
Universitat de Barcelona

Fundamental Principles of Data Science Master’s
Thesis

Attention mechanisms in transformers:
A new formula with mathematical foundations and enhanced

interpretability

Author:
Eddie Conti

Supervisor:
Prof. Arturo Vieiro Yanes

Prof. Oriol Pujol Vila

A thesis submitted in partial fulfillment of the requirements
for the degree of MSc in Fundamental Principles of Data Science

in the

Facultat de Matemàtiques i Informàtica

July 9, 2024

https://web.ub.edu/inici
https://github.com/EddieConti/Master-Thesis-UB
http://www.maia.ub.es/~vieiro/
http://www.maia.ub.es/~oriol/
https://mat.ub.edu/

Acknowledgements

Thanks to professors Arturo Vieiro Yanes and Oriol Pujol Vila for the help during
the thesis.

ii

Contents

1 Introduction and overview 1
1.1 Seq2seq . 2

1.1.1 Capturing the context: Attention mechanism 4
1.2 The transformer architecture . 4

1.2.1 Positional Encoding . 5
1.2.2 Transformer Block . 6
1.2.3 Motivation for scaling the dot products 8
1.2.4 Layer Normalization and Feed Forward 9
1.2.5 The decoder . 10

2 The amount of parameters in LLM 12
2.1 Transformers for long sequences: changing the attention 12

2.1.1 Sparse attention . 13
2.1.2 Linear attention . 15
2.1.3 Matrix factorization . 17

3 Behind the scenes of Self-Attention 19
3.1 Experiments on attention layer . 20

3.1.1 On the structure of attention weights 22
3.1.2 Description of the sets . 23
3.1.3 Validation of attention scores approximation 26

4 Conclusion and further investigations 28

References 29

iv

1 Introduction and overview

Large Language Models (LLMs) are AI systems capable of understanding and gen-
erating human language by processing vast amounts of text data. In recent years,
specifically from 2017, the use of LLMs significantly increased thanks to the intro-
duction of the Transformer architecture. This particular structure is characterized
by several aspects as:

• Context-depending mechanism;

• Attention mechanism;

• Multitask-training using huge amounts of text;

• Parallel processing.

Even though the deep architecture is composed of several components, it can be
summarized as a tool to find a proper embedding of the input and the output. The
representation of text is the main aspect of LLMs. Formally, given a vocabulary V of
size |V| = l, an embedding is a function

E : V → Rd

so that a word w ∈ V is represented by a row vector with d entries. therefore, a
vocabulary V will be represented by a matrix M ∈ MR(l, d), where MR(l, d) is the
space of real matrices of dimension l×d. However, finding the proper function E is not
straightforward. The easiest case would be to to represent each word vi ∈ V with the
unit vector ei = (0, . . . , 0, 1, 0, . . . , 0) where 1 is in the i−th position. Unfortunately,
this embedding is not suitable for understanding and replicating human language.
Indeed, if we perform vi · vj = 0, namely every word are represented by orthogonal,
and so independent, vectors. When representing the text with vectors we aim at
capturing the similarity of the word based on the context: in this regards we expect
that words as ‘tree’, ‘leaf’ are similar while ‘train’ and ‘rock’ are dissimilar. However,
capturing similarity is not the only desirable goal. Language is often self-referential,
in the sense that we have words that refer to or replace other words, even though
their meanings are not related. To illustrate, consider the following example:

Luca is studying in Spain. He is very happy.

In the previous sentence, the word “He” is replacing “Luca”, and we need to capture
this aspect of language. Furthermore, to create an interactive tool, it is essential to
capture this self-referential aspect at a high level. Everything is about embedding, or
in other terms, finding a good way to represent your input so that your architecture
can process and elaborate it.
The Transformer architecture meets these requirements and is able to produce embed-
dings suitable for a variety of tasks such as translation, text summarization, natural
language generation, and more. Nevertheless, the number of parameters involved
is extremely large and expensive. Moreover, the core of the Transformer, the Self-
Attention mechanism, lacks a proper mathematical treatment. Given these limita-
tions, this thesis delves into the aspects of transformers in mathematical terms.

In the first Chapter, we analyze the architecture, explaining each component in de-
tail. This is a key aspect to understand at a deep level the architecture and the
flow of information as well as the complexity of it. It is clear from the mathematical
formulation in equations (3) that the computational cost of computing the attention
weights is quadratic. This has led the scientific community to search for equivalent
or similar formulations while reducing computational complexity.

1

In Chapter 2 we present already existing a posteriori approaches that reduce the
complexity of the Transformer architecture. Specifically, we explore Sparse Attention,
Linear Attention, and matrix factorization approaches to linearly scale the complexity.
The main idea is to approximate or reduce the attention weight matrix. However, in
this thesis we wanted to explore through experiments if there exists a structure in the
attention weight matrix and exploit it to define an alternative formulation. Inspired
by paper [12] this lead to the next and conclusive chapter.

In the third Chapter, we delve into the mathematical and geometrical aspects of
the attention scores formula. In this section we explore the experimental session we
carried out: firstly we used and adapted the code of the transformer architecture for
translation from english to italian and then we visualize the attention weight matrices
for several settings. Here, we derive a novel formula (cfr. (13)) that encapsulates the
attention mechanism at a high level. Essentially, we guide queries and keys to inter-
act in a specific manner, encoding the distinct roles of attention heads and directing
values on where to seek context. This not only simplifies the architecture but also
enhances the explainability of the underlying processes.
In mathematical terms, we can think of this formula as projecting the attention scores
matrix, say H, onto the space of band matrices with fixed bandwidth. This convex
subspace is clearly finite dimensional and therefore closed. As a consequence, the
projection on this space is well-posed and unique. However, at the price of loosing
the uniqueness of the projection (i.e. the best approximation for H), we defined a new
space which is made by band matrices + error sparse matrices. We prove that this is
a compact subspace which guarantees the existence of a matrix that best approximate
H. This space allow us to find a better solutions and matrices with more elasticity
since we introduce randomness.
We conclude the thesis validating the new formula, namely calculating how well the
new formula for attention scores approximates the original one (see Table 16 and Ta-
ble 17). We coded different functions to generate the desired matrices and we checked
the approximation against the original.
Additionally, we explore the impact of different parameters such as w (context win-
dows) and num-pos (number of relevant words in a sentence). These analyses provide
deeper insights into how languages are processed and translated, revealing nuances
in the roles of context and word relevance.
In conclusion, our new formula not only simplifies the attention mechanism but
also offers enhanced interpretability and approximate properly the original atten-
tion weight matrix. This contribution lays the groundwork for further research on
the role of context windows and the significance of word relevance, that could enrich
our understanding of languages in translation.

All the experiments, code, images and papers can be found in the following GitHub
repository: https://github.com/EddieConti/Master-Thesis-UB

1.1 Seq2seq

Commonly, LLMs are used for text generation and encoder-decoder is the standard
modeling paradigm for sequence-to-sequence tasks. The encoder reads source se-
quence and produces its representation; while the decoder uses source representa-
tion from the encoder to generate the target sequence. Given an input sequence
x = (x1, . . . , xn) ∈ Vn we aim at finding the target sentence y∗ = (y∗1, . . . , y

∗
n′), for

certain n, n′ ∈ N, that is the most probable given the input. The output y∗ is an
element of a final set, for example, another vocabulary V ′ in case of translation task
as the one we are going to consider. Formally, the target sequence that maximizes

2

the conditional probability p(y|x):

y∗ = argmax
y

p(y|x).

In the case of language models, any possible output y = (y1, ..., yn′) depends on the
previous generated outputs. Then, the probability of a sequence of generated outputs
can be decomposed as

p(y1, . . . , yn′) = p(y1) · p(y2|y1) . . . p(yn′ |y1, . . . , yn′−1) =
n′∏
t=1

p(yt|y<t)

and so taking into account the input and the parameters the aim is to determine the
most probable output

y∗ = argmax
y

n′∏
t=1

p(yt|y<t, x).

Neural seq2seq models are trained to predict probability distributions of the next
token given previous context (source and previous target tokens). At the timestep t
a model predicts a probability distribution

p(t) = p(· |y1, . . . , yt−1, x1, . . . , xn).

The target at this step is p∗ = one-hot(yt), i.e., we want a model to assign probability
1 to the correct token, yt, and zero to the rest. The standard loss function is the
cross-entropy loss:

Loss(p∗, p) = −p∗ log(p) = −
l∑

i=1

p∗i log(pi)

but since only one p∗i (for the correct token yt) is non-zero we get

Loss(p∗, p) = log(pyt) = − log(p(yt|y<t, x)).

Hence, at each step we maximize the probability a model assigns to the correct token.
Now that we know how the model is trained, we focus on how to generate the sentence,
i.e, how to find y∗ that satisfies

y∗ = argmax
y

n′∏
t=1

p(yt|y<t, x).

The total amount of feasible solution is |V ′|n′
which is typically too large, hence

usually there are two approaches that can be used to find an approximate solution:
Greedy Decoding and Beam Search. The former, consists of generating at each step a
token with the highest probability. Even though it is a good baseline, mathematically

argmax
y

n′∏
t=1

p(yt|y<t, x) ̸=
n′∏
t=1

argmax
yt

p(yt|y<t, x).

As a consequence, Beam Search, tries to tackle this issues by keeping track of several
most probably hypotheses. At each step we continue each of the current hypotheses
and pick top-N of them.

3

1.1.1 Capturing the context: Attention mechanism

So far, we have introduced the framework of LLMs, focusing on seq2seq models. The
simplest architecture consists of two Recurrent Neural Networks (RNNs), e.g. two
Long Short Time Memory (LSTMs) networks: an encoder RNN reads the source
sentence, and its final state is used as the initial state of the decoder RNN. The hope
is that the final encoder state “encodes” all information about the source, allowing the
decoder to generate the target sentence based on this vector. However, the constraint
of condensing all information into a single vector fails to capture the complexity of
language and often proves insufficient for synthesizing the input. This motivates the
introduction of the concept of attention (see paper [2]).
The attention mechanism is the foundation of the transformer architecture, which we
will be discussed in the next section. The basic idea is to allow the model to weight
the importance of each word within a sequence according to its context. In this
way, the model can capture long-range word relationships without relying on rigid
sequential structures. In simple terms, the attention mechanism looks at an input
sequence and decides, at each step, which other parts of the sequence are important.

1.2 The transformer architecture

A transformer is an architecture presented for the first time in the 2017 paper At-
tention Is All You Need [1], for transforming one sequence into another one with the
help of two parts: Encoder and Decoder. A basic sketch is represented in Figure 1.

Figure 1: The transformer architecture. Image from [1].

Let us now explore the architecture in Figure 1. As we can see it is an Encoder-
Decoder architecture: the former consists of encoding layers that process the input
tokens iteratively one layer after another, while the latter consists of decoding layers
that iteratively process the encoder’s output as well as the decoder output’s tokens
so far.
The sequence is presented as a list of tokens xi for i = 1, . . . , n, usually as one-hot en-
codings. We denote with X the matrix representing the input sequence of dimension
n × l1. Since the vocabulary size |V| = l is very large we reduce the dimensionality

1From an algorithmic point of view, we force the input to have always the same length. This
is achieved by using padding, which consists of adding special tokens (usually called ’[PAD]’) at

4

by computing
X ·WE , WE ∈ Rl×d and d = 512,

where the matrix WE is trainable. Now we have a matrix that is representative of
our input sequence of size (n, d). Lastly, following reference [1], we multiply X ·WE

by
√
512.

From now on we will omit that we actually work with tensors because the input is
not a single sentence but rather a set of sentences of dimension batch− size.

1.2.1 Positional Encoding

As we already pointed out, all tokens are presented to the Transformer simultaneously.
However, this results in the loss of the original order of tokens in the input sequence.
The purpose of positional encoding is to encapsulate the relative positions of tokens
within a target sequence. Before presenting the original function, let us delve into
our intuition as to why positional encoding is necessary.
The general idea is to allow the model to differentiate between words with similar
meanings but different positions in the sentence. For example, if we consider the
following sentences:

Luca did not won the football tournament and he was happy;

Luca won the football tournament and he was not happy.

Without any additional information about the positions of the words, the model
might treat the sentences similarly, although the meaning is different.
A first approach could be to add the index of the of the token to its representation:
xi 7→ xi ·WE + i. However, as we will see in the next pages we are going to perform
matrix operations and exponentiation, and xi · WE + i grows as the length of the
sequence grows. This is dangerous as it can lead to exploding gradients.
Hence, one possibility would be to normalize index i so it ranges values between [0, 1].
Unfortunately, this strategy would still confuse the model if the input text length
varies, since the result would contain different positional embeddings for the same
positions in different input sequences. The solution presented in paper [1] involves
using a sine and cosine function to create a d dimensional vector for each position
in the sentence. The positional encoding is defined as a function f : N → Rd where,
given t ∈ N, the i−th entry is defined as

f(t)(i) =

{
sin(ωk · t) if i = 2k,

cos(ωk · t) if i = 2k + 1
(1)

with

ωk =
1

N2k/d
.

Alternatively, it can be expressed as a complex valued function as

f(t)(i) = eit/ωk k = 0, . . . , d/2− 1.

In paper [1] N = 10000, but in general is a free parameter that should be significantly
larger than the biggest k that in our notation is d/2− 1. The main idea behind this
function is that it allows one to perform shifts as linear transformations and this is
useful to express the relative position. For the sake of simplicity, let us fix i = 2k

f(t+ s)(i) = sin(ωk · (t+ s)) = sin(ωk · t+ ωk · s)
= sin(ωk · t) cos(ωk · s) + sin(ωk · s) cos(ωk · t)
= a sin(ωk · t) + b cos(ωk · t).

the end of shorter sentences until the desired length is reached. In order to handle these padding
tokens correctly during processing, a mask, that will be described later, is used to tell the model
which positions are padding and should not be taken into account in the attention calculations.

5

Similarly, for i = 2k + 1

f(t+ s)(i) = cos(ωk · (t+ s)) = cos(ωk · t+ ωk · s)
= cos(ωk · t) cos(ωk · s)− sin(ωk · t) sin(ωk · s)
= a′ cos(ωk · t) + b′ sin(ωk · t),

hence for a fixed offset s we can express the (t+ s)−th position a linear combination
of (known functions of) the t−th position. As stated by the authors they hypothesise
that this property would allow the model to easily learn to attend relative positions.
Furthermore, there is another relevant reason for this specific function: the output
for a fixed t, i.e. for a fixed position, is a d dimensional vector

(sin(ω1 · t), cos(ω2 · t), . . . , sin(ωd · t))

where t ∈ N influences the oscillation of the sine/cosine function. As a consequence
when changing the parameter t we obtain a different vector that is representative of
that position of the word. The positional embedding is a matrix P ∈ RN×d and it is
then added to X ·WE in a compatible way

X ·WE + P [: n, :] ∈ Rn×d, (2)

where P [: n, :] refers to the matrix formed by the first n rows of P . A dropout of 0.1
is then applied to the previous matrix.

1.2.2 Transformer Block

In this pages we are going firstly to introduce in mathematical formulas all the equa-
tions describing a transformer block and the final output of the encoder, then we are
going to explain each equation in details and the meaning of the different parameters.

The crucial step of the architecture is the so called the transformer block consisting
of several parts as shown in Figure 1. For simplicity, let us denote again by X ∈ Rn×d

the position-aware word embedding as given in (2). We can think of the transformer
block as a function depending on some parameters θ

fθ : Rn×d → Rn×d.

In this scenario, the name transformer captures that function fθ is just transforming
the input as the domain and codomain are the same. The block can be described
in mathematical terms as it follows: Given X, then fθ(X) = Z, Z = (z1, . . . , zn),
zi ∈ Rd, where:

Q(h)(xi) = W T
h,q(xi), K(h)(xi) = W T

h,k(xi), V (h)(xi) = W T
h,v(xi) Wh,q,Wh,k,Wh,v ∈ Rd×k,

α
(h)
i,j = softmaxj

(Q(h)(xi) · (K(h)(xj))
T

√
k

)
,

u′i =
H∑

h=1

W T
c,h

n∑
j=1

α
(h)
i,j V

(h)(xj), Wc,h ∈ Rk×d,

ui = LayerNorm(xi + u′i; γ1, β1), γ1, β1 ∈ Rd,

z′i = W T
2 ReLU(W T

1 ui + b1) + b2, W1 ∈ Rd×m,W2 ∈ Rm×d, b1, b2 ∈ R
zi = LayerNorm(ui + z′i; γ2, β2), γ1, β1 ∈ Rd.

(3)
The LayerNorm function is defined as

LayerNorm(z; γ, β) = γ
(z − µz)

σz + ϵ
+ β, (4)

6

where ϵ is a fixed number as 10−6 to prevent division by 0, and

µz =
1

k

k∑
i=1

zi, σz =

√√√√1

k

k∑
i=1

(zi − µz)2.

Thus, given x ∈ Rn×d we produce z ∈ Rn×d such that Z = fθ(X) where f describes
the transformer block and the parameter θ consists of entries of weight matrices W
along with the parameter of LayerNorm and RELU. In the general setting the final
output is a stack of transformer blocks and can be computed as the composition

fθL ◦ . . . ◦ fθ1(X) ∈ Rn×d.

In the paper [1] the hyperparameters are d = 512, k = 64, m = 2048, H = 8 and
L = 6. Where d is the dimension of the model, k is the dimension of each head (we
are going to explain in a moment the meaning of head), m is used for the dimension
in the RELU matrices, H = d/k is the number of heads and L is the number of layers.

Let us now explore each step involved in the transformer block. The first equation
is the formalization of the so called query, key and value vectors. First of all, three
matrices Wq,Wk,Wv ∈ Rd×d are randomly initialized: these matrices are then split
to obtain sub-matrices of dimension (n, k) as it follows:

Wq → W1,q = Wq[:, : k], . . . ,WH,q = Wq[:, d− k : d],

Wk → W1,k = Wk[:, : k], . . . ,WH,k = Wk[:, d− k : d],

Wv → W1,v = Wv[:, : k], . . . ,WH,v = Wk[:, d− k : d].

(5)

Where A[:, a : b] refers to the matrix formed by the columns from a to b of A. The
case when a = 0 is denoted as A[:, : b].
After reducing the dimensionality from (d, d) to (d, k), we compute query, key, value
vectors as

Q(h)(xi) = W T
h,q(xi), K(h)(xi) = W T

h,k(xi), V (h)(xi) = W T
h,v(xi). (6)

We denote d/k withH i.e. the number of heads. The geometric and intuitive meaning
of these matrices can be found in chapter 3. The next expression describes the self-
attention mechanism

Attention(Q(h),K(h), V (h)) = Softmax
(Q(h)(K(h))T√

k

)
V (h), (7)

and we usually refer to them as attention values, while the attention weights are

Softmax
(Q(h)(K(h))T√

k

)
(8)

We compute the attention for each head i.e. each splitting of Wq,Wk,Wv so that

headi = Attention(Q(i),K(i), V (i)), i = 1, . . . ,H.

It is essential to observe that each Wi,q,Wi,k,Wi,v is of dimension (n, k) so that is
“looking” at the whole sentence but in different positions, i.e. is looking at different
attributes of the embedded input. The next equation is the output of the so called
Multi-head attention. If Q,K, V refers to the concatenation of Q(h),K(h), V (h) then
the third equation can be expressed as

MultiHead(Q,K, V) = Concat(head1, . . . , headh)Wc (9)

where Wc is a matrix of dimension (H×k, d) = (d, d) and so the output of Multi-Head
attention lies in Rn×d. The role of the matrix Wc is to extract the most valuable
information from each head by weighting their outputs and this is why in linear
expression can be split into Wc,h for h = 1, . . . ,H.

7

Figure 2: Embeddings, query and key vectors. This figure, as well as Figure 3 and
4 are taken from https://towardsdatascience.com/drawing-the-transformer-network-
from-scratch-part-1-9269ed9a2c5e

Figure 3: Multi-Head Attention. The matrix WO is what we denoted with Wc

1.2.3 Motivation for scaling the dot products

Before proceeding with the transformer block, it is worthy to motivate the division

by
√
k in (8) in computing the attention weights α

(h)
i,j . This factor is applied before

the softmax because it leads to more stable gradients. To understand this, we recall
that the softmax function is a vector function

Softmax : Rn → Rn

zi 7→ si :=
ezi∑
j e

zj
.

(10)

Now, if we compute the partial derivatives for k ̸= i

∂si
∂zi

=
∂

∂zi

ezi∑
j e

zj
=

ezi∑
j e

zj
+ ezi

∂

∂zi

1∑
j e

zj
=

ezi∑
j e

zj
−
(ezi∑

j e
zj

)2
= si · (1− si),

∂si
∂zk

=
∂

∂zk

ezi∑
j e

zj
= ezi∂zk

1∑
j e

zj
=

−eziezk(∑
j e

zj
)2 = −si · sk.

8

Therefore, the Jacobian of (10) can be expressed as

Js =

s1 · (1− s1) −s1 · s2 · · · −s1 · sn
−s2 · s1 −s2 · (1− s2) · · · −s2 · sn

...
...

. . .
...

−sn · s1 −sn · s2 · · · −sn · (1− sn).

It is immediate to observe that the Jacobian becomes zero if occurs one among

s = (1, 0, . . . , 0), s = (0, 1, 0, . . . , 0), . . . , s = (0, . . . , 0, 1). (11)

However, the Softmax function is not scale invariant, which means that with increas-
ing scale, the function assigns a value close to 1 to the largest input value and 0 to
all other values. To see this, if we consider the vector z = (1, 2, 0.5,−1) the softmax
will be (0.2242,0.6095, 0.1360, 0.0303) but if we consider the doubled vector 2z then
the output is approximately (0.11396,0.84203, 0.04192, 0.00209).
Therefore, for large inputs the Softmax function is generating outputs which closely
resemble the values in (11). To tackle the problem of the vanishing gradient is neces-
sary to rescale the dot products as the larger the dimension d of the key vectors and
query vectors, the larger the dot products will tend to be.

1.2.4 Layer Normalization and Feed Forward

At this point the output of the Multi-Head Attention U ′ is combined with X coming
from residual connection. The idea is to still consider the original embedding and to
move smoothly through the architecture. Vectors u′i and xi are combined using the
Layer Normalization function in (4). The output is then

U = γ1
X + U ′ − µx,u

σx,u + ϵ
+ β1 ∈ Rn×d

Here we apply to each ui a Feed Forward network consisting of two linear transfor-
mations with a ReLU activation in between. The dimensionality of input and output
is d, and the inner-layer has dimensionality m = 2048 described by:

z′i = max(0;uiW1 + b1)W2 + b2

where W1 ∈ Rd×m, W2 ∈ Rm×d and b1, b2 ∈ R. Finally, we again employ a residual
connection and a normalization around the fully connected FFN analogously to as
described above and produce the final embedding zi for each xi.
All of these operations can be sintetized using the function fθ defined in (3) such that

fθ(X) = Z.

However, this is just a transformer block, but the encoder is made by L (number of
layers) transformer blocks stacked, so that the final context aware embedding is

fθL ◦ . . . ◦ fθ1(X) ∈ Rn×d.

We summarize the architecture in the following picture.
The general motivation for such a deep architecture is that, in order to capture the
relationships between words, a crucial aspect for translating and generating language,
it is essential to analyze the input text from many different perspectives. Similar to
what happens with images in convolutional neural networks, each encoder captures
a depth-dependent connection among the input. Language is extremely complex and
heterogeneous; therefore, we need a complex structure capable of apprehending all
its facets.

9

Figure 4: Graphical visualization of the transformer block we have described so far.
The encoder is just a concatenation of these blocks.

1.2.5 The decoder

The decoder is responsible for sequentially generating output based on the informa-
tion processed by the encoder. Structurally, it is similar to the encoder, although
particular attention must be given to some aspects.
Firstly, the decoder takes positional information and embeddings of the output se-
quence as its input. During self-attention, the decoder employs a mask to ensure that
each position can only be influenced by preceding positions in the sequence. This
mask is crucial to ensure that the model generates sequential output correctly with-
out “looking ahead” during generation. The masked multi-head attention is similar
to what we described before; however, we apply a method to prevent computing at-
tention scores for future words.

Figure 5: Details on how attention coefficients are computed. Image from paper [1]

As Figure 5 points out the mask is applied after the scaling operation. Let A be the
matrix of scaled values ai,j and M the masking matrix defined, in a limit sense, as

0 −∞ −∞ · · · −∞
0 0 −∞ · · · −∞
...

...
. . .

...
...

0 0 · · · 0 −∞
0 0 · · · · · · 0

 .

If we add matrix M to matrix S we obtain a matrix of masked scores whose elements
are sij if i ≥ j and −∞ otherwise. At this point if we apply the softmax to each row
vector (the values for each token) if we have −∞, i.e. a large negative number, then
the output of the softmax will be (approximately) 0. As a consequence, we end up

10

with a matrix of the form
a′1,1 0 0 0 0

a′2,1 a′2,2 0 0 0
...

...
. . .

...
...

a′n−1,1 a′n−1,2 · · · a′n−1,n−1 0

a′n,1 a′n,2 · · · · · · a′n,n

 .

The attention coefficients are computed as

MaskedAttention(Q,K, V) = softmax

(
M +

QKT

√
k

)
V. (12)

It is worthy to note that even if in (12) we end up with a full matrix, the j−th row,
i.e, the attention coefficients for input xj , are computed as

(a′j,1, . . . , a
′
j,j , 0, . . . , 0) · V.

In other words, they are linear combinations of a′j,1, . . . , a
′
j,j and this encodes exactly

that the decoder is only influenced by preceding positions in the sequence. To sum
up, the output of the first Multi-Head attention is a masked output vector with
information on how the model should attend on the decoder’s input.
In the second Multi-Head attention layer we use cross-attention so that the decoder
interacts with the output of the encoder Z. If we denote again with X the input of
the decoder, we apply the attention formula as

softmax

(
XZT

√
k

)
Z

so that the query is from the decoder while key and values are from the encoder.
This is consistent with what we said in the previous section. The query dialogue with
the key from the encoder in order to capture the similarity between what will our
output and our original input. Then, to produce the output we apply the values from
encoder that are trained to produce words given the similarity. Here, the architecture
proceeds similarly to the encoder’s one: it processes the inputs with feed forward
layers and normalization. Residual connections are applied to move smoothly through
the architecture for the back propagation.
Finally, the output let us say Y ∈ Rn′×d where n′ is the length of the output sequence,
is approximated by the closest word in the target vocabulary of size l′ (for instance,
in the case of text summarization or question-answer the vocabulary is the same, but
if we are translating clearly differs from the input one) tasks by performing

Y · P, P ∈ Rd×l′ .

Here, a softmax will produce probability scores between 0 and 1. We take the index
of the highest probability score, and that equals to our predicted word. The decoder
then takes the output, add’s it to the list of decoder inputs, and continues decoding
again until a <end> token is predicted. Therefore, the decoding steps produces a
word that is the most probable according to the input and its context and the previous
word generated: in this way we gained the ability to produce meaningful sentences
that are related to the input sentence.

Now that we have detailed the architecture, in the next chapter, we will explore its
limitations and present the efforts from the scientific community to address these
challenges.

11

2 The amount of parameters in LLM

In this section, we present alternative formulations of the Transformer architecture.
We will explore sparse attention, linear attention, and matrix factorization methods,
each of which reduces the complexity of the Transformer architecture. These ap-
proaches serve as a foundation for our formulation, which we present in Chapter 3.
with the difference that we aim at exploring at a deeper level the attention matrix
and exploit its structure.

Transformers are the primary architecture employed for LLMs. Despite their notable
capabilities in understanding and generating language, such as GPT, a crucial aspect
of these models lies in their substantial number of parameters, particularly when
applied to the English language. The desire to capture the richness of linguistic
context has led to architectures of considerable size, comprised of millions or even
billions of parameters. As explained in Chapter 1, in order to comprehend language,
it is essential to use a huge variety of matrices (i.e., word representations) and long-
distance word relationships.
The largest models can have a context window size of up to 128000 tokens as in
the case of GPT-4o. Previous versions as GPT-3.5 has a context window ranging
from 4, 000 to 16, 000 tokens, while the legacy GPT-3 has a context window of 2, 000
tokens. This is translated in a huge number of parameters involved in the model, see
Table 1.
Additionally, the significant economic costs, as well as the environmental impact, in
terms of computational resources and infrastructure must be taken into account.

Name Release Date Number of parameters

GPT-1 June 2018 117 million

BERT October 2018 340 million

GPT-2 February 2019 1.5 billion

GPT-3 May 2020 175 billion

LaMDA January 2022 137 billion

Minerva June 2022 540 billion

Table 1: List of some LLMs with the amount of parameters

As it is clear from Table 1 training transformer-based architectures can be expensive,
especially for long inputs.

Within this context, the challenge of balancing the expressive power of advanced
language models with the need to optimize computational efficiency emerges.

2.1 Transformers for long sequences: changing the attention

The Transformer architecture suffers from limitations when it comes to processing
long sequences. Most of the complexity of the architecture lies in the self-attention
mechanism, where we compute the attention coefficients. Each token xi is related
to every other token xj in order to capture the relationship between words. This
means that the resulting complexity is O(n2), where n is the sequence length. Most
Transformer models have a fixed sequence length. For example, the BERT model [6]
is limited to 512 tokens. However, the ability to handle a variety of tasks is a desirable
aspect. For tasks such as document summarization, DNA processing, or any task that
requires processing long sequences, training becomes practically infeasible due to the
enormous computational cost.

In the next pages we are going to cover different techniques that reduce this quadrat-

12

ically dependency on sequence length. These approaches try to reduce the quadratic
dependency to a linear dependency in n.

2.1.1 Sparse attention

Sparse attention refers to an attention mechanism where the attention of each token
is limited to a subset of other tokens. BigBird, a transformer model developed by
Google Research (see [7]), implements a sparse attention mechanism that reduces
the quadratic dependency to linear. As they proved empirically, the proposed sparse
attention can handle sequences of length up to eight times largen that of what was
previously possible using similar hardware. As a consequence, BigBird drastically
improves performance on various Natural Language Processing (NLP) tasks such as
question answering and summarization. More precisely, BigBird is a combination of
global attention, local attention and random attention. In particular, BigBird consists
of three main parts:

• a set of g global tokens attending to any part of the sequence;

• all tokens attending to a set of w local neighboring tokens;

• all tokens attending to a set of r random tokens.

Figure 6: White color indicates absence of attention. (a) Random attention with
r = 2, (b) sliding window attention with w = 3, (c) global attention with g = 2, (d)
the combined BigBird model.

In mathematical terms, let X = (x1, . . . , xn) ∈ Rn×d the embedded input sequence
as in (2). The generalized attention mechanism is described by a directed graph D
whose vertex set is {1, . . . , n}. Denote by N(i) the out-neighbors set of node i in D,
that is, the set of nodes that the attention mechanism will consider. The generalized
attention is defined as

ATTND(X)i = xi +
H∑

h=1

σ
(
Q(h)(xi)K

(h)(XN(i))
T
)
· V (h)(XN(i)), (13)

where Q(h),K(h) : Rd → Rk (k is the dimension of each head) are query and key
functions, Vh : Rd → Rd is a value function, σ is a scoring function such as softmax
and H denotes the number of heads (see section 1.2.2). Denote XN(i) the matrix
formed by only stacking {xj : j ∈ N(i)} and not all the inputs. It is clear that (13)
reduces to (7) if N(i) is full, in the sense that we are considering the relationship
among all the input words. The general idea behind BigBird architecture is that
most contexts within NLP and computational biology have data which displays a
great deal of locality of reference. In this sense, for a fixed token xi, the tokens xj for
i− w/2 ≤ j ≤ i+ w/2 are considered to be the most relevant for a context compre-
hension. Furthermore, adding random attention in the key function allows to capture

13

less obvious or less frequent information that may be crucial for understanding the
context. Furthermore, introducing randomness in attention can make the architec-
ture more robust to variations in input data (see [7]). Moreover, in contexts where
relevant information may be distant or not immediately related, random attention
could facilitate capturing broader and non-local relationships. To conclude, the Big
Bird architecture involves the use of global attention, i.e, tokens that attend to all
tokens in the sequence and to whom all tokens attend to. Concretely, we choose a
subset G ⊆ {1, . . . , n} such that we explore the relationship between xi and xj for
i ∈ G and all j. Global attention allows to connect indirectly any pair (xi, xj). In
fact, the article is based on the mathematical result that every complete graph can
be approximated by random graphs. In this scenario, these three elements in the
architecture aims at reproducing the original attention graph. As proven in Theorem
3 in [7], the complexity using sparse attention reduces to O(n).

Figure 7: The effect of global, window and random attention in generating a sparse
graph. Here, tokens represent nodes and the similarity scores calculated between
tokens is the weight associated to the edges. It is important to note that the num-
ber of edges is equal to the number of inner products involved in the computation
of the attention

Longformer, presented in [8], is an alternative that shares similarities with BigBird.
This architecture scales linearly with the input sequence, making it efficient for longer
sequences. It is composed by three elements that combined form the sparse attention:
sliding window, dilated sliding window and global attention, see Figure 9.

Figure 8: Visual explanation of the attention patterns in Longformer

First of all, given a fixed window size w, each token attends to w/2 tokens on each
side. Therefore, the computation complexity of this pattern is O(n × w), which
scales linearly with input sequence length n. By using multiple stacked layers of
such windowed attention, this results in a large receptive field that is able to capture
information across the entire input. To further increase the receptive field without
increasing computation, the sliding window can be “dilated” by gaps of size dilation
d. In a transformer with L layers, assuming w, d fixed, the receptive field is L×d×w,
which can reach tens of thousands of tokens even for small values of d. In paper
[8] they underline that in multi-headed attention, each attention head computes a
different attention score. Therefore settings with different dilation configurations per
head improves performance by allowing, inside a layer, some heads without dilation
to focus on local context, while others with dilation focus on longer context. In this

14

way, we are “breaking down” the full attention in different experts that still aims at
exploring the context at different scales.
Similarly to BigBird, they add global attention on few pre-selected input locations
to allow enough flexibility to learn task-specific representations. Since the number of
such tokens is small relative to and independent of n the complexity of the combined
local and global attention is still O(n). The attention coefficients are still computed
as

Attention(Q,K, V) = Softmax
(QKT

√
k

)
V,

but they use Qs,Ks, Vs to compute attention scores of sliding window attention,
while Qg,Kg, Vg to compute attention scores for the global attention, following idea
of Figure 9. In paper [8] the authors emphasise the good performance of the model
for long sequences, similarly to BigBird.

2.1.2 Linear attention

In paper [10] the authors propose a method that is able to scale linearly with respect
to the dimension of the output. They introduce the so called linear transformer that
is a reformulation of self-attention by using a kernel-based formulation. To follow
their notation, let us denote (cfr. section 1.2.2 for the definition of attention)

V ′ = Softmax
(QKT

√
k

)
V. (14)

We can write a generalized attention equation for any similarity function for the i−th
row of V ′ as follow

V ′
i =

∑n
j=1 sim(Qi,Kj)Vj∑n
j=1 sim(Qi,Kj)

(15)

where sim(Qi,Kj) is a non-negative function that expresses how similar are two vec-
tors. Equation (15) reduces to (14) in the case that

sim(Qi,Kj) = exp
(QT

i Kj√
k

)
.

Before continuing it is essential to introduce the following definitions and results.

Definition 1. A Hilbert function space H is a reproducing kernel Hilbert space
(RKHS) if the evaluation functionals Fx : H → R such that Fx(f) = f(x), f : X → X,
are continuous, i.e.

|Fx(f)| = |f(x)| ≤ M ||f || ∀f ∈ H, ∀x ∈ X

for a given M > 0.

Invoking Riesz’s representation theorem, every RKHS has a special function associ-
ated to it, namely the reproducing kernel:

Definition 2. A reproducing kernel is a function K : X ×X → R such that

1. K(x, ·) ∈ H, ∀x ∈ X and

2. (f,Kx) = f(x), ∀f ∈ H and x ∈ X.

The intuition for a reproducing kernel is a function that is able to reconstruct the
elements of an Hilbert space. Given a measure µ, if H = L2(X,µ), then

f(x) = (f,Kx) =

∫
X
f(x′)Kx(x

′) dµ(x′)

=

∫
X
f(x′)K(x, x′) dµ(x′),

15

which shows that K is a function that is able to determine the punctual value of f if
it accesses to all the information about f in terms of similarity to the interested point.
From the uniqueness in Riesz’s representation theorem it is immediate to conclude
the following:

Theorem 2.1. Every reproducing kernel K induces a unique RKHS, and every RKHS
has a unique reproducing kernel.

The interesting property of reproducing kernel is that they are a measure of similarity
in a different (usually big) dimensional space. Let us now recall Mercer-Hilbert-
Schmit theorem (cfr. [19]).

Theorem 2.2. Let X ⊂ Rn be closed, µ a strictly positive Borel measure on X, K a
continuous function on X ×X satisfying the following conditions: for any finite set
of points {xi}Ni=1 in X and real number {ai}Ni=1

N∑
i,j=1

aiajK(xi, xj) ≥ 0,

and ∫
X

∫
X
K(x, y)2 dµ(x)dµ(y) < ∞

then

K(x, y) =
∞∑
k=1

λkϕk(x)ϕk(y)

where the series converges absolutely for each pair (x, t) ∈ X ×X and uniformly on
each compact subset of X. The coefficients λk forms a countable system of nonnegative
eigenvalues, satisfying

∑∞
k=1 λ

2
k < ∞, of the operator

LKf(x) =

∫
X
K(x, t)f(t) dµ(t).

Now, in view of Theorem 2.2 it holds that a symmetric positive-definite reproducing
kernel can be expressed as

K(x, y) = ϕ(x)Tϕ(y) (16)

where ϕ : X → F is a feature map with F a Hilbert space. Conversely, every feature
map defines a unique reproducing kernel according to (16).
We can assume sim, loosing generality, to be a reproducing kernel, so that sim(a, b) =
ϕ(a)Tϕ(b). Therefore, substituting this in (15), we obtain

V ′
i =

∑n
j=1 ϕ(Qi)

Tϕ(Kj)Vj∑n
j=1 ϕ(Qi)Tϕ(Kj)

. (17)

In this way we have an attention computation consisting only on dot products. Using
associativity in (17) we get

V ′
i =

ϕ(Qi)
T
∑n

j=1 ϕ(Kj)V
T
j

ϕ(Qi)T
∑n

j=1 ϕ(Kj)
.

Previous equation defines the linear transformer and it is crucial to underline that
has a complexity of O(n) because we can compute

∑n
j=1 ϕ(Kj)V

T
j and

∑n
j=1 ϕ(Kj)

once and reuse them for every query and so n times. The same idea can be used for
the masking such that the i−th position can only be influenced by a position j if and
only if j ≤ i, observing that we can express the attention as

V ′
i =

∑i
j=1 sim(Qi,Kj)Vj∑i
j=1 sim(Qi,Kj)

=
ϕ(Qi)

T
∑i

j=1 ϕ(Kj)V
T
j

ϕ(Qi)T
∑i

j=1 ϕ(Kj)
.

16

An alternative and simpler procedure is using the first-order approximation of the
Taylor of the sim function. This idea is less general but shares similarities with the
procedure mentioned above. Let us consider

eQ
T
i Kj ≈ 1 +QT

i Kj .

To ensure 1 + QT
i Kj ≥ 0 we can normalize Qi and Kj using the l2 norm so that

−1 ≤ QT
i Kj ≤ 1. Equation (14) for the i−th entry becomes

V ′
i =

∑n
j=1

(
1 +

(
Qi

||Qi||2

)T ∑n
j=1

(
Kj

||Kj ||2

))
Vj∑n

j=1

(
1 + Qi

||Qi||2

)T(Kj

||Kj ||2

)
and simplified as:

V ′
i =

∑n
j=1 Vj +

(
Qi

||Qi||2

)T(Kj

||Kj ||2

)
Vj

n+
(

Qi

||Qi||2

)T ∑n
j=1

(
Kj

||Kj ||2

) .

In paper [10] the authors show that linear transformer on image generation and
automatic speech recognition can reach the performance levels of transformer, while
being up to three orders of magnitude faster during inference.

2.1.3 Matrix factorization

In matrix factorization we assume that the matrix corresponding to the self-attention
values is low rank, i.e., not all items are independent of each other. Therefore, the
matrix QKT which is, without word embedding, n× n is reduced to a matrix n× k′

with k′ < n without significant loss in information. Since taking row-wise softmax of
a square matrix of order n has complexity o(n2), reducing the matrix QKT improves
significantly the efficiency.
First of all, in paper [13] the authors perform a singular value decomposition (SVD)
on the attention weights matrix

P = Softmax
(Q(h)(K(h))T√

k

)
across different layers and different heads of the model. The results exhibit a clear
long-tail spectrum distribution across each layer, head and task. This implies that
most of the information of matrix P can be recovered from the first few largest
singular values.

Figure 9: Spectrum analysis of the self-attention matrix for the two tasks per-
formed

The experimental results are confirmed by the theoretical ones: the authors show that
given the matrix P there exists a matrix P̃ with small approximation error, namely
that

Pr(||P̃ vT − PvT || < ϵ||PvT ||) > 1− o(1) (18)

17

for any v value vector. In other words, we are reading the approximation based on
the action of that matrix on values vectors, i.e., the attention values. First of all, we
can rewrite matrix P as

P = Softmax (
Q(h)(K(h))T√

k

)
︸ ︷︷ ︸

A

= exp(A) ·D−1
A

where DA is a diagonal matrix. Now P̃ is defined as P̃ = exp(A) · D−1
A RTR where

R ∈ Rk′×n with random i.i.d. entries. The proof that P̃ approximates in the sense of
(18) P relies on the Johnson-lindenstrauss (JL) lemma which states that

Lemma 2.1. Given 0 < ε < 1, a set X of m points in RN , and an integer n >
8(lnm)/ε2, there is a linear map f : RN → Rn such that

(1− ε)∥u− v∥2 ≤ ∥f(u)− f(v)∥2 ≤ (1 + ε)∥u− v∥2

for all u, v ∈ X.

In simple terms, the lemma asserts that a set of points in a high-dimensional space
can be embedded into a space of much lower dimension in such a way that distances
between the points are nearly preserved (provided ϵ > 0 is not too small).
So far we proved that matrix P can be approximated in low-rank terms. One straight-
forward ideas can be to use the SVD to approximate the attention weights, but as
pointed out by the authors this will results in a much heavier architecture. As a
consequence, invoking JL lemma (cfr. paper [13]) and recalling that applying a linear
map can be thought as a matrix multiplication, they redefine attention values for a
given head as

headi = Softmax
(Q(i)(EiK

(i))T√
k

)
︸ ︷︷ ︸

n×k′

FiV
(i)︸ ︷︷ ︸

k′×d

. (19)

In equation (19) we project the (n× k)-dimensional key and values layers K(i), V (i)

into (k′ × k)-dimensional projected key and value layers. Thus, if we can choose a
very small projected dimension k′, then we can significantly reduce the memory and
space consumption.

18

3 Behind the scenes of Self-Attention

In this section we aim at describing in both mathematical and intuitive terms the
Self-Attention mechanism. First of all, for a given head, the formula

Attention(Q,K, V) = Softmax
(QKT

√
k

)
V

can be described in geometrical terms. Let us consider an embedded word xi ∈ Rd.
According to formulas introduced in (3), the corresponding query and key vector are
computed as

qi = W T
q (xi), ki = W T

k (xi)

where Wq,Wk ∈ Rd×d. To compute then the attention coefficients, we perform the
dot product ⟨qi, kj⟩ ∈ R+ where kj is the key vector for another embedded word xj .
Let us explain what happens from a geometric point of view: matrices Wk and Wq

represents linear transformation that deforms the space.
As a consequence, query and key vector can be thought of representing the original
vector xi with a new pair of coordinates in Rd. Subsequently, by performing the dot
product between query and key vectors we are capturing how similar or dissimilar are
they. From a linguistic point of view, we expect (and this is done by back propagation
by adjusting the values in the matrices) that the embeddings of the various words
cluster similar words and separate dissimilar words. The softmax is then applied to
normalize the attention weights and then we multiply by V to obtain the attention
values. Therefore, we are weighting all the values vector (i.e. another representation
of the embedded word xi) by coefficients that encode the similarity by words. In
other terms, we are relating each input word with all the other input words in a way
that we capture affinity between the words themselves.

To geometrically visualize the intuition, let us consider for the sake of simplicity two
points a, b ∈ R2 and a third point c that is somehow in between a, b. We can think
of c as a word that has multiple meaning and provide context.

Figure 10: Visual explanation of how moving the space can be helpful to encode
context.

When we provide context we are weighting each word according to all the other input
words and so in our simple example, c will shift towards either a or b. It is clear that
the right case sketched in above picture works better in moving c according to the
context. Finally, Wv defined in (5) is taking profit of this context aware embedding
and capture long term relationship.

In its generality, given m ∈ N pairs of key and value vectors (ki, vi), ki, vi ∈ Rd where
d is the dimension of the embedding, for a given query vector qj ∈ Rd the attention
mechanism computes an output vector oj as

oj =

m∑
i=1

α(qj , ki)g(vi).

19

The function g(·) is a linear application from Rd to Rd, while function α(·, ·) : Rd ×
Rd → R+ computes the attention weights. For instance, in the case of transformers,

α(qj , ki) =
exp(⟨qj , ki⟩)∑m
l=1 exp(⟨qj , kl⟩)

, g(vi) = vi.

In literature, the function α is generally referred to as attention pooling and it can be
thought as a similarity measure. In general we can ask α to have various properties,
but in general, for a fixed query vector qj , we require the weights α(qj , ki) to form a
convex combination, i.e.,

m∑
i=1

α(qj , ki) = 1, α(qj , ki) ≥ 0 j = 1, . . . ,m.

With this notation, the geometrical intuition can be expressed in analytical terms
assuming function α to be the normalized dot product,

oj =
1

C
[⟨qj , k1⟩g(v1) + . . .+ ⟨qj , km⟩g(vm)], C =

m∑
i=1

⟨qj , ki⟩.

Now if, for example, qj attends mostly k1, then

oj ≈
1

C
[⟨qj , k1⟩g(v1)] ≈ g(v1).

Therefore, we can think of attention weights as a “guide map” to values vectors g(vi).

In paper [12] the authors delve into the multi-head attention mechanism and evaluate
the contribution made by individual attention heads in the encoder to the overall
performance of the model. They found that for a translation task, only a small
number of heads are important for translation and these heads play interpretable
“roles”. They showed that most of the heads can be pruned without significant loss
in quality, but after the training process. Inspired by their work, our aim is to explore
at a deep level the self-attention mechanism.

3.1 Experiments on attention layer

In this section we are going to present our results from the experiments that will lead
to an alternative formulation for the attention weights. It is important to underline a
couple of aspects before continuing: the aim of this thesis is to describe and analyze
Self-Attention in mathematical terms. As a consequence, the experiments with the
Transformer architecture are not optimal and we trained, for computational time
reasons, just using one transformer block. For instance the results we got from the
translation task are very far from the proper translation. Moreover, we focused on
the original functions

α(qj , ki) =
exp(⟨qj , ki⟩)∑m
l=1 exp(⟨qj , kl⟩)

, g(vi) = vi.

The conclusions we draw may be different with other functions.

In the experimental part we used the opus books from HuggingFace from English to
Italian2, which included a large variety of texts, articles and web pages. In order
to understand at a basic level what is the attention layer doing, we decided to train
the transformer for 20 epochs with just 1 transformer block and either 1 or 8 heads,
to better understand the flow of information and prevent the depth of the neural
network from altering the scores. The goal is to produce a correct translation of the
sentence involved, so the attention scores reflect this task.

20

Figure 11: Attention visualization architecture with 1 layer and 1 head

Figure 12: Attention visualization architecture with 1 layer and 8 heads

Before describing the above figures, let us remark the fact that, in paper [12] the
matrices are better structured (and we will explain what do we mean by structure)
as their experiments involved a more complex architecture. Nevertheless, our exper-
iments, with a certain degree of error, still confirm their results.
After adapting the code of the transformer architecture we used a function to get and
visualize the attention matrix for a specific sentence. We then focused on visually
analysing the structure of the arrays for many different examples and architectures:
with 1 head, with 8. In Figure 11 and 12 we report an example of our experimental
session. These figures clearly show that attention weights matrices exhibit a certain
structure while performing translation. Most of the heads show a diagonal structure
in the matrix since translating the token referencing to the word itself should be the
most important to produce the translated token. Furthermore, it is possible to see in
head 2 and head 7 that there is stress on a specific token and this is identified by a
darker vertical column in the matrix. This phenomenon captures another aspect of
translating: in producing language there are words that are giving the general mean-
ing or context of the whole sentence or words that are referencing to other words

2see https://huggingface.co/docs/datasets/index

21

such as pronouns. As a consequence, these layer with token attending a specific one
are encoding this specific aspect. Furthermore it is worthy to underline that all the
matrix involved are full rank with low l2 norm.

3.1.1 On the structure of attention weights

The experiments carried shows a specific structure in the attention pooling function
for the transformer

f(Q,K) = Softmax
(QKT

√
k

)
.

Three general structured heads can be identified:

• positional heads: tokens attend to a token’s immediate neighbors;

• syntactic heads: tokens attending another token because of linguistic relation-
ship;

• rare tokens heads: a group of token attending a specific token, usually an infre-
quent token.

What is interesting is that the attention scores are never spread among the matrix
but the values are mostly concentrated around the diagonal, up to a proper shift of
them. Taking into consideration this and the roles of heads we propose the following
formulation for the attention scores:

f(P, Ẽ) = (InP + Ẽ), P, Ẽ ∈ Rn×n, P ∈ Σ ⊂ Mn(R) (20)

and therefore the new attention values

(InP + Ẽ)V.

We write InP instead of P to stress on the action of P in shifting the attention. The
matrix Ẽ is an sparse error matrix with elements |ϵi,j | ≤ ϵ so with very low values,
while P is a matrix taken from a set Σ with a specific structure that we will discuss
afterwards. Before describing the matrices we are dealing with and their properties
let us clarify the intuition behind formula (20): the role of the matrix P is to shift
the positional heads, i.e. the diagonal, to the relevant structure that attention scores
exhibit. In some sense, we are forcing query and keys to attend each other in a
specific form such that encode the different roles of attention heads and so telling
values where to look to get the context. After doing that we add an error matrix to
introduce randomness and add elasticity to the formula.

Figure 13: Effect of shifting the attention and adding sparse error. We start from the
identity, we apply (central image) the matrix P that is shifting the attention and creating
a specific structure, then (right image) we add some random noise, represented by orange
blocks, to add robustness to our formula.

For example in Figure 13 we are forcing token 3, 4, 5 to attend token 4 as we can

22

see in the central image since we detect a column of blue blocks. The matrix P in
(20) has a specific structure. We can define 3 family matrices that we are interested
in: Σ1 = In to capture the positional head as we are dealing with mostly diagonal
matrices, Σ2(w) for a windows size w which is made by appropriate matrices to
capture syntactic heads, namely block matrices that correlate tokens to some other
specific tokens as in Figure 12 for head 6: here token 5, 6, 7, namely words ’of’, ’her’,
’locket’ are attending the word ’locket’ as we can see a blue vertical column. In the
syntactic structure of the sentence, the preposition ’of’ and the possessive pronoun
’her’ both relate to the noun ’locket’ according to the grammatical rule of English
sentence construction. In this structure, ’of’ indicates the possession relationship
between ’her’ and ’locket’, so both tokens 5 and 6 must point to token 7, ’locket’,
which represents the possessed object.
Lastly Σ3 represents matrices able to codify rare tokens and so that all token are
attending a specific one as, almost, for head 7 in Figure 12 in which we can see a
vertical darker column for token 7, meaning that attention is pooled on this specific
one. With this notation

Σ = Σ1 ∪ Σ2 ∪ Σ3 (21)

and the matrix P is taken among these possible sets. The windows size w is important
to control the size of the blocks in Σ2 and also it is consistent with the idea that
syntactic relationships as verb-adjective are mainly close. We will dedicate particular
attention on the role of w in the next pages.

3.1.2 Description of the sets

In this section we are going to describe the sets that appears in (21). The set Σ1

consists of In as we are shifting the attention to the token position, and so the
resulting matrix should be diagonal. The set Σ3 is related to rare token heads of the
form shown in Figure 14

Figure 14: Exemplification of rare token heads.

These kind of matrices are characterized by two parameters: T = {t1, . . . , ts} the
set of ordered tokens the attention focus on and their relative windows size W =
{w1, . . . , ws} in the sense that token t1 is attended by w1 surrounding tokens and ts
by ws surrounding tokens. It is sufficient to describe a single token with its window
(t1, w1) as the general case would be just a concatenation of matrices. The base case,
assuming t1 in position i is represented by matrices of the form Id1 0 0

0 R 0

0 0 Id2

where matrix R is of the form:

0 · · · 0 1 0 · · · 0
0 · · · 0 1 0 · · · 0
...

...
...

...
...

...
...

0 · · · 0 1 0 · · · 0

23

where we have w vertical 1s in one column i. This is capturing that this group of
tokens are attending a specific token, pooling all attention on it. The base case it is
just a concatenation of Id1 , R, Id2 such that d1 + w1 + d2 = n in the sense that we
have the identity, then the rare token block and the identity.

Finally, the last set is Σ2 in which we a structure close to a block diagonal matrix
in which we have word, or group of words, attending other group of words capturing
syntactic relationship. From the experiments it is possible to see (for example Figure
12 head 4) that group of words attending other group of words are usually close, at
least in English vocabulary, therefore an easy way to describe these matrices would
be to start with a multi diagonal matrix and apply a “dropout” to obtain the desired
structure (see Figure 15).

Figure 15: Exemplification of syntactic heads: we start from a band matrix, turn off some
blocks and then add random orange blocks.

The dropout can be applied also to create “separate groups” capturing that we have
no relevant information as punctuation. In mathematical terms, given a matrix B ∈
Rn×n such that

bi,j = 0 if i > j + w, or j > i+ w; w ≥ 0

where w is the bandwidth, then

P = dropout(B, p), for some p ∈ (0, 1).

The three sets of matrices we defined can be thought as band matrices with an error
matrix. Indeed, for rare token matrices of the form if we fix the windows size w, then
the matrix is contained in a band matrix because the vertical column in matrix R
does not, by construction, exceed the bandwidth.

We are now ready to express our ideas in mathematical and formal terms. First of
all, let us define the following set for a fixed bandwidth size w ∈ N:

B = {B ∈ Mn(R) | B is a w-band matrix}.

Let us also consider the entrywise 1−norm on the set of real matrices

|M | =
∑
i,j

|mi,j |, mi,j ∈ M, M ∈ Mn(R). (22)

It is clear now thatMn(R) with this norm, becomes a normed vector space. Moreover,
B is a finite dimensional subspace of Mn(R) because if B1, B2 ∈ B and λ1, λ2 ∈ R
then since we have a fixed bandwidth clearly

λ1B1 + λ2B2 ∈ B.

It is a known result that any finite dimensional subspace of a normed vector space is
closed, hence we conclude that B is closed. It is also trivial that any linear subspace
is also convex. In our case the space B has dimension

n+ 2(n− 1) + . . .+ 2(n− w) = 2

w∑
i=0

(n− i)− n = −(w + 1)(w − 2n)− n.

24

As a consequence, we can guarantee that given the matrix H for a certain head, there
exists a unique B̃ ∈ B such that

B̃ = argmin
B∈B

|H −B|

in view of the following theorem (see [17])

Theorem 3.1. Let H be an Hilbert space with respect the norm ||·||. If C is a convex,
closed, non-empty subset of H and q a point of H. Then, there exists a unique p ∈ C
such that

||p− q|| = dist(C, q) := inf
x∈C

||x− q||.

In other words, given an attention weights matrixH, we can project onto the subspace
B and obtain the best approximation ofH in terms of band matrices. The experiments
we carried out, show that most of the information is around the diagonal, which
further motivates the choice of band matrices. However, the other entries with less
weight (i.e. with a lower value, the yellow blocks in Figure 11 and 12) are non zero.
The idea is to capture them with sparse random matrix as shown when we added the
orange blocks in Figure 14 and Figure 15.
Therefore, fixed ϵ a small real value, we define the following set

X = {B + Err | B ∈ B[0,1], Err ∈ Mn(R)}

where B[0,1] is the set of matrices B with entries in [0, 1] and Err is a sparse matrix
such that

max
i,j

|ei,j | ≤ ϵ, Err = (ei,j). (23)

Now, it is straightforward that B̃ ∈ X because matrix H has entries in [0, 1] by
definition of attention weights and we can take Err as the zero matrix. The set X is
clearly bounded w.r.t norm (22) because given X1, X2 ∈ X , exists L > 0, such that

|X1 −X2| < L.

Indeed let n1 the number of elements in the band and n2 the remaining elements so
that n1 + n2 = n2, then

|X1 −X2| < n1 + ϵn2.

Now, we are left to prove that the space X is closed. If we prove this, we can conclude
that X is a compact set and the function f : X → R+ such that

f(X) = |H −X|

attains a minimum value on X . Since B̃ ∈ X this minimum value is less or equal than
|H − B̃| and so this is the right space to approximate our attention weights matrix.
To conclude that X is closed we have to prove that given Xn ∈ X such that

Xn → X =⇒ X ∈ X for n → ∞.

From the definition of the norm we are using, we have that

lim
n→∞

∑
i,j

|x(n)i,j − xi,j | = 0, x
(n)
i,j ∈ Xn, xi,j ∈ X

and so, in particular,

lim
n→∞

max
i,j

|x(n)i,j − xi,j | = 0

25

which implies the pointwise convergence

lim
n→∞

x
(n)
i,j = xi,j ∀i, j.

Now, if we split Xn = Bn + E
(n)
rr and focusing on the band part, it is immediate to

conclude from the point-wise convergence that

lim
n→∞

Bn

is a band matrix with bandwidth less or equal that w. Now, let us focus on the limit
on the error sparse matrix

lim
n→∞

E(n)
rr .

According to our definition of norm and from the existence of limn→∞Xn we conclude
that

lim
n→∞

e
(n)
i,j , E(n)

rr = (e
(n)
i,j)

exists. Now, let us fix i, j and assume the limit to be l. From (23) we conclude that
l < ϵ. Furthermore, we have only two scenarios from the existence of the limit: either

e
(n)
i,j = 0 or e

(n)
i,j ̸= 0 from a certain index N such that n > N . However, the second

case may happen for a relatively small amount of times as the matrices involved are
sparse (otherwise we would violate this condition). Therefore, the first case must be
the predominant one and we can conclude that

lim
n→∞

E(n)
rr

is “mostly” 0 and so we have an error sparse matrix.

3.1.3 Validation of attention scores approximation

We conclude our project validating formula (20) with respect to the original attention
scores matrix. In other words, let us denote

A = Softmax
(QKT

√
k

)
arising after training the original transformer model, we aim at computing |A −X|
where X is a matrix as in (20). To do so, we coded three different functions to
generate the matrices belonging to sets Σ1,Σ2,Σ3 and then we computed the distance
between A taken from the previous experiments with 8 heads and a set of matrices
generated from these sets. We took the attention score heads for a sentence of length
16 (we can take one sentence because structure of attention scores is mostly the same,
independently from the sentence taken as it can be seen in paper [12]), and compute
the minimal distance generating 30 matrices from each Σi with w = 3 and num-
pos= 2 (respectively the windows size/context and the number of words rare token
attends). Also in this case the validation session was carried out for several matrices
taken from the encoder. For simplicity we present an example of results, even tough
generally they are the same, summarized in Tables 16 and 17.
The Table 16 shows that the mean error, which is the error per entries, is relatively
small, concluding that we are properly capturing the structure of the weight matrix.
It is important the role of w and num − pos. If for example we change them to be
10 and 1, respectively, we see in Table 17, considering that the attention weights
matrix is relatively small and the randomness of our approach, that the mean error
significantly increases.

Each language (Italian, English,...) and/or each type of text (e.g. by author) is
expected to have optimal w and num − pos parameters. Knowing these parameters

26

Figure 16: Validation results showing the approximation distance and the mean
distance per element (w = 3 and num-pos= 2)

Figure 17: Validation results showing the approximation distance and the mean
distance per element (w = 10 and num− pos = 1)

allows to represent the attention score matrix as a matrix with structure properties
that would lead to relevant reduction of the total computational cost of the LLM
model.

27

4 Conclusion and further investigations

The aim of this thesis was to understand at a profound level the role of attention
mechanism in transformer. We were able to provide both a geometrical and analytical
explanation for the formula of attention values and in particular of attention scores.
The alternative and lighter formulation we found is interesting as it encodes the
structure of the matrices that experiments revealed. In this scenario, then, attention
is not a random process governed by back-propagation but is enriched with meaning
and deeply reflects the role of translation. Far from the scope of this thesis but yet
interesting would be to study the role of parameters w and num-pos in the code for the
validation as we believe they contain valuable information on the idiom used. Indeed,
by optimizing these hyperparameters for a given language we can understand how
many words are relevant in a sentence and the general context size. Indeed, as pointed
out in paper [18] the complexity of the language and its syntactic characteristics have
to be taken into consideration during the construction of LM architectures.

28

References

[1] A. Vaswani et al., Attention Is All You Need, NIPS, 2017

[2] D. Bahdanau, K. Cho, Y. Bengio, Neural Machine Translation by Jointly Learning
to Align and Translate, arXiv, 2014

[3] M.T. Luong, H. Pham, C. D. Manning, Effective Approaches to Attention-based
Neural Machine Translation, arXiv, 2015

[4] R.S. Navid, Introduction to Transformers, Institute of Computational Perception
CP Lectures, 2020

[5] A. Kak, C Bouman, Transformers: Learning with Purely Attention Based Net-
works, Lectures on Deep Learning Purdue University, 2023

[6] J. Devlin, M. W. Chang, K. Lee, K. Toutanova, Bert: Pre-training of deep bidi-
rectional transformers for language understanding, arXiv preprint, 2018

[7] M. Zaheer et al., Big Bird: Transformers for Longer Sequences, NIPS, 2020

[8] I. Beltagy, M. E. Peters, A. Cohan, Longformer: The Long-Document Trans-
former, arXiv, 2020

[9] I. Chalkidi et al., An Exploration of Hierarchical Attention Transformers for Ef-
ficient Long Document Classification, arXiv, 2022

[10] A. Katharopoulos et al., Transformers are RNNs: Fast Autoregressive Trans-
formers with Linear Attention, arXiv, 2020

[11] R. Li et al., Linear Attention Mechanism: An Efficient Attention for Semantic
Segmentation, arXiv, 2020

[12] E. Voita et al., Analyzing Multi-Head Self-Attention: Specialized Heads Do the
Heavy Lifting, the Rest Can Be Pruned, Proceedings of the 57th Annual Meeting
of the Association for Computational Linguistics, 2019

[13] S. Wang et al., Linformer: Self-Attention with Linear Complexity, arXiv, 2020

[14] Y. Tay et al., Long range arena: a benchmark for efficient transformers, arXiv,
2020

[15] A. Zhang et al., Dive into Deep Learning, 2023

[16] S. Ji, Y. Xie, H. Gao, A Mathematical View of Attention Models in Deep Learn-
ing, Lectures at Texas A&M University, 2019

[17] D. Foschi, Appunti di Analisi 3, Lecture notes at Università degli studi di Ferrara,
2020

[18] D. Gerz et al., On the Relation between Linguistic Typology and (Limitations
of) Multilingual Language Modeling, Apollo - University of Cambridge Repository,
2018

[19] Minh, H.Q., Niyogi, P., Yao, Y., Mercer’s Theorem, Feature Maps, and Smooth-
ing. Lecture Notes in Computer Science(), vol 4005. Springer, Berlin, 2006

29

	Introduction and overview
	Seq2seq
	Capturing the context: Attention mechanism

	The transformer architecture
	Positional Encoding
	Transformer Block
	Motivation for scaling the dot products
	Layer Normalization and Feed Forward
	The decoder

	The amount of parameters in LLM
	Transformers for long sequences: changing the attention
	Sparse attention
	Linear attention
	Matrix factorization

	Behind the scenes of Self-Attention
	Experiments on attention layer
	On the structure of attention weights
	Description of the sets
	Validation of attention scores approximation

	Conclusion and further investigations
	References

