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Abstract: The Reissner-Nordström (RN) solution describes the most general static black hole
of the Einstein-Maxwell system. The solution is characterized by its mass and electric charge and,
depending on their relative values, it can possess two, one, or no horizons at all. After surveying
the geometric and thermodynamic properties of RN black holes, we focus on the “extremal” case,
corresponding to solutions with a single horizon and zero temperature. Near-extremal black holes
present peculiar features which make them seemingly incompatible with classical gravity and ther-
modynamics. We comment on these features and explain how they can be resolved by making use
of an effective two-dimensional theory of gravity which provides a quantum description of the black
holes at ultra-low temperatures. We briefly comment on how supersymmetry dramatically alters the
description, saving the day for the string-theoretical counting of extremal black hole microstates.

I. INTRODUCTION

Black holes are regions of spacetime characterized by
the present of an event horizon, namely, a spacetime fron-
tier which causally disconnects from the exterior any-
thing that falls inside. Although the Schwarzschild so-
lution to the Einstein equations is known since 1916 [1],
black holes were not taken seriously as possible phys-
ical objects till the late 1960s [2, 3]. The experimen-
tal evidence for their existence, which started appear-
ing in the 1970s, is by now overwhelming —see [4, 5]
for recent outstanding experimental breakthroughs. De-
spite remarkable progress in the theoretical understand-
ing of black holes —particularly as thermodynamic ob-
jects [6]— many fundamental questions remain unsolved.

Schwarzschild black holes are the simplest ones. They
are spherically symmetric, static, neutral, non-rotating
and fully characterised by their mass 𝑀 . Reissner-
Nordström (RN) black holes [7, 8] generalise them by
introducing electric charge 𝑄 as a new parameter. This
gives rise to two horizons: an outer event horizon and
an inner “Cauchy horizon”. RN black holes become “ex-
tremal” when their charge is —in natural units— equal
to their mass. In that situation, the two horizons merge
into one and the black hole has zero temperature. In this
project we will review and explain the resolution to var-
ious puzzles associated to the properties of extremal RN
black holes, which involve incompatibilities with classical
physics and violations of the 3rd law of thermodynamics.

In section II we introduce the Einstein-Hilbert and
Maxwell actions from which the solutions that describe
black holes arise. We also present the “No-hair theo-
rem” along with the description of Reissner-Nordström
black holes and the analysis of their properties depend-
ing on the relative values of their mass and charge, as
well as their corresponding Penrose diagrams. In section
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III we present the laws of black hole thermodynamics
along with their classical interpretation and some ther-
modynamic properties of RN black holes. We focus on
the case in which black holes become near-extremal in
section IV, analyzing two puzzles associated to their spe-
cial properties. In section V we comment on how the
two-dimensional “Jackiw-Teitelboim gravity” provides a
resolution to these puzzles and in VI we explain how su-
persymmetric black holes have a very different fate. We
conclude that classical extremal black holes only exist in
the presence of supersymmetry.

II. THE REISSNER-NORDSTRÖM FAMILY

The Einstein-Maxwell system is defined by minimally
coupling the Einstein-Hilbert and Maxwell actions as

𝒮 =
∫︁ √︀

|𝑔|
(︂

𝑅

2𝑘
− 1

4𝐹 𝜇𝜈𝐹𝜇𝜈

)︂
d4𝑥 . (1)

In this expression, 𝑘 ≡ 8𝜋𝐺 is the gravitational constant,
𝑅 the Ricci scalar associated to the spacetime metric and
𝐹𝜇𝜈 ≡ 2𝜕[𝜇𝐴𝜈] is the Faraday tensor.

The equations of motion of this theory admit many
types of solutions. A particularly relevant one corre-
sponds to the “Kerr–Newman family”. This describes the
spacetime and electromagnetic field of a rotating charged
object with mass 𝑀 , charge 𝑄 and angular momentum
𝐽 [9, 10]. While black holes can be formed from the
collapse of all kinds of matter, the “No-hair theorem” es-
tablishes that all stationary black hole solutions of the
Einstein–Maxwell system are fully characterised by their
mass 𝑀 , charge 𝑄 and angular momentum 𝐽 [11, 12].
Hence, all information characterizing the matter which
collapsed to form the black hole or which falls inside is
completely lost for any outside observer.

Throughout this project we will be interested in various
features of extremal black holes which are already man-
ifest for the subclass of Kerr-Newmann solutions which
have a vanishing angular momentum, 𝐽 = 0. The 𝐽 ̸= 0
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Figure 1: Penrose diagrams of Reissner-Nordström solutions corresponding respectively: to a non-extremal black hole, 𝑀 >
𝑀ext, (left), an extremal black hole, 𝑀 = 𝑀ext, (middle) and a naked singularity, 𝑀 < 𝑀ext, (right). In all cases, time runs
upwards, light rays propagate following straight lines at 45 degrees everywhere and zig-zag lines denote curvature singularities.

case will not modify our conclusions qualitatively, so we
will stick to the non-rotating case for the sake of simplic-
ity. Setting 𝐽 = 0 in the Kerr-Newmann solution gives
rise to the Reissner-Nordström one, which reads [7, 8]

d𝑠2 = −𝑓(𝑟)d𝑡2 + d𝑟2

𝑓(𝑟) + 𝑟2dΩ2 , 𝐴𝜇 = 𝑄

𝑟
𝛿𝑡

𝜇 , (2)

where

𝑓(𝑟) = 1 − 2𝐺𝑀

𝑟
+ 𝐺𝑄2

𝑟2 . (3)

The metric has a curvature singularity at 𝑟 = 0, as well
as coordinate singularities whenever 𝑓(𝑟) = 0. These
signal the presence of horizons and, in the general case,
they correspond to the following two values of the radial
coordinate:

𝑟± = 𝐺

[︃
𝑀 ±

√︂
𝑀2 − 𝑄2

𝐺

]︃
. (4)

Observe that 𝑓(𝑟) can now be written as 𝑓(𝑟) = (𝑟 −
𝑟+)(𝑟 − 𝑟−)/𝑟2. The region 𝑟 = 𝑟+ is an “event hori-
zon” which causally disconnects the exterior from the
interior of the black hole. On the other hand, 𝑟 = 𝑟− is
a “Cauchy horizon”, beyond which the predictability of
Einstein equations seems to break down.

From (4) it follows that in order for 𝑟 to be real, the
black hole is required to have a mass greater than certain
“extremall mass”, 𝑀 ext. There exist different situations
—see Fig. 1 for Penrose diagrams of the various cases—
which can be summarized as follows,

𝑀 ext ≡ |𝑄|√
𝐺

,

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑀 > 𝑀 ext ↔ Non-extremal
𝑀 ≳ 𝑀 ext ↔ Near-extremal
𝑀 = 𝑀 ext ↔ Extremal
𝑀 < 𝑀 ext ↔ Naked singularity

Black holes with 𝑀 > 𝑀 ext are called “non-extremal”.
In particular, for 𝑄 = 0 we recover the Schwarzschild

solution [1]. Solutions with mass 𝑀 slightly bigger than
𝑀 ext are called “near-extremal” and the ones satisfying
𝑀 = 𝑀 ext are “extremal”. Extremal black holes satisfy
𝑟+ = 𝑟−. In that case, the event and Cauchy horizons
are merged into a single one.

In the situation with 𝑀 < 𝑀 ext there is no event hori-
zon and the solution describes a “naked singularity”. A
naked singularity involves a lack of predictability of the
theory, since it is not possible to provide sensible ini-
tial conditions to any field on a spacetime singularity.
This leads to the “weak cosmic censorship conjecture”,
which says that physical singularities must always be
hidden behind event horizons [13]. Looking at the Pen-
rose diagrams shown in Fig. 1, we observe that crossing
the Cauchy horizon leads to a region of spacetime whose
causal past contains the singularity, so we face an analo-
gous loss-of-predictability issue. This leads to the “strong
cosmic censorship conjecture”, which roughly asserts that
evolution across a Cauchy horizon should not be possible.
In other words, the conjecture would imply that Cauchy
horizons are in fact unstable and all singularities are ei-
ther spacelike or null. Violations of both conjectures in
particular situations have been reported [14, 15].

III. BLACK HOLE THERMODYNAMICS

Black holes are thermodynamic objects. In particu-
lar, they posses an entropy proportional to the surface
area of their event horizons, a temperature proportional
to their surface gravity and an internal energy equal to
their mass. In strict analogy with the laws of thermody-
namics, black holes satisfy four laws which encapsulate
these aspects [6]. Let us review them.

Zeroth Law: The surface gravity 𝜅 is always constant
over the event horizon of a stationary black hole [6]. For
an observer at infinity, 𝜅 can be understood as the ac-
celeration experienced on a body of mass m towards the
black hole at the event horizon. If the observer at infin-
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ity has a rope tied to the body, the tension force holding
it would be 𝐹 = 𝑚𝜅. In the case of a static black hole
like (2), the surface gravity is given by 𝜅 = 𝑓 ′(𝑟+)/2.
Comparing it to the zeroth law of thermodynamics which
states that the temperature 𝑇 is uniform everywhere in
thermal equilibrium, the connection between 𝜅 and 𝑇 is
clear. More precisely, the temperature of a black hole is
given by 𝑇 = 𝜅/(2𝜋) [16].

First Law: The energy conservation principle of a
black hole is expressed in terms of small variations of its
mass, d𝑀 , its horizon area, d𝐴, its angular momentum
d𝐽 , and its charge d𝑄 through [6]

d𝑀 = 𝜅

8𝜋
d𝐴 + Ωd𝐽 + Φd𝑄 . (5)

In this remarkable relation, 𝜅 is the surface gravity, Ω
the angular velocity and Φ the electrostatic potential.

In classical thermodynamics, the first law reflects the
conservation of energy of an isolated system: 𝛿𝑈 = d𝑄+
𝛿𝑊 , where 𝛿𝑈 is the change in internal energy, d𝑄 is
the heat added to the system and 𝛿𝑊 is the work done
by the system. Combining it with the second law we
can obtain an expression very similar to equation (5),
d𝑈 = 𝑇d𝑆 + . . . where the dots stand for additional
possible terms [17]. Identifying the internal energy with
the black hole mass, 𝑇 with the surface gravity and 𝑆
with the surface area, the analogy becomes complete.

Second Law: The second law of black hole mechanics
establishes that the area 𝐴 of an event horizon does not
decrease with time under any physical process [18],

𝛿𝐴 ≥ 0 . (6)

This is again remarkably similar to the second law of
thermodynamics, which states that the entropy of an
isolated physical system either increases or remains con-
stant: Δ𝑆 ≥ 0. Both concepts are indeed connected, as
the entropy of a black hole is given by the Bekenstein-
Hawking formula [19, 20]

𝑆 = 𝑐3𝐴

4𝐺ℏ
, (7)

where we momentarily reinstated 𝑐 and ℏ. This is often
considered as the first formula of quantum gravity, as it
combines the three fundamental constants of nature.

Black holes will evaporate over time via Hawking ra-
diation, losing entropy in the process [20]. It may seem
that Hawking radiation violates the second law but here
is where the “generalized second law” steps in [21]. Ac-
cording to this, the total entropy of a system is the ordi-
nary entropy plus the total entropy of all the black holes
of a given system. The total entropy cannot decrease,
Δ𝑆total ≥ 0, where 𝑆total = 𝑆BH + 𝑆stuff.

Third Law: In thermodynamics, the third law states
that as the temperature of a system approaches absolute
zero, the entropy of the system is minimized and it is
not possible to reach the absolute zero with a number

of finite steps [17]. On the other hand, black holes with
the minimum possible mass that is compatible with its
charge and angular momentum are called “extremal” and
they have 𝜅 = 0 while often maintaining a finite area (and
therefore entropy). However, the analogy remains in that
it is not possible for a black hole to reach 𝜅 → 0 (𝑇 → 0)
by a finite number of physical processes. Extremal black
holes do not emit Hawking radiation as they have 𝑇 = 0.

A. Thermodynamic properties of
Reissner-Nordström black holes

At the event horizon, we can assume 𝑟 = 𝑟+ and 𝑡 =
0. The Reissner-Nordström metric now becomes d𝑠2 =
𝑟2dΩ2 and the area of the black hole is: 𝐴 =

∫︀ √
𝑔 d𝜃d𝜑 =

4𝜋𝑟2
+. Thus, using equation (7) the black hole entropy

becomes:

𝑆 = 𝜋𝑟2
+ = 𝜋𝐺

[︃
𝑀 +

√︂
𝑀2 − 𝑄2

𝐺

]︃2

, (8)

On the other hand, the temperature 𝑇 and the electro-
static potential Φ read

𝑇 =

√︁
𝑀2 − 𝑄2

𝐺

2𝜋

[︂
𝑀 +

√︁
𝑀2 − 𝑄2

𝐺

]︂2 , Φ = 𝑄

𝐺

[︂
𝑀 +

√︁
𝑀2 − 𝑄2

𝐺

]︂ .

(9)

The First Law shown in (5) can be easily verified.

IV. EXTREMAL BLACK HOLES: TWO
PUZZLES

Extremal black holes are interesting due to their pe-
culiar properties. While non-extremal black holes only
have a few isometries, near-extremal and extremal black
holes develop a new symmetry near the horizon: scale in-
variance. We have already seen that near-extremal black
holes verify 𝑀 ≳ 𝑀 ext but they are defined more pre-
cisely by the criterion 𝑘𝐵𝑇 ≪ 1/

√
𝐴.

The geometry around extremal and near-extremal
black holes presents a long throat near the horizon. This
corresponds to a two-dimensional Anti-de Sitter space
along the time and radial directions —see Fig. 2. This
can be checked by defining 𝑟′ = 𝑟+ + 𝜆

𝑧 , where 𝜆 is an in-
finitesimal parameter and 𝑧 the radial coordinate. In the
extremal case, 𝑟± =

√
𝐺𝑄 and expanding 𝑓(𝑟′) from the

equation (2), the AdS2 metric is obtained. After rescal-
ing the time coordinate as 𝑡 =

√
𝐺𝑄
𝜆 𝑇 , one finds

d𝑠2 =
√

𝐺𝑄

𝑧2 [−d𝑇 2 + d𝑧2] + 𝐺𝑄2dΩ2 , (10)

which describes a spacetime with geometry AdS2 × S2.
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Figure 2: Representation of the Anti-de Sitter geometry in 2
dimensions around a near-extremal black hole (from [22]).

From equations (8) and (9) we can check that when
𝑀 = 𝑀 ext, the black hole’s temperature and entropy
become, respectively,

𝑇 ext = 0 , 𝑆ext = 𝜋𝐺𝑀2 . (11)

In order to study black holes as quantum systems, it is
necessary to separate the spacetime region of the black
hole from its environment. This separation stands out
near extremality, in which case the emission of Hawking
radiation is suppressed. The AdS2 throat turns out to
play a crucial role in such quantum description.

Extremal black holes seem to present two features
which are at odds with standard thermodynamics and
classical general relativity. These are [22]:

1st puzzle: Extremal black holes have the minimal
possible mass 𝑀 given 𝑄 —and 𝐽— and have zero tem-
perature. Therefore they do not emit Hawking radia-
tion. If we treat them as quantum systems, they should
correspond to ground states. However, as seen in equa-
tion (11), their entropy can remain very large even when
𝑇 = 0. This fact is at odds with the third law of classi-
cal thermodynamics presented in (III). If real, what does
such a great degeneracy of states correspond to?

2nd puzzle: Near-extremal black holes cannot be
treated as classical thermodynamic systems for suffi-
ciently small temperatures. The classical description is
precise whenever the emission of typical radiation quanta
does not change the temperature substantially. This is
no longer the case for temperatures lower than [23]

𝑇breakdown = 𝜋

𝐺𝑀 ext𝑆ext = 1√
𝐺𝑄3

. (12)

Additionally, calculations in string theory suggest that an
energy gap 𝐸gap ∼ 𝑇breakdown should be present in the
spectrum of extremal black holes. However, there is no
indication of any such gap in classical general relativity.

V. EXTREMAL BLACK HOLES: A
RESOLUTION

These puzzles remained unsolved for several decades.
Recently, a new approach which makes a careful use of

the gravitational path integral to deal with quantum
fluctuations on the AdS throat has provided a resolu-
tion [24, 25]. This makes use of a two-dimensional the-
ory known as “Jackiw-Teitelboim” (JT) gravity [26, 27].
This is a theory of gravity coupled to a scalar “dilaton”
field which captures the dynamics of fluctuations on the
AdS2 × S2 near-horizon metric of extremal black holes.
Roughly, JT gravity captures spherically symmetric fluc-
tuations of the AdS2 factor and the dilaton controls fluc-
tuations of the S2 area. Additional matter can account
for fluctuations with non-trivial angular dependence [22].

Quantum fluctuations of extremal black holes can then
be accounted for using JT gravity. The effects arise from
a mode which becomes light in the extremal regime of
black holes, namely, fluctuations of the throat length.
As the temperature is lowered, this effect becomes in-
creasingly relevant. The entropy of JT gravity for near-
extremal RN black holes reads [24, 25]

𝑆(𝑇 ) ≈ 𝑆Classical + 𝑆Quantum , (13)

where each term corresponds to

𝑆Classical = 𝐴ext

4𝐺
+ 4𝜋2𝑇

𝑇breakdown
, (14)

𝑆Quantum = log
(︂

𝐴ext

4𝐺

)︂
𝑐log + 3

2 log
(︂

𝑇

𝑇breakdown

)︂
.

While 𝑆Classical comes from classical gravity, 𝑆Quantum
includes quantum corrections arising from all possible
matter fields. In particular for 𝑛𝑆 light scalars, 𝑛𝑉

vectors and 𝑛𝐹 Dirac Fermions, one has [28]: 𝑐log =
(−𝑛𝑆 − 62𝑛𝑉 − 11𝑛𝐹 − 964)/180. Crucially, as opposed
to the first term in 𝑆Quantum, the second —which is
the one arising from JT gravity— is universal and de-
pends on 𝑇 . When the temperature becomes lower than
𝑇breakdown, this log-𝑇 quantum correction dominates over
the classical linear-in-𝑇 contribution. When this oc-
curs, the description of the system in terms of a clas-
sical near-extremal black hole completely breaks down.
This addresses the 1st puzzle and is in agreement with
the expectation derived from the first part of the 2nd
puzzle. Furthermore, at ultra-low temperatures of order
∼ 𝑇breakdowne−𝐴ext/(4𝐺) additional saddle points in the
path integral can compete with the black hole solution,
making the ground state very complicated. Hence, the
gravity description is in fact compatible with a ground
state with a small or no degeneracy at all. Indeed, as op-
posed to the naive classical result which suggested a large
degeneracy of states at low temperatures, Fig. 3 shows
that the density of states actually approaches zero.

VI. SUPERSYMMETRY AND A NEW PUZZLE?

These results pose a new puzzle. This occurs within
string theory —the leading candidate for a theory of
quantum gravity and all the fundamental interactions.
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Figure 3: Density of states for a near-extremal black hole
in JT gravity and in JT supergravity as a function of the
energy.The dashed line represents the classical approximation.

In that context, the semiclassical entropy of certain ex-
tremal black holes has been compared with a direct
counting of their microstates, finding a remarkable agree-
ment [29]. This is considered to be one of the greatest
successes of string theory. But, in view of the above re-
sults, how is it possible that the classical entropy formula
can be trusted for such black holes? Interestingly, a new
key ingredient saves the day: supersymmetry.

Supersymmetry is a (not-found-in-nature-so-far) sym-
metry which transforms bosons into fermions, and vicev-
ersa. The aforementioned extremal string theory black
holes are supersymmetric. Through a similar supersym-
metric version of JT gravity, “JT supergravity”, this gives
rise to new fermionic light modes which modify the above
“bosonic” quantum corrections [30]. As a consequence,

a gap is generated —see Fig. 3— the naive ground state
degeneracy is in fact present (protected by supersymme-
try) and the third law is indeed violated. Hence, extremal
black holes only exist when they are supersymmetric.

VII. CONCLUSIONS

We have explored various aspects of RN black holes.
After determining their thermodynamic properties, we
observed a violation of the third law of thermodynamics
associated to a naive large degeneracy of ground states.
We explained how this puzzle and a related one associ-
ated to the description of ultra-low temperature systems
can be addressed by properly accounting for quantum
corrections. This is achieved by using JT gravity, which
describes fluctuations on the near-horizon geometry of
near-extremal RN black holes. Ultimately, the resolu-
tion implies that classical extremal black holes do not
exist in standard gravity theories and that the naive de-
generacy does not really exist. The story changes in the
presence of supersymmetry. In that case, the degeneracy
does exist and so do extremal black holes.
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