
On the representation of Arctic sea ice in climate models

Author: Daniel Garcia Pinazo∗

Facultat de F́ısica, Universitat de Barcelona, Diagonal 645, 08028 Barcelona, Spain.
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Abstract: The performance of seven models participating in the 6th phase of the Coupled Model
Intercomparison Project (CMIP6) in simulating historical Arctic sea ice concentration is assessed
against observations. Although individually the models are not too accurate, the CMIP6 multi-
model mean adequately replicates the mean annual cycle and the declining sea ice observed trends.
Regional model biases have also been identified in the spatial distribution of sea ice.

I. INTRODUCTION

Sea ice in the Arctic plays a crucial role for the lo-
cal people and the wildlife that depend upon it. Not
only that, but its importance stretches far beyond, to
the point of affecting our entire climate system. Arctic
sea ice regulates Earth’s energy balance, reflecting sun-
light back to outer space thanks to its white surface (high
albedo), and prevents heat exchange between the atmo-
sphere above and the ocean below [1].

The Arctic is a very vulnerable region to global warm-
ing. It warms at a pace more than twice as fast as the
global average, a phenomenon known as Arctic amplifi-
cation. Consequently, rises in surface air temperature in
response to increases in atmospheric greenhouse gas con-
centrations are larger in the poles than in the rest of the
world [2]. Due to the sea ice loss, the Arctic undergoes a
feedback loop that threatens to culminate in an ice-free
Arctic Ocean.

Climate models help us to understand the Earth’s sys-
tem and can be used to estimate the consequences of
further changes in our climate. The combined analysis of
observations and model simulations gives a strong insight
into the past and the future evolution of Arctic sea ice [3].
The Coupled Model Intercomparison Project (CMIP) of
the World Climate Research Programme (WCRP) began
in 1995 and is now in its sixth phase (CMIP6). CMIP
aims to coordinate the global climate modelling commu-
nity and provide a multi-model perspective of the climate
system. In this study, we will evaluate the performance
of seven CMIP6 models in simulating Arctic sea ice dur-
ing the present period by comparing the data from the
historical experiment of the models with observational
data.

Our goal is to estimate how accurate the models are
and identify any shortcomings each model might have.
By comparing the models with observational data, we
can find where they fail to replicate the past sea ice state,
so we can consider the bias to correct the future model
predictions of sea ice evolution.
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II. DATA AND METHODOLOGY

A. Data

The variables considered for the characterization of sea
ice in this study are the sea ice concentration (SIC), the
sea ice extent (SIE), and the sea ice area (SIA). The SIC
(%) is defined as the percentage of a grid cell covered
by ice and has been used for the spatial analysis of the
sea ice. The SIE (km2) is computed as the sum of the
areas of all grid cells with at least 15% SIC [4]. The SIA
(km2) is computed as the sum of the ice concentration
times the area of all grid cells with at least 15% SIC.
According to these definitions, the SIE will always be
larger than the SIA. As a result, the SIE reduces the
uncertainties in SIC and SIA summertime values taken
from satellite sensors, which tend to be underestimated
due to the sensors identifying surface melt as open water
instead of water on top of sea ice [4]. For this reason,
the SIE has been chosen as the variable for the temporal
analysis of sea ice. Finally, the sea ice edge is defined as
having a SIC of 15% and indicates the boundary between
ice and open water.
The observational data is the Hadley Centre Sea Ice

and Sea Surface Temperature data set (HadISST) [5].
The HadISST provides the monthly fields of SIC on a 1°
latitude-longitude grid from 1870 to date. We have also
used monthly SIC from historical runs (1850 to 2014) of
seven models from the Coupled Model Intercomparison
Project phase 6 (CMIP6). From each model, we have
subjectively selected only one ensemble member. The
period considered for both observations and models is
January 1979 to December 2014. The starting date has
been chosen because, from 1979, the observational data
has been obtained by satellites, making it more reliable.
The region we have considered as the Arctic ranges from
60° latitude to 90°.
The climate models used are EC-Earth3 [6], CanESM5

[7], CESM2 [8], IPSL-CM6A-LR [9], MIROC6 [10],
NorESM-LM [11], and UKESM1-0-LL [12]. The mod-
els have been chosen to show a broad spread in sea ice.
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B. Methodology

As each model has a different spatial resolution in a
curvilinear grid, in order to compare the observations
with the models, we have interpolated the model data
sets to the observations grid using the nearest source-to-
destination method from xESMF [13].

The trends have been calculated using a linear regres-
sion. A Mann-Kendall test with the null hypothesis of no-
monotonic trend has been used to evaluate the statistical
significance of the trends. When the null hypothesis is
rejected, we conclude that a significant trend exists. The
multi-model mean (MM) has been computed as an aver-
age of the seven individual models and its uncertainty as
an average of individual standard deviations.

The climatology has been calculated as the mean of
SIC for the 1979-2014 period at the grid point level. Spa-
tial bias has been calculated as model climatology minus
observations climatology. A two-sample t-test with the
null hypothesis of equal means has been used to evalu-
ate the statistical significance of the bias. When the null
hypothesis is rejected, the difference between the model
and the observations climatology is concluded as statisti-
cally significant and not caused by random error. Spatial
standard deviation has been computed using the stan-
dard deviation of the SIC values in every point along the
temporal coordinate. A f-test with the null hypothesis
of equal variances has been used to evaluate the statisti-
cal significance of the spatial standard deviation. When
the null hypothesis is rejected, the difference between the
model variance and the observed variance is concluded to
be statistically significant. All statistical tests have been
carried out at a 95% confidence level.

In order to evaluate a model’s ability to replicate the
observations, the root-mean-square-error (RMSE) and
the spatial correlation coefficient (r) have been calculated
for each model. The RMSE has been calculated by doing
the square root of the spatial average of the square de-
viation of a model’s climatology from the observed one.
The closer the RMSE is to zero, the better the model
replicates the observations. The r between each model
climatology and the observations climatology has been
calculated using the Python function corrcoef() from the
NumPy package. The closer the r is to 1, the better the
model replicates the observations

III. RESULTS

First, we evaluate the state of Arctic sea ice in the ob-
servations from the HadISST data set. In Figure 1a, SIE
trends are negative for all months except for May, when
the trend is positive but very small. Only April, May,
and June show non-significant trends. August, Septem-
ber, October, and November display the highest trends,
with September and October having trends of around
−60 × 103km2yr−1. In Figure 1b, these same months
also present the most marked anomalies, and two differ-

FIG. 1: Monthly Arctic SIE (a) trends and (b) anomalies of
the HadISST data set. Stars in trends mark them as signifi-
cant, using a Mann-Kendall test at a 95% confidence level.

ent trends can be distinguished, one that ranges until
about the year 2001 (period P1, from 1979 to 2001) and
one that goes onward from then and is stronger and neg-
ative (period P2, from 2002 to 2014). Some years in the
last period have remarkably high anomalies. The year
2012 stands out, with September showing an anomaly of
−2.8×106km2. September 2012 remains the lowest min-
imum Arctic sea ice extent registered to date. The years
2007 and 2011 are notable as well. We can also see how
the interannual variability, the change from year to year,
is much higher in summer and early fall than in winter
and spring.
Figure 2 displays the Arctic SIE annual cycle in mod-

els and HadISST. The observations present a very pro-
nounced minimum of 6.5 × 106km2 in September and a
not-so-clear maximum of 13.4 × 106km2 in March. The
amplitude, defined as the difference between the max-
imum and minimum SIE, of the observed annual cycle
is 6.9 × 106km2. The CMIP6 MM is very close to the
observations. It replicates the observed minimum and
the beginning of the growing season (September, Octo-
ber, and November) almost identically, while it underesti-
mates the SIE during the rest of the year. As a result, the
amplitude of the annual cycle is smaller; for example, the
March maximum is slightly shifted down by 0.2×106km2.
However, the underestimation is never drastic, being at
most of 0.5 × 106km2 during July, so the observations
fall within the range of the MM standard deviation for
all months. The MM standard deviation is highest dur-
ing August, September, and October. We can relate this
high values to the two different trends of the periods P1
and P2 in Figure 1.
Individual models spread widely above and under ob-

servations. All models have the maximum in March,
and only EC-Earth3 has the minimum in August instead
of September. MIROC6 yields the smallest amplitude,
5.1× 106km2, but gets the closest to observations in the
minimum of the annual cycle. CanESM5 overestimates
SIE almost all months, but the shape of its annual cycle
is similar to the observations resulting in an amplitude
closest to the observed one, 7.0× 106km2. IPSL-CM6A-
LR and CESM2 simulate the closest SIE to observations
during winter but underestimate it at the minimum by
around 1.6×106km2, the closest simulations to an ice-free
ocean in summer.

Treball de Fi de Grau 2 Barcelona, January 2023



On the representation of Arctic sea ice in climate models Daniel Garcia Pinazo

FIG. 2: Arctic SIE annual cycle of the CMIP6 models and the
HadISST observations. The CMIP6 multi-model mean (MM)
is in black and its one standard deviation uncertainty range
is in grey shading.

Figure 3 shows the annual cycle of monthly trends for
observations and the ensemble of models. The trend
is negative for all months except May; it is highest in
September and is only non-significant in April, May, and
June. The CMIP6 MM has been computed without EC-
Earth3, as it is an outlier for all months. The MM
simulates a higher declining trend than observed for all
months except for February when the trend is slightly
smaller than observed but also the closest. It is furthest
from observations during the melting season, reaching a
maximum difference of about −20 × 103km2, and ap-
proaches the observations again at the September neg-
ative trend maximum. The error bars for the observa-
tions and the MM always overlap and are longest during
summer and fall. Again, this overly large values can be
attributed to the two different trends of the periods P1
and P2 seen in Figure 1.

FIG. 3: Monthly Arctic SIE trends of the CMIP6 models
and HadISST. Non-significant trends, using a Mann-Kendall
test at a 95% confidence level, are represented with an empty
marker. The one standard deviation uncertainty range of
the observations is represented by the blue error bars. The
CMIP6 multi-model mean (MM) is in black, and its one stan-
dard deviation uncertainty range is in black error bars.

The spread of the individual model trends is quite

large, displaying values above and below observations.
EC-Earth3 is the least accurate at simulating the ob-
served SIE trend, with a difference of over −60×103km2

for most months. UKESM1-0-LL also overestimates the
SIE negative trend for all months but does fall within the
error bars during summer. CanESM5 also overestimates
but falls within the error bars for all months. CESM2
is close to observations in January, February, and March
but does not replicate the trend accurately during sum-
mer and fall. MIROC6 performs well overall but simu-
lates too much sea ice during summer. IPSL-CM6A-LR
and NorESM2-LM show similar good results and are the
only models with non-significant trends for some months
during winter, spring, and early summer.
For a complete evaluation of the performance of

CMIP6 models, the temporal analysis is not enough, as
regional biases could be cancelling each other out such
that the simulated SIE resembles the observations de-
spite large regional differences [3]. For this reason, the
spatial distribution of SIC is presented. We chose to an-
alyze the month of September because it is when the SIE
is minimum (Fig. 2) and also when there is the largest
trend and anomalies among all months (Figs. 1 and 3).
Figure 4a displays the SIC climatology of the observa-

tions. We see the SIC is highest (≥ 90%) in the central
region of the Arctic Ocean up to the northern coast of
Greenland and the northernmost islands of the Canadian
Arctic Archipelago. In this region, the sea is almost to-
tally covered by ice. Then, the SIC decreases gradually
in the other directions from the centre. The other panels
in Figure 4 show the bias in each model. The observed
climatology and the model bias are comparable in mag-
nitude, so the same scale has been used for both. All
seven CMIP6 models replicate the SIC distribution with
greater or lesser accuracy (see also Fig. 5 in the Ap-
pendix).
We can distinguish three groups of models according

to the distribution of their September spatial bias in Fig-
ure 4. Firstly, EC-Earth3 and UKESM1-0-LL exhibit a
homogeneously positive bias, meaning that, in some re-
gions, they simulate more sea ice than there is. These two
models simulate larger areas of high (∼ 70%) SIC, and
their sea ice edge happens further from the centre. This
results in two large, shared regions of significant positive
bias (∼ 50%). The first goes through the Fram Strait
and the Greenland, Barents, and Kara seas; the second
is in the East Siberian, Chukchi, and Beaufort seas. As
these outer contours of SIC are where the presence of sea
ice changes the most from year to year, it is also to be
expected that this region will have a higher standard de-
viation (see also Fig. 6 in the Appendix). This seems to
indicate a relationship exists between high bias and high
standard deviation.
CESM2 and IPSL-CM6A form the second group, char-

acterized instead by a negative bias in most of the Arc-
tic region. IPSL-CM6A simulates a high (∼ −70%)
deficit of SIC between the Kara and Laptev seas that de-
creases gradually towards the Arctic Ocean and the East
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FIG. 4: (a) Arctic September SIC climatology of HadISST. The lime contour represents the sea ice edge, defined as having a
SIC of 15%, and indicating the boundary between open water and ice. (b)-(h) Arctic September SIC bias of the CMIP6 models.
Black contours represent the total bias, and only statistically significant differences, using a t-test test at a 95% confidence
level, are shaded. The RMSE and r values for individual models against observations are included in the upper-left corner of
each panel.

Siberian Sea. This bias occurs because the sea ice edge
of this model encircles the smallest area out of the seven
models. As a result, there is a high (∼ −60%) negative
bias just outside the sea ice edge, where the observations
exhibit SIC. CESM2 presents a high (∼ −60%) negative
bias in the same region as IPSL-CM6A but also underes-
timates (∼ −30%) the SIC in the Arctic Ocean and the
northern coasts of Alaska, Canada, and Greenland. This
last bias appears because CESM2 simulates lower SIC
than 90% in the region of maximum (≥ 90%) observed
SIC, unlike the rest of the models.

Finally, CanESM5, NorESM2-LM, and MIROC6 dis-
play a heterogeneous bias, positive in some regions and
negative in others. CanESM5 yields a similar bias distri-
bution to EC-Earth3 and UKESM1-0-LL, as seen in the
positive bias (∼ 50%) in the Fram Strait and the Green-
land, Barents, and Kara seas. However, the extension
of the region totally covered by sea ice is smaller and
mostly limited to the Arctic Ocean north of the coasts
of Greenland and the Canadian Arctic Archipelago, and
a low negative bias (∼ −10%) appears in the other half
of the Arctic Ocean. NorESM2-LM and MIROC6 pos-
itive and negative biases are even more alternately dis-
tributed. NorESM2-LM high (≥ 90%) SIC region is also
confined to the coasts of Greenland and the Canadian
Arctic Archipelago, again causing a negative bias to ap-
pear in the Arctic Ocean. MIROC6 has the high SIC
region shifted in the direction of the Beaufort Sea, caus-
ing a negative bias to appear where the sea should be
covered by ice, according to the observations. However,
these biases are never too high (∼ ±20%). Some biases

are shared by all seven models, a positive bias in the Baf-
fin Bay and a negative bias between the Kara and Laptev
seas, both regions with a high density of islands.
The RMSE and the r values depicted also give an idea

of what models are best at replicating the spatial distri-
bution of SIC of the observations. In the models with a
homogeneously negative bias, the bias is high and covers
a large region. Because of this, these models have the
RMSE value furthest from zero (0.26) and the r value
furthest from 1 (0.87 and 0.93). In the models with a
homogeneously positive bias, the bias is also high but
mostly limited to the contours of the sea ice edge, result-
ing in better values of RMSE (0.17 and 0.14) and r (0.94
and 0.95). The models with heterogeneous bias do not
have their significant bias restricted to the sea ice edge,
but their bias is generally lower. The resulting RMSE
values are the closest to zero (0.11 and 0.10), and the r
values are the closest to 1 (0.96 and 0.97).

IV. CONCLUSIONS

The goal of this study is to evaluate the performance of
seven CMIP6 models in simulating sea ice in the Arctic
during the period 1979-2014. The initial analysis of the
HadISST observational data has corroborated the Arctic
sea ice loss, in the shape of high declining trends and neg-
ative anomalies of SIE, especially pronounced in recent
years.
One of the limitations of this study is that we have only
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used one ensemble member for each model. Even then,
and although individually the models are not completely
accurate, the resulting CMIP6 MM replicates the obser-
vations to a remarkable extent. The MM agrees with the
observations regarding the strong declining trend of SIE,
especially high during summer and September, when SIE
is minimum.

From the spatial analysis of the climatology of the
CMIP6 models, we have identified several problematic
regions for each model and we have grouped the models
according to these regions: first models with a homoge-
neous positive bias (EC-Earth3 and UKESM1-0-LL), sec-
ond models with a homogeneous negative bias (CESM2
and IPSL-CM6A), and finally, models with a heteroge-
neous bias (CanESM5, NorESM2-LM, and MIROC6). A
more thorough analysis of each model would have to be
conducted to ascertain what causes the different biases
of SIC in each case.

We have identified a relation between bias and stan-
dard deviation. The region with the highest standard
deviation is usually the sea ice edge and its surround-
ings, as this exterior contour is what changes the most
between years. Here is where we usually find a higher
bias, suggesting that models may have difficulties in sim-
ulating the high interannual variability of the sea ice. The
models also seem to present difficulties in regions where

the percentage of land in the grid is high, such as coastal
regions and archipelagos.
The RMSE and r values are computed as indicators for

comparing the models’ accuracies in replicating the spa-
tial distribution of SIC. According to these parameters,
MIROC6 and NorESM5 appear to be the best models.
Our study highlights that not a single model has a gen-

erally good performance; instead, each has its strengths
and weaknesses. Therefore, we can conclude that there
is no better model and that only by considering them
together we can recreate reality with enough accuracy to
reach solid conclusions. A further study could consist
of evaluating whether adding more members to a model
would or would not improve its results, in order to see
how representative of an individual model performance
our results are, and to see if the CMIP6 MM would im-
prove.
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V. APPENDIX

FIG. 5: Arctic September SIC climatology of the (a) HadISST observations and the (b) CMIP6 models. The lime contour
indicates the sea ice edge.

FIG. 6: Arctic September SIC standard deviation of the (a) HadISST observations and the (b) CMIP6 models. Black contours
represent the total standard deviation, and only statistically significant standard deviation, using an f-test test at a 95%
confidence level, is shaded.
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