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Abstract: In this study, we investigate the two-neutrino double-beta decay (2νββ) of 82Se to
the first excited 0+2 state of 82Kr within the framework of the nuclear shell model. We consider
four different interactions and we analyze the validity of these interactions in reproducing the ex-
perimental properties of the initial and final states of the decay. The calculated half-life for the
decay is determined using as reference the comparison between the calculated decay of 82Se to the
ground state of 82Kr and experimental data. We find an interval for the predicted half-life for this
transition that is T 2ν

1/2(
82Se, 0+gs → 0+2 ) = (3.5− 170) · 1022 yr.

I. INTRODUCTION

The Standard Model of particle physics (SM) is a
widely accepted theoretical framework that describes
three of the fundamental forces governing the universe.
Nevertheless, unresolved questions persist within this
theoretical framework, as for instance why there is a pre-
dominance of matter over antimatter in the observable
universe. Extensions of the SM allow some transitions
forbidden in this model. An example is the neutrino-
less double-beta decay, 0νββ decay, a special decay of an
atomic nucleus.

In double-beta decay, two neutrons convert into two
protons, accompanied by the emission of two electrons.
According to the SM, this decay, called two-neutrino
double-β decay (2νββ decay), involves the emission of
two antineutrinos, maintaining an equilibrium between
matter and antimatter and preserving the principle of
conserving lepton number. In contrast, in the neutrino-
less decay no antineutrinos are emitted. This reaction,
which has yet to be observed, challenges the SM, violat-
ing lepton-number conservation, creating matter (2e−)
but no antimatter (0ν) [1]. This specific decay is the
focus of on-going experimental searches. The empirical
observation of such reactions would signify the confirma-
tion of physics beyond the SM.

The exploration of 0νββ decay serves as a driving force
behind our investigation into the 2νββ decay. The initial
and final nuclear states are common in both scenarios.
Therefore, the methodologies applied in the investigation
of 2νββ-decay matrix elements are also applicable to the
neutrinoless case. Testing and refinement of the matrix
elements for the two-neutrino scenario, M2ν , have the
potential to improve the accuracy in the determination
of the matrix elements for the neutrinoless case, M0ν .
This is important because there is no experimental data
for the 0νββ decay, so the values of the matrix elements
governing this decay must be derived from theoretical cal-
culations. One remarkable aspect of this investigation is
the extremely long half-lives associated with 2νββ decay.
Some nuclei showing this decay are 130Te and 136Xe, ex-
hibiting half-lives on the order of 1020− 1021 years. This
prolonged timescale presents a challenge for experimen-

tal projects aiming to observe these rare decay events.
Thus, reducing the uncertainty assists significantly the
experimental search for this reaction.
We specifically direct our attention to the decay of 82Se

into 82Kr. With this motivation in mind, our objective
is to predict the half-life of the 2νββ decay to the first
0+2 excited state of 82Kr. The study of the decay to the
ground state will serve a reference, given that it is well-
established experimentally [2].
One of the many challenges in nuclear physics is to

describe the interactions within nuclei. Our approach
centers on the nuclear shell model. To tackle this chal-
lenge, we employ shell-model interactions derived in pre-
vious studies. In order to achieve the goal of this work,
we firstly study the spectrum of both 82Se and 82Kr to
assess the ability of the different interactions to repro-
duce the nuclear structure of these nuclei. Subsequently,
we calculate the matrix elements for the 2νββ decay to
the ground state, M2ν(0+gs), enabling the computation of
half-life predictions. Typically, theoretical calculations
predict shorter half-lives than those observed experimen-
tally [3]. Due to this fact a correction is made by a
‘quenching’ factor.
Similarly, we calculate the matrix elements for the de-

cay to the first excited state, M2ν(0+2 ). Finally, we es-
timate the half-life for the 2νββ decay to the first 0+2
excited state of 82Kr. This result has not been exper-
imentally measured; nevertheless, there is experimental
interest [4].

II. NUCLEAR SHELL MODEL

In order to study the complex system which is an
atomic nucleus we need to solve the non-relativistic
many-body Schrödinger equation:

H |ψ⟩ = E |ψ⟩ , (1)

where H is the Hamiltonian describing the system, |ψ⟩ is
the wave function describing the state of the system and
E the energy of the system.
The complexity of nuclear systems renders it impossi-

ble to accurately describe them analytically. This is the
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reason we use models to understand the nuclear struc-
ture. The nuclear shell model, developed by Mayer and
Jensen, is a many-body method for solving the nuclear
problem with an effective many-body Hamiltonian [5].

The Hamiltonian consists of distinct components: one
involving one-body operators, H0, and another involving
two-body operators, W :

H = H0 +W. (2)

Assuming the nuclear mean field model, we can approx-
imate nucleons as independent particles under the same
nuclear potential. This constitutes the one-body Hamil-
tonian, H0. The one-body part includes, to begin with,
the kinetic energy of the independent nucleons, T (ri)
and a potential central term, V (ri). Furthermore, the
spin-orbit coupling was a key incorporation of the nu-
clear shell model. The Hamiltonian includes the interac-
tion between the spin and the angular momentum, such
that the total momentum of the independent nucleon is

j⃗ = l⃗+ s⃗. The spin-orbit coupling defines the splitting of
energy levels reproducing beautifully the magic numbers:

H0 =

A∑
i=1

T (ri) + V (ri) + ξl⃗i · s⃗i, (3)

where A is the mass number of the atom, therefore we
sum for all nucleons in the nucleus.

The solutions to the Schrödinger equation consider-
ing the one-body Hamiltonian are given by Slater deter-
minants, respecting the Pauli exclusion principle. The
single-particle states are determined by the n, l, j, m, τ
quantum numbers:

|ϕα⟩ =
∏

i=nlmjτ

a†i |0⟩ , (4)

where a†i is the creation operator for the i state and |0⟩ is
the vacuum state. n is the radial quantum number, l is
the orbital quantum number, j is the quantum number
associated with the total angular momentum, m is the
projection of j, and τ is the isospin quantum number.

Moving away from the concept of nucleon indepen-
dence, it becomes imperative to acknowledge the pres-
ence of residual nucleon-nucleon interactions, captured
in W in Eq.( 2). Then, in the case of incorporating
these nucleon-nucleon interactions, the solutions to the
Schrödinger equation are linear combinations of Slater
determinants:

|ψ⟩ =
∑
α

Cα |ϕα⟩ . (5)

Nevertheless, the configuration space grows rapidly
with heavier nucleons and an approximation must be
made to consider a workable Hilbert space. We differ-
entiate three parts in the Hilbert space: the core, the va-
lence space and the empty space. Firstly, the core which
encloses the inactive lowest energy single-particle orbitals

usually in closed shells that are not affected by the active
nucleons around the Fermi surface. The valence space
consists of the single-particle orbitals that are active. Fi-
nally, the empty space is composed of orbits that are
assumed to be unoccupied due to the large energy gap
from the valence space. The single-particle orbital is no-
tated as nlj , where n, l, j are quantum numbers. In the
context of this paper, the valence space encompasses the
single-particle orbitals (1p3/2, 0f5/2, 1p1/2, 0g9/2). Then
the core contains the (0s1/2, 0p3/2, 0p1/2, 0d5/2, 1s1/2,

0d3/2, 0f7/2) single-particle orbitals, this is, a 56Ni core.
The Hamiltonian must undergo modifications in order

to describe the physics of the nuclear state in the va-
lence space. Ultimately, we operate with effective Hamil-
tonians, which are subsequently diagonalized within the
valence space:

Heff |ψeff ⟩ = E |ψeff ⟩ , (6)

where |ψeff ⟩ is the wave function describing the state of
the system, restricted to the valence space. In this paper,
we use the previously calculated effective Hamiltonians:
JJ4BB, JUN45, RG545, RGPROLATE [5].

Lanczos Method

In spite of working in the reduced configuration space,
direct diagonalization is impractical from a computa-
tional point of view due to large dimensions of the matri-
ces. For instance, the effective dimensions of the 82Se and
82Kr nuclei in the defined valence space are d = 3.6 · 105
and d = 4.0 · 107, respectively. Hence, the utilization of
algorithms becomes very useful to effectively diagonalize
these matrices.
In this study, we employ the ANTOINE [6] code for the

nuclear shell model, which executes the precise diagonal-
ization of the effective Hamiltonian through the Lanczos
method.

III. DOUBLE β DECAY

In the context of the nuclear shell model, we study the
2νββ decay from 82Se to 82Kr. The β decay is a nuclear
transition where a neutron transforms to a proton while
an electron and an antineutrino are produced. In the
2νββ decay, this happens twice:

(Z,N)
β−β−

−−−−→ (Z + 2, N − 2) + 2e− + 2νe, (7)

where N and Z are the number of neutrons and protons
in the nucleus respectively.
This transition is governed by the Gamow-Teller oper-

ator of the form ÔGT =
∑

i τ
−
i σi, where σ is the Pauli

spin operator and τ− is the isospin operator which trans-
forms neutrons into protons. The sum i is over all the
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nucleons in the nucleus. The matrix element of the reac-
tion is as follows.

M2ν =
∑
n

⟨0+f ||
∑

a τ
−
a σa||1+n ⟩ ⟨1+n ||

∑
b τ

−
b σb||0

+
i ⟩

En − (Ei − Ef )/2
, (8)

where the sum is over all the intermediate states, n. En

is the energy of the n intermediate state, and Ei and Ef

are the initial state and final state energies, respectively,
taken from experimental data.

The calculation of this matrix element comprises the
following sequential steps. Initially, we determine the
wave function of the initial state |0+i ⟩ of 82Se. Subse-
quently, we apply the Gamow-Teller operator to the ini-
tial state, resulting in the generation of intermediate |1+n ⟩
states of 82Br:

ÔGT |82Se⟩ = |82Br∗⟩ =
∑
n

an |1+n ⟩ . (9)

The number of intermediate states considered, |1+n ⟩, is
not infinite. We have verified that the inclusion of 20
intermediate states results in complete convergence of the
M2ν values in Eq.( 8).
Simultaneously, we determine the wave function of the

final state |0+f ⟩ of 82Kr. Then, we apply the Gamow-

Teller operator to the final state |0+f ⟩ of 82Kr.

ÔGT |82Kr⟩ = |82Br’∗⟩ . (10)

Finally, we compute the overlap between the obtained
state and the previously calculated |1+n ⟩ states of 82Br.

The associated half-life is:

(T 2ν
1/2)

−1 = G2νg4A(M
2νmec

2)2, (11)

where G2ν(0+gs) = 1596 ·10−21 y−1, G2ν(0+2 ) = 4.8 ·10−21

y−1 are the phase-space factors [7], gA = 1.27 is the axial
nucleon coupling and me is the electron mass.
Nevertheless, these shell-model matrix elements are

known to underestimate half-life values. In order to
match the experimental data a ‘quenching’ factor is in-
troduced. We work with a quenching factor previously
calculated, qβ = 0.6, as reference [8]. Alternatively, we
obtain a quenching factor from comparing our calculated
matrix elements with the experimental ones for the well-
known half-life for the ground state to ground state 2νββ
decay [9].

IV. RESULTS AND DISCUSSION

First, we assess the validity of the employed interac-
tions. Fig. 1 compares the calculated low-lying spectra to
the experimental one of 82Se. We observe that the ground
state is well reproduced across all the interactions. Fur-
thermore, we see that JJ4BB, JUN45 and RG545 repro-
duce similarly well the first excited state 2+. These three
interactions demonstrate a reasonably close agreement

FIG. 1: 82Se spectra for the 10 lowest-energy states calculated
using the four shell model interactions, compared to experi-
mental data [10]. Each level is labeled by the total angular
momentum and parity, JP .

FIG. 2: Same as Fig. 1 but for the 10 lowest-lying states of
82Kr.

with the experimentally observed states. It is noticeable
that JUN45, while not showing the grouping structure
seen in the experimental data, yields the least errors in
individual state reproductions. On the contrary, JJ4BB,
still aligning reasonably well with the experimental data,
does exhibit the measured grouping behavior of excited
states. Lastly, RGPROLATE seems to be the least de-
scriptive of the nuclear structure, as neither the grouping
nor the energy of the levels agrees well with data.

Concerning the spectra of 82Kr, Fig. 2, across all in-
teractions both the ground state and the first excited
state are well reproduced. In the interest of our study,
we focus on the first 0+2 excited state. Notably, the in-
teractions JJ4BB and RGPROLATE describe better the
energy of this particular excited state. On the other
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FIG. 3: Running M2ν(0+2 ) matrix element for the decay of 0+gs
of 82Se to the first excited state 0+2 of 82Kr. Plotted against
the energy denominator corresponding to the excited state n
in Eq.( 8) .

hand, the JUN45 and RG545 interactions estimate a rel-
atively higher energy for this excited state than exper-
iment. Fig. 2 shows that the JJ4BB interaction agrees
better with experimental data compared to other inter-
actions.

We undertake a more in-depth analysis, focusing now
on the nuclear wave functions characterizing the states,
in the context of shell occupation. The most relevant
eigenstates for 82Se, |0+i ⟩, are, for the different interac-
tions:

JJ4BB: |0+gs⟩ = 0.60 |8 2 6 4 0 0 4 2⟩+ ...

JUN45: |0+gs⟩ = 0.62 |8 2 6 4 0 0 4 2⟩+ ...

RG545: |0+gs⟩ = 0.61 |8 2 6 4 0 0 4 2⟩+ ...

RGPROLATE: |0+gs⟩ = 0.44 |10 0 6 4 0 0 6 0⟩
+ 0.32 |10 0 6 4 0 0 4 2⟩+ ...,

where we have only considered contribution
with |Cα|2 ≥ 0.1 in Eq.( 5). The ket in
the right side of the equation above represents
|ng9/2np1/2

nf5/2np3/2
pg9/2pp1/2

pf5/2pp3/2
⟩, with ni, pi

the occupation number of orbitals for neutrons and
protons respectively.

The ground states of 82Se are similar for the JJ4BB,
JUN45, and RG545 interactions, with a common state
representing the most substantial contribution to the
wave function. In contrast, the RGPROLATE interac-
tion manifests a more fragmented wave function, having
no dominant configuration.

The same analysis for the 0+2 state in 82Kr shows
that JUN45 and RG545 predict a dominant configuration
while JJ4BB and RGPROLATE encompass a broader
fragmentation of Slater determinants contributing to the
characterization of the 0+2 state.

Next, we study the 2νββ matrix elements. We define
the running matrix element for the nth state as the matrix

element obtained considering a number of intermediate
states equal to n, Eq.( 12):

M2ν
nmax

=

nmax∑
n

M2ν
n , (12)

with M2ν =
∑

nM
2ν
n in Eq.( 8). Fig. 3 shows this run-

ning matrix element as a function of the energy denomi-
nator associated to the intermediate state |1+n ⟩ of 82Br.
The running matrix element converges for a number of

intermediate states. For the decay involving the first 0+2
excited state decay this convergence occurs at energies
E ∼ 12 MeV. Additionally, the most significant contri-
butions to the running matrix element originate from the
lowest-energy excited states. Fig. 3 reveals that the most
prominent contribution originates from just the first ex-
cited state in case of the JJ4BB interaction.
Fig. 3 shows the running 2νββ matrix element to the

decay of 82Se to the 0+2 state of 82Kr, as a function of the
energy denominator in Eq.( 8). Fig. 3 shows two distinct
groupings of behaviour. Firstly, in the case of JJ4BB
and RGPROLATE, there are no cancellations between
the contributions of the different terms, with all interme-
diate states contributing with the same sign. Conversely,
with JUN45 and RG545, the contributions of the differ-
ent intermediate states are of different sign, resulting in
cancellations, particularly notable in the lowest excited
states. Therefore, JUN45 and RG545, show a smaller
matrix element, consequently leading to a longer half-life.
The two latter interactions showed worse agreement with
experimental data when describing the 0+2 final state.
Theoretical calculations of matrix elements and half-

lives in this context, must be typically corrected by a
‘quenching’ factor to match the experimental observa-
tions. The quenching factor involved in the correction
of these matrix elements, is adopted from literature as
reference qβ = 0.6, determined from β decays compar-
ing theory to experiment [8]. We alternatively compute
the quenching factor so that our calculations of the 2νββ
decay to the ground state match the experimental data
for the well-established half-life T 2ν

1/2(
82Se, 0+gs → 0+gs) =

8.69 · 1019 yr [2]. Thus, we derive our results using a
quenching interval, (qβ , q2ν).
Table I summarizes the quenching interval used in the

calculations of half-lives for the different interactions. We
observe that only for RGPROLATE the two values of q

TABLE I: Quenching factor values used for the calculation
of 2νββ-decay half-lives. We present qβ , the reference value,
and the calculated quenching factor for each interaction, q2ν .

qβ q2ν

JJ4BB 0.6 0.56

JUN45 0.6 0.55

RG545 0.6 0.54

RGPROLATE 0.6 0.44
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FIG. 4: 82Se 2νββ-decay half-life to the first 0+2 excited state
of 82Kr obtained with the different interactions. The results
are compared with previously calculated values (in black)
with different methods: EFT [11], QRPA [12], IBM [13]. The
dashed line and arrow indicates the experimental limit for this
transition [4].

are significantly different. This results in a larger range
of half-life predictions for this interaction, as shown in
Figure 4. Figure 4 summarizes the results of our calcu-
lation of the half-lives compared to previously calculated
half-life values as well as the experimental limit. We can
see all of our interactions are consistent with the experi-
mental limit T 2ν

1/2(
82Se, 0+gs → 0+2 ) > 1.3 ·1021 yr [4]. One

can also notice that we have predicted longer half-lives
than the ones obtained through other methods. It is no-
ticeable that the JJ4BB and RGPROLATE interactions,
which seemed to describe better the final state, give re-
sults more similar to the values from the literature. We
see between these predictions orders of magnitude of dif-
ference. The discrepancies in the prediction make testing

these half-life values experimentally a good way to vali-
date the many-body methods used for the calculation of
matrix elements.

V. CONCLUSIONS

In summary, our investigation into 2νββ decay has en-
compassed various methodologies applicable to the study
of 0νββ decay. Specifically, we focused on computing the
half-life for the transition of 82Se to the first 0+2 excited
state of 82Kr. This analysis was conducted within the
framework of the nuclear shell model, for four different
interactions. We compared the spectra predicted by the
interactions to the experimental data, for both nuclei,
82Se and 82Kr. Furthermore, we computed and analyzed
the running matrix element for these interactions.
Finally, we have determined half-live for four different

interactions. The range of the predicted half-lives for
the different interactions in our study is T 2ν

1/2(
82Se, 0+gs →

0+2 ) = (3.5−170)·1022 yr. If we just keep the results from
our shell-model interactions that best describe the 0+2
state in 82Kr, the predicted half-life is T 2ν

1/2(
82Se, 0+gs →

0+2 ) = (3.5 − 11.4) · 1022 yr. Despite these results being
within experimental limits, we predicted longer half-lives
than previous studies with different methods. We look
forward to these half-life values being tested in upcoming
experiments.
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