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This paper explores the 1D Schelling model’s statistical physics, focusing on segregation and un-
happiness coefficients across varied vacancy densities and magnetization values. Derived from the
interdisciplinary field of Sociophysics, the 1D variant offers computational efficiency. The study
reveals increasing segregation with rising vacancy density, emphasizing potential second-order tran-
sitions. Unhappiness decreases with more vacancies, displaying abrupt yet continuous shifts, sug-
gesting potential phase transitions. Finite-size effects underscore the need for larger grid simulations.
These findings provide a foundation for deeper investigations into Schelling model dynamics and
phase transitions in diverse scenarios.

I. INTRODUCTION

In the ever-evolving landscape of interdisciplinary re-
search, the fusion of physics and sociology has given rise
to a burgeoning field known as Sociophysics [1]. A no-
table precursor to this approach is the Ising model, con-
ceived by Ernst Ising. Originally designed as an abstract
spin system, the Ising model has proven instrumental
in inspiring the development of general self-organization
models. These models, though inherently simplified,
have been applied to investigate various social dynam-
ics, including opinion evolution, migration patterns, and
language evolution.

In this class of models, the Schelling model, introduced
by economist Thomas Schelling [2]], has garnered signif-
icant attention for its exploration of segregation dynam-
ics within social systems. As highlighted in [4], it shares
a relation with the Bluem-Capel model in the realm of
physical models, albeit differing in dimension.

The Schelling model is usually introduced as a 2D-
lattice model with dimensions L × L [3]. In this model,
each site can exist in one of three states: 0 denotes a
vacancy, while ±1 represent two types of agents. These
agents are distributed randomly with densities ρ0 and ρ±,
respectively. Every agent is assigned a tolerance number,
denoted as T, which indicates the maximum number of
agents of the opposite type allowed in their Moore neigh-
borhood (including up, down, left, right, and both diag-
onals) for them to be considered unhappy.

From an agent’s perspective, a sensible tolerance value
could be T = 1/2. This implies that an agent is content
with having half of its neighbors of the same type, reflect-
ing a desire to attain a system that maximizes diversity.
The model then identifies unhappy agents based on the
established conditions and attempts to relocate them to
a position where they could be happy.

Exploring less constrained variations of the model, as
exemplified in [4], introduces a scenario where not only
unhappy agents can be moved, but also happy agents,
provided their happiness does not diminish. This type

of movement introduces a noise element, potentially pre-
venting the formation of large but finite clusters that
hinder true large-scale segregation.

The resulting states may include frozen states or sta-
tionary states, contingent on whether only unhappy
agents can be moved or if any agent can be relocated,
given that their happiness remains unaltered. Surpris-
ingly, for the specified tolerance value, the model yields
an unexpectedly highly segregated state. Delving into
variations in vacancy density, ρ0, and tolerance, T , un-
veils diverse and intriguing situations warranting further
exploration.

The investigation conducted in [4] reveals that segre-
gation undergoes a second-order phase transition at a
critical value of T . For low tolerances, only a few sites
exist where an agent could be surrounded by a high ma-
jority of its own agent type, resulting in a frozen state
reminiscent of the randomly generated initial state, with
a majority of agents remaining unhappy.

Conversely, a high tolerance scenario results in a mixed
stationary state, as agents are indifferent to the types
of neighbors they have. Lastly, moderate tolerance val-
ues predominantly lead to segregated stationary states,
which can manifest as either compact or diluted states
contingent upon the density of vacancies.

The 2D-grid model discussed here is versatile in rep-
resenting various scenarios within a distributed two-
dimensional space, such as a city or neighborhood. How-
ever, there is merit in exploring the 1D version of this
model, as done by Schelling in his model introduction of
it [2].

An illustrative instance of a one-dimensional scenario
is a classroom, where the initial impression might sug-
gest a 2D layout, but in reality, a student’s interactions
are limited to their left and right neighbors, reducing it
to a 1D problem. Due to the computational efficiency
and lower optimization requirements associated with one
dimension, this work focuses on investigating and ana-
lyzing the dynamics of the model in one dimension.
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II. 1D MODEL

A. Order parameters

This model can be examined through two different or-
der parameters: system unhappiness u and segregation
s. Let’s begin by investigating how the overall system
unhappiness responds to variations in vacancy density ρ0
and magnetizationm = ρ+−ρ−. We will follow the queu-
ing method, as detailed in [5] for a tolerance of T = 1/2.
The queuing method, as outlined in [5], involves certain
approximations concerning the real dynamics. For in-
stance, instead of randomly selecting agents based on
whether to jump or not, the method assumes the imple-
mentation of an intelligent algorithm that maximizes the
results of the optimization process.

They consider the case where m ≥ 0, signifying an
abundance of + agents compared to − agents. Starting
with a randomly distributed grid, the fraction of unhappy
agents can be calculated as:

ρU± = ρ±ρ
2
∓ (1)

It is noteworthy that, on average, the initial number
of unhappy minority − agents surpasses the count of un-
happy majority + agents. Now, let’s explore the queuing
approach. In this scenario of a random distribution, if
there exists a single vacancy favorable for a + agent, an
unhappy + agent will be relocated to that vacancy. In
this version of the model, a + agent becomes unhappy
only if its immediate surroundings follow the sequence
− + −; when the + agent moves, it leaves behind a va-
cancy friendly for a − agent, creating a vacancy for a
subsequent + agent, and so forth. This process contin-
ues until all the majority unhappy agents have been re-
located to happy environments. At this juncture, the
unhappiness value is given by u∞ = ρU− − ρU+.

The unhappy − agents may enhance their situation if
there are appropriate vacancies available in the system.
The count of these vacancies, which are favorable for −
agents, can be determined as follows:

ρF−
V = ρo(1− ρ2+) (2)

Considering all factors, the ultimate number of un-
happy agents in the final frozen state is determined by:

u∞ = ρU− − ρU+ − ρF−
V (3)

As previously mentioned, these are the calculations
used for the [5] model. However, in our context, both
+ and − agents will experience unhappiness in the situ-
ation 0±∓. Accounting for this, the potential vacancies
for the remaining − agents are determined by:

ρF−
V = ρo(1− ρ2+ − 2ρoρ+) (4)

The study of equation (3) provides insights into a no-
table shift in the unhappiness behavior with increasing
vacancy density. This observed alteration, characterized
by its continuous nature, suggests the potential occur-
rence of a second-order phase transition
Concluding the examination of the system’s unhappi-

ness, it is crucial to recognize that this analysis is an
approximation. As previously mentioned, it relies on an
intelligent algorithm rather than random selection when
deciding which agent should be moved. Moreover, these
calculations overlook the potential impact of moving one
unhappy agent on the happiness state of its neighbors,
both past and future. Considering these factors, the ac-
tual values of overall unhappiness might deviate slightly
from the approximation.
Prior to delving into the details of the simulation, con-

sidering the physics-oriented perspective of this model,
it is imperative to discuss phase transitions. For this
purpose, we have adhered to the concepts elucidated in
[6]. They elaborate on the utilization of the partition
function ZN and the computation of entropy to compute
unhappiness values of final frozen states. Upon scruti-
nizing unhappiness, one observes that, for a particular
vacancy density denoted as ρ∗0, a first-order phase tran-
sition occurs, causing the unhappiness value to plummet
abruptly to zero.
To assess segregation in our analysis, we employ a

methodology inspired by the approach outlined in [4].
A cluster is defined as a group of agents of the same
type, ranging from a single-agent group to a group com-
prising N± agents. In their investigation, they intro-
duce a weighted sum of the final configuration’s cluster
sizes, denoted as S =

∑
c ncpc. Here, nc represents the

cluster size, and pc = nc/Nagents serves as the weight of
the cluster. This value is normalized with respect to the
maximum size a cluster could achieve, specifically in the
scenario where the magnetization is m = 0, resulting in
normalization by Nagents/2. Noteworthy is the consider-
ation that Nagents = N(1−ρ0), leading to the expression:

s =
2

(N2(1− ρ))2

∑
c

n2
c (5)

When accounting for different magnetization values,
proper normalization of S involves dividing the + agents
clusters by their maximum value N+ and the − agents
clusters by N−, resulting in:

s =

∑
{c+} n

2
c+

N(1− ρo)N+
+

∑
{c−} n

2
c−

N(1− ρo)N−
(6)

Regarding segregation, some preliminary steps must
be considered before utilizing Equation 6. Similar to the
approach in [4], a real space re-normalization of the grid
is necessary to ensure that segregation values do not di-
lute excessively in cases of high vacancy density. In our
1D model, re-normalization is relatively straightforward;
all that is needed is to remove all vacancies from the grid.
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B. Simulations

In our simulations, we have employed a 1D model
featuring periodic boundary conditions and interactions
with first neighbors. The primary constraint imposed
is that only unhappy agents are eligible for movement.
Given the nature of a 1D lattice, the tolerance of any
agent can be either T = 1/2 or T ≤ 1/2. In this case,
the former option has been selected. Notably, this tol-
erance value is computed exclusively based on the agent
sites. To elaborate, in scenarios where an agent’s vicin-
ity comprises a vacancy and an agent, the agent alone is
considered for tolerance computation. Consequently, an
agent is deemed unhappy if both neighbors are of a dif-
ferent type or if one neighbor is a different type of agent
and the other is a vacancy. For instance, a + agent ex-
periences unhappiness in situations such as 0+−, −+0,
and − + −, while it is happy in scenarios like + + +,
+ + 0, 0 + +, −++ and + +−.

The simulation employed in this project initiates with
an N-sites lattice featuring N+ + agents and N− −
agents, determined by the vacancy density ρ0 and the
magnetization m, randomly distributed (as depicted on
the left side of Fig.1). The maximal number of vacancy
densities that can be studied is determined by the value
m, as N− = (1− ρo −m)/2 have to be bigger than zero.
At each step, the algorithm identifies unhappy agents
in their current positions and randomly selects one of
them. For the chosen agent, it evaluates all vacancies
to determine which one could potentially make the cho-
sen agent happy and randomly selects one such vacancy.
If no suitable vacancy is found, the process is repeated
with another agent of the opposite type until one can be
relocated. Each step concludes with the movement of a
single agent.

FIG. 1: Example of agents distribution through the lattice for
a N = 100 sites lattice, a magnetization m = 0 and vacancy
density ρo = 0.1, each vertical line represent an agent. On
the left there is the initial randomized distribution. On the
right there is the final frozen state where the segregation can
be easily seen.

The simulation terminates either when there are no
more unhappy agents or when there are no suitable va-
cancies for any unhappy agent. The final state attained
is a frozen state, implying that no agents can be moved,
and either all agents are happy, or there are some agents

who would remain unhappy in any remaining vacancy
(right side of Fig.1).

Upon reaching a frozen state, the subsequent step in-
volves calculating the segregation and overall unhappi-
ness of this state. To compute unhappiness, the program
sums the number of agents still situated in unhappy sites
and normalizes it by the total number of agents. For the
segregation, With the re-normalization completed, the
program simply needs to sum the number of agents in
each cluster and apply Equation (6).

This entire process constitutes the simulation of one
initial scenario for a given set of parameters: N , ρ0, and
m. Leveraging the computational power of the project’s
computers, the simulation was averaged 100 times for
every combination of N , ρ0, and m. The error of this
averaged study is determined by its variance, denoted as
σ2, calculated by σ2 = ⟨s2⟩ − ⟨s⟩2 and σ2 = ⟨u2⟩ − ⟨u⟩2.
The values explored for N and m are within the sets

N ∈ {100, 500, 1000, 2000, 3000} and m ∈ {0.0, 0.2, 0.4}.
These values have been computed for 80 values of ρ0
within the range ρ0 ∈ [0.01, 0.8). There is one exception
for the value m = 0.4, as per its definition, ρ0 can only
reach 0.59 if non-negative values of − agents are to be
accommodated.

III. RESULTS

A. Segregation

Starting with the results pertaining to the segregation
coefficient ⟨s⟩, as depicted in Fig. 2, it is evident that
segregation tends to rise with an increase in the number
of vacancies. This phenomenon may be attributed to the
growing opportunities for agents to find adjacent sites
with the same agent type, fostering happiness.

FIG. 2: Capturing the dynamics of the segregation coefficient
as a function of various vacancy densities, with a constant
grid size of N = 300, across diverse magnetization values m.
Both axis are presented in logarithmic scale.
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For magnetization values other than m = 0, the
segregation undergoes significant escalation. This phe-
nomenon can be elucidated by the fact that, with an in-
crease in vacancies, minority agents tend to form a single
or limited number of clusters due to their scarcity. This
effect becomes more pronounced with a reduction in the
grid length. For instance, in Fig. 3, the segregation for
N = 100 reaches s = 1 at ρ0 = 0.58 and ρ0 = 0.59,
wherein only one minority agent create one cluster. Dur-
ing re-normalization, only two clusters endure. To see
this effect for bigger size grids, a closer value to ρo = 0.6
will be required. Form magnetizationm = 0, as the num-
ber of agents is the same for each type no such behavior
is present.

The impact of finite-size grids is evident in Fig. 3.
With an increase in the number of sites in the grid, the
segregation value diminishes. While it might initially ap-
pear that the segregation reaches a certain value as the
grid size expands, definitive conclusions regarding finite-
size effects cannot be drawn, as the largest studied num-
ber may still not be sufficiently large.

FIG. 3: Capturing the dynamics of the segregation coefficient
as a function of vacancy densities, with a constant magneti-
zation value of m = 0.4, across diverse grid sizes denoted by
N. Both axis are presented in logarithmic scale.

As previously mentioned, there exists a substantial dis-
parity in the values of the segregation coefficient between
small and large vacancy densities. This shift in behav-
ior is both abrupt and continuous, potentially indicating
the presence of a second-order transition. To ascertain
whether this signifies a phase transition, a more thorough
investigation of its behavior is imperative.

B. Unhappiness

Now, let’s delve into the behavior of the unhappiness
coefficient ⟨u⟩. Examining Fig. 4, it is evident that the
unhappiness values approach zero as the number of va-
cancies increases. This occurrence is a result of more

sites becoming available for an unhappy agent to move,
rapidly diminishing the probability that none of these
sites will be suitable for relocation.

FIG. 4: Capturing the dynamics of the unhappiness coeffi-
cient as a function of various vacancy densities, with a con-
stant grid size ofN = 300, across diverse magnetization values
m. The equation (3) is represented by a dashed line for differ-
ent values of m. Both axis are presented in logarithmic scale.

For the magnetization value m = 0, the unhappiness
remains consistently at zero across all densities of vacan-
cies. This phenomenon is due to the equilibrium in the
number of agents of both types. Applying the queuing
method, as explained earlier, the movement of one agent
often leaves a vacancy for another agent. Although, in
some instances, there may be a few unhappy agents, these
are only to fluctuations.

FIG. 5: Capturing the dynamics of the unhappiness coeffi-
cient as a function of various vacancy densities, with a con-
stant magnetization value of m = 0.4, across diverse grid sizes
denoted by N. The equation (3) is represented by a dashed
line. Both axis are presented in logarithmic scale.

In contrast, for magnetization values m ̸= 0, the num-
ber of unhappy agents escalates at low vacancy densities
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with the increase of m. This is a consequence of the
difference in the number of agents of different types, as
elucidated in the queuing method. When there is an im-
balance in the agent numbers, the minority group ends
up unhappy if the number of vacancies is insufficient to
create sites separated from the other type of agents. This
effect gradually diminishes with the increase in the size
of the grid.

The impact of finite-size can be observed in Fig. 5. As
the number of sites in the grid increases, the unhappiness
value slightly decreases. Similar to the segregation case,
while it might initially appear that unhappiness reaches
a certain value of ρ0, where it goes to zero, as the grid
size expands, definitive conclusions regarding finite-size
effects cannot be drawn, as the largest studied number
may still not be sufficiently large.

As noted earlier, there exists a certain value ρ∗0 where
the unhappiness value goes to zero. This shift in behav-
ior is both abrupt and continuous, potentially indicating
the presence of a second-order transition. To ascertain
whether this signifies a phase transition, a more thorough
investigation of its behavior is imperative.

Additionally, in both figures, a plot of the theoretical
approximation calculated in equation (3) is included. It
is evident that its values and those of the simulation do
not coincide. As mentioned with the queuing method,
this is merely an approximation. This discrepancy is also
observable in [6], where the values of unhappiness and the
density of vacancies where the transition happens differ
by the same amount as with our values.

IV. CONCLUSIONS

In this investigation, we explored a 1D variant of
the original Schelling model, examining the behavior
of two crucial coefficients—segregation and unhappi-
ness—across varying vacancy densities. Our simulations
encompassed a range of grid sizes and magnetization val-
ues. Both coefficients exhibited finite-size effects, with
their values diminishing as the number of available sites
increased. However, drawing decisive conclusions neces-
sitates further simulations with more extensive grids.

Regarding phase transitions, indications suggest the
occurrence of some form of transition in both parameters.
To gain a more profound understanding of the transition
type and its characteristics, an exploration of additional
parameters, such as susceptibility, is imperative.

V. APPENDIX

If you would like to see the script created to run the
simulations, it can be found at the next URL:
https://github.com/SintayehuAndreu/TFG
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