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Abstract: Studying the interaction between K− and protons in the S = −1 sector must be
done considering all possible contributions coming from other channels. In this sense, this work
studies the effects each of these channels have on the K−p correlation function. We also try to
extract information about the contributions of the interaction potential which was obtained from
a Chiral Unitary Approach. Theoretical results will be compared with available data from Alice
Collaboration at CERN.

I. INTRODUCTION

Two particle correlations obtained from heavy ion
collisions was extensively used to study the space-time
structure of the particle emitting source [1, 2]. Neverthe-
less, correlations can also be used to study and extract
information about the interaction between particles [3].

Quantum Chromodynamics (QCD) is the theory that
explains interactions between quarks and gluons, how-
ever, it is not suitable to describe low energy hadron
interactions. For this reason, effective theories that pre-
serve the symmetries from QCD are used to explain low
energy dynamics. The effective theory that explains ap-
propriately the meson-meson and meson-baryon interac-
tions is the SU(3) Chiral Unitary Approach (ChUA) [4–
6], which applies unitarization via coupled channels. In
the context of meson-baryon interaction with strangeness
S = −1 the theory couples the pseudoscalar meson octet
(π, K, η) and the baryon octet (N , Λ, Σ, Ξ) producing,
thus, 10 possible channels: K−p, K̄0n, π0Λ, πΣ, ηΛ,
ηΣ0, K+Ξ−, K0Ξ0.
The effective Lagrangian in ChUA reads

L = Lϕ + LϕB ,

where Lϕ is exclusively mesonic, so it can be omitted.
The second term takes into consideration the meson-
baryon interaction and it will be expanded to next-to-
leading order (NLO) [4],

LϕB = L(1)
ϕB + L(2)

ϕB . (1)

Fig. 1 shows the Feynman diagrams for all the meson-
baryon interactions terms making up the interaction po-
tential. The Weinberg-Tomaza term, VWT , corresponds
to diagram (i), diagrams (ii) and (iii) are, respectively,
direct Born (V DB) and crossed Born (V CB) terms; all
these contributions come from the first order term at Eq.
(1). And, finally, the diagram (iv) is the representation
of the interaction to next to leading order, V NLO.
Thus, the interaction potential up to NLO will be made

up of the following terms:

V = VWT + V DB + V CB + V NLO. (2)

FIG. 1: Feyman diagrams of the interaction terms forming
the interaction potential obtained from ChUA to NLO. (i)
Weinberg-Tomazawa term. (ii) Direct Born. (iii) Crossed
Born term. (iv) NLO term.

The model of Ref. [4] considers only S-wave meson-
baryon interaction, and its parameters are obtained fit-
ting the model to available cross sections of the K−p →
K−p, K̄0n, π0Λ, πΣ, ηΛ, ηΣ0,K+Ξ−,K0Ξ0 reactions. In
the following we will use this model [4] for our calcula-
tions.

II. LIPPMANN-SCHWINGER EQUATION

All the information about a scattering process of parti-
cles is contained in the scattering amplitude or T matrix.
This matrix can be obtained from the interaction poten-
tial solving the Lippmann-Schwinger equation [6, 7]:

Tij(
√
s, k⃗i, k⃗j) = Vij(

√
s, k⃗i, k⃗j) +

∑
k

i

∫
d4qk
(2π)4

Vik(
√
s, k⃗i, qk)Ĝk(

√
s, qk)Tkj(

√
s, qk, k⃗j). (3)

In the expression above, Ĝ is the Green propagator, i is
the index for the initial meson-baryon channel, j is the
index for the final channel, qk is the total four momentum
of the virtual particles, V the interaction potential (Eq.

(2)), k⃗i the relative momentum of the particles in channel
i and

√
s the energy of the system.

Under certain conditions we, considering the on-shell
interaction (q2k = m2

k), can factorize the integral of Eq.
(3) and reduce it to a set of algebraic equations [6]:

Tij(
√
s) = Vij(

√
s) +

∑
k

Vik(
√
s)Gk(

√
s)Tkj(

√
s) . (4)

In matrix form it can be solved as follows

T = V + V GT = (1− V G)−1V , (5)
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where G is the loop function. For meson-barion interac-
tion, G is defined as

Gk(
√
s) = i

∫
d4qk
(2π)4

2Mk

(P − qk)2 −M2
k + iϵ

1

q2k −m2
k + iϵ

,

(6)
with Mk and mk the baryon and meson masses from
channel k and P the total four-momentum of the system
(P = (

√
s, 0) in the center of mass frame). Integrating

over q0k, we arrive to the following equation

Gk(
√
s) =

∫ qmax

0

q2dq

4π2

2Mk

E1kE2k

E1k + E2k

s− (E1k + E2k)2 + iϵ
,

(7)
where E1k and E2k are the energies of the baryon and
meson. The loop integral at Eq. (7) diverges, there-
fore it has to be regularized in some way, typically via
dimensional regularization or cutt off methods. In [8]
there is an analytical expression for the loop function
obtained using a cut off method; we shall call that ex-
pression GCR(

√
s, qmax) (Eq. (A1) in Ref. [8]).

III. CORRELATION FUNCTION TREATMENT

The momentum correlation of two particles is given by
the Koonin-Pratt formula [3, 9]

C(p⃗1, p⃗2) =

∫
d4x1d

4x2S1(x1, p⃗1)S2(x2, p⃗2)
∣∣∣Ψ(−)(r⃗, k⃗)

∣∣∣∫
d4x1d4x2S1(x1, p⃗1)S2(x2, p⃗2)

,

(8)
where Si is the single particle source function, p⃗i the mo-
mentum of the particle i, Ψ(−) the wave function and

r⃗ and k⃗ the relative coordinate and momentum corre-
spondingly. Assuming that the product S1 · S2 is time
independent, depends on r⃗ and has spherical symmetry,
the correlation function can be approximated by [9]

C(k) ≈ 1 +

∫ ∞

0

4πr2drS12(r)
[
|ψ(k, r)|2 − |j0(kr)|2

]
,

(9)
with S12 the normalized pair source function (which
we will be taken in the following form S12(r) =
exp(−r2/4R2

sf )/(2
√
πRsf )

3 [10]), ψ the scattering wave
function and j0 the order 0 spherical Bessel function.
Since we are dealing with contributions coming from dif-
ferent channels, the formula must be modified [3]. Then,
the properly constructed correlation formula is

Ci(k) = 1 +

10∑
j=1

∫ ∞

0

4πr2drSj(r)ωj

×
[
|ψji(k, r)|2 − δji|j0(kr)|2

]
, (10)

where i is the index of the channel considered, j an index
that runs through all the channels and ωj the conversion
weights (they appear in order to properly account the
contribution of each channel).

Regarding the wave function, ψji, it is obtained consid-
ering the relations |ψ⟩ = |ϕ⟩+GV |ψ⟩ and V |ψ⟩ = T |ϕ⟩,
with the asymptotic form ϕl(kr) = jl(kr) for arbitrary
angular momentum [3]:

ψji,l(k, r) = δjijl(kr)+∫ qmax

0

q2dq

4π2

2Mj

E1jE2j

E1j + E2j

s− (E1j + E2j)2 + iϵ
jl(qr)Tji;l(q,

√
s).

(11)

Eq. (11) depends on angular momentum l, but our model
is constructed considering only S-wave interactions, so we
set l = 0. Regarding the T matrix, it has no dependence
on q, then it can be taken out of the integral. Finally,
the expression for the correlation function reads

Ci(k) = 1 +

10∑
j=1

ωj

∫ ∞

0

4πr2drSj(r)

×
[∣∣∣δjij0(kr) + G̃j(

√
s)Tji(

√
s)
∣∣∣2 − δji|j0(kr)|2

]
, (12)

with G̃j defined as

G̃j(
√
s) =∫ qmax

0

q2dq

4π2

2Mj

E1jE2j

E1j + E2j

s− (E1j + E2j)2 + iϵ
j0(qr). (13)

Eq. (13) converges, in contrast to Eq. (7), and both
real and imaginary parts contribute with a finite amount
when ϵ→ 0. Thus, no regularization is needed, but func-
tion below integral has a pole when

q = q0 =

√
(s− (Mj −mj)2) (s− (Mj +mj)2)

2
√
s

, (14)

and it must be treated with some care, what will slow
down the calculations. Obviously, a given channel j can
contribute with a pole if it is open, i.e. if

√
s ≥Mj +mj .

IV. RESULTS AND DISCUSSION

Two different numerical calculations for the cor-
relation function
The pole that appears in the G̃ function, Eq. (13), has

a crucial role in our numerical calculations. Using brute
force method, i.e. directly calculating the integral of Eq.
(13), in order to properly account for the contribution of
this pole, the integral is divided in three intervals. One
interval contains the pole and it should be small enough
in order to accurately capture its contribution.
If we want to speed up the calculations, we introduce

another method. The Eq. (13) shall be replaced by

G̃CR
j (

√
s) = j0(q0r)G

CR
j (

√
s, qmax) +∫ qmax

0

q2dq

4π2

2Mj

E1jE2j

E1j + E2j

s− (E1j + E2j)2

× (j0(qr)− j0(q0r)) , (15)
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FIG. 2: K−p correlations as a function of the center of mass
momenta. The conversion weights have been set to 1 for all
channels. In the same way, source functions radii are all equal
to 1 fm. A upper limit of qmax = 20GeV has been set for the
integrals.

where GCR is the loop function calculated with a cutt off
method mentioned above. What we gain is that the last
term has no pole when q goes to q0.

In Fig. 2, the results of the correlation function for the
K−p pair are shown using G̃CR (solid green line) and G̃
(dashed pink line) as a function of the center of mass
momentum, k. In both cases Gauss quadrature method
was employed for the integrals. Using G̃CR required only
100 points to reach convergence, while 5000 points were
needed in the other case solely to compute the pole con-
tribution and 5000 points more for the interval [q0, inf]
(the interval [0, q0] was calculated using 5000 points too,
but we could have taken 500 points instead).

The difference in the results between both methods
is lower than 1.58% (value extracted by area compari-
son) and it is mainly due to the finite value of ϵ (we set
ϵ = 10−3MeV ). In order to get better results we should
decrease the value of ϵ, but that would require a bigger
number of points to achieve integral convergence and will
consume many computational resources. From now on,
all results presented will be derived from Eq. (15)

Channel and potential effects on the K−p corre-
lation function

Fig. 2 also shows the contribution of each channel
to the K−p correlation function. As can be seen, the
effects of the πΛ channel to the correlations is much
smaller than that of K̄0n and πΣ. The ηΛ, ηΣ0 and
KΞ channels do not contribute, because these are closed
for k ≤ 200MeV . Actually, K̄0n channel does not con-
tribute until k ≥ 58.57MeV and when it opens this gen-
erates a spike in the correlation function.

In Fig. 3 it is shown the contributions of the different
potential terms used to compute the T matrix (see Eq.
(2)). Note that using the WT and NLO interactions is

FIG. 3: Effects of the interaction potential term on the K−p
correlation function. The ωj , Rsf and qmax are the same as
those mentioned in Fig. 2.

enough to reproduce K−p correlations with some accu-
racy; Born terms represent a ∼ 4.16% correction.

Comparison with the ALICE Collaboration data
of the K−p correlation function

The results of the correlations of the K−p channel ex-
perimentally obtained in Ref. [10] are shown in Fig. 4, 5
and 6 along with theoretical predictions. The conversion
weights, ωj , and the source functions radii were also col-
lected from [10] for different centralities. The ωj values
have been obtained through a statistical model that takes
into account the number of particle pairs produced after
the collision. The used radii are visible in the figures too
and following [10], rcore refers to the source function ra-
dius for the K−p channel and rπΣ refers to the channels
containing a π particle: πΣ and πΛ.

Furthermore, in [10], scaling factors, α, were intro-
duced to multiply the conversion weights of the K̄0n and
πΣ channels in order to improve the agreement with ex-
perimental data (see Table I). The scaling factor for the
πΛ is set to 1 due to, again, its insignificant contribution
to the correlations. In Fig. 4, 5 and 6 the scaling factors
corrections are shown through the green solid lines, while
the results without these corrections are shown with red
dashed lines. It can be observed that introduction of α
does improve the agreement with the data for our theo-
retical calculations as well. The model fits better to the
data in the range p = [45, 200]MeV , but below 45MeV ,
the model fails. We think that this deviation is due to
the fact that Coulomb interaction between particles is not
considered, which would lead to stronger correlations at
low momenta [11].

To compare our model to the data more quantitatively
χ2 values are collected in Table I. These values are cal-
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FIG. 4: Correlations of the K−p channel collected from [10]
when colliding p−p particles at

√
s = 13TeV . Solid green and

red lines are, respectively, the theoretical results and those
calculations fixed using the scaling factors from Table I.

Collision απΣ αK̄0n

p-p 0.95286 2.22477

p-Pb 0-20% 1.0134 1.80101

p-Pb 20-40% 1.38952 1.90293

p-Pb 40-100% 1.42108 2.01129

Pb-Pb 60-70% 0.923531 1.46639

Pb-Pb 70-80% 0.886346 2.55656

Pb-Pb 80-90% 1.20194 2.04163

TABLE I: Scaling factors used in [10] to modify the conversion
weights and fit the model to the data. The percentage values
refer to interval centralities.

culated from the equation

χ2 =
1

N

∑
i

(Cdata
i − Cth

i )2

(∆Cdata
i )2

(16)

where Cdata are data, ∆Cdata are the corresponding er-
rors and Cth are our theoretical results (using α); and N
is the number of degrees of freedom, which is equal to the
number of data points in our case (there are no free pa-
rameters in our calculations). Since our model does not
fit the experimental data below 45MeV the χ2 values
were computed for the interval k = [45, 200]MeV .
We can see that the best adjustment is obtained for

p − p and p − Pb 40 − 100% collisions. In general we
obtain quite a fair agreement taking into account these
are pure predictions for the model developed in Ref. [4],
and the Coulomb interaction was ignored. Nevertheless,
in all cases χ2 is far away from unity which means that
there is still place for improvement of the model, refitting
the parameters to the new experimental data.

Collision χ2

p-p 6.47

p-Pb 0-20% 9.74

p-Pb 20-40% 10.83

p-Pb 40-100% 4.11

Pb-Pb 60-70% 15.17

Pb-Pb 70-80% 8.96

Pb-Pb 80-90% 10.05

TABLE II: χ2 values obtained using correlation functions cor-
rected by the scaling factors. The percentage values refer to
interval centralities.

V. CONCLUSIONS

In this work we studied the K−p correlation function
using the ChUA of Ref [4], were the unitarization is im-
plied in coupled channels. The results of our theoreti-
cal calculations have been contrasted to the experimental
data from Ref. [10], and have shown reasonable agree-
ment. It has been shown that K̄0n channel has an impor-
tant role in the correlation function. Besides increasing
the correlations, K̄0n also leads to the appearance of a
spike at its opening threshold.

Interestingly enough, the adjustments made by the in-
troduction of the scaling factors in Ref. [10] improve
agreement of our model to data as well. However, the
model fails to explain the experimental data and differs
significantly for k values lower than 45MeV . This devi-
ation for lower momenta can be explained since we did
not considered Coulomb interaction in all the calculus.

We also studied the partial contributions of the differ-
ent terms forming the interaction potential of Ref. [4],
Eq. (2). The functional form of the K−p correlation
function can be explained almost totally by the WT and
NLO terms. In contrast, the Born terms only represent
a little correction to the values in this case.

In order to calculate the correlation function, first we
needed to calculate G̃ integral with a pole, Eq. (13).
In this work we provide a comparison between two ways
of calculating the correlation function for two different
particles. Using Eq. (13) or Eq. (15) is indifferent, as
both equations yield similar results. The difference be-
tween both expressions arises from the limited number of
points that can be used to perform the integral near the
pole and from the pole to infinity of Eq. (13).
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FIG. 5: Correlations of the K−p channel collected from [10] when colliding p− Pb particles at
√
s = 5.02TeV in the 0− 20%

(left), 20− 40% (middel) and 40− 100% centrality intervals. Solid green and red lines are, respectively, the theoretical results
and those calculations fixed using the scaling factors from Table I.

FIG. 6: Correlations of the K−p channel collected from [10] when colliding Pb−Pb particles at
√
s = 5.02TeV in the 60−70%

(left), 70 − 80% (middel) and 80 − 90% centrality intervals. Solid green and red lines are, respectively, the theoretical results
and those calculations fixed using the scaling factors from Table I.
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