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Abstract: Traditional methods in Molecular Dynamics are encountering their computational
boundaries to simulate long-time periods and large macromolecules, such as RNA. We develop
an alternative approach by using: i) an ultra-simplified coarse-grained (CG) representation of the
molecule and ii) a flexible non-linear potential intended to represent the accessible conformational
space of RNA. This model can reproduce the flexibility observed in force-field simulations and dif-
ferent morphologies can be modelled. These results underscore the necessity of non-linear dynamics
and statistical physics in CG to capture the dynamic behaviour of Hydrogen Bonds in RNA.

I. INTRODUCTION

Ribonucleic acids (RNAs) are biomolecules essential
for life, exhibiting different roles: from intermediates in
the expression of genetic information to structural macro-
molecules or even catalysts[1, 2]. Contrary to deoxyri-
bonucleic acid (DNA), which appears as a complemen-
tary double helix, RNA is found in the cell as a single
strand, which folds adopting a myriad of conformations
which can interchange in a longer time scale than the
µs[2]. Representing such structural diversity from phys-
ical methods has been a central objective of theoretical
biophysics for decades. Most of the developed strate-
gies are based on classical Hamiltonians (force-fields; FF)
which are used in the context of atomistic molecular dy-
namics (MD)[2]. Despite their impressive success, atom-
istic MDs have many intrinsic shortcomings derived from
the inaccuracy of FF and the limited length of the tra-
jectory that can be reached (typically below the µs)[2].
Coarse-grained (CG) MD is a methodology based on sim-
plifying the system into a small set of beads, which are
generally point-like particles, in geometrical points of in-
terest. CG methods are based on Langevin Dynamics
and aim to capture the essential degrees of freedom of
the system. These methods have been able to simulate
longer time intervals and bigger molecules than FF[2].
In this TFG, a 2-bead CG model is explored. This
model is designed with a particular emphasis on devising
novel potentials to capture the experimental behaviour
of RNA. This TFG has generalized a CG model describ-
ing single-strand morphologies to simulate more complex
structures. Firstly, we describe the fundamental physics
underlying the original model, with specific attention to
the statistical potential for torsional angles (torsionals)
that distinguishes this model. Afterwards, a novel algo-
rithm to form locally dynamic Hydrogen Bonds (HB) be-
tween nucleotides is described regardless of the potential
chosen to model HB. Subsequently, the potentials used to
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FIG. 1: A)At the top, four nucleotides are shown with all the
atoms and below the CG representation of them. In addition,
the main variables of the model are illustrated. B)Hydrogen
Bond interaction is represented. C)Observables involved in
the ’Cross-Stacking’ interaction are depicted.

incorporate HB and Stacking interactions are introduced,
which are sophisticated variations of the Morse Potential
that allow exploring diverse conformations. Finally, the
behaviour of the model is portrayed in the analysis of
pre-miR-31 which presents a complex morphology.

II. METHODS

This CG model simplifies the RNA molecule to 2 beads
per residue located on C4′ and P atoms of the backbone
(see Fig.1), dividing the average mass of a residue equally
into both beads. These two positions allow us to identify
easily the sugar bases and nitrogen groups. In addition,
this mass distribution facilitates the study of RNA fold-
ings. Langevin dynamics is the formalism adopted to
incorporate Brownian motion and friction caused by the
solvent. Computationally, the Velocity Verlet algorithm
is used for integrating the motion equations, which is a
well-established method in MD [3]. The prior interaction
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potentials of this model before this TFG were:

V = VBonded + VNon−Bonded (1)

VBonded = VBonds + VAngles + VS.T (2)

VNon−Bonded = VDH + VLJ (3)

Harmonic potentials have been proved adequate for the
interaction between 2 and 3 successive atoms in different
models [2]. For two atoms: VBonds = 1

2kB(| ~Ri| − R0)2,

where ~Ri = ~ri+1 − ~ri. For three contigous atoms:
VAngles = 1

2kA(ωi − ω0)2 refers to the angle ωi formed

by ~Ri and ~Ri+1. Both R0 and ω0 are the equilibrium
distance/angle for each potential. All variables are illus-
trated in Fig. 1.
This CG model originally intended to reproduce the
phase space of two consecutive torsionals (η, θ) char-
acterized through the analysis of 10000 experimental
structures [4], the most recent and largest inspection of
these variables. The torsionals (η, θ) are defined with
the torsional associate to (C4′i, Pi+1, C4′i+2, Pi+3) and
(Pi+1, C4′i+2, Pi+3, C4′i+4), respectively (see Fig.1). A
single torsional φ is calculated given a set of 4 beads
(i, i+ 1, i+ 2, i+ 3) as cosφ = n̂i,i+1,i+2 · n̂i+1,i+2,i+3 and
counter-clockwise around the bond (i + 1, i + 2), where
each normal vector corresponds to the geometrical plane
formed by 3 beads. This analysis [4] revealed that the
two torsionals angles should be used to characterize prop-
erly the structure and they found clusters of experimental
structures around specific regions in (η, θ) phase space.
The solution to the model for torsionals reproducing
high-density conformations of experimental structures in
[4] is a Statistical Torsionals potential VS.T . This is con-
structed with the prior inference of a statistical model
from a set of experimental observations. Among the dif-
ferent distributions for torsionals statistical potential in
literature, the Bivariate von Mises Sine (BvMS) model
has been priorly used in the modelization of proteins [5]
and it is optimal for numerical simulations (see additional
details in Appendix IV B).
Thus, the statistical model was ([0, 2π]×[0, 2π], P (η, θ) =∑Nc
n=0 πnPn), where Nc is the number of clusters dis-

tinguished [4], πn the weight of a particular BvMS
modelling a cluster in the phase space, Pn is a BvMS
that models the n cluster, which infers a specific set
of parameters for each n. These sets and πn are in-
ferred through the Expectation-Maximization Machine-
Learning algorithm[5]. This determines P (η, θ). Hence,
the torsionals potential can be deduced using statistical
physics. In the formalism of the canonical ensemble (sim-
ulations are at constant T = 298K), the probability of a
configuration is directly related to its potential energy:

P (η, θ) =
1

Z
e−VS.T (η,θ)/kBT (4)

where Z is the partition function. In particular,
VS.T (η, θ) = −kBT log(

∑
πiPn(η, θ)).

Concerning VNon−Bonded, the first term VDH refers to

Debye-Hückel which takes into consideration the inter-
action with ions present in the solvent and the shielding
effect. The second term, VLJ is Lennard-Jones poten-
tial that induces a divergence that avoids beads not re-
lated by VBonded colliding. These two potentials do not
interact between beads involved in the same (ηi, θi) to
minimize interactions with VS.T to reproduce their phase
space better.
This set of potentials (Eq.1-3) model properly single
strand structures exploring the torsionals phase space
analysed by [4]. In the following section, a Pairing Al-
gorithm for HB is described which incorporates dynamic
HBs into the model. The next sections provide details
on how the interaction potential has been generalized to
incorporate HB and Stacking forces, which will expand
Eq.3 and enable the simulation of more complex mor-
phologies.

A. HB Pairing

HBs have a crucial role in determining secondary struc-
ture (2D representation), which influences the 3D mor-
phology, consequently, the Non-Bonded contribution of
this CG Model should account for the HB interactions.
These bonds are not rigidly formed between static pairs
in the time-life of RNA, instead, they are formed/broken
depending on the local properties of RNA (mainly the
dipole-dipole intermolecular forces of HBs). Due to the
aim of reproducing this observed flexibility and explor-
ing different morphologies, a dynamical solution to HB
is desired.
Initially, an extensive review of methods of HB pair
formation suggested Needleman-Wunsch [6] and Smith-
Waterman algorithms [7], which are algorithms of se-
quence alignment between different nucleotides/proteins.
However, when creating or breaking bonds, local observ-
ables beyond the Nitrogen group are fundamental; there-
fore, we cannot use these optimization algorithms.
Another possible approach could be to incorporate in-
teractions between all Nitrogen bases, each interaction
depending on local parameters. However, this solution is
expensive computationally and it is not optimal for CG
modelling.
The solution we propose is a Dynamic Local Pairing Al-
gorithm (DLPA) that allows the addition of the minimum
2-body interactions and describes the pairing through lo-
cal parameters. In this section, the algorithm will be ex-
plained for any given potential VHB used to model HB,
on the condition that it has only one minimum (only one
equilibrium position). The next section will describe the
HB potential chosen for this model.
The core of DLPA is again the formalism of the canon-
ical ensemble: P (HBij) = C exp(−VHB(HBij)/kBT ).
This probability and the local variables of VHB(HBij),
given an HB between the beads i and j, determine the
pairing and, therefore the changes in secondary struc-
ture. However, HBs are canonically established in 2 pos-
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sible pairs: AU and CG (known as Watson-Crick pairs),
and a third non-canonical pair UG (known as Wobble
pair) has also been considered because it is frequently
present[1]. These constraints are accounted for in the
algorithm: P (HBij) = 0 if (Bi, Bj) /∈ {AU,CG,UG},
where Bi is the nitrogen base of the bead i. Further-
more, the only possible pairs are between C4’-C4’. Pro-
vided that P is further from the Nitrogen base it is more
realistic to choose C4’ as the particle forming HB.
DPLA uses two main routines: firstly, it determines
whether current HBs are considered strong (S), weak(W )
or broken(B); secondly, new pairs are created when an
HB is not S. Supposing O = {x1, ..., xr} a set of local ob-
servables that determine VHB(HBij) for a feasible HBij ,
then S,W and B are defined as:

S = {(x1, .., xr) : ∀k |xk − x
BiBj
1k | < δ

BiBj
1 xk} (5)

W = {(x1, .., xr) : ∀k |xk − x
BiBj
1k | < δ

BiBj
2 xk} \ S (6)

B = {(x1, .., xr) : ∃k δ
BiBj
2 xk < |xk − x

BiBj
1k |} (7)

The parameters x
BiBj
k0 , for k = 1, ..., r are the values

of the observables in the minimum of VHB . In addi-
tion, δ1xk, δ2xk are adjusted considering the fluctuation
of HBs in FF simulations. Moreover, all these parame-
ters depend on the bases that are paired: AU, CG and
UG; since their equilibrium value of the observables and
its fluctuations vary with the stability of the bond [1].
The second procedure firstly classifies all nucleotides un-
paired or with a broken/weak HB as to be Re-bonded
(R). Then, we implemented two steps. 1) Two subsets
A,B ⊂ R are selected to find the most probable bond
according to P (HBij), in which i ∈ A and j ∈ B. 2)
The nucleotides of the selected pair are removed from
R. These steps are iterated until no more bonds can be
formed. At the end of DLPA, all nucleotides have been
paired or they are in a region Unable to Re-bond (UR),
which produces a bulge, mismatch or a loop. The second
procedure finishes in a finite number of iterations and
the algorithm produces always a pairing that includes
the most probable HBs. More details in Appendix IV C.

B. Hydrogen Bonds Potential

This section will motivate the election of a complex HB
potential that enables observing flexibility and different
morphologies.
The study of different FF simulations determined
that given the following set of beads (C4′i, Pi+1) (in
the same residue) and their counterparts in the HB:
(C4′HB[i], PHB[i]+1), 3 observables were stable. Obvi-

ously, the most stable was the relative distance be-
tween C4′i and C4′HB[i], r = |~r(C4′i) − ~r(C4′HB[i])|. The

two other were the pairs of angles (φ1, φ2) definded as

φ1 = ¤�Pi+1C4′iC4′HB[i] and φ2 = ¤�C4′iC4′HB[i]PHB[i]+1,

which both remained close to 110◦ (see Fig.1.B). There-
fore, the local observables that determine a feasible HB

are O = {r, φ1, φ2} in this model.
Provided that VHB would depend only on r in a first
approach, we expect V 0

HB = V (r). The interaction ex-
pected could resemble the one observed between atoms:
when they are at a large distance there is no interac-
tion, there is a stable region at an intermediate distance
and it diverges to avoid collapse. The initial poten-
tial chosen was the standard Morse potential VM (r) =

V0
(
1− e−a(r−r0)

)2 − V0 which has a minimum at r = r0
and it diverges for r < r0. However, due to the already
existing divergence of VLJ for small r, we had to reduce
the integration step to inefficient values for CG simu-
lation. Therefore, we modified VM to avoid additional
divergence and to become it symmetric:

V 0
HB = VSM (r) =

®
V0(1−e−a(r−r0))

2−V0 if 0 ≤ r ≤ r0
V0(1−e+a(r−r0))

2−V0 if r0 ≤ r ≤ rB
(8)

where V0 is the depth of the well and a regulates its
amplitude. r0 is the equilibrium distance and rB is the
distance where a bond is considered broken and no inter-
actions exist for larger r. This Symmetric Morse (SM)
potential does not incorporate any additional divergence
as VSM → 0 as r → 0. In addition, for r > rB there
is no interaction and the structure can lose its helicity.
This has been observed testing the potential in a small
Hairpin (PDB: 1KR8), where a transition between open
strand and Hairpin was observed. Nevertheless, this first
approach allowed unfeasible bonds in DLPA since RNA
is very flexible and during a folding unrealistic bonds oc-
curred. This is fixed by incorporating new terms that
take into consideration the rest of observables φ1 and φ2.
The new terms should foster those interactions which
present φ1 and φ2 close to their mean value observed
φ0 = 〈φ(t)〉FF . This second approach is:

V 1
HB = VASM (r, φ1, φ2) = VSM (r)e−

(φ1−φ0)2

σ2 e−
(φ2−φ0)2

σ2

(9)
incorporating two Gaussian related to the Angular ob-
servables. Therefore, these two Gaussians modulate the
interaction and the systems tend to φ0. This last poten-
tial did produce feasible bonds during the DLPA and no
further development was necessary. Moreover, the sets of
constants in VHB = VASM (r, φ1, φ2) were parametrized
by the following procedure. First, φ0 = 〈φ(t)〉FF and
σ2 = V ar(φ(t))FF , then a and V0 through Replica Ex-
change Molecular Dynamics (REMD)[8]. This was per-
formed because they could not be determined by statis-
tical inference from previous simulations of the molecule
with FF since none allowed transitions between open and
closed hairpins. More details on REMD are in the Ap-
pendix IV D.

C. Stacking Potential

Beyond HB interaction, Stacking is a phenomenon
typically observed in double-helix structures. Stacking
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is produced between the bases of two consecutive nu-
cleotides, as a result of hydrophobic, electrostatic and
dispersion effects; creating an attracting force[2]. As a
result, the structure is more compressed since nucleotides
are stacked closely. Helical structures (PDB: 1RNA,
8FCS) were simulated with this model before the stacking
development and they had a larger end-to-end distance.
In the first approach, the distance between the bases
should determine the interaction between them. How-
ever, our CG model does not have any bead associated
with the base, only C4′ that accounts for the sugar ri-
bose and the base. A potential between two consec-
utive C4′ would alter the dynamics of other local ob-
servables. Thus, the proposed potential for these char-
acteristics was two ’Cross-Stacking’ potentials. Pro-
vided this interaction is mainly observed in helical struc-
tures, the stacked nucleotides have an HB to two other
bases. Given (C4′i, C4′i+1), there is a related set is
(C4′HB[i], C4′HB[i+1]) which is located at the opposite side

of the helix. The first approach is: V 0
CS+ = VSM (r+),

where r+ = |~r(C4′i) − ~r(C4′HB[i+1])|; and V 0
CS− =

VSM (r−), where r− = |~r(C4′i+1)−~r(C4′HB[i])|. The sym-

metric Morse attracts nucleotides thus compressing the
helix globally. A similar potential has been used in other
CG Models such as OXRNA [2].
Nevertheless, this interaction should only appear when
the HB is formed and should decrease as this breaks
apart. Therefore, the local observable that should be
used for this potential is O± = {r±, r1, r2}, where r1 =
|~r(C4′i)−~r(C4′HB[i])| and r2 = |~r(C4′i+1)−~r(C4′HB[i+1])|.
These magnitudes are incorporated as:

VCS± = VSM (r±)e−|r1 − r
0
1|
s/σ21e−|r2 − r

0
2|
s/σ22 (10)

where parameter s > 1, ideally close to 2, and σi > 0
(i = 1, 2) modulates the range of interaction between
HB that allows the interaction of VCS . Because of this
physical meaning, the exponential may not be Gaussian
(s 6= 2) and be of a larger order to provide a more ”trape-
zoidal” shape and allow VSM to act more intensely where
there is significant interaction. Once the parameters of
exponentials have been characterized: r0i = 〈ri(t)〉FF and
σ2
i = V ar(ri(t))FF (i = 1, 2); the parameter V0 of VSM

can be determined through REMD[8].
These potentials worked fine, but simulations of double-
strand RNA, such as A-RNA (PDB: 1RNG), V0 as-
sociated with Morse potential in VCS± did not com-
press enough the helix. Therefore, the Stacking
interaction was extended beyond consecutive bases:
VCS++(r++, r1, r3) with r++ = |~r(C4′i)− ~r(C4′HB[i+2])|,
and r3 = |~r(C4′i+2)−~r(C4′HB[i+2])|; and its counterpart:

VCS−−(r−−, r1, r3) with r−− = |~r(C4′i+2)− ~r(C4′HB[i])|.
These additional interactions proportionate the expected
compression between residues and the simulation of heli-
cal structures resembled its FF counterpart. Additional
VCS with further nucleotides were studied but the final
effect was not as impactful as the second-order interac-
tion and the computational time increased.

FIG. 2: DLPA performance during 100 ns in bonding residues
from 27 to 30 and 40 to 45, which are close to a loop. Each
possible pairing between residues is only displayed if there
is any bond during this time interval. In case there is, the
baseline is blue, and when the interaction occurs, this is high-
lighted in red. At the right of the chart, a part of the tertiary
structure of pre-mir-31 (PDB: 8FCS) with bonded nucleotides
are depicted. Below there is the predicted secondary struc-
ture for these residues. Purple is used for bulge residues and
green for the loop represented by the arrow and G nucleotide.

D. Results

The CG model presented in this TFG simulates us-
ing the Eq. 1-3, with the latter extended to include the
described interactions:

VNon−Bonded = VDH+VLJ+VHB+VCS±+VCS±± (11)

and the integration of the motion equations incorporates
the DLPA.
This research has culminated with the test of pre-mir-31
(PDB: 8FCS). This structure is 71 residues long with a
loop of 6 residues, a bulge close to the loop and two mis-
matches along the helical stem. Consequently, this com-
plex molecule requires the proper interaction between all
the potential present in the generalized Eq. 1,2,11 and
DLPA.
To illustrate our CG model, a 1µs simulation of 8FCS is
analysed with specific attention to the new interactions.
The model requires as input the initial coordinates, the
sequence of base residues and the time step of 0.02 ps.

The first analysis for describing HB interaction is Fig.2
which displays the dynamical behaviour of this interac-
tion between different bonds. The residue 27 is bonded
to 45 during the 100ns, which means it is a very stable
HB. However, residues 28 and 44 are not able to pair
with any other because they are in the bulge. Residue
29 changes its bond from 42 to 43 at 85ns. Additionally,
residue 30 is bonded to 41, except for 20ns when it is
paired to 40. These small changes in secondary structure
allow us to study variations in the morphology during
the simulation.
The second analysis in Fig.3 addresses the dynamics of

the observables O± = {r±, r1, r2} and the variations in
VCS±(r±) and VHB(r1,2) . It can be seen that during
this 25 ns, the HB is dynamic. The HBs between beads
29-47 and 30-46 act only the first 2 ns and the last 5
ns when the r is close to 15.2Å. During these two inter-

Treball de Fi de Grau 4 Barcelona, January 2024



Coarse-grained modelling applied to RNA morphologies and flexibility Marc Burillo

FIG. 3: Stacking Interactions during 25 ns. Panels A) de-
scribe the dynamics of the observables involved in VCS±. A.i)
displays r+ between beads 30-47, with equilibrium distance
in the dashed line. A.ii) shows r1, r2 between beads (29-47)
and (30-46), which are HB interactions. A.iii) describes r−
between beads(29-46). Panels B) illustrate the ratio V/V0 for
Stacking interactions in panels B.i) and B.iii) and HB inter-
action in B.ii).

vals, the Stacking interaction reveals: a) r+ and r− are
close to their equilibrium value in A.i and A.iii and b) the
Stacking energy is negative only then (panels B.i, B.iii).
In all B Panels, V/V0 is expected to be -1 in the equi-
librium position. This is observed in panel B.ii, but the
ratio of Stacking interactions is not close to -1, despite
r± crossing both their equilibrium position. The reason
is that VCS± is modulated by the HB which might not
be at the equilibrium distance at the same time. This
illustrates how HB influences VCS and the non-linearity
of this model.

All other observables discussed in the description
of the model have been analysed and their expected
behaviour occurred. Particularly, the new potentials
do not interfere with VS.T which is the most important
characteristic of the model. The global behaviour of the
molecule is coherent.

III. CONCLUSIONS

The CG Model presented in this TFG has distinct fea-
tures that contribute to the study of RNA morphologies
and, in particular, its torsionals phase space.
On one hand, specific potentials such as Lennard-Jones,
Debye-Hückel, and well-established bonded interactions
are crucial for capturing chemical interactions. However,
to generalize the single-strand model it is required to in-
corporate HB and Stacking between bases. This TFG ex-
plores different potentials, including sophisticated Morse
potentials. The physical properties of Morse potential
enable the opening and closing of single strands into a
hairpin shape while Stacking interactions compress long
helical stems to maintain their conformational shape.
On the other hand, RNA’s inherent complexity is chal-
lenging to represent accurately in a CG model. This com-
plexity is addressed by introducing the two non-linear
interactions: the Stacking potential, which is a modu-
lated Morse potential influenced by HBs; and the DLPA
for simulating HBs, which are correlated to angular ob-
servables. DLPA captures the smooth transition between
similar states and naturally establishes the relationship
between bond energy and its probability. Moreover, the
statistical approach of DLPA and torsionals potential dif-
fers from traditional FF, which underscores the impor-
tance of these methods to sample complex phase spaces.

In conclusion, this CG Model facilitates simulations over
extended periods and explores the targeted torsionals
phase space. The newly introduced potentials success-
fully achieve the desired flexibility for complex morpholo-
gies and they allow to study of the stability of bond tran-
sitions between morphologies, which are vital in biologi-
cal processes.
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IV. APPENDIX

A. Numerical Stability

The code describing all potentials related to angular
variables (VAngles, VS.T and VHB) required modifications
since numerical instability was encountered when cal-
culating forces. Forces are calculated using Langevin’s
Equation:

mq̈i = −∂V
∂qi
−mγq̇i +

√
2γkBTRi(t) (12)

Our model was already set in cartesian coordinates:
{qi}i=1,...,3N = {x1, y1, z1, ..., xN , yN , zN}, where N is
the number of beads. This avoids time-consuming
changes to internal coordinates. Therefore, general α an-
gles or torsionals are defined using dot product between
two vectors v̂a, v̂b (see ωi in Fig. 1): αab = arccos(v̂a · v̂b).
Provided v̂a · v̂b = F (qi) (other qj may be involved in F ),
the acceleration for qi related to αab has a factor:

−∂V (αab)

∂qi
= −∂V (αab)

∂αab

∂αab
∂(v̂a · v̂b)

∂(v̂a · v̂b)
∂qi

=
∂V (αab)

∂αab

1√
1− (F (qi))2

∂F (qi)

∂qi
−−−−−−−→
F (qi)→±1

−∞

This divergence as F (qi) tends to ±1 used to occasion ex-
aggerated accelerations, and the only cause is the math-
ematics needed to work in the chosen coordinates rather
than an observed physics phenomenon. This accelera-
tion can be observed visually, but also considering the
temperature fluctuations in time, where the tempera-
ture of the system is approximated with Kinetic energy
K = (3/2)NkBT . This issue was solved by incorporat-
ing cubic polynomials P1(F (qi)), P2(F (qi)) (as a cubic

spline) to modify ∂αab
∂F (qi)

that satisfied continuity for all

values of F (qi) ∈ [−1, 1] and ∂αab
∂F (qi)

(F (qi) = ±1) = 0.

∂αab
∂F (qi)

=


P1(F (qi)), if − 1 ≤ F (qi) ≤ −F0

− 1√
1−(F (qi))2

, if − F0 ≤ F (qi) ≤ F0

P2(F (qi)), if F0 ≤ F (qi) ≤ 1

(13)
The parameter F0 is to regulate how much the original
function is to be deflected, ideally close to 1. Conse-
quently, in case the angle opened too much because of
the interaction of different forces, it would simply cross
the divergent region. This was introduced into the code
incorporating Hermite Interpolation.

B. Bivariate von Mises Distribution

Bivariate von Mises Sine Model probability distribu-
tion used in the derivation of VS.T is:

P(η, θ) = ceκ1 cos(η−µ)+κ2 cos(θ−ν)+κ3 sin(η−µ) sin(θ−ν)

(14)

where c is the normalization constant, (µ, ν) is the peak
of the pdf, κ > 1, κ2 > 0 represents the inverse of variance
compared to a Gaussian distribution and κ3 ∈ R intro-
duces correlation between the two torsional angles. This
distribution is in the sample space of a [0, 2π] × [0, 2π]
and the label of Sine Model is because the correlation
term is the product of two sine terms, in comparison to
the Cosine model which only uses a single cosine with
the two angles as argument:

p(η, θ) = ceκ1 cos(η−µ)+κ2 cos(θ−ν)+κ3 cos(η−µ+θ−ν) (15)

The Sine Model was chosen due to it having easier esti-
mators for inducing the parameters that fit data[5].

C. HB DLPA

DLPA operates through 2 procedures. The first one
has been accurately explained in Section II A. More de-
tails on the second procedure are provided in this ap-
pendix.
The second procedure essentially defines two sets to start
the pairing: NR = {i : ∃j HBij ∈ S} which will not be
Re-bonded and R = {i : ∃j HBij ∈W,B ∨ i unpaired}
which will attempt to Re-bond. Therefore, any residue
{1, ..., N} is in R or NR. Afterwards, the pairing starts.
Firstly, the algorithm will find the maximal continous
subset A in {1, ..., N} such that A ⊆ NR and minNR ∈
A; and the maximal contingous subset B such that
B ⊆ R and maxR ∈ B. Continguous in this con-
text means no nucleotide is missing between any two
nucleotides. Secondly, once A and B are defined, the
(iM , jM ) ∈ A × B such that their observables Oi,j ∈ S
and P (HBiM ,jM ) > P (HBi,j) ∀(i, j) ∈ A×B \ (iM , jM )
is formed. Automatically, iM , jM ∈ NR and iM , jM /∈ R.
Subsequently, a new pairing begins: new A and B are de-
fined with the resulting R and the pair with maximum
probability is bonded; updating R and NR. These two
steps are iterated until ∃i ∈ R such that:(1) i > maxA
and HB[i] > maxB or (2) i < minA and HB[i] <
minB. This means that A (in case (1), otherwise B)
cannot be Re-bonded (UR) since any bond would cross
previous bonds forming a knot. This implies that the
subset A (otherwise B) is added to a new category UR.
The three categories are exclusive, which means that R
is reduced. Thus, a new subset in the updated R must
be found to create the new pair. The algorithm iterates
until R = ∅.
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FIG. 4: A) An iteration of DLPA is represented in which
∀m < i, m nucleotide has a Strong bond or it cannot be
paired. Similarly, ∀n > N − j + 1, where N is the number
of residues (P are omitted). In this particular example, A
and B have different sizes and the most probable bond is
(i,N − j− 1). The nucleotide i+ 5 is not included in A, since
A must be continuous, as defined previously. B) The next
iteration is illustrated after modifying the sets R, NR and
UR. In this situation, a bond between N−j and a nucleotide
in A would ’cross’ the bond (i,N − j − 1) (case (2) explained
in the text: bead i < minA = i+ 1 and HB[i] = N − j− 1 <
minB′ = N−j).Therefore, this is not allowed, so N−j ∈ UR
and‘ B is the following set to use in the pairing instead of B′.

Moreover, since the changes in the secondary struc-
ture are experimentally observed in longer periods than
the integration step, the second procedure can operate
only every certain number of steps. This makes faster
the simulations because the second procedure is slower
as it involves iterating 2 steps, compared to the first
procedure which classifies the state of the current HBs.
In an integration step without the second phase, this
updates whether a nucleotide is still paired or is not
(S → W → B), reducing the number of forces to be
calculated.

D. Replica Exchange Molecular Dynamics

REMD is a sampling method typically used to sample
the phase space of a system with multiple regions of in-
terest that may not be easy to access. This method con-
sists of creating N replicas of the system and simulating
each one at a given Temperature Tn. After a short inter-
val of time, a Metropolis-Hastings Algorithm (described
in Appendix IV E) is applied based on the potential en-
ergy of HBs (or Stacking, depending on which potential is
parametrized) to exchange two structures at consecutive
temperatures Ti ←→ Ti±1 and adapt current speeds of the

beads to the new Thermal Reservoir v′ =
√

(Ti±1/Ti)v.

After n iterations of this process, a structure at room
temperature has been able to overcome barrier potentials
inaccessible at that temperature. In this case, this al-
lowed the structure to access states of opened and closed
hairpins. The temperature at which structures are half
of the REMD open and the other half helical is consid-
ered the Melting Temperature, TM . Using the following
relation for the free energy:

∆G◦ = −kBTM lnK (16)

When the equilibrium constant K = 1/2, then ∆G◦ ac-
counts for the potential depths V0 [8]. The parameter a
was fixed at the value used by OXRNA[2].
REMD does not only imply developing a specific code
for computing this parametrization, but also efficiency is
paramount because N simulations must be completed.
Thus, it is highly advisable to run each replica in paral-
lel cores in a high-performance computing environment.
The library OMP for C-language was used for the paral-
lelization.
Once the parameters were properly determined, the sim-
ulation of the tested hairpin (PDB: 1KR8) explored the
desired conformations. By small alterations of the pa-
rameter V0, the ratio simulated time of open structure to
helical could be altered.

E. Metropolis-Hasting Algorithm

The Metropolis-Hasting Algorithm (MHA) is part of
the REMD. The algorithm is a Montecarlo Method typ-
ically used to decide whether a new possible state, with
energy E′ is feasible given that the current state with en-
ergy E. Since REMD simulates in different temperature
reservoirs, the current state is at temperature T and the
next possible state will be in a reservoir at temperature
T ′. MHA defines a criteria to accept this exchange:

1. If ∆E < 0, the new state is less energetic and there-
fore the exchange is accepted

2. If ∆E > 0, then it is necessary to compare:

exp

Å
1

kB

Å
E′

T ′
− E

T

ãã
> s(U(0, 1)) (17)

where s(U(0, 1)) is a random number uniformly dis-
tributed between 0 and 1. If this last comparison
is true, then the exchange is also accepted. Other-
wise, it is rejected.
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