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A new model for dealing with decision making under risk by considering subjective and objective 
information in the same formulation is here presented. The uncertain probabilistic weighted average 
(UPWA) is also presented. Its main advantage is that it unifies the probability and the weighted average 
in the same formulation and considering the degree of importance that each case has in the analysis. 
Moreover, it is able to deal with uncertain environments represented in the form of interval numbers. 
We study some of its main properties and particular cases. The applicability of the UPWA is studied and 
it is seen that it is very broad because all the previous studies that use the probability or the weighted 
average can be revised with this new approach. Focus is placed on a multi-person decision making 
problem regarding the selection of strategies by using the theory of expertons. 
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INTRODUCTION 
 
In the literature, we find a wide range of aggregation ope-
rators for decision making. A very common one is the 
weighted average (Beliakov et al., 2007). It aggregates 
the information weighting the importance of each 
argument. Another very common aggregation is the 
probabilistic aggregation. It aggregates the information by 
using probabilities in the analysis. Moreover, we can 
analyze a lot of other aggregation operators such as 
those that use the OWA operator (Emrouznejad and 
Amin, 2010; Kacprzyk and Zadrozny, 2009; Yager, 1988, 
1993; Yager and Kacprzyk, 1997), the Choquet integral 
(Tan and Chen, 2010), distance measures (Merigó and 
Casanovas, 2011b), norms (Yager, 2010), logarithm 
aggregations (Zhou and Chen, 2010), heavy aggre-
gations (Merigó and Casanovas, 2010c) and induced 
aggregation operators (Merigó and Gil-Lafuente, 2009). 

Usually, when dealing with decision making problems, 
we assume that the information is clearly known and can 
be assessed with exact numbers. However, in real world 
situations this is not so common because our world is 
very complex and the information is not so clearly known. 
Thus, we need to use other techniques for assessing the 
information such as the use of interval numbers. 
Therefore, we can assess the information considering the 
lowest  and  the   highest   result   that   may   occur   and  

sometimes also the result with the highest possibility of 
occurrence. 

When using interval numbers in an aggregation 
process, we form the uncertain aggregation operators 
such as the uncertain weighted average (UWA) and the 
uncertain probabilistic aggregation (UPA). Thus, we can 
aggregate the information considering the use of interval 
numbers in the analysis. In the literature, we find a lot of 
studies dealing with interval numbers (Jin and Liu, 2010; 
Liu, 2009; 2010; Merigó and Casanovas, 2011c; Wei, 
2009). Note that there are a lot of other aggregation 
operators that deals with other sources of information 
such as fuzzy numbers (Merigó and Casanovas, 2010a, 
2010b; Srekumar and Mahapatra, 2009; Wang et al., 
2009; Wei, 2010; Wei et al., 2010; Yang et al., 2010), 
linguistic variables (Merigó and Casanovas, 2010c) and 
with grey information (Liu and Liu, 2010). 

Recently, Merigó (2009a) has suggested the proba-
bilistic weighted average (PWA). It is an aggregation 
operator that unifies the probability and the weighted 
average in the same formulation considering the degree 
of importance of each concept in the analysis. Thus, we 
can assess a problem considering the objective and the 
subjective information of the environment. 

The aim of this paper  is  to  introduce  a  new  decision 



 
 
 
 
making approach based on the uncertain probabilistic 
weighted average (UPWA). It is an aggregation operator 
that unifies the uncertain probabilistic aggregation and 
the UWA in the same formulation and taking into account 
the degree of importance of each concept in the analysis. 
Moreover, it also uses interval numbers in the 
aggregation process. Therefore, it can assess complex 
environments where the information is very imprecise 
and cannot be assessed with exact numbers but it is 
possible to use interval numbers. We study some of its 
main properties and particular cases including the 
uncertain average (UA), the UPA, the UWA, the uncertain 
arithmetic weighted average (UA-WA) and the uncertain 
arithmetic probabilistic aggregation (UA-PA). 

We study the applicability of the UPWA operator and 
we see that it is very broad because all the previous 
studies that use the probability or the weighted average 
can be revised and extended with this new approach. We 
focus on an uncertain multi-person decision making 
problem regarding the selection of strategies by using the 
theory of expertons (Kaufmann, 1988). The use of the 
UPWA operator, permits to form a new decision making 
process by using objective and subjective probabilities in 
the analysis. That is, uncertain decision making under 
objective risk and under subjective risk. We see that this 
new decision making framework is more complete be-
cause it can assess objective and subjective information 
in the problem. By using the theory of expertons we can 
assess the information in a more complete way because 
we can consider the opinion of several persons in the 
analysis. 
 
 

LITERATURE REVIEW 
 

We briefly revised the interval numbers, the uncertain 
probabilistic aggregation operators, the uncertain weigh-
ted aggregation operators and the probabilistic weighted 
average. 
 
 

The interval numbers 
 

Interval numbers (Moore, 1966) provide a very useful and 
simple technique for representing uncertainty because 
they can consider the minimum and the maximum results 
that may occur. They have been used in an astonishingly 
wide range of applications and can be defined as follows. 
 

Definition 1: Let a = [a1, a2] = {x | a1 ≤ x ≤ a2}, then, a is 
called an interval number. Note that a is a real number if 
a1 = a2. 

The interval numbers can be expressed in different 
forms. For example, assume a 4-tuple [a1, a2, a3, a4], that 
is, a quadruplet, and let a1 and a4 represent the minimum 
and the maximum of the interval number, respectively, 
and a2 and a3 represent the interval with the highest 
probability or possibility, depending on how we plan to 

use the interval numbers. Note that a1 ≤ a2 ≤ a3 ≤ a4. If  a1  
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= a2 = a3 = a4, then the interval number is an exact 
number. If a2 = a3, it is a 3-tuple known as triplet, and if a1 
= a2 and a3 = a4, it is a simple 2-tuple interval number. 

We review some basic interval number operations. Let 
A and B be two triplets, where A = [a1, a2, a3] and B = [b1, 
b2, b3]. Then:  
 
1. A + B = [a1 + b1, a2 + b2, a3 + b3]. 

2. A − B = [a1 − b3, a2 − b2, a3 − b1]. 

3. A × k = [k × a1, k × a2, k × a3], for k > 0. 

4. A × B = [a1 × b1, a2 × b2, a3 × b3], for R
+
. 

5. A × B = [min (a1 × b1, a1 × b3, a3 × b1, a3 × b3), a2 × b2, 

max (a1 × b1, a1 × b3, a3 × b1, a3 × b3)], for R. 

6. A ÷ B = [a1 ÷ b3, a2 ÷ b2, a3 ÷ b1], for R
+
. 

7. A ÷ B = [min (a1 ÷ b1, a1 ÷ b3, a3 ÷ b1, a3 ÷ b3), a2 ÷ b2, 

max (a1 ÷ b1, a1 ÷ b3, a3 ÷ b1, a3 ÷ b3)], for R. 
 

Note that in some cases, it is not clear which interval 
number is higher, so we must establish an additional 
criterion for ranking the interval numbers. For simplicity, 
we recommend the following criteria: 
 

1. For 2-tuples, calculate the arithmetic mean of the 
interval, with (a1 + a2) / 2.  
2. For 3-tuples and above, calculate a weighted average 
that yields more importance to the central values. That is, 
for 3-tuples, (a1 + 3a2 + a3) / 5.  
3. For 4-tuples, we calculate: (a1 + 3a2 + 3a3 + a4) / 8.  
4. And so on.  
 

In the case of a tie between the intervals, we select the 

interval with the lowest difference, that is, (a2 − a1). For 3-
tuples and above odd-tuples, we select the interval with 
the highest central value. Note that for 4-tuples and 
above even-tuples, we must calculate the average of the 
central values following the initial criteria. To understand 
the usefulness of this method, let us look into an 
example. 
 

Example 1: Assume we want to rank the following 
interval numbers: A = (13, 26, 47), B = (22, 28, 35) and C 
= (17, 27, 39). Initially, it is not clear which is higher. As 
explained before, we assume in this paper a ranking 
based on (a1 + 3a2 + a3) / 5. Thus: 
 

A = (13 + 3 × 26 + 47) / 5 = 27.6. 
B = (22 + 3 × 28 + 35) / 5 = 28.2. 
C = (17 + 3 × 27 + 39) / 5 = 27.4. 
 

With these results, we can reorder the interval numbers 
such that B > A > C. Note that other operations and 
ranking methods could be studied (Moore, 1966) but in 
this paper we focus on those discussed above. 
 
 

Uncertain probabilistic aggregation operators 
 

Probabilistic aggregation operators are those functions 
that  use  probabilistic   information   in   the   aggregation 
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process. Some examples are the aggregation with simple 
probabilities, the aggregation with belief structures 
(Merigó and Casanovas, 2009; Merigó et al., 2010) and 
the concept of immediate probabilities (Engemann et al., 
1996; Merigó 2010; Yager, 1995). For example, the clas-
sical uncertain probabilistic aggregation (UPA) can be 
defined as follows. Note that the UPA can also be seen 
as the uncertain expected value. 
 

Definition 1: Let Ω be the set of interval numbers. An 
UPA operator of dimension n is a mapping UPA: Ω

n
 → Ω 

that has an associated weighting vector P, with ip~  ∈ [0, 

1] and 1~
1 =∑ =

n
i ip , such that:  

 

UPA (ã1, …, ãn) = ∑
=

n

i
iiap

1

~~                          (1) 

 
Where ãi is an interval number representing the ith 
argument variable.  

Another example of uncertain probabilistic aggregation 
is the uncertain immediate probability (IP-UOWA) that 
uses OWAs and probabilities in the same formulation. It 
can be defined as follows.  
 
Definition 2: Let Ω be the set of interval numbers. An IP-
UOWA operator of dimension n is a mapping IP-UOWA: 
Ω

n
 → Ω that has an associated weighting vector W of 

dimension n such that jw~  ∈ [0, 1] and ∑ = =n
j jw1 1~

, 

according to the following formula:  
 

IP-UOWA (ã1, …, ãn) = ∑
=

n

j
jjbp

1

ˆ                  (2) 

 

Where bj is the jth largest of the ãi, each argument ãi is an 

interval number and has a probability ip~  with 1~
1 =∑ =

n
i ip  

and ip~  ∈ [0, 1],  ∑ == n
j jjjjj pwpwp 1 )~~/~~(ˆ  and jp~  is the 

probability ip~  ordered according to bj, that is, according 

to the jth largest of the ãi. 
 
 
Uncertain weighted aggregation operators 
 

Uncertain weighted aggregation operators are those 
functions that weight the aggregation process by using 
the weighted average and the information is represented 
with interval numbers. The uncertain weighted average 
(UWA) can be defined as follows. 
 
Definition 3: Let Ω be the set of interval numbers. A WA 
operator of dimension n is a mapping WA: Ω

n
 → Ω that 

has an associated weighting vector W, with iw~  ∈ [0, 1]   

 
 
 
 

and 1~
1 =∑ =

n
i iw , such that  

 

UWA (ã1, …, ãn) = ∑
=

n

i
iiaw

1

~~                         (3) 

 

Where ãi is an interval number representing the ith 
argument variable.  

Other extensions of the UWA are those that use it with 
the UOWA operator (Xu and Da, 2003) such as the 
WOWA operator (Torra, 1997; Torra and Narukawa, 
2007) and the hybrid averaging (HA) operator (Xu and 
Da, 2003; Zhao et al., 2009, 2010). Note that in this case 
we get the uncertain WOWA (UWOWA) and the 
uncertain HA (UHA) operator. Recently, Merigó (2009b) 
suggested another approach called the OWA weighted 
average (OWAWA) operator. Its main advantage is that it 
unifies the OWA and the WA considering the degree of 
importance that each concept has in the aggregation. For 
the case with interval numbers it is called the uncertain 
OWAWA (UOWAWA) operator and it can be defined as 
follows. 
 

Definition 4: Let Ω be the set of interval numbers. An 
UOWAWA operator of dimension n is a mapping 
UOWAWA: Ω

n
 → Ω that has an associated weighting 

vector W of dimension n such that jw~  ∈ [0, 1] and 

∑ = =n
j jw1 1~ , according to the following formula:  

 

UOWAWA (ã1, …, ãn) = ∑
=

n

j
jjbv

1

ˆ                       (4) 

 

Where bj is the jth largest of the ãi, each argument ãi is an 

interval number and has an associated weight (WA) iv~  

with 1~
1 =∑ =

n
i iv  and iv~  ∈ [0, 1], jjj vwv ~)

~
1(~~ˆ ββ −+=  with 

β
~

 ∈ [0, 1] and jv~  is the weight (WA) iv~  ordered 

according to bj, that is, according to the jth largest of the 
ãi. 
 
 

The probabilistic weighted average  
 

The probabilistic weighted averaging (PWA) operator 
(Merigó, 2009a) is an aggregation operator that unifies 
the probability and the weighted average in the same 
formulation considering the degree of importance that 
each concept has in the aggregation. It is defined as 
follows. 
 

Definition 5: A PWA operator of dimension n is a 

mapping PWA: R
n
 → R such that:  

 

PWA (a1, …, an) = 
∑
=

n

j
iiav

1

ˆ                                   (5) 



 
 
 
 
Where the ai are the argument variables, each argument 

ai has an associated weight (WA) iv~  with 1~
1 =∑ =

n
i iv  and 

iv~  ∈ [0, 1], and a probabilistic weight ip~  with 11
~ =∑ =

n
i pi

 

and ip~  ∈ [0, 1], iii vpv ~)
~

1(~~ˆ ββ −+=  with β
~

 ∈ [0, 1] and 

iv̂  is the weight that unifies probabilities and WAs in the 

same formulation. 
Note that it is also possible to formulate the PWA 

operator separating the part that strictly affects the 
probabilistic information and the part that affects the 
WAs. The PWA is monotonic, bounded and idempotent.  
 
 

THE UNCERTAIN PROBABILISTIC WEIGHTED 
AVERAGE 
 

The uncertain probabilistic weighted averaging (UPWA) 
operator is an aggregation operator that unifies the 
probability and the weighted average in the same 
formulation considering the degree of importance that 
each concept has in the aggregation process. Moreover, 
it is also able to deal with uncertain environments that 
can be assessed with different types of interval numbers. 
Thus, we could also call the UPWA as the interval proba-
bilistic weighted average (IPWA). However, we will follow 
the usual notation used in the literature (Xu and Da, 
2002; Merigó and Casanovas, 2011). It is defined as 
follows. 
 

Definition 6: Let Ω be the set of interval numbers. An 
UPWA operator of dimension n is a mapping UPWA: Ω

n
 

→ Ω such that:  
 

UPWA (ã1, …, ãn) = ∑
=

n

j
iiav

1

~ˆ               (6) 

 

Where the ãi are the argument variables represented in 
the form of interval numbers, each argument ãi has an 

associated weight (WA) iv~  with 1~
1 =∑ =

n
i iv  and iv~  ∈ [0, 

1], and a probabilistic weight ip~  with 11
~ =∑ =

n
i pi

 and ip~  

∈ [0, 1], iii vpv ~)
~

1(~~ˆ ββ −+=  with β
~

 ∈ [0, 1] and it is also 

an interval number and iv̂  is the weight that unifies 

probabilities and WAs in the same formulation. 
The UPWA operator can also be formulated separating 

the part that strictly affects the probabilistic information 
and the part that affects the UWAs.  
 

Definition 7: Let Ω be the set of interval numbers. An 
UPWA operator is a mapping UPWA: Ω

n
 → Ω of 

dimension n, if it has an associated probabilistic vector P, 

with 1~
1 =∑ =

n
i ip  and ip~  ∈ [0, 1] and a weighting vector V 

that affects the UWA, with 1~
1 =∑ =

n
i iv  and iv~  ∈ [0, 1], 

such that:  
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UPWA (ã1, …, ãn) = ∑∑
==

−+
n

i
ii

n

i
ii avap

11

~~)
~

1(~~~
ββ             (7) 

 

Where the ãi are the argument variables represented in 

the form of interval numbers and β
~

 ∈ [0, 1] and it is also 

an interval number.  
Note that sometimes, it is not clear how to reorder the 

arguments. Then, it is necessary to establish a criterion 
for comparing interval numbers.  

In order to understand this new approach, let us look to 
a simple numerical example. 
 

Example 2: Assume the following set of arguments A = 
([20, 30], [40, 50], [10, 20], [60, 70]). We assume the 
following weights for the probability P = (0.2, 0.2, 0.3, 0.3) 
and for the weighted average V = (0.1, 0.2, 0.3, 0.4); and 

β = 0.4. By using Eq. (7) we get: 
 

UPWA = 0.4 × (0.2 × [20, 30] + 0.2 × [40, 50] + 0.3 × [10, 
20] + 0.3 × [60, 70]) + 0.6 × (0.1 × [20, 30] + 0.2 × [40, 
50] + 0.3 × [10, 20] + 0.4 × [60, 70]) = [35.4, 45.4]. 
 

Note that if the weighting vector of probabilities or WAs is 

not normalized, that is, ∑ = ≠= n
i ipP 1 1~ , or ∑ = ≠= n

i ivV 1 1~ , 

then, the UPWA operator can be expressed as: 
 

f (ã1, …, ãn) = ∑∑
==

−
+

n

i
ii

n

j
ii av

V
ap

P 11

~~)
~

1(~~
~

ββ              (8) 

 

The UPWA is monotonic, bounded and idempotent. It is 
monotonic because if ãi ≥ ui, for all ãi, then, UPWA (ã1, 
…, ãn) ≥ UPWA (u1, u2…, un). It is bounded because the 
UPWA aggregation is delimitated by the uncertain 
minimum and the uncertain maximum. That is, Min{ãi} ≤ 
UPWA (ã1, …, ãn) ≤ Max{ãi}. It is idempotent because if ãi 
= a, for all ãi, then, UPWA (ã1, …, ãn) = a. 

If B is a vector corresponding to the arguments ãi, we 

shall call this the argument vector and W
T
 is the 

transpose of the weighting vector, then, the UPWA 
operator can be expressed as: 
 

UPWA (ã1, ã2, …, ãn) = BW T
                (9) 

 
A further interesting result consists in using infinitary 
aggregation operators (Mesiar and Pap, 2008). Thus, we 
can represent the aggregation process with an unlimited 
number of arguments that appear in the aggregation 

process. Note that ∑∞
= =1 1ˆ

i ip . By using, the UPWA 

operator we get the infinitary UPWA (∞-UPWA) operator 
as follows: 

∞−UPWA (ã1, ã2, …, ãn) = ∑
∞

=1

~ˆ
i

iiap                         (10) 

 

The aggregation  process  is  very  complex  because  we  
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have an unlimited number of arguments (Mesiar and Pap, 
2008). 

The UPWA operator can also be extended by following 
(Mesiar and Spirkova, 2006; Torra and Narukawa, 2010). 
Thus, we can develop a generating function for the 
arguments of the UPWA operator that represents the 
formation of this information, such as the use of a multi-
person process. We call this formulation the mixture 
UPWA (MUPWA) operator and it is defined as follows.  
 
Definition 6: Let Ω be the set of interval numbers. A 
MUPWA operator of dimension n is a mapping MUPWA: 
Ω

n
 → Ω that has associated a vector of weighting 

functions f, s: Ω
m
 → Ω, such that: 

 

MUPWA (sy(ã1),…, sy(ãn)) = 

∑

∑

=

=
n

i
iyi

n

i
iyiyi

asf

asasf

1

1

))~((

)~())~((
       (11)                      

 

Where ãi is the argument variable represented in the form 
of interval numbers and sy(ãi) indicates that each 
argument is formed using a different function.  

Another interesting issue to analyze are the measures 
for characterizing the weighting vector V̂ . The entropy of 
dispersion (Shannon, 1948; Yager, 1988, 2009) 
measures the amount of information being used in the 
aggregation. For the UPWA operator, it is defined as 
follows. 
 











−+−= ∑ ∑

= =

n

i

n

i
iiii ppvvVH

1 1

)~ln(~)
~

1()~ln(~~
)ˆ( ββ           (12) 

 

Note that ip~  is the ith weight of the UPA aggregation and 

iv~  the ith weight of the UWA aggregation. As we can 

see, if 1
~

=β  or 0
~

=β , we get the classical Shannon 

entropy of dispersion (Shannon, 1948) by using interval 
numbers. 
 
 

Families of UPWA operators 
 

By using a different manifestation in the weighting 
vectors, we can obtain a wide range of UPWA operators. 
 

Remark 1: If β = 0, we get the uncertain weighted 

average (UWA) and if β
~

 = 1, we get the uncertain 

probabilistic approach. Note that it is possible to use 

partial cases such as β
~

= (0.9, 1). 

 

Remark 2: If ip~  = 1/n and iv~  = 1/n, for all i, then, we get 

the uncertain average (UA). Note that the UA is also 

found if β
~

 = 1 and ip~  = 1/n, for all i,  and  if  β
~

 = 0  and  

 
 
 
 

iv~  = 1/n, for all i. 

 

Remark 3: If iv~  = 1/n, for all i, then, we get the uncertain 

arithmetic probabilistic aggregation (UA-PA). 
 

UA-PA (ã1, …, ãn) = ∑∑
==

−+
n

i
i

n

i
ii a

n
ap

11

~1
)

~
1(~~~

ββ                (13) 

 

Remark 4: If ip~  = 1/n, for all i, then, we get the uncertain 

arithmetic WA (UA-WA). 
 

UA-WA (ã1, …, ãn) = ∑∑
==

−+
n

i
ii

n

i
i ava

n 11

~~)
~

1(~1~
ββ        (14) 

 
Theorem 1: If the interval numbers are reduced to the 
usual exact numbers, then, the UPWA operator becomes 
the PWA operator.  
 
Proof: Assume a quadruplet = (a1, a2, a3, a4). If a1 = a2 = 
a3 = a4, then (a1, a2, a3, a4) = a, thus, we get the PWA 
operator.  
 
Remark 5: In a similar way, we could develop the same 
proof for all the other types of interval numbers available 
in the literature. 
 
Remark 6: Note that if the available information is given 
in different types of interval numbers, then, we have to 
adapt them to the same structure. Thus, we have to 
construct an interval that includes all the other ones. For 
example, if we have one interval with 2-tuples, another 
one with triplets and the other one with quadruplets, then, 
we have to convert all of them to quadruplets. The 2-tuple 
is constructed as follows: [a1, a2] = [a1, a1, a2, a2] and the 
triplet in the following way: [a1, a2, a3] = [a1, a2, a2, a3].  
 
Remark 7: In a similar way, we could develop the same 
analysis with more complex interval numbers such as 
quintuplets and sextuplets. 
 
Remark 8: Note that similar analysis could be developed 
for considering situations when the interval numbers are 
representing linguistic variables, etc. 
 
 
APPLICATION OF THE UPWA OPERATOR 
 
The UPWA operator can be applied in a lot of fields 
because all the previous studies that use the weighted 
average or the probability can be revised and extended 
with this new approach. Thus, we can apply it: 
 

i. Statistics: The UPWA is a key instrument to revise the 
majority of the statistical sciences. For example, we can 
extend it to probability theory and  a  lot  of  other  related  
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Table 1. Matrix with states of nature and alternatives. 
 

 S1 Si Sn UPWA 

A1 ã11 ã1i ã1n T1 

Ah ãh1 ãhi ãhn Th 

Ak ãk1 ãki ãkn Tk 

UPWA Y1 Yi Yn  
 
 
 

areas such as descriptive statistics, hypothesis testing 
and inference statistics. 
ii. Fuzzy Set Theory and Soft Computing. 
iii. Decision Theory and Operational Research. 
iv. Business Administration.  
v. Economics and Politics.  
vi. Biology and Medicine. 
vii. Physics and Chemistry. 
viii. Other sciences: Many other applications could be 
developed in a lot of other sciences such as in 
psychology, sociology, geography and a wide range of 
disciplines in engineering. 
 
In uncertain decision theory (or interval decision theory), 
we see that there are a lot of methodologies for doing so 
including uncertain multiple criteria decision making, 
uncertain group decision making, uncertain sequential 
decision making and uncertain game theory. In general 
terms, we can distinguish between 3 forms of uncertain 
decision making environments: 
 

1. Uncertain decision making under certainty: We have 
information regarding what is going to happen in the 
future. However, the available information is imprecise 
and represented with interval numbers. 
2. Uncertain decision making under risk: We know the 
possible outcomes by using interval numbers. However, 
we do not know which of them is going to occur but we 
can assess the information with uncertain probabilities.  
3. Uncertain decision making under uncertainty: We know 
the possible outcomes by using FNs but we do not know 
which of them is going to occur in the future and we do 
not have any probabilistic information. 
 

Furthermore, we can use subjective and objective proba-
bilities in the analysis. Thus, we can formulate two other 
decision making processes: 
 

1. Uncertain decision making under subjective risk. 
2. Uncertain decision making under objective risk. 
 

This general framework has been extended in different 
ways. Considering the new developments presented in 
this paper, we can introduce the use of uncertain decision 
making problems under subjective risk and under objec-
tive risk in the same formulation. With the introduction of 
the UPWA operator, we can assess these two problems 
in the same formulation and considering the degree of 
importance that each concept has in the analysis.  

Therefore, with the UPWA operator we can formulate a 
new decision making approach:  
 

1. Uncertain decision making under subjective risk and 
objective risk. 
 

a. If β = 1, we get uncertain decision making under 
objective risk. 

b. If β = 0, we get uncertain decision making under 
subjective risk. 
 

A further interesting issue to consider is the meaning of 
the set of arguments aggregated. In uncertain decision 
making problems it is very interesting to consider a set of 
arguments a that depend on a set of states of nature S 
and a set of alternatives A. This information can be 
represented in the following matrix shown in Table 1. 

As can be seen in Table 1, we can aggregate the infor-
mation in different ways. In summary, we can summarize 
the problem in three types of uncertain decision-making 
methodologies: 
 

1. Uncertain decision making “ex-ante”: Select an action 
and see its potential results (aggregation of a row). 
2. Uncertain decision making “ex-post”: Assume that a 
state of nature occurs and see how we can react 
(aggregation of a column). 
3. Uncertain decision making “ex-ante” and “ex-post”: Mix 
both cases in the same uncertain decision making 
process. 
 

By mixing these concepts, we could consider a wide 
range of uncertain decision making (UDM) approaches. 
Thus, we could get the following models shown in Table 
2. Note that these approaches could also be studied with 
a multi-person analysis or more generally with a multi-
aggregation process. Thus, we get: 
 
1. Uncertain multi-person decision making under 
certainty. 
2. Uncertain multi-person decision making under risk. 
 
a. Uncertain multi-person decision making under 
objective risk. 
b. Uncertain multi-person decision making under 
subjective risk. 
 
3. Uncertain multi-person decision making under 
uncertainty. 
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Table 2. Uncertain decision making (UDM) approaches. 
 

 UDM – certainty UDM under risk UDM – uncertainty 

UDM “ex-ante” UDM under certainty “ex-ante” UDM under risk “ex-ante” UDM – uncertainty “ex-ante” 

UDM “ex-post” UDM under certainty “ex-post” UDM under risk “ex-post” UDM – uncertainty “ex-post” 

UDM “ex-ante” and “ex-
post” 

UDM under certainty “ex-ante” 
and “ex-post” 

UDM under risk “ex-ante” 
and “ex-post” 

UDM – uncertainty “ex-ante” 
and “ex-post” 

 
 
 

Table 3. Expert 1. 

 

 S1 S2 S3 S4 

A1 [0.2, 0.4] [0.6, 0.7] [0.3, 0.4] [0.6, 0.7] 

A2 0.5 [0.3, 0.5] [0.5, 0.7] [0.4,0.5] 

A3 [0.1, 0.2] [0.8, 0.9] [0.9, 1] [0.8, 0.9] 

 
 
 

Table 4. Expert 2. 

 

 S1 S2 S3 S4 

A1 [0.3, 0.4] [0.7, 0.8] [0.7, 0.9] [0.4, 0.6] 
A2 [0.7, 0.8] [0.3, 0.4] [0.2, 0.3] [0.6, 0.7] 
A3 [0.6, 0.7] [0.5, 0.6] [0.5, 0.6] [0.3, 0.5] 

 
 
 

Finally, note that there are a lot of other methods and 
techniques for dealing with uncertain decision making 
that could be considered in the analysis.  
 
 
APPLICATION OF THE THEORY OF EXPERTONS 
 
In the following, we focus on an uncertain multi-person 
decision making problem by using the theory of 
expertons (Kaufmann, 1988; Kaufmann and Gil-Aluja, 
1993). Note that an experton is an extension of the 
concept of probabilistic set (Hirota, 1981) for uncertain 
environments than cannot be assessed with exact num-
bers but it is possible to use interval numbers. Thus, we 
can deal with the opinion of several experts in the ana-
lysis in a more efficient way because we can assess the 
information showing various details on their information 
and the general tendency of the opinion of the group. 
Note that in the literature, we can find a lot of other 
decision making approaches (Demir and Bostanci, 2010; 
Gil-Lafuente and Merigó, 2010; Jin et al., 2010; Liu, 2011; 
Liu and Su, 2010; Merigó and Gil-Lafuente, 2010; Wu et 
al., 2009; Xu and Hu, 2010; Zhang and Liu, 2010). 
 

Assume a company that operates in Europe is analyzing 
its general strategy for the next year and they consider 
three alternatives: 
 
1. A1: Expand to the Nigerian market. 
2. A2: Expand to the Kenian market. 
3. A3: Expand to the Algerian market. 

In order to evaluate these strategies, the company uses 
the opinion of five experts that usually assesses the 
company. They consider that the key factor for the 
determination of the expected benefits is the economic 
situation for the next year. They have summarized the 
possible scenarios as follows: 
 
1. S1: Bad economic situation. 
2. S2: Regular economic situation. 
3. S3: Good economic situation. 
4. S4: Very good economic situation. 
 

Each expert evaluates the expected benefits of the 
company according to the economic situation for the next 
year. They give their opinion in the interval [0, 1] being 0 
the lowest expected benefits (or highest loses) and 1 the 
highest ones. As the available information is very 
uncertain, the experts provide their information with 
interval numbers represented in the form of 2-tuples. The 
results are shown in Tables 3, 4, 5, 6 and 7. With this 
information, we construct the expertons. The results are 
shown in Table 8. 

Note that in order to calculate the results shown in 
Table 8, we use the following methodology presented in 
Table 9 for the experton A1 with S1. That is, first we 
calculate the absolute frequencies (the number of experts 
that gives each result). Next, we calculate the relative 
frequencies (we divide the absolute frequencies by the 
total number of experts) and finally, the accumulated 
relative frequency of the results (we sum from α = 1 the 
relative frequencies in  an  accumulated  way  until  α = 0)   
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Table 5. Expert 3. 
 

 S1 S2 S3 S4 

A1 [0, 0.2] [0.6, 0.8] [0.3, 0.4] [0.9, 1] 

A2 [0.3, 0.4] [0.7, 0.9] [0.7, 0.8] [0.7, 0.8] 

A3 [0.6, 0.7] [0.4, 0.6] [0.4, 0.6] [0.5, 0.6] 
 
 
 

Table 6. Expert 4. 

 

 S1 S2 S3 S4 

A1 [0.7, 0.8] [0.7, 0.8] [0.8, 0.9] [0.5, 0.6] 

A2 [0.4, 0.5] [0.2, 0.4] [0.4, 0.5] [0.7, 0.8] 

A3 [0.3, 0.6] [0.6, 0.7] [0.3, 0.4] [0.2, 0.3] 
 
 

Table 7. Expert 5. 
 

 S1 S2 S3 S4 

A1 [0.3, 0.4] [0.6, 0.7] [0.4, 0.5] [0.8, 0.9] 

A2 [0.5, 0.6] [0.5, 0.8] [0.3, 0.4] [0.4, 0.5] 

A3 [0.3, 0.5] [0.2, 0.3] [0.6, 0.7] [0.6, 0.7] 
 
 
 

Table 8. Expertons for each strategy and state of nature. 
 

 S1  S2  S3  S4 

0  1  0  1  0  1  0  1 

A1 

0.1  0.8 1  0.1  1 1  0.1  1 1  0.1  1 1 

0.2  0.8 1  0.2  1 1  0.2  1 1  0.2  1 1 

0.3  0.6 0.8  0.3  1 1  0.3  1 1  0.3  1 1 

0.4  0.2 0.8  0.4  1 1  0.4  0.6 1  0.4  1 1 

0.5  0.2 0.2  0.5  1 1  0.5  0.4 0.6  0.5  0.8 1 

0.6  0.2 0.2  0.6  1 1  0.6  0.4 0.4  0.6  0.6 1 

0.7  0.2 0.2  0.7  0.4 1  0.7  0.4 0.4  0.7  0.4 0.6 

0.8  0 0.2  0.8  0 0.6  0.8  0.2 0.4  0.8  0.4 0.4 

0.9  0 0  0.9  0 0  0.9  0 0.4  0.9  0.2 0.4 

1  0 0  1  0 0  1  0 0  1  0 0.2 

                    

A2 

0.1  1 1  0.1  1 1  0.1  1 1  0.1  1 1 

0.2  1 1  0.2  1 1  0.2  1 1  0.2  1 1 

0.3  1 1  0.3  0.8 1  0.3  0.8 1  0.3  1 1 

0.4  0.8 1  0.4  0.4 1  0.4  0.6 0.8  0.4  1 1 

0.5  0.6 0.8  0.5  0.4 0.6  0.5  0.4 0.6  0.5  0.6 1 

0.6  0.2 0.4  0.6  0.2 0.4  0.6  0.2 0.4  0.6  0.6 0.6 

0.7  0.2 0.2  0.7  0.2 0.4  0.7  0.2 0.4  0.7  0.4 0.6 

0.8  0 0.2  0.8  0 0.4  0.8  0 0.2  0.8  0 0.4 

0.9  0 0  0.9  0 0.2  0.9  0 0  0.9  0 0 

1  0 0  1  0 0  1  0 0  1  0 0 

                

A3 
0.1  1 1  0.1  1 1  0.1  1 1  0.1  1 1 

0.2  0.8 1  0.2  1 1  0.2  1 1  0.2  1 1 

 0.3  0.8 0.8  0.3  0.8 1  0.3  1 1  0.3  0.8 1 

 0.4  0.4 0.8  0.4  0.8 0.8  0.4  0.8 1  0.4  0.6 0.8 
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Table 8. Cont’d. 
 

 0.5  0.4 0.8  0.5  0.6 0.8  0.5  0.6 0.8  0.5  0.6 0.8 

0.6  0.4 0.6  0.6  0.4 0.8  0.6  0.4 0.8  0.6  0.4 0.6 

0.7  0 0.4  0.7  0.2 0.4  0.7  0.2 0.4  0.7  0.2 0.4 

0.8  0 0  0.8  0.2 0.2  0.8  0.2 0.2  0.8  0.2 0.2 

0.9  0 0  0.9  0 0.2  0.9  0.2 0.2  0.9  0 0.2 

1  0 0  1  0 0  1  0 0.2  1  0 0 
 
 
 
Table 9. Experton for A1 and S1. 

 

 Absolute frequency  Relative frequency  Experton 

A1 

0 1 0 

⇒ 

0 0.2 0 

⇒ 

0 1 

0.1 0 0 0.1 0 0 0.1 0.8 1 

0.2 1 1 0.2 0.2 0.2 0.2 0.8 1 

0.3 2 0 0.3 0.4 0 0.3 0.6 0.8 

0.4 0 3 0.4 0 0.6 0.4 0.2 0.8 

0.5 0 0 0.5 0 0 0.5 0.2 0.2 

0.6 0 0 0.6 0 0 0.6 0.2 0.2 

0.7 1 0 0.7 0.2 0 0.7 0.2 0.2 

0.8 0 1 0.8 0 0.2 0.8 0 0.2 

0.9 0 0 0.9 0 0 0.9 0 0 

1 0 0 1 0 0 1 0 0 
 
 
 

Table 10. Expected value of the expertons for each strategy and state of nature. 
 

 S1 S2 S3 S4 

A1 [0.3, 0.44] [0.64, 0.76] [0.5, 0.62] [0.64, 0.76] 

A2 [0.48, 0.56] [0.4, 0.6] [0.42, 0.54] [0.56, 0.66] 

A3 [0.38, 0.54] [0.5, 0.62] [0.54, 0.66] [0.48, 0.6] 
 
 
 

Table 11. Aggregated results. 
 

 UA UPA UWA UPWA 

A1 [0.52, 0.645] [0.564, 0.686] [0.544, 0.686] [0.552, 0.686] 

A2 [0.465, 0.59] [0.478, 0.602] [0.484, 0.604] [0.481, 0.603] 

A3 [0.475, 0.605] [0.492, 0.616] [0.476, 0.604] [0.482, 0.608] 
 
 
 

(Kaufmann, 1988; Kaufmann and Gil-Aluja, 1993). 
Next, we calculate the expected value of the expertons. 

For doing so, we sum all the levels of membership α 
excepting the 0 and divide the result by 10. The results 
are shown in Table 10. 

The results obtained in Table 10 can be aggregated in 
order to obtain a single result that permits us to see the 
expected benefits by using each alternative according to 
the experts. Note that in this aggregation process we use 
several particular cases of the UPWA operator. We 
consider the UA, the UWA, the UPA and the UPWA 
operator. We assume that  the  UWA  uses  the  following  

weighting vector V = (0.2, 0.2, 0.2, 0.4) with a 60% of 
importance and the UPA: P = (0.1, 0.2, 0.3, 0.4) with 40% 
of importance. The results are shown in Table 11. 

As we can see, depending on the particular type of 
UPWA operator used, the results may be different 
leading to different decisions. In this example, it seems 
that A1 is the optimal choice. 
 
 
Conclusions 
 
We   have   presented   a   new   approach   that    unifies  



 
 
 
 
uncertain decision making problems under objective risk 
and subjective risk in the same formulation and con-
sidering the degree of importance of each concept in the 
analysis. For doing so, we have introduced the UPWA 
operator. It is an aggregation operator that unifies the 
probability and the weighted average in the same 
formulation and considering the degree of relevance of 
each concept in the aggregation. Moreover, it is able to 
assess uncertain environments by using interval num-
bers. We have seen some of its main particular cases 
including the PWA operator, the UA, the UA-PA and the 
UA-WA operator. 

We have studied its applicability and we have seen that 
it is very broad because all the previous studies that use 
the probability or the weighted average can be revised 
and extended with this new approach including statistics, 
economics and engineering. We have focussed on an 
application in an uncertain multi-person decision making 
problem regarding the selection of strategies by using the 
theory of expertons. Thus, we have been able to assess 
the opinion of several experts in a more complete way. 
Moreover, we have seen that with the UPWA operator we 
can unify decision making problems under objective risk 
and under subjective risk in the same formulation and 
considering the degree of importance that each concept 
has in the analysis. 

In future research, we expect to develop further 
developments by adding more characteristics in the 
analysis such as the use of generalized aggregation 
operators and distance measures. We will also consider 
other sources of information and other applications giving 
special attention to statistics and decision theory. 
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