑥 : 𝐴.𝐸𝑣𝑡𝐴(𝑥). Then for any 𝑝′ : Σ𝑥 :
𝐴.𝐸𝑣𝑡𝐴(𝑥), if the object 𝑐(𝑝′, 𝑝) is well-defined, it is equal to 𝑐(𝑝, 𝑝).

Proof. Let 𝑞 be of type Σ𝑥 : 𝐴.𝐸𝑣𝑡𝐴(𝑥). Then, by canonicity we can treat 𝑝 and 𝑞 as
pairs (𝑎, 𝑒) and (𝑎′, 𝑒′) respectively where 𝑎, 𝑎′ : 𝐴 and 𝑒 : 𝐸𝑣𝑡𝐴(𝑎), 𝑒′ : 𝐸𝑣𝑡𝐴(𝑎′). Clearly
𝑐(𝑝, 𝑝) is well defined and results in 𝑐(𝑝, 𝑝) = 𝜋2(𝑝) as:

𝑐(𝑝, 𝑝) = 𝑐((𝑎, 𝑒), (𝑎, 𝑒))

= (𝜆𝑝′ : (Σ𝑥 : 𝐴.𝐸𝑣𝑡𝐴(𝜋1(𝑎, 𝑒))).𝜋2(𝑝
′)))(𝑎, 𝑒)

= (𝜆𝑝′ : (Σ𝑥 : 𝐴.𝐸𝑣𝑡𝐴(𝑎)).𝜋2(𝑝
′))(𝑎, 𝑒)

= 𝜋2(𝑝)

Now consider the map 𝑐(𝑞) or 𝑐(𝑎′, 𝑒′). If 𝑝 = 𝑞 the proof is trivial. If 𝑎′ ̸= 𝑎 then we
cannot compute 𝑐(𝑞, 𝑝) because 𝑐(𝑞) requires an argument of type Σ𝑥 : 𝐴.𝐸𝑣𝑡𝐴(𝑎

′) and
an element 𝑒, the second projection of 𝑝, is of type 𝐸𝑣𝑡𝐴(𝑎). As 𝑎 and 𝑎′ are different so
are 𝐸𝑣𝑡𝐴(𝑎) and 𝐸𝑣𝑡𝐴(𝑎′) and therefore 𝑒 ̸: 𝐸𝑣𝑡𝐴(𝑎′). In the case of 𝑎 = 𝑎′ and 𝑒 ̸= 𝑒′ we
can see that 𝑐(𝑞) equals to 𝑐(𝑝) hence preserving the coherency:

𝑐(𝑞) = 𝑐((𝑎′, 𝑒′))

= 𝑐((𝑎, 𝑒′))

= (𝜆𝑝′ : (Σ𝑥 : 𝐴.𝐸𝑣𝑡𝐴(𝑎))).𝜋2(𝑝
′)) = 𝑐(𝑝)

with:
𝑐(𝑞, 𝑝) = 𝜋2(𝑝)

In summary, the proposed system of coercions is coherent. However, a separate ques-
tion, that we set aside for future work, is how intuitive this system is and whether a more
intuitive solution can be found.

63

Besides, if the qualia is not of Event-type but of a type such as Πℎ : 𝐻𝑢𝑚𝑎𝑛.𝐸𝑣𝑡𝐴𝑃 (ℎ,𝐴𝑟𝑔),
the proposed manner of coercing to it would leave the whole expression incorrectly typed
because contexts usually require one of the proper subtypes of 𝐸𝑣𝑒𝑛𝑡 (i.e. 𝐸𝑣𝑡𝐴(𝑥),
𝐸𝑣𝑡𝑃 (𝑦), 𝐸𝑣𝑡𝐴𝑃 (𝑥, 𝑦)), not the map from agent to event as it happens in the case we
have. In other words, qualia like these require further parametrization in order to get the
shape of Event-type and the paramatrization is not happening as we simply project to the
object. In this case, when qualia records are intended to get parametrized by the action
subject which is not the “owner” of these records, as in the case of “John starts a book ”,
we would like to coerce the noun into an event-type which is already fully specified. Just
the bare Σ-projection would not fulfil this need.

Dependent unit types

We now show that if we try to resolve the issue of having underparametrized qualia records
via an auxiliary method, it would work as intended but once again only for the restricted
case of distinct qualia types otherwise we would be reintroducing incoherence.

The auxiliary method that can be employed here is as follows: instead of having an
entry 𝑒 : Π𝑥 : 𝐴.𝐸𝑣𝑡𝐴𝑃 (𝑒, 𝐴𝑟𝑔) in the record type, we may use a dependent unit type
1𝐷𝑡𝑒𝑙𝑖𝑐_𝐴(𝑏) which would have an explicit parameterized coercion to the desired object.

Definition 1. For each noun 𝐴 a Dependent unit types 1𝐷𝑡𝑒𝑙𝑖𝑐_𝐴(𝑎) and 1𝐷𝑎𝑔𝑒𝑛𝑡𝑖𝑣𝑒_𝐴(𝑎) are
constants defined with the following definition:

1𝐷𝑡𝑒𝑙𝑖𝑐_𝐴, 1𝐷𝑎𝑔𝑒𝑛𝑡𝑖𝑣𝑒_𝐴 : (𝐴)𝑇𝑦𝑝𝑒

together with the same rules of unit types defining existence and uniqueness of their object.
The same notion also can be expressed via the following inference rules:

Γ ⊢Δ 𝑎 : 𝐴

Γ ⊢Δ 1𝐷𝑡𝑒𝑙𝑖𝑐_𝐴(𝑎) : 𝑇𝑦𝑝𝑒

Γ ⊢Δ 1𝐷𝑡𝑒𝑙𝑖𝑐𝐴(𝑎) : 𝑇𝑦𝑝𝑒

Γ ⊢Δ 𝑡𝑒𝑙𝑖𝑐_𝐴𝑎 : 1𝐷𝑡𝑒𝑙𝑖𝑐_𝐴(𝑎)

Γ, 𝑧 : 1𝐷𝑡𝑒𝑙𝑖𝑐_𝐴(𝑎) ⊢Δ 𝐶(𝑧) : 𝑇𝑦𝑝𝑒 Γ ⊢Δ 𝑐 : 𝐶(𝑡𝑒𝑙𝑖𝑐_𝐴𝑎) Γ ⊢Δ 𝑧 : 1𝐷𝑡𝑒𝑙𝑖𝑐_𝐴(𝑎)

Γ ⊢Δ ℰ𝑡𝑒𝑙𝑖𝑐_𝐴𝑎(𝐶, 𝑐, 𝑧) : 𝐶(𝑧)

Γ, 𝑧 : 1𝐷𝑡𝑒𝑙𝑖𝑐_𝐴(𝑎) ⊢Δ 𝐶(𝑧) : 𝑇𝑦𝑝𝑒 Γ ⊢Δ 𝑐 : 𝐶(𝑡𝑒𝑙𝑖𝑐_𝐴𝑎)
Γ ⊢Δ ℰ𝑡𝑒𝑙𝑖𝑐_𝑏𝑜𝑜𝑘𝑎(𝐶, 𝑐, 𝑡𝑒𝑙𝑖𝑐_𝑏𝑜𝑜𝑘𝑎) = 𝑐 : 𝐶(𝑡𝑒𝑙𝑖𝑐_𝐴𝑎)

With use of the dependent type definition we can shift the process of functional ap-
plication from an object level to the coercion application level. We described earlier how
a telic quale of the noun “book ” can be typed as Πℎ : 𝐻𝑢𝑚𝑎𝑛.𝐸𝑣𝑡𝐴𝑃 (ℎ, 𝑏), where 𝑏 rep-
resents an Arg field entry. There, the further application of the agent of the event is
needed to form a proper meaning of the sentence and we did this through wrapper func-
tions which compose desired objects on the computation level. Now, we can avoid using
wrapper functions if we let the respective qualia record be of type 1𝐷𝑡𝑒𝑙𝑖𝑐_𝐵𝑜𝑜𝑘(𝑏) together
with the family of coercions 𝑐(𝑏, ℎ) defined in (84) below:

(84) 1𝐷𝑡𝑒𝑙𝑖𝑐_𝐵𝑜𝑜𝑘(𝑏) ≤𝑐(𝑏,ℎ) 𝐸𝑣𝑡𝐴𝑃 (𝑏, ℎ)

64

An image of the coercion 𝑐 from (84) can be explicitly defined to be an event 𝑒 =
𝑟𝑒𝑎𝑑𝑖𝑛𝑔(𝑏, ℎ), where 𝑟𝑒𝑎𝑑𝑖𝑛𝑔(𝑏, ℎ) : 𝐸𝑣𝑡𝐴𝑃 (𝑏, ℎ) s.t. 𝑟𝑒𝑎𝑑𝑖𝑛𝑔(𝑏, ℎ, 𝑒) : 𝑃𝑟𝑜𝑝 holds for the
homonymic “neo-Davisonian” event predicate of shape 𝑟𝑒𝑎𝑑𝑖𝑛𝑔 : 𝐸𝑣𝑡→ 𝑃𝑟𝑜𝑝.

Now the record of the noun can be composed in the following way:

𝐵𝑜𝑜𝑘𝑇 = Σ𝑏 : 𝐵𝑜𝑜𝑘.Σ𝑒 : 1𝐷𝑡𝑒𝑙𝑖𝑐_𝐵𝑜𝑜𝑘.∀ℎ : 𝐻𝑢𝑚𝑎𝑛.𝑟𝑒𝑎𝑑𝑖𝑛𝑔(ℎ, 𝑏, 𝑒) : 𝑇𝑦𝑝𝑒

or

𝐵𝑜𝑜𝑘𝐴 = Σ𝑏 : 𝐵𝑜𝑜𝑘.Σ𝑒 : 1𝐷𝑎𝑔𝑒𝑛𝑡𝑖𝑣𝑒_𝐵𝑜𝑜𝑘.∀ℎ : 𝐻𝑢𝑚𝑎𝑛.𝑤𝑟𝑖𝑡𝑖𝑛𝑔(ℎ, 𝑏, 𝑒) : 𝑇𝑦𝑝𝑒

With the corresponding coercions defined for dependent unit types as:

1𝐷𝑡𝑒𝑙𝑖𝑐_𝐵𝑜𝑜𝑘(𝑏) ≤𝑐𝑇 (𝑏,ℎ) 𝐸𝑣𝑡𝐴𝑃 (𝑏, ℎ)

1𝐷𝑎𝑔𝑒𝑛𝑡𝑖𝑣𝑒_𝐵𝑜𝑜𝑘(𝑏) ≤𝑐𝐴(𝑏,ℎ) 𝐸𝑣𝑡𝐴𝑃 (𝑏, ℎ)

The new types 𝐵𝑜𝑜𝑘𝑇 and 𝐵𝑜𝑜𝑘𝐴 (𝑇 for Telic and 𝐴 for Agentive qualia) are correctly
defined as we can coerce the dependent unit into the appropriate event:

. . .

𝑟𝑒𝑎𝑑𝑖𝑛𝑔(ℎ, 𝑏) : 𝐸𝑣𝑡𝐴𝑃 (ℎ, 𝑏) → 𝑃𝑟𝑜𝑝 𝑒 : 1𝐷𝑡𝑒𝑙𝑖𝑐_𝐵𝑜𝑜𝑘(𝑏) 1𝐷𝑡𝑒𝑙𝑖𝑐_𝐵𝑜𝑜𝑘(𝑏) ≤𝑐𝑇 (𝑏,ℎ) 𝐸𝑣𝑡𝐴𝑃 (𝑏, ℎ)

ℎ : 𝐻𝑢𝑚𝑎𝑛 ⊢Δ 𝑟𝑒𝑎𝑑𝑖𝑛𝑔(ℎ, 𝑏, 𝑒) : 𝑃𝑟𝑜𝑝

. . .
Σ𝑏 : 𝐵𝑜𝑜𝑘.Σ𝑒 : 1𝐷𝑡𝑒𝑙𝑖𝑐_𝐵𝑜𝑜𝑘.∀ℎ : 𝐻𝑢𝑚𝑎𝑛.𝑟𝑒𝑎𝑑𝑖𝑛𝑔(ℎ, 𝑏, 𝑒) : 𝑇𝑦𝑝𝑒

Essentially the use of distinct dependent unit types for each quale of each noun allows
us to regard them as corresponding events or underspecified events and finish the specifi-
cations (if they are needed) at the coercion level. This alias mechanism removes the need
to define wrapper functions from the Section 5.3.2 as now we can declare projections to
those units as parametrized coercions.

Unfortunately, we cannot allow ourselves to set both projections as coercions at the
same time (i.e. forming the full record 𝐵𝑜𝑜𝑘𝑄). We can coerce to projection images
only in the case of all qualia entries having distinct types. If, for instance, both telic
and agentive quales of the object 𝑎 of a complex noun type 𝐴 would be present in the
record and have coercion-aliases via dependent units of the same type 𝐸𝑣𝑡𝐴(𝜋1(𝑎)) (i.e.
𝐸𝑣𝑡𝐴(𝐴𝑟𝑔)) then it would mean that the following coherency violation takes place for
come context 𝒞:

𝒞(𝑎) = 𝒞(𝑐𝑇 (𝜋1(𝑎), 𝜋𝑡𝑒𝑙𝑖𝑐(𝑎))) = 𝒞(𝑐𝑄(𝜋1(𝑎), 𝜋𝑎𝑔𝑒𝑛𝑡𝑖𝑣𝑒(𝑎)))

where 𝜋𝑡𝑒𝑙𝑖𝑐 and 𝜋𝑎𝑔𝑒𝑛𝑡𝑖𝑣𝑒 are corresponding Σ-projections which we set to be coercions
following the definition (83). The equality can be allowed only in the case when those
coercion images coincide but that is not generally the case.

Therefore, we can only choose beforehand which typing is assigned to each entry of
noun like “book ” in the phrase, either 𝐵𝑜𝑜𝑘𝑇 or 𝐵𝑜𝑜𝑘𝐴.

6 Further Research: Meta-rules
There is a possibility to parse cases of selectional coercion on a level which is outside of
the MTT inference system: through meta-rules, as we will call them. This approach can

65

be linguistically sound but it may give rise to computational issues and hence make the
use of proof assistants difficult or impossible.

In order to give an analysis of a phrase we need to form the MTT-judgement based
on the syntactic structure of the phrase and only then we can use inference rules to check
if the judgment is derivable or not. The step of translation from a syntactic structure
to a semantic MTT-judgement is when we can use meta-rules i.e. where we can employ
new mechanisms of the judgement formation. For example, adjectival modification in
MTTs, as noted in the Section 3.3.2, uses Σ-types, following proposals of Mönnich 1985,
Sundholm 1986 and Ranta 1995. This composition is not dictated solely by the syntactic
structure of the modified noun phrase (we can see how the well-known approach of typing
adjectives as 𝑁𝑃 → 𝑁𝑃 is way closer to the sole structure of a syntactic tree). Hence,
maybe compositional rules from Generative Lexicon (described in the Section 4.3 of this
work) can be used in the straightforward an literal way of this stage of judgement forma-
tion for example as in the following definition of the rule QP:

Qualia Projection Rule (QP): If an interpretation 𝑓(𝑎) of the natural language phrase
in question is ill-typed and 𝑎 is of shape Σ𝑥 : 𝐴.𝐸 where 𝐴 is of 𝐶𝑁 universe and 𝐸 is a
dependent event type or is a Σ-type which can be projected to a dependent event type try
interpreting the phrase as 𝑓(𝑝(𝑎)) instead, where 𝑝 is the corresponding projection of type
𝐸𝑣𝑒𝑛𝑡 or its subtypes.

In other words, we can try employing a coercion from the lexical record at the stage
of judgement formation mimicking the selective binding rule from Generative Lexicon
(Section 4.3 of this work).

The situation with underparameterized event (the ones requiring the agent to finish
the event-type formation) is more complicated as the object of the sentence needs to be
passed to the object of type Π𝑥 : 𝐴𝑔𝑒𝑛𝑡.𝐸𝑣𝑡𝐴(𝑥) which lays in the qualia of the sentence
subject. Rather than trying to set the appropriate meta-rule we can generalize the exis-
tent one as in the rule QP’ below:

Generalized Qualia Projection Rule (QP*): If an interpretation 𝑓(𝑎) of the natural
language phrase in question is ill-typed and 𝑎 is of shape Σ𝑥 : 𝐴.𝑇 where 𝐴 is of 𝐶𝑁
universe and 𝑇 is either 1𝐷𝑡𝑒𝑙𝑖𝑐_𝐴(𝑥) or 1𝐷𝑎𝑔𝑒𝑛𝑡_𝐴(𝑥) or is a Σ-type which can be projected
to either 1𝐷𝑡𝑒𝑙𝑖𝑐_𝐴(𝑥) or 1𝐷𝑎𝑔𝑒𝑛𝑡_𝐴(𝑥) try interpreting the phrase as 𝑓(𝑝(𝑎)) instead, where 𝑝
is the corresponding projection of type 1𝐷𝑡𝑒𝑙𝑖𝑐_𝐴(𝑥) or 1𝐷𝑎𝑔𝑒𝑛𝑡_𝐴(𝑥)

In view of the meta-rule QP* the parameterization of underparameterized event-types
would then happen automatically on the proof level via subtyping with parameterized
coercion as shown in the previous section. If the qualia record does not need to be
parameterized and is just of type 𝐸𝑣𝑒𝑛𝑡, 𝐸𝑣𝑡𝐴(𝑥) ot 𝐸𝑣𝑡𝑃 (𝑥) the meta-rule QP* still can
be used with coercion parameterized only by the Arg field and not by two parameters as
for underspecified events: 1𝐷𝑎𝑔𝑒𝑛𝑡_𝐴 ≤𝑐(𝑥) 𝐸𝑣𝑡𝐴(𝑥).

The approach we just described is just an outline of the possible research as several
questions are posed and not yet answered:

• Would employment of the rules in style of QD and QD* where different typings are
checked preserve computational properties of MTTs and their implementations in
proof assistants?

66

• Would the solution of this sort be sufficient for successful parsing of selectional
coercion cases described in this work? Some of the necessary selectional coercion
may be needed on the level of computation of the expression, hence not visible by
the initial typing.

• As it allows more freedom would the use of such meta-rules overgenerate by yielding
undesired results such as correctness of semantically absurd expression?

7 Conclusion
Let us reiterate the main questions this work addresses, posed originally in Section 1.2:

Main Questions: What are the possible ways of integrating lexical semantics from
the Generative Lexicon for cases of linguistical coercion into
Modern Type Theory? To what extent can selectional coercion
be modelled in MTT enriched with GL-style lexical structure?

In the current work we defined an enhanced way to interpret nouns in MTTs via
recording their lexical meta-properties with the nested Σ-types and dependent event types.
We showed that we can model restricted cases of selectional coercion of nouns in contexts
of verbal and adjective predication in two different ways: with overloading predicates to
address corresponding qualia or via parametrizing secondary Σ-projections which lets us
declare them as MTT-coercions. The restricted language fragment which can be analyzed
is this manner should only include nouns which have qualia of strictly different types
(and with disjoint sets of supertypes) in order not to introduce incoherence and further
inconsistency to the calculus.

Another investigation we conducted concerned selectional coercion constructions that
are ambiguous. We showed that by no means is it possible to allow different equally
plausible interpretations of selectional meaning shifts (such as “to start reading a book”
and “to start writing a book” induced from “to start a book”) solely by means of the LFΔ

system even extended with new constructions we proposed. As discussed in Section 6, it
might be worth investigating possibilities of contributing to ambiguous phrase semantics
formation on a more abstract level, namely, at the stage of translation from sentence’s
syntactic structure to the corresponding LFΔ judgement.

References
Asher, N. and Z. Luo (2013). “Formalization of coercions in lexical semantics”. In: Pro-

ceedings of Sinn und Bedeutung 17, pp. 63–80.
Barwise, Jon and Robin Cooper (1981). “Generalized Quantifiers and Natural Language”.

In: Linguistics and Philosophy 4.2, pp. 159–219. (Visited on 04/19/2024).
Brasoveanu, A. (2010). Handout 2: Two Type Logics. url: https://people.ucsc.edu/

~abrsvn/handout_2.pdf.
Carnap, R. (1947). Meaning and Necessity. Chicago: University of Chicago Press.
Chatzikyriakidis, S. and Z. Luo (2012). “An account of natural language coordination

in type theory with coercive subtyping”. In: In Proceedings of Constraint Solving and
Language Processing: CSLP 2012s, pp. 31–51.

67

https://people.ucsc.edu/~abrsvn/handout_2.pdf
https://people.ucsc.edu/~abrsvn/handout_2.pdf

Chatzikyriakidis, S. and Z. Luo (2013). “Adjectives in a modern type-theoretical setting
with Both Strong and Weak Sums”. In: Proceedings of Formal Grammar: FG 2013, FG
2012, Morrill, G. and Nederhof, M.J. (eds). Springer, Berlin, Heidelberg, pp. 159–174.

— (2020). Formal Semantics in Modern Type Theories. London: Wiley.
Chomsky, N. (1957). Syntactic Structures. Janua linguarum (Mouton, Paris).: Series Mi-

nor. Mouton.
Cooper, R. (2023). From Perception to Communication: A Theory of Types for Action

and Meaning. Oxford Studies in Semantics and Pragmatics Series. Oxford University
Press.

Coq (2010). Algebraic Semantics in Language and Philosophy. INRIA.
Curry, H. and R. Feys (1958). Combinatory Logic, Volume 1. Amsterdam: North Holland

Publishing Company.
Davidson, D. (1967). “The logical form of action sentences”. In: Logic of Decision and

Action, pp. 216–234.
Fitting, M. (2022). “Intensional Logic”. In: The Stanford Encyclopedia of Philosophy. Ed.

by Edward N. Zalta and Uri Nodelman. Winter 2022. Metaphysics Research Lab,
Stanford University.

Frege, G. (1892). “Über Sinn und Bedutung”. In: Zeitschrift für Philosophie und philosophis-
che Kritik 100, pp. 25–5-.

Gallin, Daniel (1975). Intensional and Higher-Order Modal Logic: With Applications to
Montague Semantics. New York: American Elsevier Pub. Co.

Gentzen, G. (1935). “Untersuchungen uber das logische Schließen”. In: Mathematische
Zeitschrift 39, pp. 176–210.

Howard, W.A. (1980). “The formulae-as-types notion of construction”. In: To H.B. Curry:
Essays on Combinatory Logic, pp. 469–490.

Janssen, T. M. V. and T. E. Zimmermann (2021). “Montague Semantics”. In: The Stan-
ford Encyclopedia of Philosophy. Ed. by Edward N. Zalta. Summer 2021. Metaphysics
Research Lab, Stanford University. url: https://plato.stanford.edu/archives/
sum2021/entries/montague-semantics.

Lambek, Joachim (1958). “The Mathematics of Sentence Structure”. In: Journal of Sym-
bolic Logic 65.3, pp. 154–170.

Landman, F. (n.d.). Advanced Semantics. Chapter Five: Intensional Type Logic. url:
https://www.tau.ac.il/~landman/files/advanced-semantics/5%20Intensional%
20Type%20Logic.pdf.

Link, G. (1998). Algebraic Semantics in Language and Philosophy. CSLI Publications.
Luo, Z. (1994). Computation and Reasoning: A Type Theory for Computer Science. In-

ternational Series of Monographs on Computer Science. Clarendon Press.
— (1997). “Coercive subtyping in type theory”. In: Computer Science Logic 1996, Lecture

Notes in Computer Science 1258.
— (1999). “Coercive subtyping”. In: Journal of Logic and Computation 9(1), pp. 105–140.
— (2011a). “Contextual Analysis of Word Meanings in Type-Theoretical Semantics”. In:

Lecture Notes in Artificial Intelligence LNAI 6736, pp. 169–174.
— (Jan. 2011b). “Type-theoretical semantics with coercive subtyping”. In: Proceedings of

SALT; Vol 20 (2010); 38-56 20.
— (2014). “Formal Semantics in Modern Type Theories: Is It Model-Theoretic, Proof-

Theoretic, or Both?” In: Logical Aspects of Computational Linguistics 2014 (LACL
2014), pp. 177–188.

68

https://plato.stanford.edu/archives/sum2021/entries/montague-semantics
https://plato.stanford.edu/archives/sum2021/entries/montague-semantics
https://www.tau.ac.il/~landman/files/advanced-semantics/5%20Intensional%20Type%20Logic.pdf
https://www.tau.ac.il/~landman/files/advanced-semantics/5%20Intensional%20Type%20Logic.pdf

Luo, Z. (2019). “Donkey Anaphora: Type-Theoretic Semantics with Both Strong and
Weak Sums”. In: Proceedings of the ESSLLI 2021 Workshop on Computing Semantics
with Types, Frames and Related Structures, pp. 45–52.

— (2021). “Proof Irrelevance in Type-Theoretical Semantics”. In: Logic and Algorithms
in Computational Linguistics 2018 (LACompLing2018), Studies in Computational In-
telligence (SCI). Springer.

Luo, Z. and S. Soloviev (2017). “Dependent event types”. In: Logic, Language, Information,
and Computation 10388.

Luo, Z., S. Soloviev, and T. Xue (2013). “Coercive subtyping: Theory and implementa-
tion”. In: Information and Computation 223, pp. 18–42.

Martin-Löf, P. (1984). Intuitionistic Type Theory. Naples: Bibliopolis.
— (1998). “An intuitionistic theory of types, Twenty-five years of constructive type theory

(Venice, 1995)”. In: Oxford Logic guides 36, pp. 127–172.
Mönnich, U. (1985). Untersuchungen zu einer konstruktiven Semantik fur ein Fragment

des Englischen. Habilitation, University of Tübingen, Tübingen.
Montague, R. (1970). “Universal Grammar”. In: Theoria 36, pp. 373–398.
Nunberg, Geoffrey (1979). “The Non-Uniqueness of Semantic Solutions: Polysemy”. In:

Linguistics and Philosophy 3.2, pp. 143–184.
Parsons, T. (1990). In: Events in the Semantics of English.
Pustejovsky, J. (1996). The Generative Lexicon. Cambridge: MIT Press.
— (2005). A Survey of Dot Objects. Waltham Mass.: Brandeis University. Ms.
— (2008). “From concepts to meaning: The role of lexical knowledge”. In: Unity and

Diversity of Languages, pp. 73–84.
Pustejovsky, J. and P. Anick (1988). “On The Semantic Interpretation Of Nominals”. In:

Proceedings of COOLING-1988.
Quine, W. V. (1956). “Universal Grammar”. In: The Journal Of Philosophy 53, No. 5,

pp. 177–187.
Ranta, A. (1995). Type-theoretical Grammar. Oxford: Oxford Press.
Russell, B. (1903). The Priciples of Mathematics. Cambridge: Cambridge University Press.
Sundholm, G. (1986). “Proof Theory and Meaning”. In: Handbook of Philosophical Logic:

Volume III: Alternatives in Classical Logic. Ed. by D. Gabbay and F. Guenthner.
Dordrecht: Springer Netherlands, pp. 471–506.

— (1989). “Constructive Generalized Quantifiers”. In: Synthese 79.1, pp. 1–12.
Wittgenstein, L. (1922). “Tractatus Logico-Philosophicus”. In: London: Routledge, 1981.
Xue, T. (2013). Theory and Implementation of Coercive Subtyping. PhD thesis, Royal

Holloway University of London.
Zimmermann, T. E. (1989). “Intensional Logic and Two-Sorted Type Theory”. In: The

Journal of Symbolic Logic 54.1, pp. 65–77.

69

	Introduction
	Outline
	Our Proposal
	Structure of The Text

	Background: Simple Type Theories in Formal Semantics
	Montague Semantics
	Gallin's TY2
	Intensionality
	Examples
	TY2 Limitations

	Modern Type Theories in Formal Semantics: Overview
	Core Additions of MTT
	CNs as Types.
	Coercive Subtyping
	Dependent Types and Inductive Types
	Dot-Types
	Proof-theoretic Semantics and the Prop Universe
	Type universes:
	Intensionality and Contexts

	Formal Definition: the system LFΔ
	Formal Semantics with MTTs
	CN-as-types in Action
	Adjectival Modification
	Dot-types for Co-predication
	Unit Types for Type Overloading
	Dependent Event Types

	Proposal: MTTs and Lexicality
	Selectional Coercions in MTTs
	Generative Lexicon: The Lexical Conceptual Paradigm
	Generative Lexicon: Compositional Mechanisms

	Proposal: Lexical Conceptual Paradigm in MTT's
	The two challenges
	Lexical records and selectional coercions
	Ambiguous selectional coercions in MTT.

	Lexical Records in MTTs
	The Lexical Conceptual Paradigm (LCP) in MTT
	Event Semantics for Qualia Records
	Interim Summary

	Formal Semantics with Lexical Records
	(The lack of a) Pure Solution
	Wrapper Functions
	Projections as Coercions and Dependent Unit Types

	Further Research: Meta-rules
	Conclusion

