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Abstract

The COS method exploits the relation between the characteristic function of a
random variable and the series coefficients of the Fourier-cosine expansion of the
density function. After the mathematical introduction and the derivation of the
Black-Scholes formula, we introduce with all the details the COS method. We
compare, in terms of absolute error and in CPU time, its performance when pricing
European options with a Monte Carlo scheme and with the Black-Scholes value
of the derivative. An error analysis of COS method is also provided. Numerical
experiments confirm the fast convergence and the precision of the COS method.
Keywords: Option pricing, European options, Cosine expansion, Fourier inverse
transform
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1 Introduction

When it appeared in 1973 the Black-Scholes model was the cornerstone of option
pricing. It assumed constant volatility and a log-normal distribution of asset
prices. However, empirical evidence has shown that asset prices exhibit features
like volatility clustering, jumps, and fat tails, which the Black-Scholes model cannot
capture. Since then, the mathematical models used in finance and in particularly
for pricing financial instruments such as options have become progressively more
complex. This complexity arises from the need to capture more realistic market
behaviours and account for factors such as stochastic volatility (stochastic volatility
models such as Merton model address this issue), jumps in asset prices (Merton model
and Merton-Kou model are of this type), and other intricate dynamics that simple
models cannot adequately represent. The fact that the density of a random variable
and its characteristic function form a Fourier pair has had important implications
in Finance. The characteristic function, which is the Fourier transform of the
probability density function, provides a way to handle complex models analytically.
For many advanced models, the density function can not be computed while the
characteristic function can be derived explicitly. So instead of applying the direct
discounted expectation approach of computing the integral that involves the product
of the terminal payoff and the density function of the process, it may be easier to
recover the density from its Fourier transform.
Fourier analysis (that includes the Fourier transform) has been widely studied since
the 18th century (see for example [Duo00] or [Gra14]) and is a huge important
mathematical field with important applications in many different areas such as signal
processing, digital image processing, acoustics and others. In finance, the Fourier
inversion method was probability first used in [SS91], in a stochastic volatility model
that used the transform method in order to find the distribution of the underlying
asset. In [Hes93] it is obtained a closed-form solution for the price of a European
call option with time varying volatility of the underlying with a technique based on
the characteristic functions. In the 2000, [DPS00] provided an analytical treatment
of a class of transforms, including various Laplace and Fourier transforms, that can
be applied when treating with affine jump diffusion processes. A numerical approach
was given by [CM99]. The authors transformed the problem of pricing options
into the Fourier domain and then applied the Fast Fourier Transform (FFT) to
evaluate the integral numerically. In the Fourier domain it is possible to solve various
derivative contracts, as long as the characteristic function is available. The FFT
allows for efficient computation by discretizing the integral into a sum and rapidly
computing the result, reducing significantly the computational time compared to
traditional numerical integration methods. The method proved to be particularly
efficient for handling a wide range of asset price models, including those with complex
dynamics such as jumps and stochastic volatility. Finally, [FO09] took a different
but related approach. The authors used the cosine-series of the density and the
relation between the Fourier series and the characteristic function. The method
proved to be accurate and fast.
The structure of this thesis is the following: in Chapter 2 we give a brief review
about probability theory as well as setting some of the mathematical framework
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about stochastic processes in order to be able to explain and prove the main results,
in Chapter 3, about the Black-Scholes model. In the fourth chapter we set up the
basic Monte Carlo scheme for pricing options that will be used later for comparisons.
In the fifth chapter we explain with all the details the COS method. In chapter six
we provide numerical results about the COS method, comparing the obtained ones
with the Monte Carlo scheme and the Black-Scholes formula. In particular, we will
study the accuracy and efficiency of the method in terms of absolute error and CPU
time, exploring some of the limitations of the method. Finally in Chapter 7 we give
a brief summary of the main conclusions drawn from the thesis alongside with some
future research that can be made about the method.
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2 Mathematical framework

We begin this work reviewing some important mathematical concepts about proba-
bility theory. Let (Ω,F ,P) be a probability space.

Definition 2.1. Given the two measurable sets (Ω,F), (R,B(R)) a random variable
is a function

X : Ω −→ R
ω −→ X(ω)

such that X−1(B) ∈ F for all B ∈ B(R), where B(R) is the Borel σ−algebra. We
also say that X is F−measurable.

We could substitute R with any measurable space E but in R we can define
quantities such as the expectation and variance of a variable or the distribution
function. The law of a random variable X is usually expressed in terms of its
cumulative distribution function (CDF) FX(x) defined as

FX(x) := P(X ≤ x)

or in terms of its probability density function (PDF):

Definition 2.2. We say that a random variable X is absolutely continuous with
density fX(x) if its cumulative distribution function (CDF) FX(x) can be written as

FX(x) =

∫ x

−∞
fX(y) dy

with fX(x) ≥ 0 for all x ∈ R and
∫
R
f dµ = 1 where µ is the Lebesgue measure

in R.

Definition 2.3. Let X be a real-valued continuous random variable with PDF fX(x).
The expected value of X, denoted by E[X], is defined as

E[X] =

∫
R

xfX(x) dx

if
∫
R
|x|fX(x) dx is finite.

Moreover, if E[X2] <∞ we define the variance of X as

V ar[X] = E[(X − E[X])2] = E[X2]− E[X]2

Definition 2.4. Given a random variable X and n ∈ N, we say that X has finite
moment of order n if E[Xn] exists (i.e is finite).

We will denote by mn the nth moment of X. In particular, the first moment of X
is by definition the expected value of X.
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Definition 2.5. Given an absolutely continuous random variable X with PDF fX(x)
we define the characteristic function X as

ϕX(u) : R −→ C

u −→ E[eiuX ] =

∫ ∞

−∞
eiuxfX(x)dx

Example 2.6. We compute the characteristic function of a random variable Z that
follows a standard normal distribution, Z ∼ N (0, 1). We know that in this case

fZ(x) = 1√
2π
e

−1
2
x2

. Then

ϕZ(u) = E[eiuZ ] =
1√
2π

∫ ∞

−∞
exp

(
−x2

2
+ iux

)
dx

=
1√
2π

∫ ∞

−∞
exp

(
−1

2
(x− iu)2

)
exp

(
−u2

2

)
dx

= exp

(
−u2

2

)
(2.1)

Then, as Y = µ+ σZ ∼ N (µ, σ2) we also have that

ϕY (u) = E[e(iu(µ+σZ))] = eiuµE[eiuσZ ] = eiuµϕZ(uσ) = eiuµ−
σ2u2

2 (2.2)

We first notice that the characteristic function of a random variable X always
exist as |eiut| = 1 for all t ∈ R (note that all possible values of eiut lie on the unit
circle, hence are bounded) as long as X admits a density function fX(x). This is a
big difference with the moment generating function which does not always exist (for
example with a log-normal distribution). A direct implication from the definition is

ϕX(0) = 1 (2.3)

There is also a relation between the characteristic function of a random variable an
its moments mn:

Theorem 2.7. Let X be a random variable with nth moment finite. Then the
characteristic function ϕX is n times continuously differentiable and

ϕk
X(0) = ikmk

for every k = 1, . . . , n

The proof of the theorem can be found in [NS90].

Definition 2.8. For a random variable X we define its cumulant characteristic
function2 as

G(u) = log(ϕX(u)) (2.4)

2Here we have defined the cumulants in terms of the characteristic function. A widely alternative
used definition of the cumulants is in terms of the moment generating function. We define the
moment generating function of a random variable X as MX(t) = log(E[exp(tX)]. The cumulants

are defined then as setting G(t) = log(E[exp(tX)] and ξn = dnG(t)
dtn

∣∣∣∣
t=0

. In particular, given the

moment generating function M, the moments of X are defined as mk = dkM(t)
dtk

∣∣∣∣
t=0

.
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and the nth cumulant of X as

ξn =
1

in
dnG(u)

dun

∣∣∣∣
u=0

(2.5)

For example, the first fourth cumulants of are random variable X are:

ξ1 =
1

i

dlog(ϕX(u))

du

∣∣∣∣∣
u=0

=
1

i

1

ϕX(u)

dϕX(u)

du

∣∣∣∣∣
u=0

ξ2 =
1

i2
d2log(ϕX(u))

d2u

∣∣∣∣∣
u=0

=
1

i2

[
−1

(ϕX(u))2

(
dϕX(u)

du

)2

+
1

ϕX(u)

d2ϕX(u)

d2u

]
u=0

ξ3 =
1

i3
d3log(ϕX(u))

d3u

∣∣∣∣∣
u=0

=
1

i3

[
2

(ϕX(u))3

(
dϕX(u)

du

)3

+
−3

(ϕX(u))2
dϕX(u)

du

d2ϕX(u)

d2u

+
1

ϕX(u)

d3ϕX(u)

d3u

]
u=0

ξ4 =
1

i4
d4log(ϕX(u))

d4u

∣∣∣∣∣
u=0

=
1

i4

[
−6

(ϕX(u))4

(
dϕX(u)

du

)4

+
12

(ϕX(u))3

(
dϕX(u)

du

)2
d2ϕX(u)

d2u

−3

(ϕX(u))2

(
d2ϕX(u)

d2u

)2

+
−4

(ϕX(u))2
dϕX(u)

du

d3ϕX(u)

d3u
+

1

ϕX(u)

d4ϕX(u)

d4u

]
u=0

Using Theorem 2.7 and equation (2.3) we can simplify the cumulant expressions to
get:

ξ1 =
1

i

1

ϕX(0)
ϕ1
X(0) = m1 = E[X] (2.6)

ξ2 =
1

i2
(
−(ϕ1

X(0))2 + ϕ2
X(0)

)
= −(m1)

2 +m2 = −E[X]2 + E[X2] = V ar[X] (2.7)

ξ3 =
1

i3
(
2(ϕ1

X(0))3 − 3ϕ1
X(0)ϕ2

X(0) + ϕ3
X(0)

)
= 2m3

1 − 3m1m2 +m3 (2.8)

ξ4 =
1

i4
(
−6(ϕ1

X(0))4 + 12(ϕ1
X(0))2ϕ2

X(0)− 3(ϕ2
X(0))2 − 4ϕ1

X(0)ϕ3
X(0) + ϕ4

X(0)
)

= −6m4
1 + 12m2

1m2 − 3m2
2 − 4m1m3 +m4 (2.9)

Example 2.9. Let us consider a random variable X ∼ N (µ, σ2). Then it is clear
that ξ1 = µ and ξ2 = σ2. To compute ξ3, ξ4 we use the characteristic function
computed in Example 2.6:

ϕ1
X(u) = ieiuµ+

−σ2u2

2 (µ+ iu2t)

ϕ2
X(u) = −eiuµ+

−σ2u2

2 (µ2 + σ2 + σ4(−t2) + 2iµσ2t)

ϕ3
X(u) = eiuµ+

−σ2u2

2 (−iµ3 + σ6(−t3) + 3iµσ2(σ2t2 − 1) + 3µ2σ2t+ 3σ4t)

ϕ4
X(u) = eiuµ+

−σ2u2

2 (µ4 + µ2(6σ2 − 6σ4t2)− 4iµσ4t(σ2t2 − 3) + σ4(σ4t4 − 6σ2t2 + 3)

+ 4iµ3σ2t)

7



So

m2 = µ2 + σ2

m3 =
1

i3
d3ϕ(u)

d3u
|u=0 =

1

i3
(−iµ3 − 3iµσ2) = µ3 + 3µσ2

m4 = µ4 + 6µ2σ2 + 3σ4

and clearly

ξ3 = 2µ3 − 3µ(µ2 + σ2) + µ3 + 3µσ2 = 0

ξ4 = −6µ4 + 12µ2(µ2 + σ2)− 3(µ2 + σ2)2 − 4µ(µ3 + 3µσ2) + µ4 + 6µ2σ2 + 3σ4 = 0

From the Definition 2.5 if a random variable X admits a density fX(x) then its
characteristic function ϕX(u) is its Fourier transform with the sign reversal in the
complex exponential. In fact, the density fX(x) and the characteristic function ϕ(u)
form the following Fourier transform pair:

ϕ(u) =

∫
R

eixufX(x)dx (2.10)

fX(x) =
1

2π

∫
R

e−iuxϕ(u)du (2.11)

2.1 Stochastic processes

In order to be able to model natural phenomenons or the financial markets we need
to consider a sequence of random variables over the time. We can define then a
stochastic process as a sequence of random variables indexed by some set T (called
the index set, that usually has the meaning of time). Formally,

Definition 2.10. A stochastic process X is a function

X : Ω×T −→ R
(ω, t) −→ Xt(ω)

measurable, that is such that

X−1(B) ∈ F ⊗ B(T) (2.12)

for all B ∈ B(R) where T := {0, 1, .....T} when we are modelling a discrete process
or T = [0, T ] when we model a continuous process over the time.

Usually we use the notation {X(t) : t ∈ T}, {X(t, ω) : t ∈ T} or {Xt : t ∈ T} to
denote an stochastic process. In that sense, the second option is a better choice for a
notation, as it also emphasises that fact that a stochastic process is a function of two
variables t ∈ T and ω ∈ Ω. That is, for every t we have a different random variable
while for a fixed state ω ∈ Ω we have a map X(·, ω) : T −→ R that represents a
path for that state. For sake of simplicity, in this work we will use the notation Xt
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or X(t).
There is a vast bibliography about stochastic processes: we refer the reader to
[KT75], [Law06], [Ros19], for more information about general theory and some
examples of stochastic processes. Among the most famous stochastic processes there
is the Wiener process also known as Brownian motion:

Definition 2.11. A standard Wiener process is a stochastic process {Wt; t ≥ 0}
such that:
(i) W0 = 0 almost surely.
(ii) The function t −→ Wt := W (t, ω) is, with probability 1, a continuous function.
(iii) The process has independent increments, that is, for 0 = t0 < t1 < . . . < tm, the
random variables

Wt1 = Wt1 −Wt0 , · · · ,Wtm −Wtm−1

are independent.
(iv) For all 0 ≤ s ≤ t,Wt −Ws ∼ N (0, t− s). In particular, Wt ∼ N (0, t).

Definition 2.12. Let X = {Xt; t ≥ 0} be a stochastic process. We say that X is an
Itô process if it can be written as

Xt = X0 +

∫ t

0

usds+

∫ t

0

vsdWs, t ∈ [0, T ] (2.13)

where X0 is an F0 − measurable random variable (usually a constant), u is an
L1(Ω × [0, T ]) process, v is an L2(Ω × [0, T ]) and W = {Wt; t ≥ 0} is a standard
Brownian motion. In particular, we have that

• E
∫ T

0
|us|ds <∞

• E
∫ T

0
|vs|2ds <∞

The notation
dXt = utdt+ vtdWt (2.14)

is shorthand for equation (2.13) with X0 as an initial condition

Remark 1. It can be proven (see [Shr04]) that the quadratic variation of Brownian
motion up to time t is given by t implying that, with probability 1, the paths of the
Brownian motion have infinite variation on any finite interval. Moreover, Brownian
Motion is nowhere differentiable for any t (see [CKT12]). As a consequence, if
v = {vt; t ≥ 0} is a process with continuous paths, the Riemann-Stieltjes integral∫ T

0

vt(ω)dWt(ω) (2.15)

does not exist with probability 1.
The integral

∫ t

0
vsdWs is an stochastic Itô integral with respect to the Brownian

motion. We will not develop here the theory that is behind stochastic integration
(see for example [LL08],[Shr04]). Here we will just state that, for every t,

∫ t

0
vsdWs

is a random variable with expectation 0, meaning that E
∫ t

0
vsdWs = 0, variance

E
[ (∫ t

0
vsdWs

)2]
= E

[ (∫ t

0
|vs|2dt

)2]
and continuous trajectories. Hence every Itô

process has also continuous trajectories.
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The following theorem, known as Itô’s lemma is the equivalent of the chain rule
for stochastic calculus:

Theorem 2.13. Let X be an Itô process and let F : [0, T ]×R→ R be a C1,2-function.
That is, F is a function for which Ft(t, x) = ∂tF (t, x), Fx = ∂xF (t, x), Fxx =
∂xxF (t, x) are defined and continuous. Then for every t ≥ 0

F (t,Xt) = F (0, X0) +

∫ t

0

Fs(s,Xs)ds+

∫ t

0

Fx(s,Xs)dXs +
1

2

∫ t

0

Fxx(s,Xs)v
2
sds

(2.16)

= F (0, X0) +

∫ t

0

Fs(s,Xs)ds+

∫ t

0

Fx(s,Xs)usds+

∫ t

0

Fx(s,Xs)vsdWs

+
1

2

∫ t

0

Fxx(s,Xs)v
2
sds (2.17)

where the second equality comes from the fact that X is an Itô process.

Proof of the theorem can be found in [LL08] and [Shr04].
In particular, if X0 = 0, u ≡ 0, v ≡ 1 we have that Xt = Wt and we can rewrite Itô’s
lemma as

F (t,Wt) = F (0, 0)+

∫ t

0

Fs(s,Ws)ds+

∫ t

0

Fx(s,Ws)dWs+
1

2

∫ t

0

Fxx(s,Ws)ds (2.18)

Moreover, if F (t, x) = F (x) then

F (Xt) = F (X0)+

∫ t

0

F ′(Xs)usds+

∫ t

0

Fx(s,Xs)vsdWs+
1

2

∫ t

0

F ′′(s,Xs)v
2
sds (2.19)

In differential notation Itô’s lemma can be written as

dF (t,Xt) = (∂tF )(t,Xt)dt+ (∂xF )(t,Xt)dXt +
1

2
(∂xxF )(t,Xt)v

2
t dt (2.20)

with F (0, X0) initial condition.
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3 The Black-Scholes model

The first application of the Brownian motion to finance was given by Louis Bachelier
in 1900. His doctoral thesis Théorie de la spéculation (see [Bac00]). He proposed that
stock prices follow a continuous-time stochastic process with normally distributed
returns. His work laid the foundations for stochastic calculus, a mathematical frame-
work essential for modelling and analysing random processes. He also anticipated
the efficient market hypothesis by suggesting that market prices reflect all available
information and follow a random walk, making it impossible to consistently predict
future price movements. Bachelier’s work initially met with limited recognition until
the mid-20th century, when it was rediscovered and gained recognition. In 1959 M.
F. M. Osborne presented a work ([Osb59]) in which he proposed that stock prices
follow a random walk and assuming price changes are independent and identically
distributed. Osborne demonstrated that while absolute stock prices do not follow a
normal distribution, the logarithms of stock prices do. Some years later, in 1973,
[Sam73] presented the argument that geometric Brownian motion is a good model
for stock prices. The most significant breakthrough in option pricing came in 1973,
when Fischer Black, Myron Scholes (alongside with Robert Merton) developed the
Black-Scholes model in a famous publication in the Journal of Political Economy
called The Pricing of Options and Corporate Liabilities (see [BS73]). Their work
provided arbitrage techniques for pricing and hedging options and a mathematical
formula to price European call and put options, revolutionizing financial theory and
practice

3.1 Derivatives

There are many types of derivatives such as forward contracts, swaps or futures, but
in this work we will focus on options. There are two types of options: a call option
gives the holder the right to buy an underlying asset whereas a put option gives
the holder the right to sell the underlying asset both by a certain date for a certain
price. The price of the option, also known as premium, compensates the fact that
the owner of the call or the put option is not obliged to buy or sell the underlying
asset: this is the fundamental characteristic that distinguishes options from other
derivatives such as forwards and futures, where the holder is obligated to buy or
sell the underlying asset at fixed price and date. The price in the contract (price at
which the underlying will be bought/sold) is known as the exercise price or strike
price, and the date on which the sale or purchase of the underlying asset will be
executed is known as the expiration date or maturity.
Options can be either American or European. American options can be exercised at
any time up to the expiration date, whereas European options can be exercised only
on the expiration date itself. Most of the options that are traded on exchanges are
American, and usually American options are more traded with stocks as underlying
assets while European options are usually traded with stock market index. The
main focus on this work will be European options, as under the Black-Scholes model
we can price them with closed formulas.
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The profit (also known as payoffs) of European call and put options is given
respectively by

PayoffCall = (ST −K)+ = max(ST −K, 0) (3.1)

PayoffPut = (K − ST )+ = max(K − ST , 0) (3.2)

An important relation between the prices C and P of a European call and a European
put both with identical strike prices and expiration date is the Call-Put parity:

Theorem 3.1. Consider a put and a call with the same maturity time T and exercise
price K on the same underlying asset which is worth St at time t. Furthermore, we
assume that it is possible to borrow or invest money at a constant rate r. Let us
denote by Ct and Pt respectively the prices of the call and the put at time t. Then
for all t < T is true that

Ct − Pt = St −Ke−r(T−t) (3.3)

The proof of it can be found in [LL08] and it based on the absence of an arbitrage
opportunity.
Consider a European call option on a stock whose price at time t is denoted by St.
Let us call T the expiration date and K the strike value. At time t = T the owner
of the option has the right to buy the stock at price K. If ST ≤ K the owner can go
to the market and buy the stock at price ST so it will have no interest in exercising
the option. However, if at time t = T we have that ST > K the owner of the option
can exercise its right, buy the stock at price K and sell it immediately back on the
market at a price ST making a profit of ST −K. Two questions arises:

1. How much should the buyer pay for the option? In other words, how should we
price at time t = 0 an asset worth (ST −K)+ at time T? That is the problem
of pricing the option and is a central challenge in financial markets.

2. The seller of the option must be able to deliver a stock at price K meaning
that must generate an amount (ST −K)+ at maturity. That is the problem of
hedging the option. Hedging aims to mitigate potential losses due to adverse
price movements in the underlying asset. However, effective hedging is complex
due to the dynamic and often unpredictable nature of financial markets.

3.2 Asset dynamics

The main purpose of this section is to develop the Black-Scholes model. We start
by making some assumptions about the market:

1. The market is efficient: we assume that financial markets are efficient. This
means that asset prices fully reflect all available information at any given time.

2. Absence of arbitrage opportunities. In other words, the model assumes that
there are no opportunities for riskless profit in the market. If arbitrage oppor-
tunities existed, traders would exploit them until they disappeared, ensuring
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that the model’s pricing remains accurate. Consequently, it is impossible to
consistently achieve returns that outperform the market through arbitrage or
other strategies.

3. No dividends. The original Black-Scholes model assumes that the underlying
asset does not pay dividends during the option’s life. Extensions of the model
incorporate dividend payments, adjusting the option pricing accordingly.

4. Continuous trading. We assume that trading of the underlying asset and the
option occurs continuously without any interruptions. This implies that the
markets are open at all times, allowing for the instant execution of trades.

5. Frictionless markets. The Black-Scholes model assumes that markets are
frictionless, meaning there are no transaction costs, taxes, or other trading
impediments. This assumption ensures that hedging strategies, such as delta
hedging, can be implemented perfectly and without cost.

The Black-Scholes model assumes a market with two underlying securities.

• A risk-free asset, that represents a money-market account, described by a
deterministic function

dAt = rAtdt (3.4)

with A(0)=1 for convenience, and r > 0 a constant risk-free rate. Note that
this is an ordinary differential equation A′(t) = rA(t) with a unique solution

A(t) = ert

but for consistency with stochastic calculus and Itô processes notation we use
differential notation.

• A risky asset (thought of as a stock) represented by an stochastic differential
equation known as geometric Brownian motion (GBM) expressed as

dSt = µStdt+ σStdWt (3.5)

with S0 given, µ ∈ R is called the drift rate, and σ > 0 is the volatility of the
stock price S. In particular we have that

St = S0 +

∫ t

0

µSsds+

∫ t

0

σSsdWs (3.6)

so we are assuming that S = {St; t ≥ 0} is an Itô process with us = µSs and
vs = σSs.

The equation (3.5) is widely used in financial mathematics. An informal interpreta-
tion of it is the following: the change dSt that the stock prices experiment in an
increment of time dt is given by a first term completely deterministic (and thus
predictable) plus a random fluctuation given by a Brownian motion Wt.
We start studying the dynamics of the log-asset price:
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Example 3.2. Let Xt = log(St). If F (x) = log(x) then ∂tF (x) = 0, ∂xF (x) =
1
x
, ∂xxF (x) = −1

x2 . Applying Itô’s lemma we have that

log(St) = log(S0) +

∫ t

0

1

Ss

dSs +
1

2

∫ t

0

−1

S2
s

σ2S2
sds (3.7)

= log(S0) +

∫ t

0

µds+

∫ t

0

1

Ss

σSsdWs +
−1

2

∫ t

0

σ2ds (3.8)

= log(S0) +

∫ t

0

(
µ− 1

2
σ2

)
ds+

∫ t

0

σdWs (3.9)

So

log(St) = log(S0) +

(
µ− 1

2
σ2

)
t+ σWt (3.10)

From (3.10) is clear that under the Black-Scholes model (assuming (3.5)) the
log-asset price follows normal distribution with mean log(S0) +

(
µ− 1

2
σ2
)
t and

variance σ2t. Taking this into account it seems that

St = S0 exp

{
(µ− σ2

2
)t+ σWt

}
(3.11)

is a solution of (3.5). In fact, we can check it applying again Itô’s lemma. We have
St = F (t,Wt) with

F (t, x) = S0 exp

{
(µ− σ2

2
)t+ σx

}
so

St = F (t,Wt)

= F (0,W0) +

∫ t

0

(∂sF )(s,Ws)ds+

∫ t

0

(∂xF )(s,Ws)dWs +
1

2

∫ t

0

(∂xxF )(s,Ws)ds

= S0 +

∫ t

0

(
µ− 1

2
σ2

)
Ssds+

∫ t

0

σSsdWs +
1

2

∫ t

0

σ2Ssds

Regrouping terms we get that

St = S0 +

∫ t

0

µSsds+

∫ t

0

σSsds

All in all, we conclude that under the Black-Scholes model, the stock price of an
asset is a log-normally distributed random variable with mean S0e

µt and variance
S2
0e

2µt(eσ
2−1). Furthermore, as the log-asset price follows a normal distribution we

have that, if Xt = log(St) then the characteristic function of the log asset price is
given by

ϕX(u) = eiu(log(S0)+(µ−σ2

2
)t)−σ2tu2

2 (3.12)
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3.3 Black-Scholes equation

Assume that the value of a derivative (for example a call or a put option) with
expiration time T can be written as V (T, ST ) = h(ST ). In particular, assume that
at any time 0 ≤ t ≤ T we can write the value of the derivative as V (t, St) for some
deterministic function V (t, x) ∈ C1,2([0, T ] × R). Assuming that the risky asset
follows (3.5) if we apply Itô’s lemma to V (t, St) we obtain that

dV (t, St) = ∂tV (t, St)dt+ ∂xV (t, St)dSt +
1

2
∂xxV (t, St)σ

2S2
t dt (3.13)

= [∂tV (t, St) + µSt∂xV (t, St) +
1

2
σ2S2

t ∂xxV (t, St)]dt+ [σSt∂xV (t, St)]dWt

(3.14)

Now we consider a self-financing trading strategy where at each time t we hold xt
units of the risk-free asset and yt units of the stock. We denote by Pt, the value at
time t of this strategy. In particular, Pt satisfies that

Pt = xtAt + ytSt (3.15)

By self-financing we mean that any gains or losses on the portfolio are due entirely
to gains or losses in the underlying securities (the risk-free asset and the stock) and
not due to changes in the holdings xt and yt. The self-financing assumption implies
that at an infinitesimal time t xt and yt do not change and that implies that

dPt = xtrAtdt+ ytdSt

= xtrAtdt+ yt(µStdt+ σStdWt)

= (rxtAt + ytµSt)dt+ ytσStdWt (3.16)

The idea is to choose our strategy weights xt and yt in such a way that the strategy
replicates the value of the option, so we equate equations (3.14) and (3.16) so we set

yt = ∂xV (t, St) (3.17)

rxtAt = ∂tV (t, St) +
1

2
σ2S2

t ∂xxV (t, St) (3.18)

We notice that when choosing yt = ∂xV (t, St) we are in fact eliminating the possible
effects that the randomness of the underlying asset could have in our strategy: we
are making delta neutral our portfolio. If we set V (0, S0) = P0, the initial value
of our strategy, then V (t, St) = Pt for all t since V (t, St) and Pt have the same
dynamics as by construction we have equated terms in (3.14) with terms in (3.16).
Replacing (3.17) and (3.18) in (3.14) and setting V (t, St) = Pt we get that

∂tV (t, St) +
1

2
σ2S2

t ∂xxV (t, St) + rSt∂xV (t, St)− rV (t, St) = 0 t ≥ 0, x ≥ 0 (3.19)

with the final condition V (T, ST ) = h(ST ) and some other particular conditions
depending on the derivative. In particular, the price of a European call option
V (t, St) = C(t, St) we have that

∂tC(t, St) +
1

2
σ2S2

t ∂xxC(t, St) + rSt∂xC(t, St)− rC(t, St) = 0 t ≥ 0, x ≥ 0 (3.20)
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with the boundary conditions C(T, ST ) = (ST − K)+, C(t, 0) = 0 for all t and
C(t, St) → St as St → ∞. Equation (3.20) is the famous Black-Scholes partial
differential equation for a European call option.
Equations (3.19) and (3.20) are partial differential equations that do not involve
probability and that both holds regardless of which path the stock price follows: if
the initial price is positive, then the stock price is always positive, and it can take a
positive value. If the initial stock price is zero, then the subsequent stock prices are
all zero. We are considering both cases when we set x ≥ 0.
In terms of differential equations the equation (3.20) is a backward parabolic equation
with final data given by t = T and it can be reconverted into the heat equation
which has a closed form solution. The derivation can be found in [WHD95] Chapter
5 section 4. After all, we get the Black-Scholes formula for a call option:

Theorem 3.3. The price C, at t=0, of a European call option with strike price K
and maturity date T on a stock with initial price S0, volatility σ and with a given
risk-free rate r is

C(S0, σ, T, r,K) = S0Φ(d1)− e−rTKΦ(d2) (3.21)

where

d1 =
ln
(
S
K

)
+ (r + 1

2
σ2)T

σ
√
T

d2 = d1 − σ
√
T

The price of the corresponding put option can be obtained using the call-put
parity (3.3):

P (S0, σ, T, r,K) = Ke−rT − S0 + C(S0, σ, T, r,K) = e−rTKΦ(−d2)− S0Φ(−d1)
(3.22)
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4 Monte Carlo framework

The principle of risk-neutral valuation (see [Shr04] or [CK13]) can be summarized by

V (0, S0) = EQ[e−rTV (T, ST )] = e−rTEQ[V (T, ST )] (4.1)

where V (0, S0) is the price of the derivative, EQ represents the expectation under
a risk-neutral measure and r is the risk-free interest rate. So the price of the
derivative today can be computed as an expectation of the possible terminal values
of the underlying asset. In particular, for a European call option we have that
V (T, ST ) = (ST −K)+.
As by definition we have that Wt ∼ N (0, t) we may rewrite equation (3.11) as

St = S0 exp

{
(µ− σ2

2
)t+ σ

√
tZ

}
(4.2)

where Z is a standard normal random variable. Therefore, the problem of generating
a random sample for the terminal price of the underlying asset is reduced to generate
a random sample from a standard normal distribution which can be done using for
example the inverse transform sampling method. Given such a sample Z1, Z2, . . .,
and taking into account the Law of large numbers we can estimate EQ[(ST −K)+]
using the following algorithm:

Algorithm 1 European call option pricing under the Black-Scholes dynamics using
a Monte Carlo framework
1: for i=1,...,n do
2: generate Zi ∼ N (0, 1)

3: Si(T )← S(0)exp

{
(r − σ2/2)T + σ

√
TZi

}
4: Ci ← e−rT [Si(T )−K]+

5: end for
6: Ĉn = (C1 + .....+ Cn)/n

Note that in step 3 we have substituted µ for r, the risk-free rate. Without given
much detail we will just state that when doing so we are implicitly describing the
risk-neutral dynamics of the stock price (see [CK13]).
For any n ≥ 1 the estimator Ĉn is unbiased, in the sense that its expectation is the
target quantity:

E[Ĉn] = C ≡ E[e−rT (ST −K)+].

as Ĉn is defined as the mean of n independent and identically distributed Ci.
Moreover, if we denote V ar(Ĉn) = σ2

C <∞, the central limit theorem guarantees us
that as the number of replications n increases we have the following convergence in
distribution:

Ĉn − C
σC/
√
n
⇒ N (0, 1) (4.3)

which can be expressed, as we are interested in the distribution of the error in our
simulations, as

Ĉn − C ≈ N (0, σ2
C/n)
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The convergence in distribution can be expressed in terms of limits of distributions
functions. In that sense, (4.3) implies that for x ∈ R

P

(
Ĉn − C
σC/
√
n
≤ x

)
−→ Φ(x)

where Φ is the standard cumulative normal distribution We can replace σC with
the sample variance sC defined as

sC =

√√√√ 1

n− 1

n∑
i=1

(Ci − Ĉn)2

This is useful because σC is rarely known in practice but sC can be easily computed
for every sample. The fact that we can replace σC with sC without changing the
limit in distribution follows from the following fact: as s2C is a consistent estimator of
σ2, that is limn→+∞ s2C = σ2, by the continuous map theorem and as the convergence
in distribution is implied by convergence in probability we have that sC ⇒ σ and
σ/sC ⇒ 1. Finally, the Slutsky’s Theorem guarantees us that

Ĉn − C
sC/
√
n
⇒ N (0, 1) (4.4)

or equivalently, √
n(Ĉn − C) ≈ N (0, s2C) (4.5)

A 1− δ confidence interval for C is then

Ĉn ± zδ/2
sC√
n

(4.6)

with Φ(zδ) = 1− δ (for a 95% confidence interval δ = 0.05 and zδ =≈ 1.96). From
(4.4) it is clear that the standard deviation shrinks at a rate of 1√

n
which brings that

the error of the method is of convergence O
(

1√
n

)
. This implies that reducing the

error of the method in half requires increasing the number of points by a factor of
four which increases the complexity of the calculations.
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5 COS method

As we have pointed out in the introduction, plenty of methods have been developed
to price options using the relation between the characteristic function and the density
function of a random variable (Fourier pair (2.10),(2.11)). In this chapter we develop
another method described in [FO09]. This method, call the COS method, is another
powerful Fourier transform-based technique known for its efficiency and accuracy.
While the Carr-Madan method focuses on transforming the payoff function and
then applying the inverse Fourier transform (with the FFT) to retrieve the option
price, the COS method directly works with the density function and its cosine series
expansion in order to approximate the probability density function. Although the
COS method can be implemented for more complex models such as Levy processes
we will focus our work in how it can be implemented to price European options.

5.1 Density approximation via Fourier transform

The Fourier series is an approximation of a periodic function using a sum of sines and
cosines. In general, the Fourier series is an approximation of the original function,
but there are cases where the Fourier series is exactly equal to the original function
across its entire range. This occurs when the original function is periodic and satisfies
certain conditions, such as being piece wise smooth or having a finite number of
discontinuities within one period. In such cases, the Fourier series converges to the
original function and is equal to it across its entire range.
Remember that the Fourier series involving both sines and cosines, given that these
two functions form a complete orthogonal system, over [−π, π] of a function f(x) is
given by

f(x) =
1

2
a0 +

∞∑
k=1

Ak cos(kx) +
∞∑
k=1

Bk sin(kx) (5.1)

where

a0 =
1

π

∫ π

−π

f(x)dx (5.2)

Ak =
1

π

∫ π

−π

f(x) cos(kx)dx (5.3)

Bk =
1

π

∫ π

−π

f(x) sin(kx)dx (5.4)

In particular we are interested in the Fourier cosine series of the function f when f
is even, that is when bn = 0 and the Fourier series collapses to

f(x) =
1

2
a0 +

∞∑
k=1

Ak cos(kx) (5.5)

with

A0 =
1

π

∫ π

−π

f(x)dx =
2

π

∫ π

0

f(x)dx (5.6)
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Ak =
1

π

∫ π

−π

f(x) cos(kx)dx =
2

π

∫ π

0

f(x) cos(kx)dx (5.7)

where the second equality comes from the equality

f(x) cos(nx) = f(−x) cos(−nx)

as we are working with an even function f(x) and cos(x) is an even function too.
To summarize: for a function supported on [−π, π], the cosine expansion reads

f(θ) =

∞∑′

k=0

Ak cos(kθ) with Ak =
2

π

∫ π

0

f(θ) cos(kθ)dθ (5.8)

where
∑′

indicates that the first term in the summation is weighted by one-half.

Remark 2. Given a not even function g : [0, π]→ R we can extend it to [−π, π] to
become an even function as

ḡ(x) =

{
g(x) if x ≥ 0

g(−x) if x < 0

We can rewrite equation (5.8) for functions supported on any other finite interval
[a, b] ∈ R via the following change of variables:

θ =
x− a
b− a

π; x =
b− a
π

θ + a

Then:

f(x) =

∞∑′

k=0

Ak cos

(
kπ
x− a
b− a

)
(5.9)

with

Ak =
2

b− a

∫ b

a

f(x) cos

(
kπ
x− a
b− a

)
dx (5.10)

Suppose that with the chosen interval [a, b] the truncated integral approximates the
infinite counterpart (the Fourier transform) very well, i.e.

ϕ̂(ω) :=

∫ b

a

eiωyfX(y)dy ≈
∫
R

eiωyfX(y)dy = ϕ(ω) (5.11)

We have then the following equalities:

ϕ̂

(
kπ

b− a

)
e−i kπa

b−a = e−i kπa
b−a

∫ b

a

ei
kπ
b−a

yfX(y)dy = (5.12)

=

∫ b

a

eikπ
y−a
b−a fX(y)dy = (5.13)

=

∫ b

a

(
cos

(
kπ
y − a
b− a

)
+ isin

(
kπ
y − a
b− a

))
fX(y)dy (5.14)
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where we have used the Euler formula eix = cos(x) + i sin(x). If we compare this
last expression with equation (5.10) we can conclude that

Ak ≡
2

b− a
Re

{
ϕ̂

(
kπ

b− a

)
exp

(
−i kπa
b− a

)}
(5.15)

where Re{·} denotes the real part of the argument. It then follows from (5.11) that
Ak ≈ Fk with

Fk :=
2

b− a
Re

{
ϕ

(
kπ

b− a

)
exp

(
−i kπa
b− a

)}
(5.16)

where we recall ϕ is the characteristic function of X. We can now replace Ak by Fk

in the Fourier cosine series of fX(y) on [a, b]:

f̂X(y) ≈
∞∑′

k=0

Fk cos

(
kπ
y − a
b− a

)
(5.17)

Finally we can also truncate this summation such that

f̃X(y) ≈
N−1∑′

k=0

Fk cos

(
kπ
y − a
b− a

)
(5.18)

5.2 Option pricing with the COS method

This section is mostly based on [FO09] with some additional notes on my own. The
starting point is the valuation of a derivative under a risk neutral measure:

v(x, t0) = e−rτ
EQ[v(y, T )|x] = e−rτ

∫
R

v(y, T )f(y|x)dy (5.19)

where v(y, T ) denotes the option value at the expiration date T, τ = T − t0 where
t0 is the valuation moment, EQ is the expectation under the risk neutral probability
Q. f(y|x) is the probability density of y given x and r is the risk-neutral interest
rate. x and y are state variables at time t0 and T respectively: usually x is the
value of the log-asset price at time t and y is the value of the log-asset price at the
expiration date. That is, x = X(t) and y = X(T ) where X(t) := log(St). As f(y|x)
in (5.19) decays to zero fast as y → ±∞ we truncate the infinite integration to
range to [a, b] ∈ R without losing significant accuracy, getting a first approximation
to (5.19) :

v(x, t0) ≈ v1(x, t0) = e−rτ

∫ b

a

v(y, T )f(y|x)dy (5.20)

In most of the cases we will not know the explicit form of f(y|x), although the
characteristic function can be obtained explicitly. We will start by replacing the
density f(y|x) with its cosine-series expansion in y. If we denote

f(y|x) =

∞∑′

k=0

Ak cos

(
kπ
y − a
b− a

)
(5.21)
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with

Ak =
2

b− a

∫ b

a

f(y|x) cos

(
kπ
y − a
b− a

)
dx (5.22)

we have that

v1(x, t0) = e−rτ

∫ b

a

v(y, T )

∞∑′

k=0

Ak cos

(
kπ
y − a
b− a

)
dy (5.23)

We interchange the summation and the integration and insert the definition

Vk =
2

b− a

∫ b

a

v(y, T ) cos

(
kπ
y − a
b− a

)
dy (5.24)

so that

v1(x, t0) =
b− a

2
e−rτ

∞∑′

k=0

AkVk (5.25)

Note that the Vk are the cosine-series coefficients of the payoff function v(y, T ). So
we have transformed the product of two functions v(y, T ), f(y|x) (the second one
usually unknown) into the product of the coefficients of their respective cosine-series
expansion. We can now apply what we have seen in the last section: we can truncate
the summation into a finite sum of N terms to get another approximation because
of the rapid decay rate of the coefficients:

v2(x, t0) =
b− a

2
e−rτ

N−1∑′

k=0

AkVk (5.26)

Finally, we can approximate Ak, the cosine-series coefficients of the density f(y|x)
with Fk as in (5.16) to get

v(x, t0) ≈ v3(x, t0) =
b− a

2
e−rτ

N−1∑′

k=0

FkVk (5.27)

= e−rτ

N−1∑′

k=0

Re

{
ϕX

(
kπ

b− a

)
exp

(
−i kπa
b− a

)}
Vk (5.28)

Equation (5.28) is the COS formula for general underlying processes with
τ = T − t0, and x a function of S(t0).

5.3 Pricing European options

We notice that, if we are able to compute Vk in (5.24) for the payoff function v(y, T )
then (5.28) is straightforward as, under the Black-Scholes model, we know that prices
follow a log-normal distribution hence the characteristic function of the log-asset
price is known. We represent the payoff as a function of the log-asset price. We
denote

y(T ) = log

(
ST

K

)
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and we can express a European option payoff as

v(y, T ) ≡ [αK(ey − 1)]+ with α =

{
1 for a call

−1 for a put

Setting Yt = log
(
St

K

)
it is clear from (3.10) and (3.12) that

ϕX(u) = e
iu
(
log(S0

K )+(µ−σ2

2
)t
)
−σ2tu2

2 (5.29)

The following lemma is the basic tool that helps us to compute Vk:

Lemma 5.1. For an interval [c, d] ⊂ [a, b] the cosine series coefficients Vk of
g(y) = ey and g(y) = 1 are known analytically. That is, the coefficients

χk(c, d) =

∫ d

c

ey cos

(
kπ
y − a
b− a

)
dy

ψk(c, d) =

∫ d

c

cos

(
kπ
y − a
b− a

)
dy

have a closed form. In particular, we have that

χk(c, d) =
1

1 +
(

kπ
b−a

)2[ed cos

(
kπ
d− a
b− a

)
− ec cos

(
kπ
c− a
b− a

)
+

kπ

b− a
ed sin

(
kπ
d− a
b− a

)
− kπ

b− a
ec sin

(
kπ
c− a
b− a

)]
(5.30)

and

ψk(c, d) =

{[
sin
(
kπ d−a

b−a

)
− sin

(
kπ c−a

b−a

)]
b−a
kπ

k ̸= 0

d− c k=0
(5.31)

The proof of the lemma can be found in Appendix A and can be proved just with
basic calculus.
For call and put options we have that

V call
k =

2

b− a

∫ b

0

K(ey− 1) cos

(
kπ
y − a
b− a

)
dy =

2

b− a
K(χk(0, b)−ψk(0, b)) (5.32)

V Put
k =

2

b− a

∫ 0

a

K(1− ey) cos

(
kπ
y − a
b− a

)
dy =

2

b− a
K(−χk(a, 0) + ψk(a, 0))

(5.33)

Remark 3. Note that, for the call option, while integrating from a to b we are
assuming that a < 0 < b. If a < b < 0 then V call

k = 0 while if 0 < a < b we need use
V Call
k by redefining (5.30) (5.31) with c ≡ a, d ≡ b. For the Put options the relations

are the opposite: if If a < b < 0 then we compute V Put
k with c ≡ a, d ≡ b in (5.30)

(5.31) while if 0 < a < b then V Put
k = 0 .
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5.4 Truncation range for the COS method

Fang and Oosterlee proposed in [FO09] the following interval for the range interval
[a, b] within the COS method:

[a, b] =

[
ξ1 − L

√
ξ2 +

√
ξ4, ξ1 + L

√
ξ2 +

√
ξ4

]
(5.34)

where ξn is the nth cumulant of the variable log
(
ST

K

)
and the proposed value L = 10.

In particular as we have seen that log
(
ST

K

)
∼ N (log

(
S0

K

)
+
(
r − 1

2
σ2
)
T, σ2T ) the

cumulants for the integration range are ξ1 = log
(
S0

K

)
+
(
r − 1

2
σ2
)
T , ξ2 = σ2T and

ξ4 = 0. The calibration of the parameter L is not obvious. A large interval [a, b] will
require larger values to sum in (5.28) to reach a good level of accuracy while a small
interval will not work as we will be omitting a part of the density.

5.5 Error analysis

When proceeding as in sections 5.1, 5.2 to arrive to the COS formula (5.28) there
were 3 steps where we introduced some kind of approximation error:

1. When truncating the integration range of the density in (5.20). We can express
the error introduced as

ϵ1 = v(x, t0)− v1(x, t0) =

∫
R\[a,b]

v(y, T )f(y|x)dy (5.35)

2. When we substitute the density by its truncated by N cosine series expansion
in (5.23), (5.25) and in (5.26). This series truncation error in the interval [a, b]
can be expressed as

ϵ2 = v1(x, t0)− v2(x, t0) =
b− a

2
e−rτ

∞∑
k=N

AkVk (5.36)

where Ak, Vk are the coefficients defined in (5.22) and (5.24). So basically, ϵ2
depends on the series coefficients of the density and on the series coefficients
of the payoff.

3. The error when approximating Ak with Fk in (5.28) that can be expressed as

ϵ3 = v3(x, t0)− v2(x, t0) = e−rτ

N−1∑′

k=0

Re

{∫
R\[a,b]

eikπ
y−a
b−a f(y|x)dy

}
Vk (5.37)

It can be proved (see [FO09]) that when the truncation range is sufficiently large,
the overall error is dominated by ϵ2 so we will focus our analysis in that error. The
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density is typically smoother than the payoff functions in finance and the coefficients
Ak often decay faster than Vk. Consequently, we can bound ϵ2 as follows:∣∣∣∣∣

∞∑
k=N

AkVk

∣∣∣∣∣ ≤
∞∑

k=N

∣∣Ak

∣∣ (5.38)

Since the PDF is generally unknown in the option pricing problem, the selection of
the truncation parameter N is a matter of trial and error. We will follow [Aim+23]
to select the appropiate value of N .
We can give a first approximation of error ϵ2 using as an approximation of Ak the
coefficients Fk as in (5.16):

ϵ2 ≈ ϵ̄2 :=
∞∑

k=N

|Fn| ≤
2

b− a

∞∑
N

∣∣∣∣ϕ( kπ

b− a

)
exp

(
−i kπa
b− a

) ∣∣∣∣ ≤ 2

b− a

∞∑
N

∣∣∣∣ϕ( kπ

b− a

) ∣∣∣∣
(5.39)

as

∣∣∣∣ exp
(
−i kπa

b−a

) ∣∣∣∣ = 1 and we can therefore give an estimation of the error in terms

of the modulus of the Fourier transform of f . Under the Black-Scholes model we
have already seen that the process log

(
ST

K

)
follows a normal distribution with mean

log
(
S0

K

)
+ (r − σ2

2
)T and variance σ2

2
T hence the modulus of the characteristic

function of log
(
ST

K

)
is∣∣∣∣ϕX

(
kπ

b− a

) ∣∣∣∣ = exp

(
−1

2
σ2T

(
kπ

b− a

)2
)

(5.40)

and we can rewrite (5.39) as

ϵ̄2 ≤
2

b− a

∞∑
k=N

e
−1
2 ( σπ

b−a)
2
Tk2 ≤ 2

b− a

∞∑
k=N

e−dn =
2

b− a
e−dN

1− e−d
(5.41)

where d = 1
2

(
σπ
b−a

)2
T . Expression (5.41) proves the convergence of the infinite series

given in (5.39) but it is not enough to obtain an appropriate estimation of the value
N . However, since the series (5.39) converges and the terms of the series decrease
very rapidly (exponentially) we determine N by means of the first term of the series:
given a tolerance error ϵN we select the smallest value N satisfying

2

b− a
e

−1
2 ( σπ

b−a)
2
TN2 ≤ ϵN (5.42)

that is

N =


√
−2

T

(
b− a
σπ

)2

log

(
b− a

2
ϵN

) (5.43)

where ⌈x⌉ = min{k ∈ Z : k ≥ x}
In particular, if we choose [a, b] as in (5.34) then b − a = 2L

√
ξ2 = 2L

√
σ2T and

then

N =

⌈√
−8L2

π2
log
(
σL
√
TϵN

)⌉
(5.44)
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6 Numerical results

We already know that European type options can be priced via a closed formula, i.e
with the Black-Scholes formulas (3.21) and (3.22). So we can compare the values
obtained with the COS method and with the Monte Carlo method with the real
value of the options. The computer use for numerical experiments has AMD Ryzen
5 3600 6-Core Processor 3.60 GHz. The code has been written in R and can be
found in the Appendix B. All CPU times are given in milliseconds.
We start by pricing a European option using a Monte Carlo scheme:

Example 6.1. We price a European call option with the following parameters:

S(0) = 11, K = 10, r = 0.03, σ = 0.25, T = 0.1

where K is the strike price of the option. In order to analyze the convergence of
the Monte Carlo method we will use different sample sizes. In particular we will
compute the price of the option for n = 100, 1000, 10000, 100000, 1000000. Using
the Black Scholes formula, the price of a call option with the specified parameters is
1.072382530270 . . .The following table shows the error of the method as well as a
confidence interval for the real price of the option and the CPU time needed:

n 100 1000 10000 100000 1e+06 1e+07

Ĉn 1.124517 1.082709 1.070281 1.073236 1.071966 1.072482
CI (0.975098,1.273936) (1.032892,1.132527) (1.054589,1.085973) (1.068271,1.078202) (1.070395,1.073536) (1.071985,1.072979)

error 0.05213448 0.01032688 0.002101151 8.537491e-04 4.169886e-04 9.963915e-05
ThError 0.1 0.03163 0.01 0.003163 0.001 0.0003163

time 0.1358986 0.1568794 0.9379387 16.6940700 76.9190800 857.0421000

Table 1: Results of pricing a European call option using a crude Monte Carlo scheme.
Ĉn is the estimated value of the option while CI stands for Confidence Interval of the real
value. ThError is the theoretical error for the method given the sample size n.

As we can see, we needed 1e+07 paths in order to get and absolute error < 0.001
which took a CPU time of nearly a second. All in all, the computational effort
is very high to get a not very low error considering the sample size. This simple
example shows both the strength and the weak points of the method: a Monte Carlo
approach can be applied to a wide variety of problems across different fields and the
implementation is conceptually simple. However, the method requires many samples
for accurate results, which can be computationally expensive and the convergence of
the method is slow. There are methods to improve a Monte Carlo scheme and to
make it faster but this is above the scope of this work (see for example [Gla10]).
We now start exploring the COS method:

Example 6.2. We start by recovering the density function of a standard normal
distribution. Recall that for X ∼ N (0, 1) we have that

fX(x) =
1√
2π
e

−1
2
x2

, ϕ(u) = e
−1
2
u2

We note that fX(x) is an even function. As we have said the method success relies
on, besides other issues, the choice of the interval [a, b]. At this moment we will just
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choose [a, b] = [10, 10]. We also choose the interval [−5, 5] as the domain for studying
the error of the approximated density. In particular, we generate a sequence of 1000
points of the interval and calculate the error as max(|f̃X(y)− fX(y)| for every value
y in that sequence where f̃X(y) is the recovered density with (5.18).
Table 2 shows the error when recovering fX(x) from ϕ(u) using different values for

N 4 8 16 32 64 128
error 0.254 0.108 0.00718 4.04e-01 3.89e-16 3.89e-16

Table 2: COS method maximum error for recovering a normal standard density

the truncation number N . The first thing we can notice is that with 4 terms the
approximation is very poor (even given negative values as we can see in Figure 1). But
the method convergence improves really fast and with 64 terms the approximation
gives an error of order 1e-10 which is extremely accurate considering the numbers of
terms we are adding in (5.18).
The next figure plots the approximation results.

Figure 1: Normal standard density recovered using the characteristic function for different
truncation ranges.

The second example is closely related with the first one:

Example 6.3. As we already know, under the Black-Scholes model the stock prices
follow a log-normal distribution. Despite the fact that the log-normal distribution
has no closed form for the characteristic function we can use the COS method for
recover the density the following way: if Y is a random variable that follows a
log-normal distribution with parameters µ and σ2, Y ∼ LN(µ, σ2), we know that
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Y = eX where X ∼ N (µ, σ2). From general probability theory we know that if g is
a one-to-one function then Y = g(X) has density

fY (y) = fX(g−1(y))| (g−1)′(y)|

with g(x) = ex so g−1(y) = log(y). So the density of Y is fY (y) = 1
y
fX(log(y)). All

in all, we can used the COS method as in Example 6.2 but evaluating (5.18) at
log(y) and then multiplying by 1

y
.

We will use the same truncation interval as before for the characteristic function
[a, b] = [10, 10]. However, as the log-normal distribution just takes positives values,
we also choose the interval (0, 5] as the domain for studying the error of the
approximated density. In particular, as before, we generate a sequence a 1000
uniform sample of the interval and calculate the error as max(|f̃X(y)− fX(y)| for
every value y in that sequence.
Figure 2 and Table 3 shows the result of the COS method for a log-normal density
with parameters µ = 0.03 and σ = 0.1. As we can see, even with 128 terms the
method does not fully recover the log-normal density.

N 4 8 16 32 64 128

error 3.744 3.549 3.163 2.432 1.248 0.211

Table 3: COS method maximum error for recovering a log-normal density of parameters
µ = 0.03 and σ = 0.1

Figure 2: log-normal density with parameters µ = 0.03 and σ = 0.1 recovered using the
COS method with different N truncation ranges.
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As we can see in Figure 2 128 terms are not enough for the method to get a low
error. We reproduce the method with another parameters for the log-normal density.
In particular if we choose µ = 0.03 and σ = 0.4. This is a density with higher
skewness than the log-normal considered before, but with lower kurtosis. Table 4
shows that, in this case, 128 terms are enough to have a maximum error that we
can consider acceptable.

N 4 8 16 32 64 128

error 2.136735 0.9508882 0.899878 0.2903176 6.106225e-04 1.587731e-14

Table 4: COS method maximum error for recovering a log-normal density of parameters
µ = 0.05 and σ = 0.4

Figure 3 shows that the red line (128 terms in (5.18)) superpose with the black line
(exact values for the density desired).

Figure 3: log-normal density with parameters µ = 0.03 and σ = 0.4 recovered using the
COS method with different N truncation ranges.

The core idea of the COS method is to approximate the probability density
function (PDF) of the underlying asset’s return using a Fourier cosine series expansion
and leveraging the characteristic function to approximate the series coefficients. As
we have seen in the last two examples, the approximation of a log-normal normal
density is pretty accurate and fast so we can expect the method to work well when
pricing options:
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Example 6.4. We first used the COS method to value a European call option
assuming the underlying process follows a GBM. For better comparison we will use
the same parameters as in Example 6.1:

S(0) = 11, K = 10, r = 0.03, σ = 0.25, T = 0.1

With this parameters x = log(S0/K) = 0.09531018 and the resulting integration
interval is [a, b] ≈ [−0.6953842, 0.8857546]. As we can see, this interval includes the
0 so the Remark 3 does not apply. The results are presented in the following table:

n 15 20 25 30 40 45 50

Cos Method 1.07067258 1.07221886 1.07238515 1.07238269 1.07238253 1.07238253 1.07238253
error 1.709949e-03 1.636703e-04 2.622531e-06 1.638291e-07 3.216789e-10 1.005018e-11 4.440892e-16

CPU time 0.0708 0.03915 0.03600 0.03815 0.04101 0.04387 0.04601

Table 5: Error and CPU time for the COS method when pricing a European call option
with parameters as in (6.4). The reference value for the Call option with the parameters
used and computed with the Black-Scholes formula is 1.072382530270 . . .

As we can observe the COS method significantly outperforms the Monte Carlo
method in terms of CPU time and absolute error when it comes to pricing a
European call option. With just 30 terms we have achieved an error of magnitude
1e-07: using Monte Carlo (see example 6.1) we couldn’t get such a low error even
with a sample of size 1e+07. In terms of CPU time, 30 terms took under the COS
method ≈ 0.04 milliseconds; using a Monte Carlo scheme, generating 1e+07 paths
took ≈ 857 milliseconds, nearly a second.

The following example illustrates the Remark 3:

Example 6.5. Consider the problem of pricing a European call with the COS method
assuming the underlying process follows a GBM and the following parameters:

S0 = 100, K = 10, r = 0.03, σ = 0.25, T = 0.1 (6.1)

Clearly the option is In-The-money. Actually, the option is deep in the money,
meaning that the difference between the strike price is significantly below the actual
market price of the underlying asset. Furthermore, given the parameters (6.1) we
have that [a, b] ≈ [1.511891, 3.09303]. The Black-Scholes value of this Call option is
90.02995504 . . .. If we use the COS method as in (5.32) we get the following results:

n 15 20 25 30 40 45 50

Cos Method 100.62509119 100.63296140 100.63399724 100.63397721 100.63397619 100.63397620 100.63397620
error 10.59513615 10.60300636 10.60404220 10.60402217 10.60402115 10.60402115 10.60402115

Table 6: Error when using the COS method for a European call option with parameters
as in (6.1) and using (5.32)

.

As we can see in Table 6 the method does not converge to the true value. When we
recalculate with c ≡ a, d ≡ b then we are implicitly integrating from a to b and then
the method converges with the same speed and accuracy as before:
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n 15 20 25 30 40 45 50

Cos Method 90.02307346 90.02918120 90.02997109 90.02995583 90.02995504 90.02995504 90.02995504
error 6.881589e-03 7.738415e-04 1.604216e-05 7.843294e-07 4.283947e-09 8.333245e-11 5.684342e-14

Table 7: Error when using the COS method for pricing a European call option with
parameters as in (6.1) and using (5.32) with χk(a, b)− ψk(a, b)

The following example shows that the method exhibits some sensitivity regarding
the choice of L. This holds specifically for call options with a long time maturity i.e
T = 30, 40 years. Under this long expiration date the interval of integration [a, b]
gets larger. Furthermore, increasing the expiration date T we make the variance of
the normal distribution that drives the log-asset price increase and the distribution
get fat-tailed (options with long expiration date may be useful when considering
insurance products with a long lifetime).

Example 6.6. Consider the problem of pricing a European call with the COS method
assuming the underlying process follows a GBM and the following parameters:

S0 = 100, K = 100, r = 0.03, σ = 0.25, T = 30 (6.2)

With these parameters the integration range is [a, b] ∼ [−20.5771, 20.5021]. The
following table shows the absolute error when pricing such an option for different
values of N and L:

16 32 64 128 256

L=5 6.910875e-03 5.732964e-03 5.732964e-03 5.732964e-03 5.732964e-03
L=6 2.441215e-01 6.487593e-05 6.487593e-05 6.487593e-05 6.487593e-05
L=7 1.041984e+01 2.970210e-07 2.841825e-07 2.841825e-07 2.841825e-07
L=8 1.915426e+02 2.317233e-05 5.459668e-10 5.459668e-10 5.459668e-10
L=9 2.160370e+03 6.093369e-03 9.094663e-10 9.094663e-10 9.094663e-10
L=10 1.800639e+04 4.842387e-01 2.356373e-09 2.356373e-09 2.356373e-09
L=11 1.231640e+05 1.762050e+01 3.323336e-09 3.323336e-09 3.323336e-09
L=12 7.360719e+05 3.770185e+02 1.013899e-08 1.013899e-08 1.013899e-08
L=13 3.998071e+06 5.552692e+03 1.191895e-07 4.463409e-07 4.463409e-07
L=14 2.025347e+07 6.240139e+04 8.119612e-05 1.555396e-07 1.555396e-07
L=15 9.738647e+07 5.737040e+05 9.125795e-03 3.533626e-07 3.533626e-07

Table 8: Absolute error of the COS method for different values of L and N with parameters
as in (6.2)

As we can see from Table 8 the method seems to be accurate for value L ∈ [8, 10].
Increasing the value L makes the integration interval [a, b] bigger. Larger values
of parameter L would require larger N -values to reach the same level of accuracy,
but even doubling the sample size does not improve the accuracy. On the contrary,
reducing the value of L shrinks the interval [a, b] and gives poor accuracy. All in
all, when pricing call options with a long maturity date, the method seems to give
good results for  L ∈ [8, 10] as we can see also in Figure 4. [FO09] recommends
L ∈ [7.5, 10] when pricing call options or use the call-put parity.
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Figure 4: Absolute error of the COS method for different values of L. The logarithm of
the error is given is base 10.

The final example illustrates how well the selection of the numbers of terms works
using formulas (5.43) or (5.44):

Example 6.7. We first use the parameters in [Aim+23] to price a European call
option:

S0 = 100, K = 120, r = 0.05, σ = 0.2, T = 0.1 (6.3)

For errors ϵN = 10−3, 10−4, 10−5, 10−8, 10−10 the formula (5.44) givesN = 25, 28, 32, 40, 44.
Table 10 shows the absolute error of the COS method when pricing a option with
parameters as in (6.3):

N 25 28 32 40 44

ϵN 1e-03 1e-04 1e-05 1e-08 1e-10
error 2.268868e-05 4.179924e-07 1.598283e-07 3.865738e-11 4.723669e-13

Table 9: Absolute error for the COS method when pricing a European option with
parameters as in (6.3)

As we can see, in this case the absolute error is lower than the theoretical error for
the given number of terms. This is not always the case. For example, if we consider
an option with the following parameters

S0 = 100, K = 100, r = 0.03, σ = 0.25, T = 1 (6.4)

and for the same values for the error ϵN as before the formula (5.44) gives N =
23, 26, 30, 38, 43. For that number of terms, Table 6.4 shows the absolute error of
the COS method when pricing a option with parameters as in (6.4).
As we can see, this time the absolute error for N = 23, 26, 30, 38 is bigger than the
theoretical one. For N = 44 the absolute error obtained is lower.
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N 25 28 32 40 44

ϵN 1e-03 1e-04 1e-05 1e-08 1e-10
error 1.170279e-03 3.864012e-04 1.874864e-05 1.480968e-08 2.150458e-11

Table 10: Absolute error for the COS method when pricing a European option with
parameters as in (6.4)

It is important to remark that equation (5.39) it is not a bound but an approximation
of the error. In that sense, the formula (5.43) is a good approximation of the needed
terms to get a given error. This can be particularly useful when we might need a
large number of terms to price options but we do not know, from the earlier, how
many, for example when pricing options with long expiration date, as in Example
6.6.
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7 Conclusions

In this work, we presented a comprehensive study of option pricing methodologies,
focusing on the Black-Scholes model and the COS method, the latter being based
on [FO09]. Our primary focus was to evaluate the effectiveness and accuracy of the
COS method in comparison to the widely-used Monte Carlo scheme and the Black-
Scholes formula. All methods were implemented in R, enabling robust numerical
experimentation and analysis.
Firstly, we gave a mathematical approach to Black-Scholes model, which provides
an analytical solution for European option pricing. Following [FO09] we provided
a detailed explanation of the COS method, highlighting its theoretical basis and
practical implementation. The method leverages Fourier cosine expansions to ap-
proximate option prices efficiently. We also conducted an error analysis and provided
a thorough discussion of the parameters that influence the accuracy and efficiency of
the method. Through numerical experiments implemented in R, we compared the
performance of the Monte Carlo scheme, the COS method, and the Black-Scholes
formula in pricing European options. Our experiments considered various scenarios,
including different expiration dates, volatilities and strikes.
While the Monte Carlo scheme is versatile and widely applicable to various financial
derivatives, its performance in terms of computational time and convergence rate
was outperformed by the COS method for the specific case of European options.
The COS method demonstrated superior accuracy and computational efficiency
compared to the Monte Carlo scheme. The method’s reliance on Fourier series
expansions enables rapid convergence and precise results. The findings suggest that
the COS method can be a valuable tool for financial practitioners requiring fast and
accurate option pricing solutions. Despite the strengths of the COS method, it is
important to acknowledge its reliance on the availability of characteristic functions
of the underlying asset price distributions. Its implementation is simple when pricing
European options and future work could focus on extending the COS method to
more complex derivatives or more complex models, such as the Heston model, which
incorporates stochastic volatility, and models with jumps in asset prices, such as
Merton’s jump-diffusion model.
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Appendix A

A Derivation of coefficients Vk for European options

The integral

ψk(c, d) =

∫ d

c

cos

(
kπ
y − a
b− a

)
dy

is direct given as a result (5.31). We focus then on solving

χk(c, d) =

∫ d

c

eycos

(
kπ
y − a
b− a

)
dy (.1)

We will make us of the two the following trigonometric identities: cos(α − β) =
cos(α)cos(β) + sin(α) sin(β) and sin(α− β) = sin(α)cos(β)− cos(α) sin(β) . First
we can rewrite equation (.1) as

χk(c, d) = cos

(
kπa

b− a

)∫ d

c

eycos

(
kπy

b− a

)
dy + sin

(
kπa

b− a

)∫ d

c

eysin

(
kπy

b− a

)
dy

We denote A =
∫ d

c
eycos

(
kπy
b−a

)
dy and B =

∫ d

c
eysin

(
kπy
b−a

)
dy. Using integration by

parts:

B =

 u = ey dv = sin

(
kπy

b− a

)
dy

du = ey dy v = −cos
(
kπy

b− a

)
b− a
kπ

 =
[
− eycos

(
kπy

b− a

)
b− a
kπ

]d
c
+

b− a
kπ

∫ d

c
cos

(
kπy

b− a

)
ey dy =

 u = ey dv = cos

(
kπy

b− a

)
dy

du = ey dy v = sin

(
kπy

b− a

)
b− a
kπ

 =

=
[
− eycos

(
kπy

b− a

)
b− a
kπ

]d
c
+
b− a
kπ

([
eysin

(
kπy

b− a

)
b− a
kπ

]d
c
− b− a

kπ

∫ d

c
sin

(
kπy

b− a

)
ey dy

)
=

=
[
− eycos

(
kπy

b− a

)
b− a
kπ

]d
c
+
b− a
kπ

([
eysin

(
kπy

b− a

)]d
c

)
−
(
b− a
kπ

)2

B

So

B +

(
b− a
kπ

)2

B =
[
− eycos

(
kπy

b− a

)
b− a
kπ

]d
c

+
b− a
kπ

([
eysin

(
kπy

b− a

)
b− a
kπ

]d
c

)
and

B =

(
b−a
kπ

)2
1 +

(
b−a
kπ

)2
[
− edcos

(
kπd

b− a

)
kπ

b− a
+ eccos

(
kπc

b− a

)
kπ

b− a
+ edsin

(
kπd

b− a

)
−

ecsin

(
kπc

b− a

)]
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On the other hand

A =

 u = ey dv = cos

(
kπy

b− a

)
dy

du = ey dy v = sin

(
kπy

b− a

)
b− a
kπ

 =
[
eysin

(
kπy

b− a

)
b− a
kπ

]d
c
− b− a

kπ

∫ d

c
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(
kπy

b− a

)
ey dy =
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(
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)
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)
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c
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)
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c
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ey dy
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=
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Using the two trigonometric relations quoted before we have that
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B Code

Recovery density:

install.packages("rbenchmark")

library(ggplot2)

library(dplyr)

library(tidyr)

library(rbenchmark)

#Define the characteristic funtion for the normal distribution

charFunNormalDensity<-function(mu,sigma,u){

"

mu= mean of the normal distribution

sigma= standard deviation of normal distribution

u=evaluating point

"

z<-complex(real=-0.5*(sigma^2) *(u^2) ,imaginary = u*mu)

return(exp(z))

}

#Cos method

cos_method<-function(x,N,a,b,mu,sigma){

k<-0:(N-1)

u<-(k*pi)/(b-a)

Fk<-(2/(b-a))*Re(charFunNormalDensity(mu,sigma,u)*exp(-1i*u*a))

Fk[1]<-0.5*Fk[1]

return (sum(Fk*cos(u*((x-a)))))

}

#parameters for the normal distribution

mu=0

sigma=1

### method parameters

N<-c(4,8,16,32,64,128)

L<-10

a<--1*L #We recover the

b<-L

#y<-seq(from=0.05,to=5,by=0.001)

y<-seq(from=-5,to=5,by=0.001)

#Shortest version

error<-list(0)

time<-list(0)

for (i in 1:length(N)) {

start <- Sys.time()

f_y=sapply(y,cos_method,N[i],a,b,mu,sigma)
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time[i]=Sys.time() - start

error[i]=max(abs(f_y-dnorm(y)))

plot(y,f_y,type="l",main=N[i])

}

#recovery lognormal distribution

#y<-seq(from=0.05,to=5,by=0.001)

y<-seq(from=0.05,to=5,by=0.001)

#Shortest version

error<-list(0)

time<-list(0)

###log normal distribution. Short version.

for (i in 1:length(N)) {

start <- Sys.time()

f_y=(1/y)*sapply(log(y),cos_method,N[i],a,b,mu,sigma)

time[i]=Sys.time() - start

error[i]=max(abs(f_y-dlnorm(y,meanlog=mu,sdlog=sigma)))

plot(y,f_y,type="l",main=N[i])

}

Monte Carlo pricing:

#Valoracion de call europea

K=10 #Strike

S0=11 #Spot

r=0.03 #Interes libre de riesgo

sig=0.25 #Volatilidad

T=0.1 #vencimiento

n=c(10^2,10^3,10^4,10^5,10^6,10^7) #Tama~no muestra Monte Carlo

valoracionMC=function(K,S0,r,sig,T,n)

{

set.seed(123)

Z=rnorm(n)

S=S0*exp((r-0.5*sig^2)*T+sig*sqrt(T)*Z)

payoff=exp(-r*T)*pmax(S-K,0)

vcallMC=mean(payoff)

#IC 95%

ICl=vcallMC-1.96*sd(payoff)/sqrt(n)

ICr=vcallMC+1.96*sd(payoff)/sqrt(n)

return(c(vcallMC,ICl,ICr))

}

valoracionBS=function(K,S0,r,sig,T)

{

d1=(log(S0/K)+(r+0.5*sig^2)*T)/(sig*sqrt(T))

d2=d1-sig*sqrt(T)

vcall=S0*pnorm(d1)-exp(-r*T)*K*pnorm(d2)
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return(vcall)

}

#Valor call

vBS=valoracionBS(K,S0,r,sig,T)

time<-list(0)

vMC<-list(0)

IC<-list(0)

error<-list(0)

theo_error<-list(0)

for (i in 1:length(n)){

start <- Sys.time()

tmp=valoracionMC(K,S0,r,sig,T,n[i])

time[i]=Sys.time() - start

vMC[i]=tmp[[1]]

IC[[i]]=c(tmp[[2]],tmp[[3]])

#Error

#Error MC

error[i]<-abs(vMC[[i]]-vBS)

#Error teorico

theo_error[i]<-1/sqrt(n[i])

}

COS method:

#Valoracion de call europea

K=100 #Strike

S0=100 #Spot

r=0.03 #Interes libre de riesgo

sig=0.25 #Volatilidad

T=0.1 #vencimiento

#T=30/365 #Vencimiento

x=log(S0/K)

### method parameters

#N<-c(16,32,64,128)

#N<-c(15,20,25,30,35,40,50)

N<-c(25,28,31,39)

#N<-20

L<-10

#L<-c(5,7.5,10,12,15)

# interval

a<- x + (r-0.5*sig^2)*T -L*sqrt(sig^2 *T)

b<- x + (r-0.5*sig^2)*T +L*sqrt(sig^2 *T)

chi<-function(a,b,c,d,k){

x<- 1/( 1 + ((k*pi)/(b-a))^2)
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y<-cos(k*pi*(d-a)/(b-a))*exp(d) - cos(k*pi*(c-a)/(b-a))*exp(c) +

((k*pi)/(b-a)) * sin(k*pi*(d-a)/(b-a))*exp(d) - ((k*pi)/(b-a)) *

sin(k*pi*(c-a)/(b-a))*exp(c)

return(x*y)

}

psi<-function(a,b,c,d,k){

ifelse(k==0,(d-c),(sin(k*pi*(d-a)/(b-a)) -

sin(k*pi*(c-a)/(b-a)))*(b-a)/(k*pi))

}

charFunGBM1<-function(u,x,r,sig,T){

#u evaluate the fun at point u

# x=log(S0/K)

# r= risk-free rate

# sigma volatility of the stock

# t=time to maturity

z<-complex(real=-0.5*(sig^2) * T *(u^2),

imaginary = u*(x+ (r- 0.5*sig^2)*T))

return(exp(z))

}

### COS METHOD

### Call pricing

call_cos<-c()

time<-list(0)

for (i in 1:length(N)) {

start <- Sys.time()

k<-0:(N[i]-1)

u<-(k*pi)/(b-a)

#call pricing v2

Ak<-Re(charFunGBM1(u,x,r,sig,T)*exp(-1i*k*pi*a/(b-a)))

# WHEN 0<a<b use instead

#Vk<-2/(b-a) * K *( chi(a,b,a,b,k) -psi(a,b,a,b,k))

Vk<-2/(b-a) * K *( chi(a,b,0,b,k) -psi(a,b,0,b,k))

call_cos[i]<-exp(-r*T)*(sum(Ak*Vk) - 0.5*Ak[1]*Vk[1])

time[i]=Sys.time() - start

}

valoracionBS=function(K,S0,r,sig,T)

{

d1=(log(S0/K)+(r+0.5*sig^2)*T)/(sig*sqrt(T))
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d2=d1-sig*sqrt(T)

vcall=S0*pnorm(d1)-exp(-r*T)*K*pnorm(d2)

vput=exp(-r*T)*K*pnorm(-d2)-S0*pnorm(-d1)

return(c(vcall,vput))

}

#### Error analisis

#### BS

valoracionBS(K,S0,r,sig,T)[1]

sprintf("%.8f",call_cos)

abs(call_cos-valoracionBS(K,S0,r,sig,T)[1])

#benchmarking

time

## sprintf("%.8f",valoracionBS(K,S0,r,sig,T)[1])
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