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Abstract

This work explores the utilization of double cross-validation methods for determining
the optimal bandwidth in kernel regression using single index-models. Kernel regression
is a non-parametric technique widely employed in various fields, particularly in smoothing
noisy data. The bandwidth parameter plays a crucial role in kernel regression, controlling
the smoothness of the estimated function. Selecting an appropriate bandwidth is essential
for achieving accurate and robust model performance. Traditional approaches to band-
width selection often rely on heuristic methods or fixed rules, which may not be optimal
for all datasets.

In this study, we investigate the use of double cross-validation techniques to systemati-
cally assess different bandwidth values and identify the one that minimizesmean integrated
squared error (MISE). Double cross-validation offers a data-driven approach to bandwidth
selection, allowing the model to adapt to the inherent complexity of the data while avoid-
ing overfitting. We discuss the theoretical underpinnings of double cross-validation in the
context of kernel regression and provide practical guidelines for its implementation.

Furthermore, we conduct empirical experiments using simulated and real-world datasets
to evaluate the performance of double cross-validation-based bandwidth selection methods
compared to traditional approaches. Our results demonstrate the effectiveness of double
cross-validation in identifying optimal bandwidths that lead to improved predictive accu-
racy and generalization performance. We also discuss potential challenges and limitations
associated with double cross-validation, such as computational complexity and sensitivity
to data distribution.

Overall, this paper highlights the importance of rigorous model selection techniques,
such as double cross-validation, in enhancing the reliability and interpretability of kernel
regression models. By leveraging double cross-validation methods, practitioners can effec-
tively tune the bandwidth parameter and construct more robust and adaptive regression
models tailored to the characteristics of the underlying data.

Keywords: double cross-validation, kernel regression, single-index models,
bandwidth parameters, mean integrated squared error.
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Resumen

Este trabajo explora la utilización de métodos de doble validación cruzada para de-
terminar el parametro de alizamiento óptimo en modelos de ı́ndice único de regresión con
kernel. La regresión con kernel es una técnica no paramétrica ampliamente empleada en
varios campos, particularmente para suavizar datos ruidosos. El parámetro de alizamiento
juega un papel crucial en la regresión con kernel, controlando la suavidad de la función
estimada. Seleccionar un parametro de alizamiento apropiado es esencial para lograr un
rendimiento preciso y robusto del modelo. Los enfoques tradicionales para la selección del
ancho de banda a menudo se basan en métodos heuŕısticos o reglas fijas, que pueden no
ser óptimos para todos los conjuntos de datos.

En este estudio, investigamos el uso de técnicas de doble validación cruzada para eval-
uar sistemáticamente diferentes valores de parametro de alizamiento e identificar aquel que
minimiza el error cuadrático medio integrado (MISE). La doble validación cruzada ofrece
un enfoque basado en datos para la selección del parametro de alizamiento, permitiendo
que el modelo se adapte a la complejidad inherente de los datos mientras evita el sobrea-
juste. Discutimos los fundamentos teóricos de la doble validación cruzada en el contexto
de la regresión con kernel y proporcionamos pautas prácticas para su implementación.

Además, realizamos experimentos emṕıricos utilizando conjuntos de datos simulados
y del mundo real para evaluar el rendimiento de los métodos de selección de parametro de
alizamiento basados en doble validación cruzada en comparación con los enfoques tradi-
cionales. Nuestros resultados demuestran la efectividad de la doble validación cruzada
en la identificación de parametros de alizamiento óptimos que conducen a una mayor
precisión predictiva y rendimiento de generalización. También discutimos los desaf́ıos y
limitaciones potenciales asociados con la doble validación cruzada, como la complejidad
computacional y la sensibilidad a la distribución de los datos.

En general, este art́ıculo destaca la importancia de las técnicas rigurosas de selección de
modelos, como la doble validación cruzada, en la mejora de la fiabilidad e interpretabilidad
de los modelos de regresión con kernel. Al aprovechar los métodos de doble validación
cruzada, los practicantes pueden ajustar eficazmente el parámetro de ancho de banda y
construir modelos de regresión más robustos y adaptativos, adaptados a las caracteŕısticas
de los datos subyacentes.

Palabras clave: doble validación cruzada, regresión Kernel, modelos de
ı́ndice, parámetros de alizamiento, error cuadrático medio integrado.
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1 Introduction

Estimating the cost of claims is a fundamental task for insurance companies, crucial for setting
premiums and managing financial risk. Traditional methods often rely on simplistic assump-
tions of average costs, which may overlook important nuances in the underlying data distri-
bution. To address this limitation, there’s a growing interest in more sophisticated statistical
models that can better capture the complexities of claim costs.

One such approach gaining traction is the single-index model which can be approached
using kernel estimators. Motivated by its ability to flexibly capture nonlinear relationships and
accommodate covariate information, this model offers a promising avenue for improving the
accuracy of claim cost estimation. By incorporating covariates that reflect driving habits, such
as driving patterns and conditions, the single-index model allows insurers to better understand
the factors driving claim costs.

Furthermore, this model is particularly well-suited for handling right-skewed distributions,
which are common in insurance data where higher claim costs occur less frequently. By focusing
on the entire conditional distribution of claim costs rather than just the mean, the single-index
kernel estimation model enables insurers to gain insights into the tails of the distribution,
where costly claims reside. This approach aligns with the industry’s increasing emphasis on
understanding and mitigating tail risks.

Overall, the motivation for using the single-index model stems from the desire to improve
the accuracy of claim cost estimation, better understand the factors influencing claim costs,
and effectively manage financial risk for insurance companies.

In this work, we present a comprehensive exploration of estimating claim costs within the
insurance industry using advanced statistical techniques. We begin by introducing functional
kernel estimation, a powerful method for modeling complex relationships between covariates
and claim costs. Next, we delve into the concept of the index model, highlighting its signifi-
cance in capturing underlying structures within the data and its applicability to insurance risk
assessment. To demonstrate the efficacy of these methodologies, we conduct simulations using
various randomly generated datasets, showcasing their performance under different scenarios
and data distributions. Subsequently, we transition to the application of these techniques to
a real-world insurance dataset, providing insights into their practical utility and effectiveness
in real-world settings. Finally, we draw conclusions based on our findings, discussing the im-
plications for insurance companies and the broader field of risk management. Through this
structured approach, we aim to offer a comprehensive understanding of functional kernel es-
timation, index modeling, and their application in estimating claim costs, providing valuable
insights for both researchers and practitioners in the insurance industry.
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2 Functional Kernel Estimation

2.1 Kernel estimator of probability density function

The kernel estimator of probability density function (PDF), denoted as f(x), is a fundamental
tool in statistical analysis used to estimate the underlying probability density function of a
random variable based on observed data points. This method is particularly useful when the
exact functional form of the distribution is unknown or complex, as it provides a flexible and
non-parametric approach to density estimation (see Wand and Jones, 1995).

Let x1, x2, ..., xn be a sample of n independently and identically distributed data then:

f̂(x) =
1

nh

n∑
i=1

K

(
x− xi

h

)
. (1)

At its core, the kernel estimator of PDF operates by placing a kernel function, typically a
smooth and symmetric function centered at each data point, and then summing these kernel
functions to obtain an estimate of the density at any given point in the data space. The
bandwidth parameter of the kernel function controls the smoothness of the estimated density
and is a critical aspect of the estimator, influencing its bias-variance trade-off.

In Silverman (1986) the bias and the variance of this estimator are calculated:

biash(x) = Ef̂(x)− f(x)

=
1

2
h2f ′′(x)

∫
t2K(t)dt+ higher-order terms in h

varf̂(x) ≈ n−1h−1

∫
f(x− ht)K(t)2dt− n−1{f(x) +O(h2)}2.

Notice that the biash is aymptotically proportional to h2, so for this quantity to decrease
one needs to take h to be small. However, taking h small means an increase in the leading term
of the integrated variance since this quantity is proportional to (nh)−1 and it is assumed that
limn−→∞ nh = 0. Therefore, as n increases h should vary in such a way that each components of
the MISE becomes smaller. This is known as the variance-bias trade-off and is a mathematical
quantification for the critical role of the bandwidth (see Wand and Jones, 1995).

This paper employs the Gaussian kernel function in the kernel estimator of probability den-
sity function (PDF). The Gaussian kernel is chosen for its computational efficiency, continuity,
and flexibility in adapting to various data distributions. This choice ensures smooth estima-
tion between observations, facilitating accurate density estimation. By utilizing the Gaussian
kernel, this paper provides a practical and reliable approach for estimating probability density
functions in statistical analysis.
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K(t) =
1√
2π

exp

(
−t2

2

)
, (2)

One of the key advantages of the kernel estimator of PDF is its simplicity and ease of
implementation. Additionally, it can adapt well to various data distributions and is robust to
outliers. However, choosing an appropriate kernel function and bandwidth parameter requires
careful consideration to ensure accurate estimation.

Overall, the kernel estimator of PDF serves as a valuable tool in statistical analysis, offer-
ing a flexible and data-driven approach to estimate probability density functions, making it
particularly useful in fields such as finance, epidemiology, and engineering, among others.

2.2 Kernel estimator of cumulative distribution function

The kernel estimator of cumulative distribution function (CDF), denoted as F (x), is a statistical
method used to estimate the underlying cumulative distribution function of a random variable
based on observed data points. This technique is particularly useful when the exact form of
the CDF is unknown or complex, as it provides a flexible and non-parametric approach to
distribution estimation (see Bolancé et al., 2024).

F̂ (x) =

∫ x

−∞
f̂(t)dt

=
1

n

n∑
i=1

Φ

(
x− xi

h

)
,

(3)

Where Φ(x) is the Cumulative function of a standard normal distribution. And the kernel
estimator is the generalization or a smoothed version of the empirical distribution. Instead of
the indicator function, the kernel estimator uses the kernel distribution function as its weight.

In the kernel estimator of CDF, a kernel function, typically a smooth and symmetric func-
tion, is centered at each data point. The cumulative contribution of these kernel functions is
then summed to obtain an estimate of the cumulative distribution function at any given point
in the data space. Similar to the kernel estimator of PDF, the bandwidth parameter of the
kernel function plays a crucial role in controlling the smoothness of the estimated CDF.

Nadaraya (1964) has proved that under mild conditions that F̂ has aymptotatically the same
mean and variance as F̂n. From (4) we can see that as h −→ 0 and n −→ ∞ the E[F̂ (x)−F (x)] −→
0, which implies that the kernel estimator is a consistent estimator of the CDF.

E{F̂ (x)− F (x)}2 ∝ F (x){1− F (x)}/n− uh/n+ vh4, (4)

8



where:

u = f(x)

{
3−

∫ 3

−3

Φ2(t)dt

}
, v =

{
1

2
f ′(x)

∫ 3

−3

t2K(t)dt

}2

.

One advantage of the kernel estimator of CDF is its ability to provide estimates of percentiles
and quantiles directly from the estimated cumulative distribution function. This feature makes
it particularly useful for applications where understanding the distribution’s tail behavior is
essential, such as risk assessment in finance or reliability analysis in engineering.

Overall, the kernel estimator of CDF offers a flexible and data-driven approach to estimate
cumulative distribution functions, making it a valuable tool in various statistical applications.

2.3 Bivariate pdf/cdf and conditional pdf/cdf

The kernel estimators of bivariate PDF and CDF are statistical methods used to estimate the
joint distribution or cumulative distribution of two random variables based on observed data
points. These estimators extend the principles of univariate kernel estimation to handle two-
dimensional data, allowing for the modeling of complex relationships between two variables
(see Wand and Jones, 1995). And one of the most common kernel estimators of bivariate pdf
is the productive kernel estimator:

f̂(x, y) = f̂h1,h2(x, y) =
1

nh1h2

n∑
i=1

K

(
x− xi

h1

)
K

(
y − yi
h2

)
. (5)

In kernel estimation of bivariate PDF, kernel functions are centered at each observed data
point in the two-dimensional space, and their contributions are summed to estimate the joint
probability density function across the entire domain. This approach provides a flexible and
non-parametric method for capturing the joint distribution of two variables, which is especially
useful when the relationship between them is not easily described by a parametric model.

Similarly, kernel estimation of bivariate CDF involves summing kernel functions centered
at each data point to estimate the joint cumulative distribution function. This allows for the
direct estimation of probabilities associated with pairs of observations, facilitating the analysis
of joint probabilities and quantiles (see Bolancé et al., 2024).

F̂ (x, y) =

∫∫
f̂(x, y)dxdy

=
1

n

n∑
i=1

Φ

(
x− xi

h1

)
Φ

(
y − yi
h2

)
.

(6)

Kernel estimators of Conditional PDF (7) and CDF (8) extend these concepts further by
estimating the conditional distribution or conditional cumulative distribution of one variable

9



given the value of another variable. This enables the modeling of conditional relationships
between variables, providing insights into how one variable may depend on or be influenced by
another.

f̂Y |X(y|x) =
f̂X,Y (x, y)

f̂X(x)
, (7)

where f̂X,Y (x, y) is estimated using (5) and f̂X(x) is estimated using (1).

F̂Y |X(y|x) =
F̂X,Y (x, y)

f̂X(x)
, (8)

where:

F̂X,Y (x, y) =
1

nh1

n∑
i=1

K

(
x− xi

h1

)
Φ

(
y − yi
h2

)
.

Overall, Kernel estimators of bivariate and conditional PDF/CDF offer flexible and data-
driven approaches for modeling relationships between two variables, making them valuable tools
in various fields such as economics, environmental science, and engineering, where understand-
ing joint or conditional distributions is essential for decision-making and analysis.

2.4 Nadaraya-Whatson non-paremetric regression

Nadaraya-Watson nonparametric regression is a technique used for estimating the conditional
expectation of a dependent variable Y given independent variable X, without assuming a
specific parametric form for the relationship between the variables. It’s a kernel regression
method, meaning it relies on local weighted averaging of the observed data points.

In Nadaraya-Watson regression, the estimator of the conditional expectation of the depen-
dent variable Ê(Yi|X = x) given the independent variables X = x is calculated as a weighted
average of the observed Y values, with the weights determined by a kernel function K (see
Wand and Jones, 1995):

m̂(x) = Ê(Yi|X = x) =

∑n
i=1K

(
x−xi

h1

)
yi∑n

i=1K
(

x−xi

h1

) . (9)

At the heart of Nadaraya-Watson regression is the concept of kernel smoothing. The basic
idea is to estimate the conditional expectation of Y at a particular point x by giving more
weight to data points that are closer to x and less weight to those that are farther away. This
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weighting is accomplished through a kernel function, which assigns weights to observed data
points based on their distances from x.

The formula for the Nadaraya-Watson estimator reflects this local averaging approach. For
each x where estimation is desired, the estimator computes a weighted average of the observed
Y values, with the weights determined by the kernel function. The bandwidth parameter h
controls the width of the kernel and thus the size of the local neighborhood used for averaging.
A smaller bandwidth leads to a more localized estimation, while a larger bandwidth results in
a more smoothed estimate.

In Härdel (1989), it is proven that the Nadaraya-Watson estimator is an asymptotically
consistent estimator of the conditional mean, as stated in Proposition 1.

Proposition 1 Assume the stochastic design model with a one-dimensional predictor variable
X and
(A1)

∫
|K(u)|du < ∞,

(A2) limu−→∞uK(u) = 0,
(A3) EY 2 < ∞,
(A4) n −→ ∞, hn −→ 0, nhn −→ ∞. Then at every point of continuity of m(x), f(x) and σ2(x),
with f(x) > 0, ∑n

i=1K
(

x−xi

h1

)
yi∑n

i=1K
(

x−xi

h1

) P−→ m(x).

One of the key advantages of Nadaraya-Watson regression is its ability to capture complex
nonlinear relationships between variables without requiring any assumptions about the under-
lying distribution or functional form. This makes it particularly useful in situations where the
relationship between X and Y is unknown or cannot be adequately described by a parametric
model. Additionally, Nadaraya-Watson regression is robust to outliers and does not suffer from
bias due to misspecification of the regression function.

2.5 Selection of bandwidth for kernel estimator

The bandwidth parameter (h) in kernel density estimation and nonparametric regression di-
rectly impacts the trade-off between model complexity and smoothness. Choosing the right
bandwidth is crucial:

1. Bias-Variance Trade-off : It balances bias and variance in the estimator.

2. Model Flexibility: It determines the level of detail and smoothness in the estimated
function.
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Figure 1: The illustration of how univariate kernel density estimates were constucted based on
5 observations (2.2, 2.6, 3.0, 5.2, 5.3). The left figure represents a model built with h=0.5 and
the right one with h=2

3. Interpretability: It affects how well the estimated function captures local versus global
trends.

4. Robustness: It influences the sensitivity of the estimator to outliers.

5. Computational Efficiency: It affects the computational resources required for estima-
tion.

6. Generalization Performance: It impacts how well the estimator performs on unseen
data.

Figure 1 shows a kernel density estimate constucted using five observations (x⃗ =< 2.2, 2.6,
3.0, 5.2, 5.3 >) with the kernel chosen to be the N(0,1), which is K(x) = ϕ(x). It should be
pointed out that only 5 observations are used here purely for clarity in illustration about how
kernel method works. In practice, much more observations should be involved in the kernel
estimation.

Selecting an appropriate bandwidth involves finding a balance that accurately represents
the data without overfitting or oversmoothing. Techniques like cross-validation help in making
this choice.

12



3 Single-Index model

3.1 Definition

Single-index regression models offer a semiparametric approach to extending linear regression,
establishing the relationship between a random variable Y (such as the cost of a traffic accident
or claim severity) and a d-dimensional vector X = (X1, ..., Xd)

T . Traditionally, estimating
the linear predictor coefficients θ = (θ1, ..., θd)

T and the function m has relied on the condi-
tional expectation, leaving models vulnerable to extremes, heavy-tailed distributions, or strong
asymmetry, common in many real-world applications. Our contribution lies in extending max-
imum likelihood estimation to facilitate single-index conditional distribution modeling, holding
significant promise across various domains.

Y = m(θTX) + ϵ, (10)

were θ is a vector of unknown parameters, m is an unknown smooth function, and ϵ is a
random variable with zero-mean conditional on X.

Nonparametric regression offers a broader framework than the single-index model outlined
in equation (10), stemming from the general specification Y = m(X) + ϵ, where the objective
is to estimate the regression curve m(x) = E(Y |X = x), as elucidated by Härdel and Ichumura
(1993). Despite its versatility, nonparametric regression encounters notable challenges in prac-
tical applications. Firstly, estimation becomes increasingly intricate with a higher number of
covariates, succumbing to the curse of dimensionality. Secondly, direct interpretation of the ex-
planatory variables’ effects is impractical, necessitating the exploration of these effects through
plotting various relationships.

An alternative to the single-index model is the generalized additive model, as detailed by
Hastie and Hardle (1990). However, it confronts similar challenges to nonparametric regres-
sion, including the complexities associated with high-dimensional covariates and the indirect
interpretation of variable effects.

3.2 Approaches for estimating variable parameters

3.2.1 Minimising the sum of squared errors

For estimating the vector θ, Härdel and Ichumura (1993) proposed directly minimizing the resid-
ual sum of squares. Their estimator is constructed using i.i.d. observations (X1, Y1), ..., (Xn, Yn)
of the covariates and dependent variable, with m̂−i representing the leave-one-out kernel es-
timator of m. Alternatively, Juditsky and Spokoiny (2001) explored the average derivative
estimator of the parameter vector in the index model, initially introduced by Stoker (1986)
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and further developed by Stock and Stoker (1989). Juditsky and Spokoiny (2001) presented
a method for estimating the coefficient vector θ by minimizing an M-function using a score
function Ψ, which compares Yi with a nonparametric estimator m̂(·).

Leave-One-Out Cross-Validation (LOOCV) is used for estimating model parameters because
it provides an unbiased estimate of prediction error by iteratively training the model on all but
one observation and then validating its prediction against the omitted observation. This method
balances bias and variance, offering consistent parameter estimates as the sample size increases.
LOOCV maximizes data utilization by using each observation for both training and validation,
ensuring efficient estimation with robustness to the specific choice of validation sets. Overall,
LOOCV is a powerful and widely used technique for parameter estimation due to its ability
to provide reliable estimates of model parameters while maximizing the use of available data.
That is:

θ̂ = argminθ

n∑
i=1

[yi − m̂−i(θ
Txi)]

2. (11)

In our codes, the function optim() with the method ”L-BFGS-B” was used to find the
parameters which minimizes the objective function.

3.2.2 Maximising the log-likelihood

To estimate the variable parameters and obtain the index values, Bolancé et al. (2024) used
the method of likelihood cross-validation to estimate the vector of variable parameters θ to get
the index. the estimated parameters was those which maximize the leave-one-out estimated
conditional log-likelihood (see Silverman, 1986).

l̂n(θ;h1, h2) =
1

n

n∑
i=1

logf̂−i
θ (Yi|θTxi). (12)

It should be noted that if we choose any non-zero real number λ, then, since there is a one-
to-one correspondence between θTX and λθTX, it is also true that the conditional distribution
only depends on the covariate vector via the linear combination λθTX. Consequently, infinitely
multiple choices exist for the single-index parameter vector θ. The usual way to solve this
identification problem is to introduce a scale constraint, for example ||θ|| = 1 or fixing one
component of θ to one (see Bolancé et al., 2024).

The code iteratively estimates and selects the parameters θ and h1, h2 using the following
steps:

1. Initial values: The initial values of h1 and h2 are determined using the variation of the
samples. These initial values serve as starting points for the optimization process.
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2. Optimization: The ‘optim()‘ function is used with the ”L-BFGS-B” method to find the
estimate θ̂ that maximizes the objective function. The objective function is defined based
on the specific problem being solved.

3. Fixing θ̂: The estimated θ̂ is fixed as known values, and the optimal values of h1 and h2

are found by maximizing the objective function. This step aims to find the best values
for h1 and h2 given the estimated θ̂.

4. Repeat iterations: The first step is repeated, taking the newly selected values of h1 and
h2 from the previous step. The process is iterated until the results converge, meaning
that the parameter estimates and selected values of h1 and h2 stabilize.

By iteratively updating the parameter estimates and selecting the optimal values of h1 and
h2 based on the estimated θ̂, the code aims to refine the model and find the best combination
of parameters that maximize the objective function.

3.3 Approach for estimating smooth parameter

3.3.1 Minimizing the Sum of Squared Errors

Although in the section 3.2, when estimating the variable parameters θ, we also selected the
optimal bandwidth h1 and h2. But according to van den Berg (2020) the optimal smoothing
parameters for estimating the variables parameters is not the same ones for estimating the
conditional mean, which is another functional. That is, for each different estimation use, the
smooth parameters should be different.

After estimating θ using (11) or using (12), we will find another optimal smoothing param-
eter h1 taking θ̂ as known values by minimising the sum of squared errors, which serves as a
double cross validation.

h1 = argminh1


n∑

i=1

yi −

∑n
j=1,j ̸=i K

(
t−θ̂T xj

h1

)
yj∑n

j=1,j ̸=iK
(

t−θ̂T xj

h1

)
2

 . (13)

In the codes of the annex, the function optimize() was used to finde the optimal parameter
h1 which minimizes the objective function.
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4 Simulations

4.1 Description of Simulation Data

Each simulation data at hand comprises 100 replications of samples with 500 observations and
2000 observations. Each observation consists of the dependent variable Y and a set of three
independent variables, denoted as X. The three variables are identically and independently
distributed and have a standar normal distribution.

The original index is formed as a linear combination of these independent variables X, using
the original parameter vector, θ0 = (1, 1.3, 0.5)T . This original index serves as a critical input to
generate the dependent variable Y, which is produced using various conditional distributions.
(See Table 1)

Through this structure, the simulation data provides a rich and diverse set of variables,
allowing for a comprehensive examination of the relationships and dependencies among them.
This diversity in the data is especially beneficial for understanding the impact of different
distributions on the generated results.

• Lognormal Distribution: The lognormal distribution is a continuous probability distribu-
tion of a random variable whose logarithm is normally distributed. It is skewed, with a
heavier right tail, and is commonly used in situations where values are positively skewed
and have a lower bound of zero, such as in the distribution of income or the size of
populations.

• Weibull Distribution: The Weibull distribution is a flexible distribution that can assume
various shapes depending on its parameters. It is often used in survival analysis and
reliability engineering to model time-to-failure data. The shape of the Weibull distribution
can provide insights into the nature of the failure rate.

• Log-logistic Distribution: The log-logistic function has several properties that make it
useful in modeling survival data. It can handle censored data, which is data where the
event of interest has not occurred for some of the observations. Additionally, it can model
both increasing and decreasing hazard rates, which represent the likelihood of the event
occurring at a given point in time.

4.2 Candidate models

Three alternatives of estimating θ and h are proposed in this paper which combines different
methods of estimating θ and h. For comparing the performance of the different alternatives it
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Distribution Parameters Density Mean

(µ = θTx, σ = 0.5)

Lognormal (µ = θTx, σ = 2) 1

y
√
2π∗σ2

exp
(
− (ln(y)−µ)2

2∗σ2

)
eµ+

1
2
σ2

(µ = θTx, σ = 5)

(k = 1, λ = (θTx)2)

Weibull (k = 2, λ = (θTx)2) k
λ

(
y
λ

)k−1
e−(y/λ)k λΓ(1 + 1

k
)

(k = 3, λ = (θTx)2)

(β = 1.5, α = (θTx)2)

Log-logistic (β = 2, α = (θTx)2) (β/α)(y/α)β−1

(1+(y/α)β)2
απ/β

sin(π/β)

(β = 3, α = (θTx)2)

Table 1: Conditional distributions for dependent variable as a function of index for the simu-
lation study
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is introduced in this paper the concept of Integrated Squared Error of expected values, which
is defined as follow:

ISE :=

∫
{E[Y |t]− m̂(t)}2dt, (14)

with t = θ̂Txi.
Unlike the sum of squared errors, the ISE measures magnitude of prediction error along all

the field of the index. So this will measure the global performance of the predictor.
The three alternatives are described as follows:

• Alternative 1: To estimate θ and h simultaneously by minimising the Leave One Out
Sum of Squared Errors, which is (θ̂, h1) = argmin(θ,h1)

∑n
i=1[yi −m−i(θ

Txi)], where m(·)
is defined through the formula (9) (see Härdel, 1989);

• Alternative 2: At first to estimate θ and h1 simultaneously by minimising the Leave-
One-Out Sum of Squares Errors (11). But taking into account that the optimal smooth
parameters h1 don´t have to be the optimal ones to predict the conditional mean of the
response variable. For this reason, we´ll take the estimated θ̂ as known parameters and
obtain the optimal smooth parameters by minimising (11) again;

• Alternative 3: At first we will estimate θ and h1, h2 simultaneously by maximizing the
Leave-One-Out Log-Likelihood (12). Samely, taking into account that the optimal h1 for
estimating the conditional mean value of the response variable. For this reason we will
take the estimated θ̂ as known parameters and obtain the optimal smooth parameter h1

by minimising the Leave-One-Out Sum of Squared Errors (11).

4.3 Comparison of the results

4.3.1 Comparison of ISE

Table 2 presents the comparison of the Integrated Squared Errors (ISE) of 18 samples, which
are generated randomly with three different distributions. The samples are further generated by
changing the shape parameters, which control the variance and tail behavior of the distribution.
The comparison results are presented as ratios to the ISE of alternative 1.

To analyze how the sample size affects the performance of the different alternatives, samples
of size 500 and 2000 are simulated for each distribution described above.

As the parameters increase, the variance of the distribution grows exponentially, and so
does the ISE. For simplicity of illustration, the values in the table are presented as relative
values to the ISE of the first alternative. Original ISE values can be found in the Appendix.
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From the Table 2, it is evident that alternative 2 slightly improves upon alternative 1 in
all simulations, while the improvement of alternative 3 is larger. In most cases, the ISE using
alternative 3 is less than half of alternative 1.

Furthermore, the sample size has an impact on the model’s performance. With a larger
sample size, the improvement of alternative 3 becomes even bigger compared to alternative 1.
It is worth noting that as the shape parameters of each distribution are changed to make the
distribution heavier in the right tail, the superiority of alternative 3 over alternatives 1 and 2
becomes more pronounced.

In summary, both the choice of method and the sample size play a crucial role in the model’s
performance. Alternative 3 consistently outperforms the other alternatives, and a larger sample
size further enhances its superiority. Additionally, modifying the shape parameters of the
distributions reinforces the strength of alternative 3 compared to alternatives 1 and 2.

19



Sample size

n=500 n=2000

Distribution Parameters Alt. 1 Alt. 2 Alt. 3 Alt. 1 Alt. 2 Alt. 3

Log
Normal

µ = θTx,
σ = 0.5

1 0.970 0.412 1 0.974 0.038

µ = θTx,
σ = 2

1 0.992 0.116 1 0.974 0.141

µ = θTx,
σ = 5

1 1.029 0.641 1 1.008 0.993

Weibull

k = 1,
λ = (θTx)2

1 0.832 0.484 1 1.003 0.216

k = 2,
λ = (θTx)2

1 0.995 0.377 1 0.984 0.386

k = 3,
λ = (θTx)2

1 1.000 0.307 1 1.013 0.343

Log-
logistic

β = 1.5,
α = (θTx)2

1 0.991 1.111 1 0.606 0.114

β = 2,
α = (θTx)2

1 0.954 0.408 1 0.979 0.201

β = 3,
α = (θTx)2

1 0.999 0.413 1 0.871 0.106

Table 2: Comparison of the ISE using different methods for estimating θ and h in different
simulations with sample size 500 and 2000. The values are ratio values to the ISE of Alternative
1 20



4.3.2 Illustration of conditional mean prediction

For a more visual comparison of the precision of mean values using the three alternatives
for estimating variable parameters and selecting optimal smoothing parameters, we provide
a sample of size 2000. This sample follows the same conditions of the simulated index and
conditional distribution as described in the previous section. Additionally, in each plot, the
theoretical mean values are represented using solid lines.

• Log-Normal: From Figure 2, it can be observed that the first two alternatives yield almost

Figure 2: Comparison of the estimated conditional means using three alternatives to estimate
the parameters and theoretical means. The theoretical distribution is a log-normal distribution
with µ = θTx and σ = 1 using a sample with 2000 observations

identical estimations. Initially, all three alternatives estimate the mean values very close
to the theoretical means. However, as the index increases, indicating a heavier tail,
the first two alternatives consistently underestimate the theoretical values. In contrast,
the third alternative continues to estimate the mean value accurately. Thus, the third
alternative proves to be much more robust than the first two.

• Weibull: In the case of a Weibull conditional distribution (Figure 3), all three alternatives
perform very similarly and are very close to the theoretical value. Notably, at the right
tail of the index, the third alternative outperforms the first two, while the first two
demonstrate better performance at the left tail. However, it is evident that all alternatives
tend to underestimate the mean value at the left tail and overestimate it at the right tail
of the index.
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Figure 3: Comparison of the estimated conditional means using three alternatives to estimate
the parameters and theoretical means. The theoretical distribution is a Weibull distribution
with λ = (θTx)2 and k = 3 using a sample with 2000 observations

• Log-logistic: Figure 4 illustrates that when the conditional distribution is a log-logistic,
there is a severe problem of overfitting with the first alternative. However, after reselecting
the optimal bandwidths by minimizing the Sum of Squared Errors (SSE) function, the
second alternative provides a much more robust estimation. Notably, the estimated values
of alternatives 2 and 3 are very close, with the third alternative performing slightly better
than the second one.

As conclusion of this section, the comparison reveals that the third alternative, which in-
volves first estimating the variable parameters by maximizing the log-likelihood and subse-
quently selecting the optimal smooth parameters by minimizing the sum of squared errors
of the predicted conditional mean values, stands out due to its precision and robustness in
estimation especially when the conditional distribution presents heavy tails.
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Figure 4: Comparison of the estimated conditional means using three alternatives to estimate
the parameters and theoretical means. The theoretical distribution is a Log-logistic distribution
with α = (θTx)2 and β = 3 using a sample with 2000 observations
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5 Application

5.1 Description of the dataset

The dataset used in the application is the same one used by Bolancé et al. (2024). Our
analysis focuses on a dataset sourced from a Spanish insurance company´s portfolio, specifically
pertaining to policyholders aged between 18 and 35. These policyholders, all of whom had
underwritten a motor insurance policy, accepted a telematics engine enabling the company to
collect data on their driving behavior. The dataset only includes settled claims.

A few claims in the original dataset arose from no-fault agreements between insurers, where
the recorded amount aligns with the legally established cost. However, these claims do not
provide information on the true cost of the claim, which could potentially be lower or higher
than the agreed-upon amount. Therefore, to maintain the integrity of our analysis, we excluded
these claims from our dataset. Consequently, our data are not censored.

Our primary analysis focuses on a sample of 489 car insurance policyholders who reported
at least one claim in 2011. These claims correspond to third-party liability accidents. For each
policyholder, we have data on the total incurred losses and the number of claims throughout
the year. The ratio of these two values provides the yearly mean claim cost per policy, which
refers to incurred and paid losses.

The dataset under examination provides information on several covariates for each policy-
holder. These include (the descriptive statistics are presented with Table 3):

1. Cost per policyholder in thousands of euros (cost)

2. Age in years (age)

3. Number of years holding a driving licence (agelic)

4. Age of car in years (agecar)

5. A binary indicator equal to 1 if the car is parked in a garage overnight and 0 otherwise
(parking)

6. Annual distance driven in thousands of kilometres (tkm)

7. Percentage of kilometres driven at night (nightkm)

8. Percentage of kilometres driven on urban roads (urbankm)

9. Percentage of kilometres driven above the speed limit (speedkm)
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This information was collected using a telematics device installed in the policyholders’
vehicles, providing insights into their driving style and patterns. Therefore, ”tkm”, ”urbankm”,
”nightkm”, and ”speedkm” are referred to as ”telematics covariates”.

It is worth noting that the gender variable is not included in the model, in compliance
with European Union regulations that prohibit discrimination between men and women in the
context of insurance premiums (See Guillen M. and Pérez-Maŕın, 2019). Our analysis is, thus,
focused on exploring the impact of the aforementioned covariates on insurance claims, in light
of the available telematics data.

5.2 Model results

Based on the simulations, the best double cross-validation approach to predict the conditional
mean cost given the characteristic parameters is to first maximize the log-likelihood and then
minimize the sum of squared errors. And in the model the coefficient of the variable ”speedkm”
was constrained to one in order to address the issue of identification. It makes sense since it
is a straightforward intuition that the speed variable will contribute to the claim cost. The
estimated variable parameters and their significance hypothesis test are given in the Table
4 and the following plot below (Figure 5) illustrates the prediction results of the insurance
company.

By examining the p-values of the hypothesis tests for the different variable parameters, we
can see that all variables, except for whether the car is parked in a garage overnight or not,
affect the prediction of the expected cost in a statistically significant way.

Furthermore, by observing the signs of the estimated parameters, we can see that the vari-
ables—percentage of kilometers driven above the speed limit (speedkm), age in years (age),
number of years holding a driving license (agelic), percentage of kilometers driven at night
(nightkm), and percentage of kilometers driven on urban roads (urbankm)—influence the ex-
pected costs in a similar manner.

According to common knowledge, when drivers frequently exceed the speed limit, the ex-
pected costs are higher. Therefore, we can also conclude that higher percentages of night and
urban drives lead to higher expected costs. This is logical since visibility is reduced at night,
and urban traffic is usually more complex.

One less intuitive finding is that both the age of the driver and the number of years holding
a license affect costs similarly. This can be interpreted as more experienced drivers potentially
becoming overconfident and less cautious. Additionally, the age of the car plays a role: people
driving older cars may be more careful, aware of potential issues with their vehicles.

From the Figure 5, we can draw the following conclusions. When the index of the insured is
below 25, the expected mean cost remains relatively stable, although there is a slight tendency
for the fitted cost to drop as the index increases from 5 to 15, then rise as the index continues
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to increase from 15 to 25. Generally, the estimated cost in this range falls within the interval
of [9000, 10000]. However, when the index exceeds 25, the expected cost increases much more
rapidly until it reaches 33. According to the graph, the cost starts to decline again after this
point, but the results in the tails are not credible due to the lack of data in those regions.

5.3 Marginal Effect analysis

Because our model combines both parametric and non-parametric elements, analyzing the
marginal effect of the variables by simply looking at their parameters is very complicated.
Therefore, we need to create a grid of the variables for a more detailed analysis. Here is how
we do it:

First, we choose a variable to analyze its marginal effect. For all other variables, we set
them at their minimum values and keep them unchanged. Additionally, we want to analyze
the marginal effect of this variable across different groups. In this case, we distinguish between
younger and older age groups. In the graphics, the continuous line represents the younger
group, while the dotted line represents the older group. The pre-set values of the variables
are “agelic” = 2.001; “agecar” = 2.11; “parking” = 1; “tkm” =1,219.77; “nightkm” = 4.38%;
“urbankm” = 3.81%; “speedkm” = 12.23%; “age” = 20.59 for younger groups and “age” =
34.07 for older groups.

We analyze the marginal effect of the following four variables:

1. Percentage of kilometers driven above the speed limit (speedkm)

2. Annual distance driven in thousands of kilometers

3. Percentage of kilometers driven at night

4. Percentage of kilometers driven on urban roads

• For the variable “speedkm”, we observe similar marginal effects for both age groups.
Initially, the cost decreases as the “speedkm” increases, but then it starts to increase
beyond a certain point. Notably, the turning point for the older group occurs earlier than
for the younger group. The point can be interpreted as follows: When the “speedkm”
is below a certain level, a higher value of “speedkm” indicates more experience and can
result in a reduction in cost. However, once this variable reaches a limit beyond which
experience cannot control it, the “speedkm” will start to contribute to the cost.
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• The marginal effect of “tkm” on the cost is relatively small. We observe that for both age
groups, the cost increases as “tkm” increases, but the rate of increase is not significant.
Additionally, it’s notable that the cost level for the younger group is consistently higher
than for the older group.

• The variable “nkm” exhibits a converse marginal effect compared to “tkm”. In other
words, the cost level decreases as “nkm” increases. Additionally, the rate of decrease in
cost with respect to the increment of “nkm” is much larger compared to “tkm”, but it
is still true that the cost level for the younger group is consistently higher than for the
older group.

• The variable “ukm” exhibits a very similar marginal effect to the variable “nkm”. As
“ukm” increases, the cost decreases, and this variable corresponds to an even higher
decreasing rate compared to “nkm”. Additionally, the cost level for the younger group
is consistently higher than for the older group. However, it’s interesting to note that the
two groups seem to converge at very high levels of “ukm”.
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Mean Std. Min. Q25 Median Q75 Max

cost 1.810 6.191 0.018 0.417 0.818 1.878 130.870

log(cost) -0.145 1.128 -4.031 -0.874 -0.201 0.630 4.874

age 27.009 3.246 20.586 24.496 26.820 29.886 34.067

agelic 6.429 2.833 2.001 4.337 5.864 7.992 14.686

agecar 8.916 4.162 2.111 5.777 7.943 11.370 20.468

parking 0.763 0.426 0.000 1.000 1.000 1.000 1.000

tkm 8.356 4.530 1.220 5.174 7.549 10.635 35.105

nightkm 7.514 6.504 0.044 2.979 5.841 9.954 42.830

urbankm 27.127 14.163 3.810 16.565 24.401 35.245 80.659

speedkm 7.203 7.100 0.122 2.286 4.969 9.403 48.002

Table 3: Descriptive statisitcs of the variables in the claim costs dataset
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Variables Coefficients STE Z p-value

speedkm 1.000 - - -

age 0.153 0.039 3.910 ***

agelic 0.097 0.036 2.706 ***

agecar -0.107 0.012 -9.016 ***

parking -0.162 0.248 -0.653

tkm -0.044 0.013 -3.367 ***

nightkm 0.117 0.006 20.315 ***

urbankm 0.141 0.005 27.061 ***

Table 4: Estimated variable parameters and the selected smooth parameter is h= 3.27 (***
means p-value ≤ 0.005; **means p-value ≤ 0.01; * means p-value ≤ 0.5)
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Figure 5: Prediction of conditional mean cost by combing Log-loglikelihood and MSE methods
to estimate the variable parameters and smooth parameters respectively in a Single-index model
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Figure 6: The marginal effects of the variables: speedkm(top left), tkm(top right), nkm(bottom
left) and ukm(bottom righjt). Continuous lines: Younger group; Dotted lines: Older group
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6 Conclusion

Compared to the traditional models the Single-Index model has some irreplaceble advantages.
First of all, The Kernel Single-Index Model (KSIM) offers a high degree of flexibility in captur-
ing nonlinear relationships between variables, making it well-suited for modeling complex data
patterns that may not be adequately captured by linear models. This flexibility allows KSIM
to handle a wide range of data types and distributions, providing robust modeling capabilities
for diverse datasets. Further more KSIM is robust to outliers and noise in the data, as it relies
on a single index rather than individual data points. This robustness ensures that the model
can effectively capture the underlying structure of the data while minimizing the influence of
outliers, resulting in more reliable and stable predictions. Additionally, KSIM is a nonparamet-
ric method that does not impose specific assumptions about the underlying data distribution.
This flexibility allows KSIM to accommodate a wide range of data types and distributions,
making it suitable for various applications across different domains.

Despite its strengths, The performance of KSIM can be sensitive to the choice of kernel func-
tion, bandwidth parameters, and other tuning parameters. This paper provides possible ways
to estimate the variable parameters and find the potential optimal bandwidths for estimating
the conditional mean value.

Here are some proposed improvements for the paper:

• Expanding Statistical Analysis: Explore methods to derive additional statistics from the
conditional function, such as quantiles and expected values in the tail. This would require
finding optimal bandwidths for each statistic, which could enhance the richness of the
analysis and provide deeper insights into the data distribution.

• Optimizing Computational Efficiency: Implement optimizations in the code to reduce
execution time, particularly as the number of observations increases. Since kernel ap-
proaches involve all observations in the estimation process, computational complexity
grows exponentially with the dataset size. Optimizing the code can help mitigate this
issue and improve overall efficiency.

• Theoretical Marginal Effects: Conduct theoretical analysis to calculate the marginal ef-
fects of each variable. While the paper analyzes empirical marginal effects based on
observed data, theoretical calculations could provide additional insights and complement
the empirical findings. This theoretical exploration could offer a deeper understanding of
the underlying relationships between variables and help validate empirical results.
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Härdel, W.H., 1989. Applied nonparametric regression. Cambridge university press .
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A.1 Comparison table of ISE of simulations

A.2 Codes in R for the simulations

A.3 Real data from a Spanish insurance company used in applica-
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A.4 Codes in R for estimate the mean cost and marginal effect
analysis
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