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Abstract

This thesis explores various characterizations of regular and star-free languages and in-
troduces a novel syntactic fragment of Linear Temporal Logic (LTL), called Strictly Pos-
itive Linear Temporal Logic (SPLTL), inspired by the Reflection Calculus. The opening
chapter provides a comprehensive survey of regular languages, characterized by regular
expressions, regular grammars, finite automata, and Monadic Second-Order logic over
words. We conclude the exposition with a detailed proof of Büchi’s Theorem, which
bridges automata and logic. The discussion then shifts to star-free languages, emphasiz-
ing their representation using LTL. An exhaustive proof of the Completeness Theorem
for LTL is also provided.

The principal contribution of this thesis is the definition and analysis of SPLTL, which
aims to achieve improved complexity compared to LTL. We establish several foundational
results for SPLTL and show its soundness concerning the standard semantic framework
of LTL. However, proving the completeness of SPLTL presents difficulties, primarily due
to the absence of the disjunction operator in the SPLTL formalization.

Despite these challenges, we think that this thesis introduces valuable insights and
results that lay the groundwork for future research. It paves the way for a more in-depth
investigation into the completeness of SPLTL and its potential applications.
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Introduction

If asked about the most significant evolutionary advancement that distinguishes humans
from other species, we would likely point to language. While some might suggest opposable
thumbs, it is clear that, despite we would need to redesign scissors and gloves, we could
more easily manage without them than without language. In this sense, language is not
merely an adaptive trait that increases our chances of survival. It is a tool that reflects and
enhances our cognitive abilities, such as abstract thinking, problem-solving, and future
planning, in addition to serving as a vehicle for thoughts and cultural expression.

Driven by our inherent quest for progress, human beings have achieved remarkable
sophistication in our use of languages across their many facets. Since exploring every
aspect and refinement would be an endless pursuit, this thesis will focus on providing
a glimpse into the realm of formal languages. Interestingly, just as natural language
facilitates human communication, formal languages enable interactions with machines. In
this sense, although our discussion will be restricted to theoretical aspects, it is important
to note that the impact of formal languages is extensive and profound within Computer
Science, particularly in Theory of Computation and Formal Verification.

This thesis offers a brief survey of the fascinating world of formal languages and logic:
we begin by examining regular languages, a fundamental concept in Automata Theory.
This class of languages is characterized by various representations, including regular ex-
pressions, regular grammars, finite automata, and Monadic Second-Order (MSO) logic
over words. Special attention will be given to Büchi’s Theorem, Theorem 1.4.1, which
connects the perspectives of finite automata and MSO logic over words.

In the second chapter, we consider star-free languages, a subclass of regular languages.
After a concise review of various representations for star-free languages, analogous to
our treatment of regular languages, we focus on their characterization through Linear
Temporal Logic (LTL). Given the importance of this logic, we will delve into it in detail,
culminating with a comprehensive proof of the Completeness Theorem of LTL, Theorem
2.2.24, concerning the axiomatization given in Definition 2.2.6.

As an initial contribution made by this thesis, the first two chapters provide an ex-
tensive overview of formal languages in logic and theoretical computer science, shedding
light on often underexplored areas in the literature. The main concepts presented are
summarized in the following table:

Languages Regular (1.1.1) Star-free (2.1.1)

Expressions Regular (1.1.4) Star-free (2.1.2)

Grammars Regular (1.1.8) (see 2.1, Page 35)

Automata NFA (1.2.1), DFA (1.2.7) Counter-free (2.1.4)

Predicate logics MSO (1.3.4, 1.3.6) MFO (see 2.1, Page 35)

Validities on words MSO,MSOăω, MSOω (1.3.18) (see 2.1, Page 35)

Modal logics ETL, RLTL (see 2.2.4) LTL (2.2.1, 2.2.2)

Table 1: Main characterizations of regular and star-free languages studied in the thesis.
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It is noteworthy that the elements in the right column are subclasses or fragments of
their corresponding components in the left column. Moreover, all concepts listed in the
left column equivalently characterize regular languages, while those in the right column
do the same for star-free languages. The equivalence between the rows for automata and
predicate logics in the left column is given by Büchi’s Theorem. Conversely, the equiva-
lence between the rows for predicate and modal logics in the right column is established
by Kamp’s Theorem, Theorem 2.2.5.

Finally, the third chapter introduces a syntactic fragment of LTL, which we have
termed Strictly Positive Linear Temporal Logic (SPLTL). This new fragment is inspired
by the theory of strictly positive fragments of modal logics and the Reflection Calculus,
seeking to potentially achieve a better complexity compared to LTL. We derive several
results for SPLTL, focusing on its soundness with respect to the standard semantic relation
for LTL. Furthermore, our research initiates an exploration into proving the completeness
of SPLTL.

Besides the comprehensive overview already mentioned, the contributions of this thesis
primarily focus on the third chapter and the study of the new system SPLTL. However,
the first two chapters also present valuable and detailed proofs usually overlooked in the
existing literature. Although not being central to this thesis, the appendix also offers
original results that contribute perspective on the topic.
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Chapter 1

A Matter of Languages

In this chapter, we define the notions of languages and regular languages and explore
diverse characterizations of regular languages. These characterizations will lead us to a
variety of logical and computational objects, including regular expressions, context-free
grammars, finite automata, and Monadic Second-Order logic over word models. We will
conclude this chapter with an in-depth proof of Büchi’s Theorem, which establishes the
correlation between the automata and logic characterizations of regular languages.

We define a finite alphabet Σ as a finite set of symbols, which we call letters. A finite
word over Σ will be a finite string of letters w “ a0a1 . . . an´1, where ai P Σ for every
i ă n, and we say that |w| :“ n —using the same notation as cardinality— is the length
of w. The empty word is usually denoted by ϵ. We will also say that an infinite word over
Σ is an infinite sequence w “ a0a1 . . . an . . . , with ai P Σ for every i P N. Infinite words
have length ω.

We denote by Σ˚ —the Kleene star of Σ— the set of all finite words over the alphabet
Σ; and Σω will be the set of all infinite words over Σ. A language is a set of finite or
infinite words, that is, a subset of either Σ˚ or Σω. We do not usually mix finite and
infinite words in our languages. Languages of infinite words are also called ω-languages.
When we state L Ď Σ˚ Y Σω, we mean that L may be a language of finite words or an
ω-language without distinction.

1.1 Regular Languages and First Characterizations

We will mainly focus on a particular class of languages, the so-called regular languages. Es-
sentially, regular languages are the ones closed under the three following basic operations
on languages of finite words:

§ For L and M two languages, we denote their union by

LYM :“ tw : w P L or w PMu.

For instance, if L “ t1, 2u and M “ tϵ, 1, 3u, then LYM “ tϵ, 1, 2, 3u.

§ The concatenation of two languages L and M of finite words, notated by L ‚M or
simply LM , is the language

L ‚M :“ tvw : v P L and w PMu.
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The word vw is the result of concatenating the strings given by v and w. For
example, if L “ t1, 2u and M “ tϵ, 1, 33u, then L ‚M “ t1, 2, 11, 21, 133, 233u (the
first two words are the words in L concatenated with ϵ).

§ The Kleene star of a language of finite words L is represented by L˚ and is the
infinite union

L˚ :“
ď

iě0

Li;

where L0 “ tϵu and Li “ Li´1 ‚L for i ě 1. That is, L˚ is the language whose words
can be formed by a concatenation of any number of words of L. For example, the
Kleene star of the language L “ t1, 2u is the set of all possible finite strings of 1s
and 2s, including the empty string.

With these operations in mind, we can define the collection of regular languages:

Definition 1.1.1. Given a finite alphabet Σ, we inductively define regular languages
by:

§ the empty language ∅ is regular;

§ the language tau is regular, for every a P Σ;

§ if L and M are regular languages, then the language L YM , the language L ‚ M ,
and L˚ are also regular;

§ no other language over Σ is regular.

Observation 1.1.2. Immediately from the definition, the language ∅˚ “ tϵu is regular.

Before introducing formalizations to express, generate, recognize and define regular
languages, it is important to note that not all languages are regular. A typical example
of a non-regular language, often found in textbooks such as [HMU06; Sip13; Sud05], is
tanbn : n ě 0u, over the alphabet ta, bu. To prove its non-regularity, we might apply
the Pumping Lemma, which we will state but omit the proof of, as it requires one of the
characterizations we will introduce later on.

Lemma 1.1.3 (Pumping Lemma). If L is a regular language, then there is some constant
c ě 1 such that every word w P L with |w| ě c can be divided into three sub-words w “ xyz
satisfying:

§ |xy| ď c;

§ |y| ě 1;

§ xynz P L for every n ě 0.
▲

Now we can prove that L “ tanbn : n ě 0u is not regular by reductio ad absurdum. If
we assume L to be a regular language, then the premise of the Pumping Lemma holds, so
we will have some constant c ě 1 satisfying the requirements of the lemma. In particular,
we can consider the word acbc P L, which has length 2c ą c. We would have acbc “ xyz for
some sub-words x, y and z verifying |xy| ď c, where |y| ě 1, and xynz P L for every n ě 0.
However, since |xy| ď c, the sub-word y must be of the form y “ a . . . a, with |y| ě 1.
Therefore, for any n ą 1 we have that xynz contains a different number of letters a and
b, specifically, xynz “ ac`pn´1q¨|y|bc, which does not belong to L because pn´ 1q ¨ |y| ą 0.
This contradiction ensures that L is not a regular language, as we claimed.
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1.1.1 Regular Expressions

We can identify regular languages using regular expressions, which are defined as follows:

Definition 1.1.4. Given a finite alphabet Σ, we inductively define regular expressions
by:

§ the constant ∅;

§ the constant ϵ;

§ the constant a, for each a P Σ;

If R and S are regular expressions, then

§ pR|Sq, pRSq and pR˚q are regular expressions.

It is straightforward to find the characterization of regular languages: the constants ∅,
ϵ and a express the empty language, the language tϵu, and the language tau, respectively.
If R and S are regular expressions that represent the regular languages L and M , respec-
tively, then pR|Sq denotes the language LYM , the notation pRSq expresses the language
L ‚M , and pR˚q represents the language L˚. Thus, every regular expression corresponds
to a regular language, and we also have that every regular language can be represented
by at least one regular expression.

To avoid some unnecessary parentheses in our regular expressions, the Kleene star
operation (R˚) is considered to have the highest priority followed by the concatenation
(RS), and then the union (R|S). We also omit the outermost parentheses. Additionally,
it is common to define other symbols, such as R` :“ RR˚, and R? :“ R|ϵ, for R a regular
expression.

Example 1.1.5. We give some regular expressions together with the regular lan-
guages they represent, for the finite alphabet Σ “ t0, 1u:

0|1˚ represents the language t0, ϵ, 1, 11, 111, 1111, . . . u;
0`1? denotes t0, 01, 00, 001, 000, 0001, . . . u;
p01q˚ represents tϵ, 01, 0101, 010101, . . . u;
0˚10˚ characterizes tw P Σ˚ : w contains one single 1u;

Σ “ 0|1 will represent t0, 1u;
Σ1Σ represents t010, 011, 110, 111u;
Σ˚1Σ˚ denotes tw P Σ˚ : w contains at least one 1u.

For more details and some applications of regular expressions in the Theory of Com-
putation, we refer to [HMU06; Sip13].

1.1.2 Regular Grammars

Now we will use context-free grammars to generate languages, and we will introduce
regular grammars, which will give us another characterization of regular languages.

Definition 1.1.6. A context-free grammar is a quadruple G “ pV,Σ, P, Sq where V
is a finite set of variables (which will be denoted by capital letters) assumed to be disjoint
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from the finite alphabet Σ; we call S P V the start symbol, and P is a finite set of rules.
A rule is an element of V ˆ pV Y Σq˚. The rule pA,wq is usually denoted by AÑ w. A
rule of the form AÑ λ, with λ “ ϵ P pV Y Σq˚, is called a lambda rule.

Intuitively, grammars provide rules that, starting from a given symbol, allow us to
construct words, and thus languages, by iteratively applying those rules. Specifically, for
a grammar G “ pV,Σ, P, Sq, the process of generating words from G involves transforming
the initial variable S by applying some rules in P repeatedly, until we have no more
variables in the resulting string, that is, until we get a word over Σ. We apply a rule
AÑ w to the variable occurrence A in the string uAv to produce the string uwv, and we
denote this procedure by uAv ñ uwv. The prefix u and suffix v are called the context
in which the variable A occurs. The concept of context-free in grammar refers to the
fact that context does not restrict the applicability of a rule. Now, we provide a formal
definition of how grammars generate languages:

Definition 1.1.7. In a given context-free grammar G “ pV,Σ, P, Sq, a string w P pΣYV q˚
is generated from v P pΣ Y V q˚ if we can transform v into w with a finite number of
applications of rules of P , that is, if we have, for wi P pΣY V q˚ and i ď n ă ω:

v ñ w1 ñ w2 ñ ¨ ¨ ¨ ñ wn “ w.

If this is the case, we denote it by v ˚
ñG w.

The language generated by a context-free grammar G “ pV,Σ, P, Sq, denoted by LpGq,
is given by LpGq :“ tw P Σ˚ : S ˚

ñG wu.

As we mentioned, we are interested in a particular subclass of grammars, the regular
grammars, which will provide us with a characterization of regular languages:

Definition 1.1.8. A regular grammar is a context-free grammar G “ pV,Σ, P, Sq such
that each rule in P is of one of the following forms, for A,B P V and a P Σ:

§ AÑ a;

§ AÑ aB;

§ AÑ λ.

Example 1.1.9. Let G “ pV, ta, bu, P, Sq be a context-free grammar where V “

tS,Au and P is the set of the rules:

S Ñ aA;

S Ñ λ;

AÑ bS.

We clearly have that G is a regular grammar, and we see that:
§ ϵ P LpGq, since S ñ λ;

§ ab P LpGq, because S ñ aAñ abS ñ ab;

§ abab P LpGq, considering that S ˚
ñG abS

˚
ñG abab.

Although we will not give a detailed proof, we claim that we can represent the
language LpGq with the regular expression pabq˚.
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Notice that we could have built the same (regular) language by using a
non-regular grammar, for instance, G1 “ ptSu, ta, bu, P 1, Sq with P 1 being the set
of rules:

S Ñ abS;

S Ñ λ.

For proof of the characterization of regular languages by means of regular grammars,
and for more examples of grammars, we refer to [Sud05]. In this thesis, however, we will
focus on the equivalent representations using finite automata and the logic introduced
below.

1.2 Finite Automata

If we have stated that regular expressions represent regular languages, and regular gram-
mars generate them, then we would assert that finite automata allow us to computation-
ally accept or recognize these languages, as demonstrated below. As a note, while we
have thus far treated only finite words, we will now start to differentiate between finite
and infinite words, with minor distinctions in our definitions.

Definition 1.2.1. A nondeterministic finite automaton (NFA) A is a tuple A “

pQ,Σ, δ,Q0, F q where:

§ Q is a finite set of states,

§ Σ is a finite alphabet,

§ δ Ď Qˆ ΣˆQ is a transition relation,

§ Q0 Ď Q is a set of initial states, and

§ F Ď Q is a set of final (or accepting) states.

The core concept of automata lies in their capability to compute what we refer to as
runs and successful runs. These runs enable automata, when given a word as input, to
determine whether to accept it or not. In extension, automata can recognize languages.
As a convention, when we restrict inputs to finite words, we simply refer to the automaton
in question as an NFA, and we denote the automaton as Büchi automaton when it receives
infinite words as input. The primary difference between NFAs and Büchi automata will
be the acceptance or success condition:

Definition 1.2.2. Consider a finite (infinite) word w “ a0a1a2 ¨ ¨ ¨ P Σ
˚YΣω over a finite

alphabet Σ, and A “ pQ,Σ, δ,Q0, F q an NFA (Büchi automaton). We define a path, or
computation, of A on w as a finite (infinite) sequence xq0, q1, q2, . . . y of states of A such
that pqi, ai, qi`1q P δ for every value of i. If q0 P Q0 we call that path a run. A run is
considered successful if it is either finite —and so w, for A an NFA— and its last state
q|w| belongs to F , or the run is infinite —and so w, for A a Büchi automaton— and
infinitely many of its states belong to F .

Once we have defined our successful runs, automata are able to accept words and,
therefore, recognize languages:
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Definition 1.2.3. A finite (infinite) word w is accepted by an NFA (Büchi automaton)
A if there is a successful run of A on w. A language of finite words is recognizable
by an NFA A, and we denote it by LpAq, if it is the set of finite words accepted by A.
Analogously, we represent by LωpAq the ω-language recognized by a Büchi automaton A.

The following proposition gives us a characterization of regular languages through finite
automata, as we wanted. We will omit the proof, but readers interested in a comprehensive
proof can refer to Section 3.2 of [HMU06], as well as the original presentation by Kleene
in [Kle56].

Proposition 1.2.4. Every language of the form LpAq, for A some NFA, is a regular
language. Moreover, every regular language is of the form LpAq, for some NFA A.

▲

Remark. Some authors, such as [HMU06; Sip13], introduce finite automata before defin-
ing regular languages, using the characterization provided in the previous proposition as
the definition of regular languages.

Although we will focus on regular languages and NFAs, it is worth mentioning that
Proposition 1.2.4 has an analogous result, given in [Büc66], referring to Büchi automata
and the so-called ω-regular languages, which only contain infinite words:

Definition 1.2.5. We inductively define ω-regular languages by:

§ Base case: for L a regular language such that ϵ R L, the ω-power

Lω :“ tw1w2w3 ¨ ¨ ¨ : wi P L, for every i P Nu,

is an ω-regular language;

§ Inductive cases: if L and M are ω-regular languages and R is a regular language,
then LYM and R ‚ L are ω-regular languages.

Example 1.2.6. We consider the finite automaton A “ pQ,Σ, δ,Q0, F q with:
§ Q “ tq0, q1u;

§ Σ “ ta, bu;

§ δ “ tpq0, a, q1q, pq1, b, q0qu;

§ Q0 “ F “ tq0u.
The standard graphical representation for finite automata is to express states as
circles and connect them with arrows labeled with a letter of the alphabet. These
arrows symbolize transitions, indicating that the triple of the state where the arrow
starts, the letter that labels the arrow, and the state where the arrow points, belongs
to the transition relation of the automata in question. Also, we will label an arrow
with a set of letters to simplify that we would have an arrow —a transition—
for each letter of the set. Initial states are represented by an incoming arrow not
originating from any state, while final states are marked with a double circle. Then,
a graphical representation of the previous automaton A would be:
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q0 q1

a

b

From our definitions of δ, Q0 and F , we easily deduce that the (only) successful
runs of A are

xq0y, xq0, q1, q0y, xq0, q1, q0, q1, q0y, xq0, q1, q0, q1, q0, q1, q0y, . . .

Then, the words accepted by A are the words of the form

ϵ, ab, abab, ababab, . . .

We observe that the language recognizable by A could be represented by the regular
expression pabq˚, so LpAq is a regular language, as expected.

1.2.1 Some Properties of Finite Automata

As we have seen, languages can be recognized by nondeterministic finite automata. Ob-
serve that, in the absence of nondeterminism, constructing a successful run would be
merely a matter of computation. This is why, in practice, it will sometimes be preferable
to work with so-called (total) deterministic finite automata (DFA), defined below, instead
of NFA. Fortunately, Proposition 1.2.13 will allow us to speak almost indistinctly of DFAs
and NFAs, by establishing an equivalence between their recognizable languages.

Notation. To improve readability and clarity, we will define, for a transition relation
δ Ď Qˆ ΣˆQ, with Q1 Y tqu Ď Q a set of states, and a letter a P Σ:

δrq, as :“ tp P Q : pq, a, pq P δu;

δrQ1, as :“
ď

q1PQ1

δrq1, as.

Definition 1.2.7. Let A “ pQ,Σ, δ,Q0, F q be an NFA. This automaton is called a de-
terministic finite automaton (DFA) if |Q0| ď 1 and |δrq, as| ď 1 for every q P Q and
every a P Σ. If we have |Q0| “ 1 and |δrq, as| “ 1 for every q P Q and every a P Σ, we
say that the DFA is total.
Observation 1.2.8. If |Q0| “ 0, then the recognizable language of the automaton is
empty, so we usually skip this case. Additionally, in the case of total DFAs, note that we
could consider the transition relation δ as a function of the form δ : Q ˆ Σ Ñ Q, rather
than just a relation.

By definition, every total DFA is a DFA, so, trivially, for every total DFA there exists
a DFA —itself— such that they both recognize the same language. We can prove that
the converse is also true:

Lemma 1.2.9. For every DFA A, there is a total DFA At such that LpAq “ LpAtq.

Proof. Let A “ pQ,Σ, δ, tq0u, F q be a DFA. We will pick a fresh state qt R Q, and
define the following total DFA At :“ pQYtq

tu,Σ, δt, tq0u, F q, where δt is given, for every
q, q1 P QY tqtu and every a P Σ, by:
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pq, a, q1q P δt :ðñ

$

&

%

porq
pq, a, q1q P δ;
|δrq, as| “ 0 and q1 “ qt;
q “ q1 “ qt.

That is, we extend δ by adding transitions in such a way that for every q P Q and every
a P Σ we achieve |δtrq, as| “ 1, where these new transitions will go to the new state qt.
We also add transitions from qt to qt to ensure that |δtrqt, as| “ 1 for every a P Σ. Then,
we observe that At is a total DFA, and we can easily prove that we have LpAtq “ LpAq:

Suppose that there is a successful run of A on a finite word w, meaning w P LpAq.
Since δ Ď δt, the same run will also be successful for At on w. Therefore, we conclude
LpAq Ď LpAtq.

On the other hand, if xq0, . . . , qny is a successful run of At on w “ a0 . . . an´1, we can
check that, again, the same run will be a successful run of A on w. Suppose that the
sequence is not a successful run of A on w: since A and At have the same initial and
accepting states, our supposition implies that there is some i ă n such that pqi, ai, qi`1q P
δt but pqi, ai, qi`1q R δ. Note that, by the definition of δt, we necessarily have qi`1 “ qt.
If i ` 1 “ n we get a contradiction because qt R F and we assumed xq0, . . . , qny to be a
successful run of At on w. And if i ` 1 ă n we know we will have pqt, ai`1, qi`2q P δt,
but this, again, is only possible if qi`2 “ qt. Then, inductively, we deduce qn “ qt, which
gives us the same contradiction as before. This proves, by reductio ad absurdum, that
xq0, . . . , qny is a successful run of A on w, and so we get the other inclusion needed to
conclude LpAtq “ LpAq. ▲

Observation 1.2.10. The idea behind the construction of At, in the previous proof, is
that since qt is not a final state and there are no outgoing transitions from it —all of its
transitions loop back to itself—, once we transition to qt we inevitably enter a loop with
no option to accept the word in question. Then, our additions to A to transform it into
the total DFA At do not cause it to accept any word not previously recognized by A.

Analogously, we know that every (total) DFA is an NFA, so for every (total) DFA
there is an NFA such that both automata recognize the same language. The converse will
also be true, as we prove in Proposition 1.2.13. However, before that it will be useful to
characterize recognizable languages by extending the transition relations from just letters
to finite words, as is done similarly in 2.2 and 2.3 of [HMU06]:

Definition 1.2.11. Given an NFA A “ pQ,Σ, δ,Q0, F q, we inductively define the relation
δ˚ Ď Qˆ Σ˚ ˆQ by:

§ pq, ϵ, qq P δ˚, for each q P Q;

§ for q, q1 P Q and aj P Σ for every j ă ω,

pq, a0a1 . . . aiai`1, q
1q P δ˚ :ðñ there is q2 P Q such that

pq, a0a1 . . . ai, q
2q P δ˚ and pq2, ai`1, q1q P δ.

We also use the notations, for Q1 Y tqu Ď Q and w P Σ˚:

δ˚rq, ws :“ tp P Q : pq, w, pq P δ˚u;

δ˚rQ1, ws :“
ď

q1PQ1

δ˚rq1, ws.
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Lemma 1.2.12. Given an NFA A “ pQ,Σ, δ,Q0, F q, we have:

LpAq “ tw P Σ˚ : pq0, w, qf q P δ˚ for some q0 P Q0 and some qf P F u “
“ tw P Σ˚ : δ˚rQ0, ws X F ‰ ∅u.

Proof. Immediate from breaking down the definition of δ˚ since, for q0 P Q0 and qn P F ,
with w “ a0 . . . an P Σ

˚, the following expressions are equivalent:

§ pq0, w, qnq P δ
˚;

§ pq0, a0 . . . an´1, qn´1q P δ
˚ and pqn´1, an, qnq P δ, for some qn´1 P Q;

§ pq0, a0 . . . an´2, qn´2q P δ
˚ and pqn´2, an´1, qn´1q, pqn´1, an, qnq P δ, for some qn´2 P Q;

§ . . .

Then, inductively, we see that we will have pq0, w, qnq P δ˚ if and only if there are some
q0, q1, . . . qn´1, qn P Q such that pqi, ai, qi`1q P δ, for i ă n. And this, considering that
q0 P Q0 and qn P F , is clearly equivalent to the existence of a successful run of A on w.

For the case of the empty word, we have pq0, ϵ, qf q P δ˚ exclusively if q0 “ qf . Therefore,
if we require q0 P Q0 and qf P F , we need the existence of some state pq0 “ qf “qqϵ P
Q0XF . On the other hand, there is a successful run of A on ϵ if and only if we can start a
run already in a final state, that is, if there is some state qϵ P Q such that qϵ P Q0XF . ▲

Now we are able to prove the following proposition, which ensures that NFA and DFA
are equally expressive. This will mean that we can work with one formalization or the
other indistinctly.

Proposition 1.2.13. For every NFA AN , there is a DFA AD such that LpAN q “ LpADq.

Proof. We use the so-called subset construction or powerset construction. Let AN “

pQ,Σ, δ,Q0, F q be an NFA. We will consider the following DFA:

AD “ pPpQq,Σ, δD, tQ0u, FDq,

where, for Q1, Q2 P PpQq and a P Σ:

pQ1, a,Q2q P δD :ðñ Q2 “ δrQ1, as,

and we take
FD :“ tQ1 Ď Q : Q1 X F ‰ ∅u.

It is clear that AD is (an NFA and) a DFA, in fact, it is a total DFA, since |tQ0u| “ 1
and we have, for every Q1 P PpQq and every a P Σ:

|δDrQ
1, as| “ |tQ2 P PpQq : pQ1, a,Q2q P δDu| “ |tδrQ1, asu| “ 1.

We want to prove LpAN q “ LpADq. Thanks to Lemma 1.2.12, for w P Σ˚ any finite
word we have:

w P LpAN q ðñ δ˚rQ0, ws X F ‰ ∅;

w P LpADq ðñ δ˚DrQ0, ws X FD ‰ ∅.

11



Then, it will be enough to prove the double implication:

δ˚rQ0, ws X F ‰ ∅ðñ δ˚DrQ0, ws X FD ‰ ∅.

We will show something slightly stronger:

tδ˚rQ0, wsu “ δ˚DrQ0, ws. (∗)

First, we observe that both sides of (∗) are a singleton whose element is a subset of Q:
on the left side we have the singleton of δ˚rQ0, ws Ď Q, while on the right side, we have
set of states or elements of PpQq. Since AD is a total DFA, we deduce that δ˚DrQ0, ws is
indeed a singleton. Now we prove the equality (∗) by induction on n “ |w|:

For the base case w “ ϵ, we have δ˚DrQ0, ϵs “ tQ0u “ tδ˚rQ0, ϵsu, since for every
q0 P Q0 we have δ˚rq0, ϵs “ tq0u, so δ˚rQ0, ϵs “ Q0.

For the inductive case, we consider the finite words w “ a0a1 . . . an´1an, and w1 “
a0a1 . . . an´1; by our Induction Hypothesis, we can assume we have, for some ri P Q with
i ď k

δ˚DrQ0, w
1s “ tδ˚rQ0, w

1su “ ttr0, . . . , rkuu,

and we need to show
δ˚DrQ0, ws “ tδ

˚rQ0, wsu.

From the definition of δ˚ and our assumption, we have that pq0, w1, riq P δ˚ for i ď k, and
that no other state r ‰ ri, for all i ď k, verifies pq0, w1, rq P δ˚. Then, we can conclude
the equality

δ˚rQ0, ws “
ď

q0PQ0

δ˚rq0, ws “
ď

iďk

δrri, ans

And, similarly, we also have:

δ˚DrQ0, ws “ tδDrtr0, . . . , rku, ansu.

From the definition of δD, we know

δDrtr0, . . . , rku, ans “
ď

iďk

δrri, ans.

Therefore, we have:

δ˚DrQ0, ws “ tδDrtr0, . . . , rku, ansu “

#

ď

iďk

δrri, ans

+

“ tδ˚rQ0, wsu.

This shows, by induction on n “ |w|, that we have δ˚DrQ0, ws “ tδ
˚rQ0, wsu.

To conclude our proof, we only need to point out that, by the definition of FD, we
have:

δ˚rQ0, ws X F ‰ ∅ðñ tδ˚rQ0, wsu X FD “ δ˚DrQ0, ws X FD ‰ ∅.

▲

Remark. If an NFA has n states, the resulting DFA from the subset construction, which
recognizes the same language, has, in principle, 2n states. However, in practice, not all
of these states are necessarily reachable via the transition relation, so we can drop these
non-reachable states from the automaton without affecting its functionality. Even so,
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NFAs are generally more efficient regarding the number of states and are well-suited for
theoretical analysis, whereas DFAs are easier to implement. For an example illustrating
this, refer to Example 2.13 in [HMU06], where an NFA with n` 1 states is presented, for
which every DFA recognizing the same language necessarily has at least 2n states.

Now we will present some interesting closure properties of recognizable languages,
which are closely related to the logical approach we will introduce later. The proofs for
these closure properties essentially involve constructing a finite automaton that meets
particular requirements.

We observe, however, an alternative method to prove some of these results, by simply
applying Proposition 1.2.4, which established a correlation between NFAs and regular
languages. This method would take advantage of the fact that certain closure properties
of regular languages follow directly from their definition. However, since we will apply
these lemmas in the context of automata when proving Büchi’s Theorem, Theorem 1.4.1,
we found it preferable to prove them by presenting the corresponding automata.

Lemma 1.2.14 (Closure Under Complement). Given a total DFA A over the finite
alphabet Σ, there is some total DFA A such that LpAq “ LpAq “ Σ˚zLpAq.

Proof. Let A “ pQ,Σ, δ, tq0u, F q be a total DFA. We can show that the also total DFA

A “ pQ,Σ, δ, tq0u, QzF q,

will satisfy LpAq “ LpAq:
The key point of our argument is that, since A and A are total, that is, we have

|δrq, as| “ 1 for every pair pq, aq P QˆΣ, then for every finite word w “ a0a1 . . . an´1, we
always can associate to it a unique run xq0, . . . , qny, which we will denote by xq0, . . . , qnyw.
Therefore, we see that:

w P LpAq ðñ xq0, . . . , qnyw verifies qn P QzF ðñ
ðñ xq0, . . . , qnyw verifies qn R F ðñ w R LpAq.

So, A will accept exclusively the non-accepted words of A. That is, we get LpAq “ LpAq,
as intended. ▲

Observation 1.2.15. To conclude the closure under complement, we needed the au-
tomata to be total DFAs, as this ensures the existence of a unique run for each word,
regardless of whether that word is accepted or not. In general, the automaton presented
in our proof does not work for non-total DFAs. However, thanks to Proposition 1.2.13
and Lemma 1.2.9, we know that every NFA has a corresponding total DFA that recog-
nizes the same language. Therefore, we can extend the previous lemma to the class of
NFAs, although the appropriate automaton accepting the complement language will be
more complex than the one defined above.

In the following definition, we present the product automaton, which will be useful in
the next proofs:

Definition 1.2.16. Let Ai “ pQi,Σ, δi, Q0i, Fiq be NFAs, for i P t1, 2u. The product
automaton of A1 and A2 is defined as:

A1 bA2 :“ pQ1 ˆQ2,Σ, δb, Q01 ˆQ02, F1 ˆ F2q,
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where δb Ď pQ1 ˆQ2q ˆ Σˆ pQ1 ˆQ2q is given for every qi, q1i P Qi and every a P Σ, by:

ppq1, q2q, a, pq
1
1, q

1
2qq P δb :ðñ pq1, a, q

1
1q P δ1 and pq2, a, q12q P δ2. (b)

Lemma 1.2.17 (Closure Under Intersection). If A1 and A2 are NFAs over the same
finite alphabet, then there is some NFA A such that LpAq “ LpA1q X LpA2q.

Proof. Let us consider Ai “ pQi,Σ, δi, Q0i, Fiq be NFAs, for i P t1, 2u. It is straightforward
to check that the product automaton A1 b A2 is an NFA such that LpA1 b A2q “

LpA1q X LpA2q. For every word w “ a0a1 . . . an´1 we have that the following statements
are equivalent:

§ w P LpA1 bA2q;

§ xpq01, q
0
2q, . . . , pq

n
1 , q

n
2 qy is a successful run of A1 b A2 on w, for some qji P Qi with

j ď n and i P t1, 2u;

§ q0i P Q0i and qni P Fi, and ppqk1 , qk2 q, ak, pq
k`1
1 , qk`12 qq P δb for all k ă n, for some

qji P Qi with j ď n and i P t1, 2u;

§ q0i P Q0i and qni P Fi, and pqki , ak, q
k`1
i q P δi for all k ă n, for some qji P Qi with

j ď n and i P t1, 2u;

§ xq0i , . . . , q
n
i y is a successful run of Ai on w, for both i “ 1 and i “ 2;

§ w P LpA1q and w P LpA2q.

Then, as required, we conclude for every word w:

w P LpA1 bA2q ô w P LpA1q X LpA2q.

▲

To complete these closure properties over the Boolean operations, we also present the
closure of recognizable languages under the union:

Lemma 1.2.18 (Closure Under Union). If A1 and A2 are NFAs over the same finite
alphabet, then there is some NFA A such that LpAq “ LpA1q Y LpA2q.

Proof. Consider the NFAs Ai “ pQi,Σ, δi, Q0i, Fiq, for i P t1, 2u. We will determine
not only one but two automata recognizing the language LpA1q Y LpA2q. The first one
is based on the application of the two previous closure properties, Lemma 1.2.14 and
Lemma 1.2.17, and the instance of a De Morgan law:

LpA11 bA12q “ LpA11q X LpA12q “ LpA11q Y LpA12q;

where A1i are total DFAs such that LpA1iq “ LpAiq for i P t1, 2u. We know that these
A1i total DFAs exist by Proposition 1.2.13 and Lemma 1.2.9, as we already mentioned
in Observation 1.2.15. Then, we have proved our lemma, since the automaton A11 bA12
satisfies:

LpA11 bA12q “ LpA1q Y LpA2q.
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Notice that if the given Ai were already total DFAs, then the automaton we have built
would be:

A “ pQ1 ˆQ2,Σ, δb, Q01 ˆQ02, F q,

with δb defined as in (b), and F :“ pF1 ˆQ2q Y pQ1 ˆ F2q, that is, for qi P Qi, we have

pq1, q2q P F ðñ q1 P F1 or q2 P F2.

The second automaton recognizing LpA1q YLpA2q that we will present is simpler: we
just need Q1 and Q2 to be disjoint, which we can assume without loss of generality, and
we build the automaton

A :“ pQ1 YQ2,Σ, δ1 Y δ2, Q01 YQ02, F1 Y F2q.

It is immediate to check that if some word is accepted by A1 or by A2, then it is also
accepted by A. Conversely, suppose that xq0, . . . , qny is a successful run of A on some
finite word w “ a0 . . . an´1. Our assumption that Q1 and Q2 are disjoint together with
the condition pqi, ai, qi`1q P δ1 Y δ2 for i ă n, imply that we have for every i ă n:

either pqi, ai, qi`1q P δ1 or pqi, ai, qi`1q P δ2.

Then, we conclude that qi are all in Q1 or in Q2, respectively. This gives us that the
same sequence xq0, . . . , qny will constitute a successful run of either A1 or A2 on w, as
desired. ▲

Now we will prove two closure properties of recognizable languages over Cartesian
product alphabets. Even though their proofs are almost immediate, it is worth studying
the following two lemmas in this level of detail, as they will be useful in the proof of
Büchi’s Theorem.

Lemma 1.2.19 (Closure Under Projection). Given an NFA A1 over the finite alphabet
Σˆ Σ1, there is some NFA A over Σ such that

LpAq “ ta0 . . . an´1 P Σ˚ : pa0, b0q . . . pan´1, bn´1q P LpA1q,
for some b0, . . . , bn´1 P Σ1u.

Proof. Let A1 “ pQ,ΣˆΣ1, δ1, Q0, F q be an NFA over ΣˆΣ1. We will consider the NFA
A “ pQ,Σ, δ,Q0, F q with, for q, p P Q and a P Σ:

pq, a, pq P δ :ðñ pq, pa, bq, pq P δ1, for some b P Σ1.

From this definition, the following two statements are equivalent:

§ xq0, . . . , qny is a successful run of A on a0 . . . an´1 P Σ
˚;

§ xq0, . . . , qny is a successful run of A1 on pa0, b0q . . . pan´1, bn´1q P pΣˆ Σ1q˚, for bi P
Σ1 such that pqi, pai, biq, qi`1q P δ1 for all i ă n.

This ensures what we were looking for, that

a0 . . . an´1 P LpAq ðñ pa0, b0q . . . pan´1, bn´1q P LpA1q, for some b0, . . . , bn´1 P Σ1.

▲
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Lemma 1.2.20 (Closure Under Padding). Given an NFA A over the finite alphabet Σ,
and given a finite alphabet Σ1, there is some NFA A1 over Σˆ Σ1 such that

LpA1q “ tpa0, b0q . . . pan´1, bn´1q P pΣˆ Σ1q˚ : a0 . . . an´1 P LpAqu.

Proof. Let A “ pQ,Σ, δ,Q0, F q be an NFA over Σ, and let Σ1 be some finite alphabet.
We consider the NFA A1 “ pQ,Σ ˆ Σ1, δ1, Q0, F q, where we define δ1, for q, p P Q and
pa, bq P Σˆ Σ1, by:

pq, pa, bq, pq P δ1 :ðñ pq, a, pq P δ.

This definition directly gives us that the following statements are equivalent, for every
a0, . . . , an´1 P Σ and every b0, . . . , bn´1 P Σ1:

§ pa0, b0q . . . pan´1, bn´1q P LpA1q;

§ there is a successful run xq0, . . . , qny of A1 on pa0, b0q . . . pan´1, bn´1q P pΣˆ Σ1q˚;

§ there is a successful run (the same as before) xq0, . . . , qny of A for a0 . . . an´1 P Σ˚;

§ a0 . . . an´1 P LpAq.

Then, we obtain the characterization of LpA1q we were looking for. ▲

In summary, we have proved various closure properties of the class of recognizable
languages of finite words. We will not enter into details, but we also have closure properties
for the recognizable languages of infinite words, that is, for the ω-regular languages. The
proofs of the closures under union, intersection, projection, and padding are similar to
their finite analogs. The closure under complement needs more work, we refer to [Büc66;
McN66] for two different proofs.

All these closure properties, particularly those concerning Boolean operations, guide
us towards the logical approach we will introduce in the next section.

1.3 Words and Logic

Regular languages are not only applicable from an automata and computational perspec-
tive but can also be defined in logical terms, employing logical formulas. To do that, we
will first formalize, roughly speaking, what it means to be a word, and then build formulas
over that formalization, in the framework of Monadic Second-Order Logic.

Note that over a finite alphabet, if we want to determine whether two words are equal,
we could first check if they have the same number of letters. If they do not, then the
words are different. If they have the same length, or if they are infinite, we would need
to verify whether the letters at each position in the words are identical. In this sense, the
length and the identification of letters at each position seem to be the key parameters for
formalizing words.

Taking this into account, for a given finite alphabet Σ, we could formalize a finite or
infinite word w over Σ by some model pdompwq, tQwa uaPΣq. The domain dompwq would
be the set of (letter) positions of w, so |dompwq| “ |w|; and each Qwa would be a unary
predicate capturing which positions of w host the letter a P Σ. Note that we are also
interested in incorporating a model for the empty word, therefore, we will allow models
with empty domains.
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Although the unary predicates Qwa will be useful by themselves, we will need to add
some binary ones, besides the always-assumed equality, to be able to state properties
about words and, in some sense, do logic with them. In summary, we will formalize words
by the word models defined below:

Definition 1.3.1. Let Σ be a finite alphabet, and let w “ a0a1a2 . . . be a word over Σ.
We define a word model for w as w “ pdompwq, Sw,ăw, pQwa qaPΣq, where:

§ dompwq :“

"

t0, . . . , |w| ´ 1u if w is finite,
N if |w| “ ω;

§ Sw is the successor relation on dompwq, that is, Sw “ tpi, i` 1q : 0 ď i ă |w| ´ 1u;

§ ăw is the natural less-than order on dompwq, in symbols, ăw:“ăädompwq; and

§ Qwa , for each a P Σ, is the unary predicate Qwa :“ ti P dompwq : ai “ au.

If w “ ϵ, we have |w| “ 0, and so we consider dompϵq “ ∅.

With these word models in mind, we will now build Monadic Second-Order (MSO)
formulas. We will also show how those formulas, interpreted over our words, can define
languages.

Firstly, we define a supply set of first-order variables Var0 :“ txi : i P Nu, and a set of
second-order variables Var1 :“ tXi : i P Nu. Semantically, we will understand first-order
variables to represent individual positions within a given word, and second-order variables
will denote sets of positions.

Definition 1.3.2. Given a finite alphabet Σ, the set of (MSO-)atomic formulas, which
we will notate by AtSpΣq, is the set whose elements are of the form, for x, y P Var0:

x “0 y; Spx, yq; x ă0 y;

Qapxq for a P Σ; x P Xi for Xi P Var
1.

Observation 1.3.3. Since we do not have any function nor constant in our signature,
our set of terms is equal to Var0. That is why we can directly use the set of first-order
variables to define the atomic formulas.

The intended semantic meaning of Spx, yq would be that the position y immediately
succeeds the position x. The Qa operators formalize the positions that carry the letter
a P Σ, so Qapxq represents the predicate “position x contains the letter a”. And x P Xi

would translate as to say that the position x belongs to the subset of positions Xi. From
the set of atomic formulas, we define our MSO-formulas:

Definition 1.3.4. Given a finite alphabet Σ, we inductively define the set of MSO-
formulas, and we denote it by FmSpΣq, as:

§ AtSpΣq Ď FmSpΣq;

§ if φ,ψ P FmSpΣq then, for x P Var0 and X P Var1:

␣φ P FmSpΣq; pφ_ ψq P FmSpΣq; D0xφ P FmSpΣq; D1Xφ P FmSpΣq.
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As usual, from ␣,_, D0, and D1 we can define ^,Ñ,Ø,@0, and @1 by, for φ,ψ P FmSpΣq
with x P Var0 and X P Var1:

pφ^ ψq :“ ␣p␣φ_␣ψq;

pφÑ ψq :“ p␣φ_ ψq;

pφØ ψq :“ ppφÑ ψq ^ pψ Ñ φqq;

@0xφ :“ ␣D0x␣φ;

@1Xφ :“ ␣D1X␣φ.

Notation. From now on, we will remove the superscripts of “0, ă0, D0, @0, D1 and @1.
This can be done without ambiguity by systematically using lowercase letters for first-
order variables and uppercase letters for second-order variables. Also, to avoid unneces-
sary parentheses, we follow the standard convention of omitting the outermost parentheses
and using the precedence of connectives: Ø over Ñ over ^ and _. Furthermore, strictly
speaking, we should remark that we are working with MSO logic including S, “, and ă.
However, since this will not cause ambiguity in our context, we will simplify our notation
and refer to the logic as MSO (over words).

The formulas within the MSO logic we have constructed allow us to represent prop-
erties of words and languages. We aim to interpret these formulas over the word models
defined earlier, to be able to study which words satisfy the represented properties. We
will need to determine the notions of assignment and satisfiability, in the context of word
models:

Definition 1.3.5. Given a finite alphabet Σ and a word w P Σ˚ Y Σω, we say that a
function of the form

α : Var0 YVar1 Ñ dompwq Y Ppdompwqq

is an (MSO-)assignment, or interpretation, of the set of variables on the word model w
if

αäVar0 : Var0 Ñ dompwq and αäVar1 : Var1 Ñ Ppdompwqq.

We denote the set of assignments on w by Aspwq.

Given an assignment α P Aspwq, given x P Var0, and i P dompwq, we denote by
αrxÐ is the assignment, for every X P Var0 YVar1:

αrxÐ ispX q :“
"

αpX q if X P pVar0ztxuq YVar1;
i if X “ x.

Similarly, we can define the assignment αrX Ð Is with X P Var1 and I P Ppdompwqq as,
for X P Var0 YVar1:

αrX Ð IspX q :“
"

αpX q if X P Var0 Y pVar1zXq;
I if X “ X.

Definition 1.3.6. Consider a finite alphabet Σ, a word w P Σ˚YΣω, a formula ϕ P FmSpΣq,
and an assignment α P Aspwq. We denote by w (α ϕ the satisfaction of ϕ in w under
α. We inductively define it by, for x, y P Var0 with X P Var1 and φ,ψ P FmSpΣq:

§ w (α x “ y :ðñ αpxq “ αpyq;
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§ w (α Spx, yq :ðñ pαpxq, αpyqq P Sw ðñ αpxq ` 1 “ αpyq;

§ w (α x ă y :ðñ αpxq ăw αpyq ðñ αpxq ă αpyq;

§ for a P Σ, we have w (α Qapxq :ðñ αpxq P Qwa ;

§ w (α x P X :ðñ αpxq P αpXq;

§ w (α ␣φ :ðñ w *α φ;

§ w (α φ_ ψ :ðñ w (α φ or w (α ψ;

§ w (α Dxφ :ðñ there is some i P dompwq such that w (αrxÐis φ;

§ w (α DXφ :ðñ there is some I Ď dompwq such that w (αrXÐIs φ.

Observation 1.3.7. Over word models, equality is definable in terms of ă: for x, y P
Var0, the equality x “ y could be replaced by ␣px ă yq ^ ␣py ă xq. Similarly, ă is
definable in terms of S: for x, y P Var0, we see that x ă y is equivalent over word models
(they are satisfied in the same words, under every given assignment), to

px ă y _ y ă xq ^ @X
`

x P X ^ @z@z1
`

z P X ^ Spz, z1q Ñ z1 P X
˘

Ñ y P X
˘

.

Let φ P FmSpΣq be a formula, we denote by φpx1, . . . , xn, X1, . . . , Xmq that the variables
that occur free —not under the scope of quantifiers— in φ are at most the first-order and
second-order variables x1, . . . , xn, X1, . . . , Xm. The following lemma is immediate yet
relevant:

Lemma 1.3.8 (Coincidence Lemma). Consider a finite alphabet Σ, a word w P Σ˚YΣω,
and we pick a formula φpx1, . . . , xn, X1, . . . , Xmq P FmSpΣq. For every α, α1 P Aspwq such
that α and α1 coincide in the assignments of the variables x1, . . . , xn, X1, . . . , Xm, we have:

w (α φpx1, . . . , xn, X1, . . . , Xmq ðñ w (α
1

φpx1, . . . , xn, X1, . . . , Xmq.

Proof. By induction on the construction of the formula φ. It becomes straightforward
when considering Definition 1.3.6. ▲

We say that a formula is a sentence if it has no (first-order nor second-order) free
variables, that is, all the variables that occur in the formula are under the scope of some
quantifier. Notice that given a word w, an assignment α P Aspwq, and a sentence φ, we
have that, as a direct consequence of Lemma 1.3.8, the satisfiability of w (α φ is entirely
independent of the assignment α. When a formula ψ holds in a word model w under
every assignment, we will simplify our notation to w ( ψ.

Finally, we are able to define languages using MSO-formulas —sentences— and their
interpretation on word models, as we were looking for:

Definition 1.3.9. Given a finite alphabet Σ and a sentence φ P FmSpΣq, the language
defined by φ is

Lpφq :“ tw P Σ˚ : w ( φu.

We say that a language L Ď Σ˚ is MSOpΣq-definable if there is some sentence φ P FmSpΣq
such that L “ Lpφq. Analogously, the ω-language defined by φ is

Lωpφq :“ tw P Σω : w ( φu.
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Example 1.3.10. We consider the alphabet Σ “ ta, bu. We will check which
language is defined by the sentence:

φ :“ DX pPrefixpXq ^ @xpx P X Ø Qapxqqq ;

where
PrefixpXq :“ Dyp@xpx P X Ø ␣px ă yqqq _ @xp␣px P Xqq.

For simplicity, we will only consider the finite words case. For w a finite word over
Σ, we observe that w (α PrefixpXq holds for all assignments α such that αpXq “
t0, 1, . . . , ku, for some k ă |w|, or αpXq “ ∅. Also, note that the subformula
@xpx P X Ø Qapxqq from φ holds whenever, semantically speaking, the positions
represented by X carry the letter a, and any other position has the letter b. That
is, we see that:

w ( φðñ w “

n
hkkikkj

a . . . a

m
hkkikkj

b . . . b , where n,m ě 0 and n`m “ |w|.

Therefore, we conclude that Lpφq “ tanbm P Σ˚ : n,m ě 0u. This language can be
represented by the regular expression a˚b˚.

1.3.1 MSO and MSO0

As we have seen, MSO-formulas allow for two sorts or types of variables: first-order and
second-order. Generally, this is not an issue, but it may be preferable to have only one
type of variable in certain frameworks. In fact, this will be the case when we want to
prove Büchi’s Theorem, Theorem 1.4.1.

This section presents a translation from the MSO-formulas over word models into the
so-called MSO0-formulas. This new formalization will not contain —quantification over—
first-order variables, while, as we prove below, MSO0-formulas will be as expressive as
MSO-formulas.

We define MSO0-formulas and their satisfiability over word models similarly to how
we defined them in the MSO case:

Definition 1.3.11. For Σ a finite alphabet, the set of MSO0-atomic formulas, denoted
by AtS0pΣq, is composed exclusively by elements of the form, for X,Y P Var1 and for every
a P Σ:

X Ď Y ; SingpXq; SuccpX,Y q; QarXs.

The intended semantic meaning of X Ď Y will be that the subset of positions repre-
sented by X is included in Y ’s. The unary predicate SingpXq says that “X is a singleton”.
The binary relation SuccpX,Y q would express X “ txu and Y “ tyu, and Spx, yq. The
expression QarXs will refer to the predicate “the set of positions X is a subset of Qa”,
where Qa, as before, would represent the set of positions that carry the letter a P Σ. From
these atomic formulas, we define the set of MSO0-formulas:

Definition 1.3.12. For Σ a finite alphabet, the set of MSO0-formulas, FmS0pΣq, is the
smallest set containing AtS0pΣq such that verifies ␣φ, pφ _ ψq, DXφ P FmS0pΣq, for every
φ,ψ P FmS0pΣq and every X P Var1.
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As we did with the MSO-formulas, from the connectives ␣,_ and the quantifier Dp1q,
we can induce the connectives ^,Ñ,Ø, and the quantifier @p1q. As before, we follow the
standard convention of omitting unnecessary parentheses.

We now define the notion of MSO0-assignments, which will be simpler than their MSO
counterpart, since now we only have one type of variable:

Definition 1.3.13. For a given finite alphabet Σ and a word w over Σ, an MSO0-
assignment on the word model w is a function of the form α : Var1 Ñ Ppdompwqq.

Observation 1.3.14. By Definition 1.3.5, for every MSO-assignment α P Aspwq, we find
that αäVar1 is an MSO0-assignment. Also, every MSO0-assignment is of the form αäVar1 ,
for some α P Aspwq.

Now we can define the satisfiability of MSO0-formulas over words:

Definition 1.3.15. Consider a finite alphabet Σ, a word w over Σ, an MSO0-formula
φ0, and an MSO0-assignment α. We denote the satisfaction of φ0 in w under α by
w (α0 φ0. We inductively define it, for X,Y P Var1 and φ0, ψ0 P FmS0pΣq, by:

§ w (α0 X Ď Y :ðñ αpXq Ď αpY q;

§ w (α0 SingpXq :ðñ αpXq “ tiu, for some i P dompwq;

§ w (α0 SuccpX,Y q :ðñ αpXq “ tiu, αpY q “ ti` 1u, for some i ă |w| ´ 1;

§ for a P Σ, we have w (α0 QarXs :ðñ αpXq Ď Qwa ;

§ w (α0 ␣φ0 :ðñ w *α0 φ0;

§ w (α0 φ0 _ ψ0 :ðñ w (α0 φ0 or w (α0 ψ0;

§ w (α0 DXφ0 :ðñ there is some I Ď dompwq such that w (αrXÐIs0 φ0.

We will check that MSO and MSO0 are equally expressive, in the sense that their
sentences satisfy or define the same languages. To do that, we will find two translations,
from MSO0 to MSO-formulas —Lemma 1.3.16— and from MSO to MSO0-formulas —
Lemma 1.3.17—. These translations will preserve the validity of sentences over word
models, so the corresponding languages will also be preserved.

Lemma 1.3.16. Given a finite alphabet Σ, for every MSO0-formula φ0 P FmS0pΣq, we
can find some MSO-formula φ`0 P FmSpΣq such that for every w P Σ˚ Y Σω and every
MSO-assignment α P Aspwq, we have:

w (
α

äVar1

0 φ0 ðñ w (α φ`0 . (+)

Proof. By induction on the construction of the MSO0-formula φ0. Such induction will
become immediate by the translation from MSO0 to MSO-formulas we are going to define:

By unfolding the definitions of (α and (
α

äVar1

0 , we have the equivalences, for X,Y P
Var1 and α P Aspwq:

w (
α

äVar1

0 X Ď Y ðñ w (α @xpx P X Ñ x P Y q;

w (
α

äVar1

0 SingpXq ðñ w (α Dxpx P X ^ @ypy P X Ñ x “ yqq;

w (
α

äVar1

0 SuccpX,Y q ðñ w (α DxDypSinpX,xq ^ SinpY, yq ^ Spx, yqq;

for a P Σ, w (
α

äVar1

0 QarXs ðñ w (α @xpx P X Ñ Qapxqq;
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where SinpZ, zq “ z P Z^@z1pz1 P Z Ñ z “ z1q, for every Z P Var1 and every z P Var0.
Taking into account these correlations, we inductively define the following translation, for
X,Y P Var1 and ψ0, ϕ0 P FmS0pΣq:

§ pX Ď Y q` :“ @xpx P X Ñ x P Y q;

§ pSingpXqq` :“ Dxpx P X ^ @ypy P X Ñ x “ yqq;

§ pSuccpX,Y qq` :“ DxDypSinpX,xq ^ SinpY, yq ^ Spx, yqq;

§ for a P Σ, we have pQarXsq` :“ @xpx P X Ñ Qapxqq;

§ p␣ψ0q
` :“ ␣ψ`0 ;

§ pψ0 _ ϕ0q
` :“ ψ`0 _ ϕ

`
0 ;

§ pDXψ0q
` :“ DXψ`0 .

Now, by induction on the construction of φ0, it is immediate that we have (+), with
φ`0 the MSO-formula built by the presented translation. ▲

In particular, it is easy to see that if φ0 is a sentence, then φ`0 will also be a sentence,
and we will have Lpφ0q “ Lpφ`0 q, as we wanted. Also note that, in this context, the
interpretation of first-order variables is meaningless, since no translated formula has free
first-order variables. That is why on the left side of (+) we can consider MSO-assignments
restricted over Var1.

On the other hand, we also have the following:

Lemma 1.3.17. Given a finite alphabet Σ and φ P FmSpΣq, we can build some φ0 P FmS0pΣq
such that for every MSO-assignment α P Aspwq and every w P Σ˚YΣω, we have, for every
MSO0-assignment rα:

w (α φ ðñ w (rα
0 φ0. (~)

Proof. As in the previous lemma, we will immediately show (~) by induction on the con-
struction of the MSO-formula φ, thanks to the translation from MSO to MSO0-formulas
we will provide. This translation will be based on the key idea of the MSO0 formalization:
we essentially replace MSO first-order variables x by singleton predicates or, specifically,
by second-order variables X such that SingpXq holds. In this sense, we want the inter-
pretation of X to be the singleton of the interpretation of x.

We know that variables can be subscripted based on our supply sets Var0 “ txi : i P Nu
and Var1 “ tXi : i P Nu. Moreover, we can consider second-order variables of the form
Yi, which will be used to avoid ambiguity in the following suggested translation. For
xi, xj P Var

0, for Xi, Xj , Yk P Var
1 with i, j, k P N, and for ψ, ϕ P FmSpΣq, we define:

§ pSpxi, xjqq0 :“ SuccpXi, Xjq;

§ pxi P Ykq0 :“ Xi Ď Yk ^ SingpXiq;

§ for a P Σ, we have pQapxiqq0 :“ QarXis ^ SingpXiq;

§ p␣ψq0 :“ ␣ψ0;

§ pψ _ ϕq0 :“ ψ0 _ ϕ0;
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§ pDxiψq0 :“ DXipSingpXiq ^ ψ0q;

§ pDYkψq0 :“ DYkψ0.

Note that for the equality and the less-than cases, we can take advantage of Observation
1.3.7, and establish their translation as the translation of their equivalent formulas.

An easy induction on the construction of φ will give us that (~) holds, by unraveling
the definitions of (α and (rα

0 , using the translation we have stated. ▲

Again, it is easy to show that if φ P FmSpΣq is a sentence, then φ0 P FmS0pΣq is also a
sentence. Thus, we have Lpφq “ Lpφ0q, as intended.

Moreover, note that for both translations we have presented, the growth of the trans-
lated formulas (whether in terms of the number of symbols, quantifiers, the nesting of
connectives, or virtually any other measure we could consider) is linear with respect to
the original formulas. This observation is easy to prove since, in all cases, we add only a
constant to the original measure.

In conclusion, the last two lemmas show that for every MSO-sentence there is an MSO0

one that defines the same language, and vice versa. So, we have that MSO0 and MSO
are equally expressive, their sentences define the same languages.

1.3.2 MSO Axiomatization Over Words

Before stating and proving Büchi’s Theorem in the next section, we will pause to consider
MSO-validities on words. Specifically, given a finite alphabet Σ, we will explore which
formulas φ P FmSpΣq satisfy w (α φ for every word w over Σ and every assignment α. To
achieve this, we will introduce, based on [Rib12], three axiomatizations: MSO,MSOăω,
and MSOω. These formalizations will be complete concerning our satisfiability definition
over word models.

Definition 1.3.18. Given a finite alphabet Σ, we denote the axiomatization of the MSO
logic over words by MSO. We define MSO as the set of MSO-formulas built from the fol-
lowing axioms and inference rules. For every φ,ψ, ϕ P FmSpΣq and X ,X1, . . . ,Xk, . . .Xn P
Var0 Y Var1 variables with X and Xk being of the same type (that is, X ,Xk P Var0 or
X ,Xk P Var1), we have:
Axioms and Axioms Schemes:

@xr␣px ă xqs; (LO1)
@x@y@zpx ă y ^ y ă z Ñ x ă zq; (LO2)
@x@ypx ă y _ x “ y _ y ă xq; (LO3)
@Xr@xp@ypy ă xÑ y P Xq Ñ x P Xq Ñ @xpx P Xqs; (IndP)
@xpDypy ă xq Ñ DypSpy, xqq; (IP)

@x

˜

ł

aPΣ

Qapxq

¸

; (Q1)

@xpQapxq Ñ ␣Qbpxqq, for every a, b P Σ with a ‰ b; (Q2)
φ_␣φ; (LEM)
DX@xpx P X Ø φq, for X not a free variable in φ. (CAS)

Inference Rules:
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φ
␣␣φ

φ

φ_ ψ

φ

ψ _ φ
φpX1, . . . ,Xk, . . . ,Xnq for Xk a free variable in φ
DXφpX1, . . . ,X , . . . ,Xnq

We define the axiomatization of the MSO logic over finite words, MSOăω, by adding
to MSO the axiom:

Dxpx “ xq Ñ Dy@zp␣py ă zqq.

And the axiomatization of the MSO logic over infinite words, MSOω, by adding to MSO
the axiom:

@xDypx ă yq.

Notice that the first three axioms express that our words are linearly ordered by ă.
Axiom (IndP) gives us an induction principle. Axiom pIP q would tell us that every
position having some predecessor has an immediate predecessor. The next two axioms,
(Q1) and (Q2), would express that each position carries some and at most one letter,
respectively. And then we have two axiom schemes, where pLEMq would be the Law of
Excluded Middle, and the last one can be understood as a Comprehension Axiom Scheme.
The inference rules are clear, as they would characterize the connectives ␣ and _, as well
as the existential quantification over first and second-order variables. Regarding MSOăω

and MSOω, we see that the axioms we add would express that our words are either empty
or finite, or that they have an infinite number of positions, respectively.

For simplicity, we will present Theorem 1.3.19 with reference only to the axiomatization
MSO. However, it can be easily adapted to MSOăω by restricting the domain of words
to finite words, and to MSOω by restricting it to infinite words.

Theorem 1.3.19. Given a finite alphabet Σ, for every φ P FmSpΣq, the following holds:

φ P MSOðñ for every w P Σ˚ Y Σω, and every α P Aspwq, we have w (α φ.
▲

We will not enter into the details of the proof, however, note that the left-to-right
implication, the soundness implication, is almost immediate, since all axioms of Definition
1.3.18 hold in all word models, and all the rules preserve the satisfiability. We refer
to [Rib12] for proof of the other implication and a more exhaustive exposition of the
axiomatization of the MSO logic over words.

1.4 Büchi’s Theorem

Büchi’s Theorem, as mentioned before, establishes a connection between the two main
approaches we have presented regarding the characterization of regular languages: the
logical perspective based on word models, and the automata and computational one. The
significance of this theorem could be summarized in two key points: 1) it bridges a purely
computational object, automata, with logic, as well as indirectly links regular languages
with logic; and 2) this relationship ensures that finite automata have considerable expres-
sive power, as we have:

Theorem 1.4.1 (Büchi [Büc60], Elgot [Elg61]). Given a finite alphabet Σ, an (ω-)language
L Ď Σ˚ Y Σω is recognizable by a (Büchi automaton) nondeterministic finite automaton
if and only if L is MSOpΣq-definable.
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Proof. We will focus on languages of finite words, and we will follow the structure outlined
in [Tho96], delving into all the details. Essentially, we have to prove the effectiveness of
both implications. First, we demonstrate the direction from left to right (only if):

Let A “ pQ,Σ, δ,Q0, F q be an NFA. We can assume Q “ t0, . . . , ku without loss
of generality. Given a finite word w “ a0 . . . an´1, we want to find an MSO-sentence
expressing, once interpreted in the word model w, if A accepts w. Therefore, we require
a sentence stating the existence of a successful run xq0, . . . , qny of A, with pqi, ai, qi`1q P δ
for i ă n, and q0 P Q0, and qn P F . We prove the first one of the two implications we
need:

Claim 1. If the finite automaton A “ pt0, . . . , ku,Σ, δ,Q0, F q accepts the non-empty
word w, then we have:

w ( DX0 . . . DXkpφ1 ^ φ2 ^ φ3 ^ φ4q;

where:

φ1 “
ľ

i,jďk
i‰j

␣Dx px P Xi ^ x P Xjq ;

φ2 “ @x

˜

␣Dy pSpy, xqq Ñ
ł

iPQ0

x P Xi

¸

;

φ3 “ @x@y

¨

˝Spx, yq Ñ
ł

pi,a,jqPδ

px P Xi ^Qapxq ^ y P Xjq

˛

‚;

φ4 “ @x

¨

˚

˚

˝

␣Dy pSpx, yqq Ñ
ł

pi,a,jqPδ
jPF

px P Xi ^Qapxqq

˛

‹

‹

‚

.

Proof of Claim 1. Let us assume that xq0, . . . , qny is a successful run of A on w, and
we need to check that we have w ( DX0 . . . DXkpφ1 ^ φ2 ^ φ3 ^ φ4q. That is, we need
to find some Pi Ď t0, . . . , n ´ 1u, for i ď k, such that w (α φ1 ^ φ2 ^ φ3 ^ φ4 for α any
assignment verifying αpXiq “ Pi for every i ď k.

We will show we can define our Pi to be the following sets of positions of w:

Pi :“ tj ď n´ 1 : within the successful run xq0, . . . , qny, we have qj “ iu.

From this definition, it is clear that the Pi sets are pairwise disjoint. Then, if αpXiq “

Pi for every i ď k, we have that w (α φ1 holds.
Also, as xq0, . . . , qny is a successful run, we have q0 P Q0. Then the first position of

w, position 0, will be included in Pi for some i P Q0. If αpXiq “ Pi for every i ď k, we
deduce w (α φ2: position 0 is the only one that is not a successor of any other position,
so ␣DypSpy, xqq holds if and only if we interpret x as 0; and

Ž

iPQ0
x P Xi will also be

satisfied since, as we mentioned, 0 P Pi for some i P Q0.
Another consequence of xq0, . . . , qny being a successful run is having pqi, ai, qi`1q P δ

for every i ă n. Now, directly from their definitions, for every position i ă n of w we
have i P Pqi and pi` 1q P Pqi`1 , and i P Qwai . Then, we see that φ3 will hold, interpreted
over the word model w, under any assignment α such that αpXiq “ Pi for every i ď k.
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Finally, we also know qn P F and pqn´1, an´1, qnq P δ. Similarly as before, we have
pn ´ 1q P Pqn´1 and pn ´ 1q P Qwan´1

, where the position n ´ 1 is the last one of w. This
leads us to deduce that we also have w (α φ4 for every α verifying αpXiq “ Pi.

In conclusion, by the satisfiability of the conjunction function, we have, for every
assignment α such that αpXiq “ Pi:

w (α φ1 ^ φ2 ^ φ3 ^ φ4.

Then, as we wanted, we get

w ( DX0 . . . DXkpφ1 ^ φ2 ^ φ3 ^ φ4q.

△
Now we are going to prove the other implication, namely:
Claim 2. Following the definitions of Claim 1, if we have w ( DX0 . . . DXkpφ1 ^φ2 ^

φ3 ^ φ4q, for some non-empty finite word w, then A accepts w.
Proof of Claim 2. We assume we have w ( DX0 . . . DXkpφ1 ^ φ2 ^ φ3 ^ φ4q, for some

finite word w with |w| “ n ą 0. We need to find a successful run xq0, . . . , qn´1, qny of A on
w. From our assumption, we have that there are some sets Pi Ď t0, . . . , n´ 1u “ dompwq
for i ď k such that w (α φ1 ^ φ2 ^ φ3 ^ φ4, for α any assignment sending each Xi to Pi.

We will determine the states q0, . . . , qn´1 by, for m ă n and i ď k:

qm “ i :ðñ m P Pi.

We first need to show that these qm are well-defined, specifically, that there is one and
only one possible value i such that m P Pi, for each m ă n. We prove it by induction on
m.

Regarding the base case m “ 0, we require 0 P Pj for exactly one possible value of
j P t0, . . . , ku. By the satisfiability of φ2, we have 0 P Pi0 for some i0 P Q0. At the same
time, by φ1, we deduce that our Pi are pairwise disjoint, and so 0 does not belong to any
other Pi than Pi0 . Then, we conclude that there is exactly one i0 “ j P t0, . . . , ku —with
j P Q0— such that 0 P Pj , as we wanted.

Now let us assume qm to be well-defined, for m ă n ´ 1, we want to show that qm`1
is also well-defined. By definition, we have pm,m` 1q P Sw so, by the satisfiability of φ3

over w, we get that there is some j ď k and some a1 P Σ such that:

pqm, a
1, jq P δ, m P Qwa1 , and m` 1 P Pj .

This leads us to conclude that there is at least one value j ď k such that m` 1 P Pj .
To check that this j is unique, we refer again to the satisfaction of φ1.

Then, by induction on m, we have shown that our qm are well-defined. Not only that,
we have also seen that q0 P Q0, by applying φ2, and that we have pqi, a1i, qi`1q P δ and
i P Qwa1

i
for i ă n ´ 1, from the satisfiability of φ3. Those last expressions i P Qwa1

i
ensure

that we can state a1i “ ai for i ă n´ 1, with ai the letters of w “ a0 . . . an´2an´1.
To find the successful run we want, it only remains to define qn P F in such a way that

pqn´1, an´1, qnq P δ. We already know that the position n ´ 1 is the last position of w,
therefore, it is the only position that has no successor. Then, by the satisfiability of φ4 we
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conclude that there is some j P F such that pi, a, jq P δ, with n´ 1 P Pi and n´ 1 P Qwa ,
that is, with i “ pn´1 and a “ an´1. In this way, we have found that there is at least one
j ď k such that pqn´1, an´1, jq P δ. We can define the state qn as the minimum such j.

In conclusion, we have built a sequence xq0, . . . , qn´1, qny of states of A such that
q0 P Q0 and qn P F , and pqi, ai, qi`1q P δ for i ă n. That is, xq0, . . . , qn´1, qny is a
successful run of A on w, so A accepts the non-empty word w. △

We observe that Claims 1 and 2 together imply that the finite automaton A accepts
the non-empty word w if and only if we have w ( DX0 . . . DXkpφ1 ^ φ2 ^ φ3 ^ φ4q. We
only need to consider the empty words case. We immediately see that

ϵ ( DX0 . . . DXkpφ1 ^ φ2 ^ φ3 ^ φ4q,

by taking the interpretations of Xi to be Pi “ H for every i ď k. If A does not accept
the empty word, we only need to add —via conjunction— the expression Dxpx “ xq to
the suggested sentence. This addition ensures that the empty word model will not satisfy
the sentence anymore, without affecting the satisfiability of other word models, as every
non-empty model satisfies Dxpx “ xq.

In summary, we have seen that if the language L Ď Σ˚ is recognizable by A, then L is
also MSOpΣq-definable, since we have

L “

"

porq
LpDX0 . . . DXkpφ1 ^ φ2 ^ φ3 ^ φ4qq, if ϵ P L;

LpDX0 . . . DXkpφ1 ^ φ2 ^ φ3 ^ φ4 ^ Dxpx “ xqqq, if ϵ R L.
This proves the left-to-right implication (only if) of our theorem.

Let us show now the direction from right to left (if):
Given an MSO-sentence φ defining a language L “ Lpφq Ď Σ˚, we want to prove

that there is some finite automaton Aφ such that LpAφq “ L. The natural step would
be to prove it by induction on the construction of φ. However, consider the inductive
case φ “ DXψ: we observe that as ψ is not in general a sentence, we cannot apply our
Induction Hypothesis over ψ, and we end up with our hands tied unable to prove what
we need.

This is why we will use a different formalization seeking to, in some sense, get track not
only of the sentences, but also of the formulas with free variables, and their interpretations.
Our first move in this direction will be to translate our MSO-formulas into MSO0-formulas.
In Subsection 1.3.1, we already demonstrated that this translation can be performed
without losing expressiveness, and it has the additional advantage of simplifying the set
of free variables by only allowing second-order variables.

Given a finite alphabet Σ, we will call the alphabet Σ1 “ Σˆ t0, 1un, for some n ă ω,
an expanded alphabet. So, w1 P pΣ1q˚ will be an expanded word, with expanded letters of
the form pa, b1, . . . , bnq, where a P Σ is carried in the 0-th component of the expanded
word, and bi P t0, 1u in its i-th component for i ď n. For an expanded word w1, we
will also speak about the expanded word model w1 “ pw,P1, . . . , Pnq, with w P Σ˚ and
P1, . . . , Pn Ď dompwq. In such a case, for every expanded letter pa, b1, . . . , bnq of w1 in
position p, we have that the position p of w carries the letter a P Σ; and for every i ď n:

p P Pi ðñ bi “ 1.

Consider an MSO0-formula φpX1, . . . , Xnq, where Xi for i ď n are its free second-order
variables, and let w P Σ˚ be a finite word. We will denote by

pw,P1, . . . , Pnq (0 φ pX1, . . . , Xnq ,
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if φ is satisfied in w by taking P1, . . . , Pn as interpretations of the variables X1, . . . , Xn,
respectively. Notice that, ultimately, this notation is simply summarizing

w (α0 φ pX1, . . . , Xnq ,

for α any assignment satisfying αpXiq “ Pi for i ď n. Note that this implies

w (0 DX1 . . . DXnφ.

We will see how using expanded alphabets we avoid the problems mentioned before
regarding existential sentences. We show it in the following claim:

Claim 3. Consider a finite alphabet Σ. For every formula ψpX1, . . . , Xnq only contain-
ing the variables X1, . . . , Xn —free or bound—, there is some NFA Aψ accepting precisely
those expanded words w1 P Σˆ t0, 1un that verify w1 (0 ψpX1, . . . , Xnq.

Proof of Claim 3. By induction on the construction of the formula ψ. We can propose
simple finite automata for the MSO0-atomic formulas cases. All these automata will be
defined over the expanded alphabet Σ1 “ Σˆ t0, 1un. For j, k ď n:

§ A finite automaton checking whether Xj Ď Xk holds in w1 P pΣ1q˚ has to verify that
if 1 occurs in the j-th component of some expanded letter of w1, it also occurs in
the k-th component. For instance, we could consider the automaton:

q0 q1
δj“1,k“0

δj“0

δj,k“1

Where

δj“0 :“ tpa, b1, . . . , bnq : a P Σ and bi P t0, 1u for i ď n, with bj “ 0u;

δj,k“1 :“ tpa, b1, . . . , bnq : a P Σ and bi P t0, 1u for i ď n, with bj “ bk “ 1u;

δj“1,k“0 :“ tpa, b1, . . . , bnq : a P Σ and bi P t0, 1u for i ď n, with bj “ 1 and bk “ 0u.

We see that any successful run of this automaton cannot include the state q1, as there
are no transitions originating from of it, nor is it a final state. Then, this automaton
does not accept any expanded word with some expanded letter in δj“1,k“0, which
would have a 1 in its j-th component but a 0 in its k-th. This is precisely the only
requirement for stating that Xj Ď Xk does not hold, since we would have, once we
interpret our variables, that there is some element of Pj that does not belong to Pk,
so Pj ­Ď Pk. Then, we conclude that the presented automaton,

xtq0, q1u,Σ
1, δ, tq0u, tq0uy,

where

δ – tpq0, a
1, q0q : a

1 P δj“0 Y δj,k“1u Y tpq0, a
1, q1q : a

1 P δj“1,k“0u,

accepts only the expanded words where Xj Ď Xk is satisfied, as we wanted.
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§ Sing pXjq: the desired NFA has to check that there is precisely one expanded letter
such that its j-th component is 1. We could consider the automaton:

q0 q1 q2
δj“1

δj“0

δj“1

δj“0

The set δj“0 is the same as before, and:

δj“1 :“ tpa, b1, . . . , bnq : a P Σ and bi P t0, 1u for i ď n, with bj “ 1u.

Note that any successful run of the suggested automaton on an expanded word w1

has to start with the state q0 and finish with q1. So, we need at least one expanded
letter of w1 to be in δj“1. However, once we have that letter in δj“1, our w1 cannot
have any other expanded letter in δj“1. Otherwise, we would transition to state
q2, but that is not possible for a successful run because there are no transitions
originating from q2, and it is not a final state either. So, the automaton accepts
those expanded words such that the j-th components of their expanded letters are
all 0 except for exactly one of them. This means that the interpretation of Xj , the
set Pj , has only one element. In this way, the suggested automaton only accepts
the words satisfying SingpXjq.

§ Succ pXj , Xkq: we consider an automaton verifying that if the j-th component of
an expanded letter in the position p is 1, then the expanded letter in position p` 1
has a 1 in its k-th component. We will denote this automaton by AS , and we see it
could be represented by:

q0 q1

δj“1

δj“0

δk“1

The sets δj“1 and δj“0 are defined as in the previous cases, and:

δk“1 :“ tpa, b1, . . . , bnq : a P Σ and bi P t0, 1u for i ď n, with bk “ 1u.

Let us assume that AS accepts an expanded word w1, and that w1 has some expanded
letter having its j-th component equal to 1. Therefore, the next expanded letter
of w1, in the consecutive position, necessarily carries a 1 in its k-th component.
Otherwise, a successful run would be impossible because we would become “stuck”
in the state q1, which is not a final state.
Now, consider the automata ASingpXjq and ASingpXkq to accept exclusively those
words satisfying SingpXjq and SingpXkq, respectively. We know there are au-
tomata like that thanks to the previous case in the induction. By Lemma 1.2.17,
we determine that the product automaton ASingpXjqbASingpXkq exclusively accepts
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expanded words such that their expanded letters only have one j-th and one k-th
component equal to 1, and the remaining j-th and k-th components are 0.
Consequently, the product automaton pASingpXjqbASingpXkqqbAS will exclusively
accept expanded words such that their expanded letters have only one 1 in their
j-th components, say in the letter in position p, and only the expanded letter in
position p ` 1 will have 1 in its k-th component. Thus, the resulting automaton
precisely accepts those expanded words for which the assignments of Xj and Xk are
Pj “ tpu and Pk “ tp` 1u. This means that the suggested automaton only accepts
the expanded words satisfying SuccpXj , Xkq, as we wanted.
Considering the automata of the form ASingpXq as proposed in the previous case,
each with three states, we find that our automaton checking whether SuccpXj , Xkq

holds requires p3ˆ 3q ˆ 2 “ 18 states.

§ QlrXjs, for l P Σ: the required NFA has to verify that whenever 1 occurs in the j-th
component of some expanded letter of w1, we also have l P Σ in its 0th component.
An automaton with this behavior could be:

q0 q1

δl;j“1

δj“0

δ/l;j“1

The set δj“0 has the same definition as in the previous cases, and:

δl;j“1 :“ tpl, b1, . . . , bnq : bi P t0, 1u for i ď n, with bj “ 1u;

δ/l;j“1 :“ tpa, b1, . . . , bnq : l ‰ a P Σ and bi P t0, 1u for i ď n, with bj “ 1u.

Similarly to the case Xj Ď Xk, we deduce that the suggested automaton does not
accept any expanded word with some expanded letter in δ/l;j“1, a letter that would
have 1 in its j-th component and carry some letter a P Σ different from l in its
0th component. We see that expanded letters of such form would give us that
there is some element of Pj , the assignment of Xj , that does not belong to Qwl , the
set of positions that their 0th component is l. In symbols, Pj ­Ď Qwl . Then, we
conclude that the presented automaton accepts only the expanded words where we
have Pj Ď Qwl , that is, where QlrXjs is satisfied.

For the inductive step, we have to consider the cases of the connectives ␣,_, and the
existential quantification over (monadic) second-order variables. These three cases follow
from the closure properties of the class of recognizable languages we proved in Subsection
1.2.1:

§ Negation case: assuming that the language defined by the formula ϕ pX1, . . . , Xnq

over the expanded alphabet Σˆt0, 1un is recognized by the automaton Aϕ, we want
to find an automaton corresponding to the formula ␣ϕpX1, . . . , Xnq. It is enough
to take the complementary automaton Aϕ (if needed, we know we can translate
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our NFA Aϕ into an equivalent total DFA), built as is done in Lemma 1.2.14. By
definition, for every expanded word w1, we have

w1 (0 ␣ϕ pX1, . . . , Xnq ðñ w1 *0 ϕ pX1, . . . , Xnq
IH
ðñ w1 R LpAϕq ðñ w1 P LpAϕq.

§ Disjunction case: suppose that the language defined by the formula ϕ pX1, . . . , Xnq

over the expanded alphabet Σ ˆ t0, 1un is recognized by the automaton Aϕ, and
that the language defined by the formula ϕ1 pX1, . . . , Xnq, over the same expanded
alphabet, is recognized by the automaton Aϕ1 . We want to find an automaton for
the formula pϕ _ ϕ1q pX1, . . . , Xnq. We apply Lemma 1.2.18 to Aϕ and Aϕ1 to get
an automaton Aϕ_ϕ1 such that LpAϕ_ϕ1q “ LpAϕqYLpAϕ1q. This Aϕ_ϕ1 will accept
just those words which satisfy ϕ_ ϕ1 since, for every expanded word w1, we have:

w1 (0 pϕ_ ϕ
1qpX1, . . . , Xnq ðñ w1 (0 ϕpX1, . . . , Xnq or w1 (0 ϕ

1pX1, . . . , Xnq
IH
ðñ

IH
ðñ w1 P LpAϕq or w1 P LpAϕ1q ðñ w1 P LpAϕq Y LpAϕ1q “ LpAϕ_ϕ1q.

§ Existential case: we assume that the language defined by the formula ϕ pX1, . . . , Xnq

over the expanded alphabet Σ ˆ t0, 1un is recognized by the automaton Aϕ. We
have to find an automaton corresponding to the formula DXiϕ pX1, . . . , Xnq for some
i ď n. We can suppose, without loss of generality, that we have i “ n, and so we
consider ϕ1pX1, . . . , Xn´1q “ DXnϕ pX1, . . . , Xnq.
Since the variable Xn is not free in ϕ1pX1, . . . , Xn´1q, and so the interpretations of
Xn are not relevant anymore, it could be tempting to consider our desired automaton
to be defined over the expanded alphabet Σˆt0, 1un´1. Then, we could say we only
need to apply Lemma 1.2.19, the closure under projections, over Aϕ. However,
changing our alphabet this way would be problematic, especially for our previous _
case where we need two automata over the same language to compute their union.
Then, our required automaton, which we will call Aϕ1 , must be defined over the
alphabet Σˆt0, 1un, even though the last bit becomes almost vacuous. Particularly,
if Aϕ accepts the expanded word w1 “ pa0, b

1
0, . . . , b

n
0 q . . . pam, b

1
m, . . . , b

n
mq P pΣ ˆ

t0, 1unq˚, our Aϕ1 will accept the expanded words

pa0, b
1
0, . . . , b

n´1
0 , b0q . . . pam, b

1
m, . . . , b

n´1
m , bmq P pΣˆ t0, 1u

nq˚,

for every b0, . . . , bm P t0, 1u.

If w1 is accepted by Aϕ, it is clear that w1 will also be accepted by Aϕ1 . Conversely,
if some expanded word w1 is accepted by Aϕ1 , then there is some sequence of 0s
and 1s —the bits bn0 , . . . , bnm— such that Aϕ accepts the expanded word resulting
of replacing the last coordinate of the expanded letters of w1 by the elements of the
sequence.
We have assumed Aϕ to exist and being defined over the alphabet Σˆt0, 1un. Then,
by Lemma 1.2.19, from Aϕ we can get a new automaton A1ϕ over the alphabet
Σˆt0, 1un´1. If now we apply Lemma 1.2.20, the closure under padding, to A1ϕ, we
obtain another automaton, A2ϕ, over the alphabet Σ ˆ t0, 1un. Notice that, in this
way, A2ϕ will be defined as Aϕ but, if δϕ is the transition relation of Aϕ, then the
transition relation of A2ϕ is:

δ2ϕ “ tpp, pa, b1, . . . , bn´1, bnq, qq : pp, pa, b1, . . . , bn´1, 0q, qq P δϕ

or pp, pa, b1, . . . , bn´1, 1q, qq P δϕu.
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Now we show that we can consider Aϕ1 “ A2ϕ, that is, A2ϕ only accepts the words
satisfying the formula ϕ1 “ DXnϕ:
To simplify notation, we will denote an expanded word w1 over the alphabet Σ ˆ
t0, 1un as w1 “ pw,P1, . . . , Pnq, whenever w1 “ pw,P1, . . . , Pnq. We see that the
following expressions are equivalent:

i) pw,P1, . . . , Pnq (0 DXnϕ;
ii) w (α0 DXnϕ for every MSO0-assignment α verifying αpXiq “ Pi, for i ď n;

iii) there is some P 1n Ď dompwq such that w (
αrXnÐP 1

ns
0 ϕ, for every α verifying

αpXiq “ Pi for i ď n;
iv) pw,P1, . . . , Pn´1, P

1
nq (0 ϕ for some P 1n Ď dompwq;

v) pw,P1, . . . , Pn´1, P
1
nq P Lpϕq for some P 1n Ď dompwq;

vi) pw,P1, . . . , Pn´1, P
1
nq P LpAϕq for some P 1n Ď dompwq;

vii) pw,P1, . . . , Pn´1q P LpA1ϕq;
viii) pw,P1, . . . , Pn´1, P

2
nq P LpA2ϕq for all P 2n Ď dompwq.

The equivalences among the first five items are directly derived from previous defini-
tions and notations. By Induction Hypothesis, we have the equality Lpϕq “ LpAϕq,
ensuring us vq ô viq. The equivalence between viq and viiq is given by the con-
struction of A1φ, based in Lemma 1.2.19. Similarly, we have viiq ô viiiq by the
construction of A2φ, thanks to Lemma 1.2.20.
We observe that, in particular, by considering P 2n “ Pn, the equivalence between iq
and viiiq shows us what we wanted to check, that A2ϕ accepts precisely the expanded
words such that satisfy DXnϕ.

Then, we have proved, by induction on the construction of ψ, that there is some NFA
Aψ such that

LpAψq “ tw
1 P Σˆ t0, 1un : w1 (0 ψpX1, . . . , Xnqu.

This finishes our proof of Claim 3. △
In particular, Claim 3 ensures that there is some NFA Aφ such that LpAφq “ Lpφq,

for φ our initial sentence. This automaton Aφ is defined over the expanded alphabet
Σˆt0, 1un, with n being the number of bound variables of φ. By Lemma 1.2.19, we know
that there is some NFA A1φ over the alphabet Σ such that:

LpA1φq “ ta0 . . . am P Σ˚ : pa0, b10, . . . bn0 q . . . pam, b1m, . . . , bnmq P LpAφq,

for some bji P t0, 1u with 0 ď i ď m and 1 ď j ď nu.

Then, we see that the language defined by φ is recognizable by A1φ, which concludes the
proof of the direction from right to left of the double implication of the theorem.

Since we have demonstrated both implications, effectively building both conversions
from automata to sentences and vice versa, we conclude that a language over the finite
alphabet Σ is recognizable by an NFA if and only if it is MSOpΣq-definable, as we were
looking for.

In the context of infinite words and Büchi automata, the proof follows an analogous
structure to the finite words case. The main difference is that, to establish the direction
from right to left, we apply the closure properties of ω-regular languages instead of those
of regular languages. ▲
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Chapter 2

A Matter of Time

So far, we have defined languages, the class of regular languages, and we have presented
substantially different yet equivalent characterizations for regular languages: using regular
expressions, regular grammars, finite automata, and employing monadic second-order
logic over words.

In this second chapter, we will focus on star-free languages, which can be viewed as a
fragment of regular languages. Star-free languages are significant due to their equivalence
or characterization by Linear Temporal Logic (LTL), a propositional modal logic intro-
duced in [Pnu77], widely used in Model Checking in the context of Formal Verification
(see, for example, [BK08; HV18]). Where in the first chapter we specifically looked at
Büchi’s Theorem, we will now delve into LTL and its completeness result. However, we
cannot fail to mention the following results:

2.1 Star-free Languages and their Characterizations

Definition 2.1.1. Given a finite alphabet Σ, we inductively define the star-free lan-
guages over Σ by:

§ the empty language ∅ is star-free;

§ the language tau is star-free for every a P Σ;

§ if L is a star-free language, then its complement L “ Σ˚zL is also a star-free lan-
guage;

§ if L and M are star-free languages, then the union language L YM and the con-
catenation L ‚M are also star-free;

§ no other language over Σ is star-free.

Remember that Lemma 1.2.14 has shown us that the languages recognized by deter-
ministic finite automata are closed under complement. By the characterizations we have
given, this result also tells us that regular languages are closed under complement. Then,
by the previous definition, we deduce that every star-free language is a regular language.

Similar to what we had with regular and ω-regular languages, we can define star-free
languages of infinite words by allowing the ω-power operation. We refer to [Lad77] for
the first formalization of the star-free languages of infinite words.
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We can now define the notion of star-free expressions. It is immediate to see that the
class of star-free expressions is a fragment of the class of regular expressions:

Definition 2.1.2. Given a finite alphabet Σ, we inductively define star-free expres-
sions by:

§ the constant ∅;

§ the constant ϵ;

§ the constant a, for each a P Σ;

if R and S are star-free expressions, then

§ R is a star-free expression;

§ pR|Sq is a star-free expression;

§ pRSq is a star-free expression.

Now we see that the constants ∅, ϵ and a, for every a P Σ, represent the empty
language, tϵu and the language tau, respectively. Also, if R and S are star-free expressions
representing the (star-free) languages L and M , respectively, then R denotes the language
L, the expression pR|Sq represents the language L YM , and pRSq the language L ‚ M .
This gives us a characterization of star-free languages by star-free expressions.

Example 2.1.3. Let Σ “ ta, bu be a finite alphabet. We will briefly show that the
languages represented by the expressions a˚ and pabq˚ are star-free. Essentially,
we need to see that they can be represented without using the Kleene star but
complement. Specifically, we have:

a˚ “ Σ˚bΣ˚ “ ∅b∅;

pabq˚ “ b∅|∅a|∅aa∅|∅bb∅.
We prove the first equality, and the second is done analogously. As a notation,
when a word w belongs to the language expressed by some expression R, we denote
it by w P R. Suppose that w P a˚. We need to show that we also have w P ∅b∅:

Since the language expressed by a˚ is tϵ, a, aa, aaa, . . . u, we know that w
must be of the form w “ a . . . a with |w| “ n ă ω. We consider w “ ϵ if n “ 0.
For any value of n, it is clear that w R tbu, which is the language expressed by b,
nor does any sub-word of w, since w contains no letter b in any of its positions.
Therefore, although trivially w P ∅ “ Σ˚, we conclude that w R ∅b∅. This gives
us that w P ∅b∅, as we intended.

On the other hand, if w P ∅b∅, then w R ∅b∅. This means that w can-
not contain any letter b. Otherwise, if w is of the form w “ w1bw2, for some
sub-words w1 and w2, we would have w P ∅b∅, as w1, w2 P ∅ “ Σ˚ and clearly
b P tbu. This is a contradiction, since we had w R ∅b∅. Since w does not contain
any b, our word is of the form w “ a . . . a, and so w P a˚, as we wanted.

Notice that intuitively, we are changing the perspective of the languages,
saying that the language expressed by a˚ is also the language of all words that
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do not have in any position any other letter different from a. In this sense, the
language represented by pabq˚ is equivalent to the languages whose words do not
start with b, do not finish with a, and do not contain any sub-word of the form aa
nor bb.

An example of a regular language that is not a star-free language is the one expressed by
paaq˚, for every finite alphabet containing the letter a. Note that the characterizations
used in our previous example would not work, as they do not reflect the condition of
having an even number of a’s. We will not go into details, but to prove that paaq˚ does
not express a star-free language, it is useful to apply the characterization of star-free
languages given by aperiodic finite monoids, introduced in [Sch65].

From the results of this paper, it can also be shown that star-free languages are exactly
the regular languages L for which there exists a constant cL such that for all words x, y, z
and all integers n ě cL, we have

xynz P Lðñ xycLz P L.

Thus, the star-free condition is equivalent to this counter-free or aperiodic condition, which
also lightens a bit of the characterization of star-free languages by automata, as stated
below. Furthermore, this aperiodicity contrasts with the Pumping Lemma, Lemma 1.1.3,
which is weaker since it imposes a condition on the length of the words. This difference in
the aperiodicity and repetitiveness between regular and star-free languages makes sense,
considering that star-free languages are not closed under the Kleene star operation.

Given an automaton A, we will define Lp,q, for p and q states of A, as the (maybe
empty) set of words w such that there is some (finite) path of A on w starting with the
state p and ending with the state q. This notation will simplify the definition of the
so-called counter-free automata:

Definition 2.1.4. An NFA (Büchi automaton) A “ pQ,Σ, δ,Q0, F q is called counter-
free, or aperiodic, if, for every finite word —or sub-word— w P Σ˚, we have that wn P Lp,p
implies w P Lp,p for all states p P Q and all n ě 1.

We claim that counter-free automata form the class of automata that accepts exactly
the star-free languages. For proof and a more extensive presentation on counter-free
automata, we refer to [MP71; Tho81].

Since regular grammars generate the class of regular languages, it would seem rea-
sonable to have some subclass of regular grammars generating the star-free languages.
Unfortunately, these specific grammars have not been widely discussed in the literature,
as their other characterizations have been more useful and tractable. This is not central to
our discussion, so we will not delve into the details either, but we refer interested readers
to [MPR23; CGM78] for further information on the topic.

Analogously to regular languages, we can also characterize star-free languages using
logic. Instead of MSO logic over words, now we will restrict ourselves to the Monadic
First-Order (MFO) logic over words, which is defined equally to MSO but without allow-
ing the use of second-order variables, so we do not have DXφ nor x P X in our syntax.
Proofs demonstrating how this logic captures the class of star-free languages can be found
in [Lad77; MP71; Tho79; Tho90]. Similarly to the grammar case, there is little litera-
ture on the validities or on the axiomatization of MFO logic over words. However, we
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could address this gap considering the axiomatization of LTL as presented in Definition
2.2.1, using the translation from LTL-formulas to MFO-formulas provided in the proof of
Theorem 2.2.5.

As mentioned, we will focus on the completeness of LTL, in the next sections. For a
more comprehensive and exhaustive presentation on star-free languages and their equiv-
alent characterizations, we recommend some short surveys on the topic such as [DG07;
Pin95; Pin20], in addition to the references already suggested.

2.2 Linear Temporal Logic

As we will state in Theorem 2.2.5, Kamp’s Theorem, Monadic First-Order logic over
words —with a restriction on its variables— is as expressive as Linear Temporal Logic.
Consequently, we obtain another characterization for star-free languages, using LTL. Be-
sides its application in Model Checking, the crucial aspect for our purposes is that LTL
is a propositional modal logic whose modal operators provide a linear and discrete notion
of time. This allows us to describe the different states of a system over time and, in our
context, the runs and successful runs produced by an automaton.

Let us first define the syntax and semantics of LTL. In general, we build LTL-formulas
over a set of propositional variables. In practice, we will use the same finite alphabet
notion as before.

Definition 2.2.1. Let Σ be a set of propositional variables. The set of LTL-formulas
over Σ, denoted by FmLTpΣq, is inductively generated by:

§ Σ Ď FmLTpΣq;

§ if φ,ψ P FmLTpΣq, then ␣φ, pφ_ ψq, Xφ, pφ U ψq P FmLTpΣq.

Notation. Similarly to how we simplified the notation to MSO, we denote the logic for
the previous set of formulas as LTL. Strictly speaking, however, we should specify that
we are referring to LTL with the operators X and U .

We will give the operators X and U meaning with the following definition for the
semantics of LTL. Under the LTL framework, we will work with infinite words over the
alphabet PpΣq, so each letter of our words will be a subset of Σ. Also, instead of consid-
ering assignments as with the MSO and MSO0 logics, we will only pick i P N. Each index
i refers to a point in time, and the letter at position i represents the system state at that
specific moment.

Definition 2.2.2. Consider a set of propositional variables Σ, a formula ϕ P FmLTpΣq,
and an infinite word σ “ a0a1a2 ¨ ¨ ¨ P PpΣqω. We denote by σ, i (LTL ϕ or simply σ, i ( ϕ
the satisfaction of ϕ in σ under i P N. We inductively define it by, for p P Σ and
φ,ψ P FmLTpΣq:

§ σ, i ( p :ðñ p P ai;

§ σ, i ( ␣φ :ðñ σ, i * φ;

§ σ, i ( pφ_ ψq :ðñ σ, i ( φ or σ, i ( ψ;

§ σ, i ( Xφ :ðñ σ, i` 1 ( φ;
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§ σ, i ( pφ U ψq :ðñ there is j ě i such that σ, j ( ψ and σ, k ( φ for all i ď k ă j.

If we have σ, i (LTL φ for every σ P PpΣqω and every i P N, then we say that φ is an
(LTL-)tautology.

Notation. If σ, i (LTL φ for all i P N, we abbreviate it by σ (LTL φ. Also, if we have
σ (LTL φ for all σ P PpΣqω, that is, φ is a tautology, we notate it by (LTL φ. Furthermore,
for Γ Ď FmLTpΣq, by σ, i (LTL Γ we mean that σ, i (LTL γ for all γ P Γ.

In this way, we see that the intended meaning of Xφ is to consider the satisfaction
of φ in the next position of our word. And pφ U ψq would express that φ holds until ψ
holds.

From the connectives ␣ and _ we can syntactically define ^, Ñ and Ø as usual.
Again, to omit some parentheses we follow the standard preference hierarchy, with U
having the highest priority among the binary connectives.

We can also define K :“ p^␣p and J :“ ␣K, for p P Σ. We immediately see that K is
never satisfied, whereas J always holds. Moreover, we will consider two additional modal
operators, for every φ P FmLTpΣq:

˛φ :“ J U φ; ˝φ :“ ␣˛␣φ.

By unraveling their definitions, we will have that for σ P PpΣqω and i P N:

σ, i ( ˛φ ðñ there is some j ě i such that σ, j ( φ;

σ, i ( ˝φ ðñ for every j ě i we have σ, j ( φ.

This is why we will call ˛ the eventually or future modality, and ˝ the always or henceforth
modality.

Now, from a given LTL-formula, we will define a language over the alphabet PpΣq,
similarly as we did for the MSO-formulas case:

Definition 2.2.3. Given an LTL-formula φ over the set of propositional variables Σ, the
language defined by φ is

LLTLpφq :“ tσ P PpΣqω : σ, 0 ( φu.

We say that a language L Ď PpΣqω is LTL-definable if there is some LTL-formula φ
such that L “ LLTLpφq.

Since we will use it in the completeness proof, it is worth mentioning that we can also
understand the infinite words σ P PpΣqω as the word of a path of a Kripke structure. We
remind that a relation R Ď AˆB over the sets A and B is called left-total if, for all a P A,
exists b P B such that pa, bq P R.

Definition 2.2.4. A (serial) Kripke structure over the set of propositional variables
Σ is a tuple of the form K “ pS,R, V q. The set S is a set of states or worlds, R Ď S ˆ S
is a left-total relation, and V : S Ñ PpΣq is a valuation or interpretation. A path of K
is a sequence ρ “ xs0, s1, s2, . . . y such that si P S and psi, si`1q P R for every i ă ω. We
define the word of the path ρ as σρ :“ V ps0qV ps1qV ps2q ¨ ¨ ¨ P PpΣqω.
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Remark. Since our Kripke structures are serial, that is, the accessibility relations R are
left-total, it is always possible to construct an (infinite) path of a Kripke structure, and
so an infinite word of that path. Also, some authors, as can be seen in [HV18], include in
the formalization of Kripke structures a subset I Ď S of initial states, and if a path starts
with an initial state, they refer to that path as a run.

We can easily see that every word σ P PpΣqω can be given by a Kripke structure,
while every Kripke structure provides us with at least one path and one correspondent
word in PpΣqω for each state of the structure. For a path ρ “ xs0, s1, s2, . . . y of a Kripke
structure K, if we define the suffix paths ρi :“ xsi, si`1, . . . y for i ă ω —notice that we
have ρ0 “ ρ—, we can characterize the satisfiability notion of Definition 2.2.2 also with
the formalization

K, ρi , φ :ðñ σρ, i ( φ;

for φ any LTL-formula. Unraveling the definitions, it is easy to check that we get the
following equivalences for φ,ψ P FmLTpΣq:

§ K, ρi , aðñ a P V psiq, for every a P Σ;

§ K, ρi , ␣φðñ K, ρi . φ;

§ K, ρi , φ_ ψ ðñ K, ρi , φ or K, ρi , ψ;

§ K, ρi , Xφðñ K, ρi`1 , φ;

§ K, ρi , φ U ψ ðñ there is j ě i so that K, ρj , ψ and K, ρk , φ for all i ď k ă j;

§ K, ρi , ˛φðñ there is some j ě i such that K, ρj , φ;

§ K, ρi , ˝φðñ for every j ě i we have K, ρj , φ.

The following theorem, usually called Kamp’s Theorem, is an improvement of Kamp’s
dissertation results in [Kam68] (see [Rab14] for a simpler and shorter treatment), and
connects LTL with the MFO logic over words. Before stating it, we need to make some
minor clarifications:

Although we originally defined it only for sentences, in the proof of Büchi’s Theorem
we have already seen that languages can be defined using formulas —not sentences— by
extending the alphabet. Also, as we mentioned, the formalization of MFO is similar to
the MSO one, without the second-order character. However, since we are now working
over words σ “ p0p1p2 ¨ ¨ ¨ P PpΣqω instead of words in Σω, the predicates Qσa , for a P Σ,
of our word models will slightly change to Qσa :“ ti P dompσq “ N : a P piu.

Theorem 2.2.5 (Gabbay et al. [Gab+80], Kamp [Kam68]).

i) For every LTL-formula φ, there is some MFO-formula φMFO with a single free
variable such that LLTLpφq “ LωpφMFOq.

ii) For every MFO-formula ψ with a single free variable, there is some LTL-formula
ψLTL such that Lωpψq “ LLTLpψ

LTLq.

Proof. We will only state a translation from LTL-formulas to MFO-formulas with one free
variable, which ensures the first part of the theorem. That translation is given inductively
for φ,ψ P FmLTpΣq, with Σ a set of propositional variables, as follows:
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§ aMFO :“ Qapxq, for every a P Σ;

§ p␣φqMFO :“ ␣φMFO;

§ pφ_ ψqMFO :“ φMFO _ ψMFO;

§ pXφqMFO :“ Dypx ă y ^ @zpz ď x_ y ď zq ^ φMFOpyqq;

§ pφ U ψqMFO :“ Dy
`

x ď y ^ ψMFOpyq ^ @zpx ď z ^ z ă y^ Ñ φMFOpzqq
˘

.

We claim that the translation verifies, for every word σ P PpΣqω and all i P N:

σ, i (LTL φ ðñ σ (αMFO φ
MFOpxq for every (MFO-)assigment α with αpxq “ i.

This would immediately give us i).
Note that in the presented translation, we have only one free variable and at most two

additional bound variables. Therefore, we deduce that MFO logic, without restrictions
on its variables, is more expressive than LTL, which can be translated or reduced into
a fragment of MFO logic using only three variables, with only one being free. This
suggests, as indeed it does, that the converse translation —from MFO-formulas with one
free variable to LTL-formulas—, needed to prove ii), is not as straightforward as the
previous one.

For complete proofs of the theorem, we refer to [Gab+80], which also simplifies Kamp’s
original proof, and to [Hod95]. This last article follows [Gab+80] but uses game theory
tactics. ▲

2.2.1 Axiomatization of LTL

The following definition is based on [Gab+80], where the first explicit axiomatization of
LTL is presented, and [Bur82; KM08]:

Definition 2.2.6. Let Σ be a set of propositional variables. We define the axiomatiza-
tion of LTL as the set of LTL-formulas given, for every φ,ψ P FmLTpΣq, by:
Axiom Schemes:

Any classical propositional tautology; (prop)
X pφÑ ψq Ñ pXφÑ Xψq; (KX )
˝pφÑ ψq Ñ p˝φÑ ˝ψq; (K˝)
␣XφØ X␣φ; (Lin)
˝pφÑ Xφq Ñ pφÑ ˝φq; (Ind)
φ U ψ Ñ ˛ψ; (U1)
φ U ψ Ø pψ _ pφ^ X pφ U ψqqq. (U2)

Inference Rules:

φ φÑ ψ
MP

ψ

φ
NXXφ

φ
N˝˝φ

The formulas that can be obtained by repeatedly applying the presented axioms and rules
are called theorems of LTL. If φ is a theorem of LTL, we denote it by $LTL φ.
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Observe that (KX ) and (K˝) can be understood as the distributive property of X and
˝ over the connective Ñ, respectively. Axiom (Lin) would give us a kind of linearity for
X . Axiom (Ind) provides us with an induction principle, saying “If the satisfaction of φ
implies that it always holds in the next state (position), then the satisfaction of φ implies
its satisfaction in all future states”. Finally, axioms (U1) and (U2) express the behavior
of the binary operator U . Regarding the inference rules, we have the well-known Modus
Ponens (MP ), and the Necessitation rules for both X and ˝.

The presented axiomatization of LTL is likely the easiest to work with, but it can be
improved a bit. In Appendix A we discuss a variation that, through a syntactical relation
we define, reduces the number of required axioms.

Notation. In the following proofs and examples, when we need to call to a particular
instance of a propositional tautology to immediately apply MP over it and some previous
formula, we will usually only state the conclusion of that MP , and abbreviate its justi-
fication with the notation (prop)+i.(+. . . ). Index i is the number labeling the previous
formula we need to use in the MP application. By adding more labels, we refer to the
concatenation of multiple MP applications over the corresponding formulas.

Similarly to the standard Classical Propositional Logic framework, we will have the
Substitution Lemma, or replacement lemma, for LTL-formulas:

Definition 2.2.7. Let Σ be a set of propositional variables. Consider ϕ1, ϕ2 P FmLTpΣq.
We say that ϕ1 and ϕ2 are (LTL)-equivalent if $LTL ϕ1 Ø ϕ2.

Lemma 2.2.8 (Substitution Lemma for LTL). Let Σ be a set of propositional variables.
Consider ϕ1, ϕ2, ψ P FmLTpΣq. If ϕ1 and ϕ2 are equivalent, then:

$LTL ψraÐ ϕ1s Ø ψraÐ ϕ2s;

where a P Σ, and the notation ψraÐ ϕs refers to the formula obtained by substituting all
occurrences of a in ψ by ϕ.

Proof. By induction on the construction of the formula ψ. If ψ is a propositional formula,
then it is clear since we have:

1. ϕ1 Ø ϕ2; by hypothesis
2. ϕ1 Ø ϕ2 Ñ ψraÐ ϕ1s Ø ψraÐ ϕ2s; instance of a prop. tautology
3. ψraÐ ϕ1s Ø ψraÐ ϕ2s. MP over 1. and 2.

That is, we take advantage of the classical propositional Substitution Lemma.
If ψ is of the form ψ “ Xψ1, then, by Induction Hypothesis, we know:

$LTL ψ
1raÐ ϕ1s Ø ψ1raÐ ϕ2s.

To simplify notation, we consider ϕ11 :“ ψ1raÐ ϕ1s and ϕ12 :“ ψ1raÐ ϕ2s. We have:

1. ϕ11 Ø ϕ12; by Induction Hypothesis
2. ϕ11 Ñ ϕ12; (prop)+1.
3. ϕ12 Ñ ϕ11; (prop)+1.
4. X pϕ11 Ñ ϕ12q; NX over 2.
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5. X pϕ12 Ñ ϕ11q; NX over 3.
6. X pϕ11 Ñ ϕ12q Ñ pXϕ11 Ñ Xϕ12q; instance of (KX )
7. X pϕ12 Ñ ϕ11q Ñ pXϕ12 Ñ Xϕ11q; instance of (KX )
8. Xϕ11 Ñ Xϕ12; MP over 4. and 6.
9. Xϕ12 Ñ Xϕ11; MP over 5. and 7.
10. Xϕ11 Ø Xψ12. (prop)+8.+9.

Thus, $LTL Xϕ11 Ø Xψ12, which means that we have $LTL Xψ1raÐ ϕ1s Ø Xψ1raÐ ϕ2s.
That is, we have shown $LTL ψraÐ ϕ1s Ø ψraÐ ϕ2s, what we wanted.

The last case is ψ “ ψ1 U ψ2. We need to derive, considering ϕ1 and ϕ2 to be equivalent,
the theorem

$LTL pψ
1 U ψ2qraÐ ϕ1s Ø pψ1 U ψ2qraÐ ϕ2s.

Maintaining the notations ϕ1i “ ψ1ra Ð ϕis and ϕ2i “ ψ2ra Ð ϕis for i P t1, 2u, we also
consider µ :“ ϕ11 U ϕ21 ^ ␣pϕ12 U ϕ22q. Due to space limitations, we first state the derived
theorems, and then we list their justifications:

1. ϕ11 Ø ϕ12;

2. ϕ21 Ø ϕ22;

3. ϕ11 U ϕ21 Ñ pϕ21 _ pϕ
1
1 ^ X pϕ11 U ϕ21qq;

4. pϕ22 _ pϕ
1
2 ^ X pϕ12 U ϕ22qq Ñ ϕ12 U ϕ22;

5. µÑ
“

pϕ21 _ pϕ
1
1 ^ X pϕ11 U ϕ21qqq ^ ␣pϕ22 _ pϕ12 ^ X pϕ12 U ϕ22qqq

‰

;

6. µÑ
“

pϕ21 _ pϕ
1
1 ^ X pϕ11 U ϕ21qqq ^ ␣ϕ22 ^ p␣ϕ12 _␣X pϕ12 U ϕ22qqq

‰

;

7. ␣ϕ22 Ñ ␣ϕ21;

8. µÑ
“

pϕ21 _ pϕ
1
1 ^ X pϕ11 U ϕ21qqq ^ ␣ϕ21 ^ p␣ϕ12 _␣X pϕ12 U ϕ22qqq

‰

;

9. µÑ
“

ϕ11 ^ X pϕ11 U ϕ21q ^ ␣ϕ21 ^ p␣ϕ12 _␣X pϕ12 U ϕ22qqq
‰

;

10. µÑ
“

ϕ11 ^ X pϕ11 U ϕ21q ^ ␣ϕ21 ^␣X pϕ12 U ϕ22q
‰

;

11. µÑ
`

X pϕ11 U ϕ21q ^ ␣X pϕ12 U ϕ22q
˘

;

12. ␣X pϕ12 U ϕ22q Ø X␣pϕ12 U ϕ22q;
13. µÑ

`

X pϕ11 U ϕ21q ^ X␣pϕ12 U ϕ22q
˘

;

14.
`

X pϕ11 U ϕ21q ^ X␣pϕ12 U ϕ22q
˘

Ñ Xµ;
15. µÑ Xµ;
16. ˝ pµÑ Xµq ;
17. µÑ ˝µ;

18. ˝µÑ p˝pϕ11 U ϕ21q ^ ˝␣pϕ12 U ϕ22qq;
19. µÑ

`

˝pϕ11 U ϕ21q ^ ˝␣pϕ12 U ϕ22q
˘

;

20. µÑ ˝␣pϕ12 U ϕ22q;
21. ϕ22 Ñ ϕ12 U ϕ22;
22. ␣pϕ12 U ϕ22q Ñ ␣ϕ22;

23. ˝p␣pϕ12 U ϕ22q Ñ ␣ϕ22q;

24. ˝␣pϕ12 U ϕ22q Ñ ˝␣ϕ22;

25. µÑ ˝␣ϕ22;

26. ϕ11 U ϕ21 Ñ ˛ϕ21;
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27. µÑ p˝␣ϕ22 ^ ˛ϕ
2
1q;

28. ˝pϕ21 Ñ ϕ22q;

29. ˝pϕ21 Ñ ϕ22q Ñ p˛ϕ21 Ñ ˛ϕ
2
2q;

30. ˛ϕ21 Ñ ˛ϕ
2
2;

31. µÑ p˝␣ϕ22 ^ ˛ϕ
2
2q;

32. p˝␣ϕ22 ^ ˛ϕ
2
2q Ñ K;

33. µÑ K;

34. ␣µ;

35. ϕ11 U ϕ21 Ñ ϕ12 U ϕ22.

Each derivation is given by:

1. Induction Hypothesis
2. Induction Hypothesis
3. Instance of axiom (U2)
4. Instance of axiom (U2)
5. (prop)+3.+4.
6. (prop)+5.
7. (prop)+2.
8. (prop)+6.+7.
9. (prop)+8.
10. (prop)+9.
11. (prop)+10.
12. Instance of (Lin)
13. (prop)+11.+12.
14. See Example 2.2.10
15. (prop)+13.+14.
16. Application of rule N˝ over 15.
17. MP over 16. and an instance of axiom (Ind)
18. Theorem of K˝, and so of LTL, as explained below
19. (prop)+17.+18.
20. (prop)+19.
21. (prop)+4.
22. (prop)+21.
23. Application of rule N˝ over 22.
24. MP over 23. and an instance of axiom (K˝)
25. (prop)+20.+24.
26. Instance of axiom (U1)
27. (prop)+25.+26.
28. Application of rule N˝ over 2.
29. Theorem of K˝, and so of LTL, as explained below
30. MP over 28. and 29.
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31. (prop)+27.+30.
32. Instance of a propositional tautology, considering the definition of ˛
33. (prop)+31.+32.
34. (prop)+33.
35. (prop)+34.

Then, we have concluded the theorem of LTL

$LTL ϕ
1
1 U ϕ21 Ñ ϕ12 U ϕ22.

Interchanging the roles of ϕ11 and ϕ12, and of ϕ21 and ϕ22, we deduce the other implication,
so we have the equivalence

$LTL ϕ
1
1 U ϕ21 Ø ϕ12 U ϕ22.

For every formula ϕ, we know that

pψ1 U ψ2qraÐ ϕs “ ψ1raÐ ϕs U ψ2raÐ ϕs,

so the previous equivalence is indeed the theorem

$LTL pψ
1 U ψ2qraÐ ϕ1s Ø pψ1 U ψ2qraÐ ϕ2s,

which provides us with the property we were looking for in the case ψ “ ψ1 U ψ2.
In conclusion, we have proved, by induction on the construction of ψ, that if ϕ1 and

ϕ2 are equivalent, then:
$LTL ψraÐ ϕ1s Ø ψraÐ ϕ2s.

▲

Therefore, if we know that ψpϕ1q and ϕ1 Ø ϕ2 are theorems of LTL for ψ, ϕ1, ϕ2 P
FmLTpΣq, then we have:

1. ψpϕ1q; assumed
2. ϕ1 Ø ϕ2; assumed
3. ψpϕ1q Ø ψpϕ2q; Substitution Lemma using ψ and 2.
4. ψpϕ1q Ñ ψpϕ2q; (prop)+3.
5. ψpϕ2q. MP over 3. and 4.

In our derivations, we will skip these steps by stating only the conclusion, the formula
of 5. in this case. We will justify the step by “Substitution Lemma on i. by j.”, where i.
would be the label for the formula of the form ψpϕ1q, and j. the label for the equivalence
of the form ϕ1 Ø ϕ2. Note that if ψ is propositional, we could simply state “(prop)+i.+j.”.

Example 2.2.9. We can show that, for φ an LTL-formula, we have

$LTL ˝φÑ pφ^ X˝φq. (˝Unr)

To verify this, we must first remember that ˝φ is an abbreviation of ␣pJ U ␣φq.
We consider the following sequence of theorems of LTL:

1. J U ␣φØ p␣φ_ pJ ^ X pJ U ␣φqqq; instance of axiom (U2)
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2. J U ␣φØ p␣φ_ X pJ U ␣φqq; (prop)+1.
3. p␣φ_ X pJ U ␣φqq Ñ J U ␣φ; (prop)+2.
4. ␣pJ U ␣φq Ñ ␣p␣φ_ X pJ U ␣φqq; (prop)+3.
5. ␣pJ U ␣φq Ñ p␣␣φ^␣X pJ U ␣φqq; (prop)+4.
6. φØ ␣␣φ; instance of prop. tautology
7. ␣pJ U ␣φq Ñ pφ^␣X pJ U ␣φqq; Substitution Lemma on 5. by 6.
8. ␣X pJ U ␣φq Ø X␣pJ U ␣φq; instance of axiom (Lin)
9. ␣pJ U ␣φq Ñ pφ^ X␣pJ U ␣φqq; Substitution Lemma on 7. by 8.
10. ˝φÑ pφ^ X˝φq. by 9. and the definition of ˝

Then, we conclude that $LTL ˝φ Ñ pφ ^ X˝φq. Semantically, this theorem of
LTL could be understood as an unraveling or a definition of the operator ˝. It
is worth mentioning that this theorem is often presented as an axiom [Bur82;
Gab+80; KM08], since different formalizations may adopt varying definitions for ˝.

We take the opportunity to also derive the converse implication:

1. ˝φÑ pφ^ X˝φq; instance of (˝Unr)
2. X p˝φÑ pφ^ X˝φqq; NX over 1.
3. X p˝φÑ pφ^ X˝φqq Ñ pX˝φÑ X pφ^ X˝φqq; instance of (KX )
4. X˝φÑ X pφ^ X˝φq; MP over 2. and 3.
5. pφ^ X˝φq Ñ X pφ^ X˝φq; (prop)+4.
6. ˝rpφ^ X˝φq Ñ X pφ^ X˝φqs; N˝ over 5.
7. ˝rpφ^ X˝φq Ñ X pφ^ X˝φqs Ñ ppφ^ X˝φq Ñ ˝φq; instance of (Ind)
8. pφ^ X˝φq Ñ ˝φ. MP over 6. and 7.

Recall that a modal logic L˝ with the unary operator ˝ is called normal if:

§ L˝ contains all propositional tautologies;

§ L˝ contains all formulas of the form ˝pφ Ñ ψq Ñ p˝φ Ñ ˝ψq, for modal formulas
φ and ψ;

§ L˝ is closed under substitutions of variables;

§ L˝ is closed under the rule MP ; and

§ L˝ is closed under the necessitation rule of ˝.

For a normal modal logic L˝, we also define the operator ˛ by ˛φ :“ ␣˝␣φ, for φ a
modal formula.

Now observe that LTL is, in fact, a bi-modal logic, as we have defined two not inter-
definable modal operators, X and ˝, besides the U and the ˛ operators related to ˝.
Moreover, the fragments of LTL with the operators ˝ “ X and ˝ “ ˝ will be normal.
This is clear considering we have the axioms (prop), (KX ) and (K˝), and the inference
rules MP , NX and N˝. Note that, by axiom (Lin), we know that ␣X␣φ is equivalent to
X␣␣φ, which is also equivalent to Xφ. Then, for ˝ “ X , the corresponding operator ˛
defined by ˛φ “ ␣X␣φ is X itself. No need to mention that, for ˝ “ ˝, we have ˛ “ ˛.
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Given this, we can embed or derive within LTL all the theorems of the modal logic
K˝, for both cases ˝ “ X and ˝ “ ˝. In fact, for the case of the ˝ operator, we can
derive all the theorems of the logic S4, as it is not difficult to prove that $LTL ˝φ Ñ φ
and $LTL ˝φÑ ˝˝φ:

1. ˝φÑ pφ^ X˝φq; instance of (˝Unr)
2. ˝φÑ φ. (prop)+1.

So $LTL ˝φÑ φ, and:

1. ˝φÑ pφ^ X˝φq; instance of (˝Unr)
2. ˝φÑ X˝φ; (prop)+1.
3. ˝p˝φÑ X˝φq; N˝ over 2.
4. ˝p˝φÑ X˝φq Ñ p˝φÑ ˝˝φq; instance of axiom (Ind)
5. ˝φÑ ˝˝φ. MP over 3. and 4.

Leading us to conclude that $LTL ˝φÑ ˝˝φ.
To illustrate the usefulness of our findings, note that the theorem derived in the fol-

lowing example can now be readily accepted, given that it is derivable within logic KX .

Example 2.2.10. We will explicitly prove that, for every φ,ψ P FmLTpΣq, we have

$LTL ␣pXφÑ ␣Xψq Ñ X␣pφÑ ␣ψq.

We consider the following sequence:

1. X pφÑ ␣ψq Ñ pXφÑ X␣ψq; instance of axiom (KX )
2. ␣Xψ Ø X␣ψ; instance of axiom (Lin)
3. X pφÑ ␣ψq Ñ pXφÑ ␣Xψq; Substitution Lemma on 1. by 2.
4. ␣pXφÑ ␣Xψq Ñ ␣X pφÑ ␣ψq; (prop)+3.
5. ␣X pφÑ ␣ψq Ø X␣pφÑ ␣ψq; instace of (Lin)
6. ␣pXφÑ ␣Xψq Ñ X␣pφÑ ␣ψq. Substitution Lemma on 4. by 5.

That is, we have shown $LTL ␣pXφ Ñ ␣Xψq Ñ X␣pφ Ñ ␣ψq, as we wanted.
Notice that, by the definition of the connective ^, the given theorem is equivalent
to

$LTL Xφ^ Xψ Ñ X pφ^ ψq.

2.2.2 Completeness of LTL

We seek a completeness result for the syntactical axiomatization introduced in Definition
2.2.6 with respect to the semantic satisfaction given in Definition 2.2.2. This will be
formalized in Theorem 2.2.24. To demonstrate this result, we will adapt the standard
method to prove completeness: the soundness implication is shown directly by induction,
and the completeness implication by contraposition using a canonical model built from
maximal consistent sets. However, we first need to introduce some definitions and lemmas:
Definition 2.2.11. A set of LTL-formulas Γ is (LTL-)inconsistent if $LTL

Ž

γPΓ0
␣γ

for some finite Γ0 Ď Γ. Otherwise, Γ is consistent. An LTL-formula φ is considered
inconsistent (consistent) if tφu is so.
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We can establish some characterizations for inconsistency and consistency, which will
be useful to work with:

Lemma 2.2.12. The set of LTL-formulas Γ is inconsistent if and only if

$LTL

ľ

γPΓ0

γ Ñ K for some finite Γ0 Ď Γ.

Proof. Immediate from the definition: by instances of propositional tautologies, we know
that

Ž

γPΓ0
␣γ, for some finite Γ0 Ď Γ, is equivalent to (␣

Ź

γPΓ0
γ and to)

Ź

γPΓ0
γ Ñ K.

That is, Γ is inconsistent if and only if $LTL
Ź

γPΓ0
γ Ñ K. ▲

Since it also holds in Classical Propositional Logic, it is easy to prove by instances of
propositional tautologies, that we also have the so-called Principle of Contradiction, or
Principle of Inconsistency, in LTL: K is equivalent to the conjunction of any LTL-formula
and its negation. Then, from the previous lemma and the Principle of Contradiction, we
deduce that if Γ is inconsistent, then

$LTL

ľ

γPΓ0

γ Ñ pφ^␣φq,

for some finite Γ0 Ď Γ and every LTL-formula φ. On the other hand, we will also have
that if

$LTL

ľ

γPΓ0

γ Ñ pφ^␣φq,

for some finite Γ0 Ď Γ and some LTL-formula φ, then Γ is inconsistent.

Lemma 2.2.13. If Γ is a consistent set of LTL-formulas, then &LTL ␣γ for every γ P Γ.

Proof. Immediate by reductio ad absurdum: consider Γ to be a consistent set, and let
γ1 P Γ be such that $LTL ␣γ

1. Since tγ1u is a finite subset of Γ and we have assumed
$LTL ␣γ

1, we get that Γ has to be inconsistent, contradicting our hypothesis. ▲

Observe that the converse implication of the previous lemma is trivially true for single
formulas: if &LTL ␣γ, then γ is consistent. However, it does not hold for sets of more than
one formula. For example, consider the set Γ “ tp,␣pu, for p a propositional variable.
We have &LTL ␣p and &LTL ␣␣p, but Γ is clearly not consistent since $LTL ␣p_␣␣p.

Lemma 2.2.14. A finite set of LTL-formulas Γ is inconsistent if and only if $LTL
Ž

γPΓ␣γ. Dually, a finite Γ is consistent if and only if &LTL
Ž

γPΓ␣γ.

Proof. If Γ is a finite inconsistent set, then there is some Γ0 Ď Γ such that $LTL
Ž

γPΓ0
␣γ.

By instances of propositional tautologies, we easily deduce $LTL
Ž

γPΓ␣γ. On the other
hand, if $LTL

Ž

γPΓ␣γ, as we trivially know that Γ Ď Γ, by definition we get that Γ is
inconsistent.

The dual statement does not need proof, as it is the contraposition of what we have
just shown, but we will demonstrate it directly anyway: if Γ is a finite consistent set, then

&LTL

ł

γPΓ0

␣γ for every Γ0 Ď Γ.

In particular, we have &LTL
Ž

γPΓ␣γ. Conversely, if &LTL
Ž

γPΓ␣γ, then &LTL
Ž

γPΓ0
␣γ

for every Γ0 Ď Γ. Otherwise, by instances of propositional tautologies, we would get
$LTL

Ž

γPΓ␣γ, a contradiction. Therefore, we conclude that Γ has to be consistent. ▲
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The following lemma is almost immediate, but it is worth mentioning as it will simplify
some of our proofs, and serves as a generalization of the previous lemma:

Lemma 2.2.15. If a set of LTL-formulas Γ is consistent, then every subset Γ1 Ď Γ is
consistent. Dually, if the set of LTL-formulas ∆ is inconsistent, then every ∆1 Ě ∆ is
inconsistent.

Proof. Let Γ be a consistent set and let Γ1 be a subset of Γ. By the consistency of Γ, we
know &LTL

Ž

γPΓ0
␣γ for every finite Γ0 Ď Γ. In particular, we also have &LTL

Ž

γ1PΓ1
0
␣γ1

for every finite Γ10 Ď Γ1. Thus, we deduce that Γ0 is also consistent.
We also prove the dual statement: if ∆ is inconsistent, then $LTL

Ž

δP∆0
␣δ for some

finite ∆0 Ď ∆. For every ∆1 Ě ∆, we clearly have ∆0 Ď ∆1, so we conclude that ∆1 is
also inconsistent. ▲

The following lemma is required for proving Lemma 2.2.20, which will be crucial for
the completeness proof:

Lemma 2.2.16. Let Γ be a consistent set of LTL-formulas, and let φ be an LTL-formula.
Then ΓY tφu is consistent or ΓY t␣φu is consistent, or both.

Proof. Let us assume that Γ is consistent but that both Γ Y tφu and Γ Y t␣φu are
inconsistent, and we will see that we get a contradiction. From our assumptions, we have:

$LTL

ł

γPΓ0

␣γ and $LTL

ł

γ1PΓ1
0

␣γ1,

for some finite Γ0 Ď Γ Y tφu and some finite Γ10 Ď Γ Y t␣φu. By these theorems and
instances of propositional tautologies, we can derive, for Γ2 “ pΓ0 Y Γ10qztφ,␣φu:

$LTL

ł

γPΓ2

␣γ _␣φ and $LTL

ł

γPΓ2

␣γ _␣␣φ.

From an instance of a propositional tautology and MP , we also deduce

$LTL

¨

˝

ł

γPΓ2

␣γ _␣φ

˛

‚^

¨

˝

ł

γPΓ2

␣γ _␣␣φ

˛

‚.

Now, using an instance of the form
»

–

¨

˝

ł

ϕPΦ

ϕ_ ξ

˛

‚^

¨

˝

ł

ϕPΦ

ϕ_␣ξ

˛

‚

fi

fl Ñ

¨

˝

ł

ϕPΦ

ϕ

˛

‚,

for ΦY tξu Ď FmLTpΣq (notice that it would express the Resolution rule), and MP again,
we can conclude $LTL

Ž

γPΓ2 ␣γ. Since Γ2 is a finite subset of Γ, we find that Γ has to be
inconsistent, contradicting our first assumption. This proves, by reductio ad absurdum,
that if Γ is consistent, then ΓY tφu or ΓY t␣φu, or both, are also consistent. ▲

Now we define the notion of maximal consistent set (MCS) of LTL-formulas. We
will also state some lemmas characterizing MCSs, which will be relevant in the proof of
completeness:
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Definition 2.2.17. We say that a consistent set of LTL-formulas Γ is maximal (MCS)
if it is not a proper subset of any other consistent set.

Lemma 2.2.18. For every MCS Γ and every LTL-formula φ R Γ, the set Γ Y tφu is
inconsistent.

Proof. By reductio ad absurdum: suppose Γ to be an MCS such that ΓYtφu is consistent.
We immediately get a contradiction, since we assumed Γ not to be a proper subset of any
other consistent set, but trivially Γ Ă ΓY tφu. ▲

Lemma 2.2.19. If Γ is an MCS, then, for every LTL-formula φ, either φ P Γ or ␣φ P Γ,
but not both.

Proof. Let Γ be an MCS. We cannot have φ,␣φ P Γ at the same time for any φ P FmLTpΣq.
Otherwise, since $LTL ␣φ_␣␣φ, we would get a contradiction with the assumption that
Γ is consistent.

We cannot have both φ,␣φ R Γ either: since Γ is an MCS, we would deduce, by Lemma
2.2.18, that ΓY tφu and ΓY t␣φu are both inconsistent. Given that Γ is consistent, this
leads to a contradiction, as we established in the proof of Lemma 2.2.16. Then we conclude
that, for every LTL-formula φ, exclusively φ P Γ or ␣φ P Γ. ▲

The following lemma ensures that every consistent set of formulas can be extended
or completed to be an MCS. This lemma closely parallels the well-known Lindenbaum’s
Lemma.

Lemma 2.2.20. If Γ is a consistent set, then there is some MCS ∆ such that Γ Ď ∆.

Proof. Using a numerable set of propositional variables Σ, we know that we can enumerate
all LTL-formulas, so let us consider FmLTpΣq “ tφi : i ă ωu. We build a sequence of sets
of formulas Γ “ Γ0 Ď Γ1 Ď Γ2 Ď . . . with the following rule:

Γi`1 :“

"

Γi Y tφiu, if Γi Y tφiu is consistent;
Γi Y t␣φiu, otherwise.

Note that for every i ă ω, there exists some j ă ω such that ␣φi “ φj , and there
are infinitely many equivalent formulas for each. Thus, in some sense, this construction
might be considered quite inefficient.

In any case, we define ∆ :“
Ť

iăω Γi, and we will show that ∆ is an MCS, which
clearly verifies Γ “ Γ0 Ď ∆. By Lemma 2.2.16, as Γ “ Γ0 is consistent, we see that
Γ1 is also consistent because if Γ0 Y tφ0u is not, then Γ0 Y t␣φ0u has to be consistent.
Inductively, we find that Γi is consistent for every i ă ω. Therefore, ∆ will also be
consistent: for every finite ∆0 Ď ∆ there is some k ă ω, specifically, we could consider
k “ 1 `maxti ă ω : φi P ∆0u, such that ∆0 Ď Γk. Then, by Lemma 2.2.15, we deduce
that ∆0 is consistent and, by Lemma 2.2.14, we have &LTL

Ž

δP∆0
␣δ. Since this applies

to all finite subsets of ∆, we find that ∆ is consistent, as we have &LTL
Ž

δP∆0
␣δ for

every finite ∆0 Ď ∆.
It only remains to show that ∆ is maximal: consider ∆1 to be a consistent set such

that ∆ Ď ∆1. By Lemma 2.2.15, we can assume, without loss of generality, that ∆1 “
∆Y tφku, for some LTL-formula φk with k ă ω. We need to see that necessarily ∆1 “ ∆,
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equivalently, that φk P ∆. We know that Γk`1 Ď ∆ contains either φk or ␣φk, but not
both. Since every subset of ∆1 is consistent, in particular Γk Y tφku Ď ∆ Y tφku “ ∆1

is consistent. Therefore, by our construction rule, we have Γk`1 :“ Γk Y tφku, and then
φk P Γk`1 Ď ∆. In conclusion, we get φk P ∆, so ∆1 “ ∆. This shows that ∆ is
maximal. ▲

As we have mentioned, and as is usual in completeness proofs, we will build a canonical
model using MCSs. Additionally, we will use a variation of the so-called Fischer-Ladner
closure, originally introduced in [FL79]:

Definition 2.2.21. Given a set of propositional variables Σ, consider φ P FmLTpΣq. We
define the Fischer-Ladner closure of φ as the least set FLpφq of LTL-formulas such
that, for any ψ, ϕ P FmLTpΣq:

§ φ P FLpφq;

§ FLpφq is closed under subformulas;

§ if ψ P FLpφq and ψ is not of the form ψ “ ␣ϕ, then ␣ψ P FLpφq;

§ ␣Xψ P FLpφq if and only if X␣ψ P FLpφq;

§ if ψ U ϕ P FLpφq, then J U ϕ, X pψ U ϕq P FLpφq.

We declare without proof, as it is almost immediate, that FLpφq is a finite set for every
LTL-formula φ. In this sense, note that the condition in the third item, that ψ is not
a negation, prevents us from obtaining infinitely equivalent formulas in FLpφq, ensuring
that we cannot concatenate negations. An alternative way to state the third item is to
say that FLpφq is closed under negations modulo equivalences.

It is also trivial to check that if ψ is a subformula of φ, then FLpψq Ď FLpφq, as we
have ψ P FLpφq.

We observe that, roughly speaking, FLpφq consists of the formulas that are “relevant”
to determine the satisfiability of φ. In practice, FLpφq can be seen as the set of subformu-
las of φ, its negations, and the formulas derived by applying MP over those subformulas
and negations and some instance of the LTL axioms (Lin), (U1) or (U2).

With this intuition, we could expect that, for instance, if ˝φ P FLpψq, for any LTL-
formulas φ and ψ, then φ,X˝φ P FLpψq, following our derived theorem (˝Unr). Although
it is not explicitly given in the previous definition, we can see that it is the case. We must
recall, however, that the ˝ and ˛ modal operators are not primitive. We should con-
sider their definitions based on primitive connectives to build the Fischer-Ladner closure
properly. We see that FLp˝φq, for some LTL-formula φ, is given by:

FLp˝φq “ FLp␣˛␣φq “ FLp␣pJ U ␣φqq “
“ t␣pJ U ␣φq,J U ␣φ,J,␣φ,X pJ U ␣φq,␣J, φ,␣X pJ U ␣φq,X␣pJ U ␣φqu “

“ t˝φ,˛␣φ,J,␣φ,X˛␣φ,K, φ,␣X˛␣φ,X˝φu.

Therefore, we have both φ,X˝φ P FLp˝φq. This gives us that, following our expectations,
if ˝φ P FLpψq, for any LTL-formulas φ and ψ, then φ,X˝φ P FLpψq.

Before stating and proving the completeness result we seek, we need to consider the
following construction and the proposition distilled from it:
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Definition 2.2.22. For Σ a set of propositional variables, and for Γ Ď FmLTpΣq, we define
the following set of formulas:

X´1Γ :“ tγ : Xγ P Γu.

Proposition 2.2.23. Let Σ be a set of propositional variables, and consider Γ Ď FmLTpΣq.
If Γ is consistent, then X´1Γ is also consistent.

Proof. By contraposition: we assume X´1Γ to be inconsistent, and aim to demonstrate
that Γ must also be inconsistent. We first prove an auxiliary result, for every φ1, φ2 P

FmLTpΣq:

1. X p␣φ1 Ñ φ2q Ñ pX␣φ1 Ñ Xφ2q; instance of (KX )
2. X␣φ1 Ø ␣Xφ1; instance of (Lin)
3. X p␣φ1 Ñ φ2q Ñ p␣Xφ1 Ñ Xφ2q; Substitution Lemma on 1. by 2.
4. X p␣␣φ1 _ φ2q Ñ p␣␣Xφ1 _ Xφ2q; definition of Ñ
5. ␣␣φ1 Ø φ1; instance of prop. tautology
6. ␣␣Xφ1 Ø Xφ1; instance of prop. tautology
7. X pφ1 _ φ2q Ñ p␣␣Xφ1 _ Xφ2q; Substitution Lemma on 4. by 5.
8. X pφ1 _ φ2q Ñ pXφ1 _ Xφ2q. Substitution Lemma on 7. by 6.

That is, we see that $LTL X pφ1 _ φ2q Ñ pXφ1 _Xφ2q. We could have also derived this
directly, as it is a theorem of the logic KX .

Now, inductively, it is easy to check that our result can be extended to

$LTL X

˜

ł

γPΓ

γ

¸

Ñ

˜

ł

γPΓ

Xγ

¸

,

for every finite Γ Ď FmLTpΣq.
The assumption of X´1Γ being inconsistent gives us $LTL

Ž

δP∆0
␣δ for some finite

∆0 Ď X´1Γ. Now we can derive:

1.
ł

δP∆0

␣δ; derivable by hypothesis

2. X

˜

ł

δP∆0

␣δ

¸

; rule NX over 1.

3. X

˜

ł

δP∆0

␣δ

¸

Ñ

˜

ł

δP∆0

X␣δ

¸

; from our previous result

4.
ł

δP∆0

X␣δ; MP over 2. and 3.

5δ. ␣X δ Ø X␣δ; for every δ P ∆0, instances of (Lin)

6.
ł

δP∆0

␣X δ; Substitution Lemma on 4. by all the 5δ.

Note that δ P ∆0 Ď X´1Γ implies, by Definition 2.2.22, that we have X δ P Γ. Then,
it is clear that the set of formulas defined as ∆X :“ tX δ : δ P ∆0u will be a finite subset
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of Γ and
$LTL

ł

δ1P∆X

␣δ1,

thanks to our previous derivation $LTL
Ž

δP∆0
␣X δ. The theorem of LTL we have found

gives us that Γ is inconsistent, as we needed to see. This proves our lemma by contrapo-
sition. ▲

With all the results presented, we now have the tools needed to prove the completeness
theorem:

Theorem 2.2.24 (Completeness of LTL). Given a set of propositional variables Σ, for
every φ P FmLTpΣq we have:

$LTL φ ðñ (LTL φ.

Proof. Firstly, we consider the implication from left to right, the soundness implication.
It follows by induction on the construction of the theorems of LTL. We only need to
check that every axiom scheme of the axiomatization of LTL is a tautology, and that the
inference rules preserve validity. For instance, in the MP case we should prove that if
(LTL tφ1, φ1 Ñ φ2u, then (LTL φ2, which follows easily from the definition of satisfiability.

We prove the other implication, the completeness implication, by contraposition. Hence,
we need to show that &LTL φ implies *LTL φ, where that last expression means that there
is some σ P PpΣqω and some i P N such that σ, i * φ.

Since ␣␣ψ is equivalent to ψ, we can assume without loss of generality φ “ ␣ψ. Note
that the statement &LTL ␣ψ tells us that ψ is a consistent formula. Moreover, *LTL ␣ψ
holds if there is some σ P PpΣqω and some i P N such that σ, i ( ψ, that is, if ψ is
satisfiable. So, in essence, what we need to prove is that every consistent formula is
satisfiable.

Consider the formula ψ to be consistent; we must prove its satisfiability. From what
we have seen in the previous section, we know it is enough to provide a Kripke structure
K over Σ, and some path ρ of K such that K, ρ , ψ holds.

We will build a canonical model, in this case, a Kripke structure, by employing MCSs
and the Fischer-Ladner closure: we consider the Kripke structure K “ pS,R, V q, where
S :“ tΓX FLpψq : Γ is an MCSu, the relation R Ď S ˆ S is given by:

p∆,∆1q P R :ðñ X´1∆ Ď ∆1;

and we define V p∆q :“ ∆XΣ, that is, V p∆q is the set of propositional variables appearing
in ∆ as (atomic) formulas. Note that we have defined one K for each formula ψ.

Suppose ∆ P S; by definition and by Lemma 2.2.15, the state ∆ is a consistent set
included in FLpψq. The set ∆ is not necessarily maximal, but it has a maximal aspect
or remnant within the formulas of FLpψq. By Proposition 2.2.23, since ∆ is consistent,
we have that X´1∆ is also consistent. Moreover, FLpψq is closed under subformulas, in
particular under the X operator, so X´1∆ Ď FLpψq, too. By Lemma 2.2.20, we know
that there is some MCS containing X´1∆. Therefore, there is always some ∆1 such that
p∆,∆1q P R, that is, the relation R is left-total. This gives us that K is certainly a Kripke
structure. Not only that but, since FLpψq is a finite set, we know that K has a finite
number of states, specifically, a maximum of 2FLpψq states.
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Now we aim to find a path ρ of the Kripke structure K such that K, ρ , ψ. Firstly, we
enumerate the formulas of the form ϕ U ϕ1 within our Kripke structure, for some n ă ω:

tϕ U ϕ1 : ϕ U ϕ1 P FLpψqu “ tϕ0 U ϕ10, . . . , ϕn´1 U ϕ1n´1u.

We inductively define the path ρψ “ x∆0,∆1, . . . y via the following procedure:

§ Step 0: ∆0 is such that ψ P ∆0;

§ Step i` 1: assume that we have already defined the first k states ∆0,∆1, . . . ,∆k´1

of our path ρψ, and let j ” i pmodnq:

§ if ϕj U ϕ1j P ∆k´1 and ϕ1j R ∆k´1, then we consider some sequence of states
∆1k, . . . ,∆

1
l such that p∆k´1,∆

1
kq, p∆

1
m,∆

1
m`1q P R for every k ď m ă l, and

ϕ1j P ∆
1
l. We choose ∆k :“ ∆1k, . . . ,∆l :“ ∆1l.

§ otherwise, we pick ∆k to be any arbitrary state such that p∆k´1,∆kq P R.

We will see that ρψ satisfies K, ρψ , ψ, as we wanted. This will follow from the Truth
Lemma given in Claim 4 (in Page 56). However, before proving this, we must show that
ρψ is well-defined.

Since we assumed ψ to be consistent and trivially ψ P FLpψq, by Lemma 2.2.20 we
know that there is some element ∆0 P S such that ψ P ∆0. Also, considering that R is left-
total, for every ∆k´1 P S there is some (arbitrary) ∆k P S that ensures p∆k´1,∆kq P R.
Then, to see that ρψ is well-defined, we have to prove that the sequence of states ∆1k, . . . ,∆1l
of our definition certainly exists:

Consider an element ∆0 P S with ϕ U ϕ1 P ∆0 and ϕ1 R ∆0. Then, we need to
demonstrate the existence of a sequence ∆1, . . . ,∆l P S such that p∆m,∆m`1q P R for
every 0 ď m ă l, and ϕ1 P ∆l. We will prove it by reductio ad absurdum.

To find the required contradiction, we will deduce some auxiliary theorems of LTL
related to the states of S, presented in the following three claims. For clarity, we will use
some abbreviations. The first one, for ∆ a finite set of formulas:

p∆ :“

˜

ľ

δP∆

δ

¸

.

Claim 1. For every (finite) ∆1 Ď ∆ P S, we have:

$LTL
x∆1 Ñ

¨

˚

˝

ł

∆2PS
∆1Ď∆2

x∆2

˛

‹

‚

. (C1)

Proof of Claim 1. For every ϕ P FLpψq, we have, by instances of propositional tau-
tologies:

$LTL
x∆1 Ø

´

px∆1 ^ ϕq _ px∆1 ^␣ϕq
¯

. (C1P)

Since ∆ P S is consistent, its subset ∆1 is also consistent, by Lemma 2.2.15. Then,
thanks to Lemma 2.2.20, we know that we can find some MCS containing ∆1. Also,
by our construction, every state ∆2 P S such that ∆1 Ď ∆2 will be of the form ∆2 “
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∆1 Y tϕ1, ϕ2, . . . , ϕmu for ϕi P FLpψqz∆1, with i ď m ă ω. By induction on m, using
(C1P), we can derive (C1) without difficulty. △

From now on, we will also use the abbreviation, for ∆ P S:

Rp∆q :“

¨

˝

ł

p∆,∆1qPR

x∆1

˛

‚.

Claim 2. For every ∆ P S, we have:

$LTL
p∆Ñ XRp∆q.

Proof of Claim 2. Remember that p∆,∆1q P R means that we have X´1∆ Ď ∆1. Then,
by the previous result (C1), we deduce:

$LTL
{X´1∆Ñ Rp∆q.

Also, observe that if we have ∆X :“ tXφ : φ P X´1∆u Ď ∆, then by instances of
propositional tautologies we derive

$LTL
p∆Ñ y∆X .

By generalizing the theorem given in Example 2.2.10, which ensures the distributivity of
X over the connective ^, we can also deduce

$LTL
y∆X Ñ X

´

{X´1∆
¯

.

From the last two theorems, by an instance of a proportional tautology and MP , we have:

$LTL
p∆Ñ X

´

{X´1∆
¯

.

Now we can see:

1. {X´1∆Ñ Rp∆q; derived from Claim 1

2. X
´

{X´1∆Ñ Rp∆q
¯

; NX over 1.

3. X
´

{X´1∆
¯

Ñ XRp∆q; MP over instance of (KX ) and 2.

4. p∆Ñ X
´

{X´1∆
¯

; derived above

5. p∆Ñ XRp∆q. (prop)+3.+4.

That is, we have derived the theorem $LTL
p∆Ñ XRp∆q, as we wanted. △

The previous two claims will be used to show the following one. We will consider the
relation R˚ Ď S ˆ S to be the reflexive transitive closure of R, that is, we inductively
define R˚ as:

§ R Ď R˚;

§ R˚ is reflexive: p∆,∆q P R˚ for every ∆ P S;

§ R˚ is transitive: for every ∆i P S with i ď 2, if p∆0,∆1q, p∆1,∆2q P R
˚, then

p∆0,∆2q P R
˚.
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Similarly as before, we will use the abbreviation

R˚p∆q :“

¨

˝

ł

p∆,∆1qPR˚

x∆1

˛

‚.

Claim 3. For every ∆ P S, we have:

$LTL
p∆Ñ ˝R˚p∆q. (C3)

Proof of Claim 3. Given ∆ P S, we can apply Claim 2 on every ∆1 P S such that
p∆,∆1q P R˚, to deduce:

$LTL
x∆1 Ñ XRp∆1q; for every ∆1 verifying p∆,∆1q P R˚.

From instances of propositional tautologies of the form

pγ Ñ γ1q Ñ ppδ Ñ δ1q Ñ ppγ _ δq Ñ pγ1 _ δ1qqq,

we can derive, by applying MP over these instances and the previous theorems:

$LTL R
˚p∆q Ñ

¨

˝

ł

p∆,∆1qPR˚

XRp∆1q

˛

‚.

Now, as it holds in logic KX —distributivity of X over _—, we can state the theorem

$LTL

¨

˝

ł

p∆,∆1qPR˚

XRp∆1q

˛

‚Ñ X

¨

˝

ł

p∆,∆1qPR˚

Rp∆1q

˛

‚.

From the previous two theorems, we can deduce, by an instance of a propositional tautol-
ogy and MP , that we have

$LTL R
˚p∆q Ñ X

¨

˝

ł

p∆,∆1qPR˚

Rp∆1q

˛

‚. (C3P)

On the other hand, as we clearly have IdS Ď R˚ and R˚ ˝ R Ď R˚, with ˝ denoting
the composition of the relations, we deduce:

$LTL
p∆Ñ R˚p∆q;

$LTL

¨

˝

ł

p∆,∆1qPR˚

Rp∆1q

˛

‚Ñ R˚p∆q.

And so,

1.

¨

˝

ł

p∆,∆1qPR˚

Rp∆1q

˛

‚Ñ R˚p∆q; newly derived

2. X

»

–

¨

˝

ł

p∆,∆1qPR˚

Rp∆1q

˛

‚Ñ R˚p∆q

fi

fl ; NX rule over 1.
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3. X

¨

˝

ł

p∆,∆1qPR˚

Rp∆1q

˛

‚Ñ XR˚p∆q; MP over an instance of (KX ) and 2.

4. R˚p∆q Ñ XR˚p∆q; (prop)+3.+(C3P)
5. ˝ pR˚p∆q Ñ XR˚p∆qq ; N˝ over 4.
6. R˚p∆q Ñ ˝R˚p∆q; MP over an instance of (Ind) and 5.

7. p∆Ñ R˚p∆q; derived above

8. p∆Ñ ˝R˚p∆q. (prop)+6.+7.

This proves Claim 3. △
With this third claim, we are finally able to find the contradiction we require for

the reductio ad absurdum proof. For our canonical Kripke structure K “ pS,R, V q, we
consider some state ∆0 P S such that ϕ U ϕ1 P ∆0 and ϕ1 R ∆0. We want to prove that
there is a sequence ∆1, . . . ,∆l P S such that p∆m,∆m`1q P R for every 0 ď m ă l, and
ϕ1 P ∆l. Since R is left-total, the existence of a sequence verifying the first condition of
being R-related is always true. Then, for the sake of contradiction, we suppose ϕ1 R ∆l

for every l ă ω and for every possible sequence ∆1, . . . ,∆l.
Observe that ϕ1 R ∆l P S implies ␣ϕ1 P ∆l —or some equivalent formula—, by the

maximal aspect of the states of S. Then, since this applies for every l, we deduce that
R˚p∆0q “

Ž

p∆1,∆0qPR˚
x∆1 is indeed of the form:

R˚p∆0q “
ł

p∆1,∆0qPR˚

∆2“∆1zt␣ϕ1u

´

x∆2 ^␣ϕ1
¯

.

So, it is a routine check to derive the theorem of LTL:

$LTL R
˚p∆0q Ø p␣ϕ1 ^ ∆̃q; (∗̃)

where we consider
∆̃ :“

ł

p∆0,∆1qPR˚

∆2“∆1zt␣ϕ1u

x∆2.

Now we can state:

1. x∆0 Ñ ˝R˚p∆0q; by Claim 3

2. x∆0 Ñ ˝
´

␣ϕ1 ^ ∆̃
¯

; Substitution Lemma on 1. by (∗̃)

3. ˝
´

␣ϕ1 ^ ∆̃
¯

Ñ

´

˝␣ϕ1 ^ ˝∆̃
¯

; from logic K˝

4. x∆0 Ñ

´

˝␣ϕ1 ^ ˝∆̃
¯

; (prop)+2.+3.

5. x∆0 Ñ ˝␣ϕ1. (prop)+4.

So, we have derived the LTL theorem $LTL
x∆0 Ñ ˝␣ϕ1.

Now, recalling that we assumed ϕ U ϕ1 P ∆0, we can build the following sequence of
theorems of LTL:

1. ϕ U ϕ1 Ñ ˛ϕ1; instance of axiom (U1)
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2. x∆0 Ñ ˛ϕ1; (prop)+1.

3. x∆0 Ñ ˝␣ϕ1; derived above

4. x∆0 Ñ p˛ϕ1 ^ ˝␣ϕ1q; (prop)+2.+3.

5. x∆0 Ñ p˛ϕ1 ^␣˛␣␣ϕ1q; definition of operator ˝

6. ␣␣ϕ1 Ø ϕ1; instance of prop. tautology

7. x∆0 Ñ p˛ϕ1 ^␣˛ϕ1q; Substitution Lemma on 5. by 6.
8. p˛ϕ1 ^␣˛ϕ1q Ñ K; instance of prop. tautology

9. x∆0 Ñ K. (prop)+7.+8

That is, we have $LTL
x∆0 Ñ K. By Lemma 2.2.12, it follows that ∆0 is inconsistent.

This leads to a contradiction, given that we assumed ∆0 P S, which implies that ∆0 has
to be consistent.

In conclusion, we have demonstrated, by reductio ad absurdum, that there must nec-
essarily exist a sequence of states in which ϕ1 P ∆l for some l ě 0, with ∆l being the last
element in this sequence. Note that l ą 0, as we initially assumed ϕ1 R ∆0.

So far, we have shown that the path ρψ is well-defined. Let us now prove that it
satisfies the following result:

Claim 4 (Truth Lemma). Given the canonical Kripke structure K and the path
ρψ “ x∆0,∆1,∆2, . . . y of K as defined above, we have for every ϕ P FLpψq and every
i P N:

K, ρiψ , ϕ ðñ σρψ , i (LTL ϕ ðñ ϕ P ∆i.

Proof of Claim 4. The first double implication is clear by definition. We need to
prove the second double implication. We do it by induction on the construction of the
LTL-formula ϕ. Note that the proof of case i “ 0 also induces satisfaction for every i ă ω,
since we can work with suffix paths (remember that ρi is equal to the path ρ but starting
from its i-th element).

§ We first assume ϕ “ p P Σ to be a propositional variable. Since FLpψq is closed
under subformulas and negations modulo equivalences, we know that both p,␣p P
FLpψq. Also, by Lemma 2.2.19, every MCS will contain p or ␣p, but not both.
Then, we deduce that for every ∆ P S we will have p P V p∆q Ď ∆ or ␣p P ∆. This
gives us that every path of K starting with some state ∆0 such that p P ∆0, in
particular also the path ρψ, will ensure K, ρ , p, since p P V p∆0q. Moreover, if the
path starts with some state not containing p —so it contains ␣p—, we will have
K, ρ . p, because p R V p∆0q. This gives us the implications

K, ρiψ , p ðñ p P ∆i.

§ We suppose ϕ1 to verify K, ρ1 , ϕ1 if and only if the path ρ1 starts with some state
containing ϕ1. If we have ϕ “ ␣ϕ1, we can see that, for every path ρ starting with
∆0 such that ϕ P ∆0, we will have K, ρ , ϕ. Since ␣ϕ1 P ∆0 and ∆0 has to be
consistent, we know that ϕ1 R ∆0. Then, by our Induction Hypothesis, we have
K, ρ . ϕ1, which means that K, ρ , ␣ϕ1, as we wanted.
The other direction also holds: if ϕ “ ␣ϕ1 R ∆0, then ϕ1, which is equivalent to the
negation of ϕ, will belong to ∆0. By Induction Hypothesis, we have K, ρ , ϕ1, and
so K, ρ . ϕ.
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As a particular case of what we have shown, we see:

K, ρiψ , ␣ϕ1 ðñ ␣ϕ1 P ∆i.

§ Now we assume
K, ρk ( ϕk ðñ ϕk P ∆0k,

for ∆0k the first state of the paths ρk, and k P t1, 2u. Consider ϕ “ ϕ1_ϕ2. we can
see that for every path ρ starting with ∆0 such that ϕ P ∆0, we will have K, ρ ( ϕ:
by our definition of the Fischer-Ladner closure, we know ϕ1, ϕ2,␣ϕ1,␣ϕ2 P FLpψq.
Since the elements of S are conjunctions of MCSs and FLpψq, we have, by Lemma
2.2.19, that

either ϕ1 P ∆0 or ␣ϕ1 P ∆0, and either ϕ2 P ∆0 or ␣ϕ2 P ∆0.

If we assume ϕ1 _ ϕ2 P ∆0, then we deduce that we cannot have ␣ϕ1,␣ϕ2 P ∆0 at
the same time as

␣pϕ1 _ ϕ2q _ ␣␣ϕ1 _␣␣ϕ2,

is equivalent to
␣pϕ1 _ ϕ2q _ pϕ1 _ ϕ2q,

which is an instance of a propositional tautology, and so a theorem of LTL. This
would contradict the assumption that ∆0 is consistent.
Then, we have ϕ1 P ∆0 or ϕ2 P ∆0, or both. Without loss of generality, we can as-
sume ϕ1 P ∆0. By our Induction Hypothesis, we have K, ρ ( ϕ1, which immediately
also gives us K, ρ ( ϕ1 _ ϕ2.
If we now assume that the path ρ starts with some ∆0 not containing ϕ, then we
know that ␣ϕ P ∆0, recalling that ␣ϕ P FLpψq and the maximal aspect of the state
∆0. Also, see that ␣ϕ “ ␣pϕ1 _ ϕ2q is equivalent to ␣ϕ1 ^ ␣ϕ2, which might not
be included in ∆0 Ď FLpψq, but it shows us that necessarily ϕ1, ϕ2 R ∆0, by the
consistency of ∆0. By Induction Hypothesis, we have K, ρ . ϕ1 and K, ρ . ϕ2, and
so K, ρ . ϕ1 _ ϕ2, as intended.

§ Let us consider the case ϕ “ Xϕ1. We pick a path ρ starting with some state ∆0

verifying Xϕ1 P ∆0. By the definition of the relation R, we have that ϕ1 will belong
to any other ∆ P S such that p∆0,∆q P R. Then, whatever is the second element
of our path ρ, call it ∆1, we have ϕ1 P ∆1. By Induction Hypothesis, we know that
K, ρ1 ( ϕ1 holds. This ensures K, ρ ( Xϕ1, as we were looking for.
On the other hand, if Xϕ1 R ∆0, then ␣Xϕ1 P ∆0. By axiom (Lin), we know
␣Xϕ1 is equivalent to X␣ϕ1. By the definition of the Fischer-Ladner closure and
the consistency and maximality of ∆0, we deduce that if ␣Xϕ1 P ∆0 then we
also have X␣ϕ1 P ∆0. Therefore, as we have just shown, we will have ␣ϕ1 P ∆1

and so ϕ1 R ∆1. By our Induction Hypothesis, this means K, ρ1 . ϕ1. Thus, we
immediately get K, ρ0 . Xϕ1, that is, K, ρ . ϕ.

§ The case ϕ “ ϕ1 U ϕ2 is the difficult one, and the most delicate to handle. Denoting
by ∆i the state of the position i of the path ρψ, by Induction Hypothesis it suffices
to prove that ϕ1 U ϕ2 P ∆0 if and only if ϕ2 P ∆j for some j ě 0 and ϕ1 P ∆k for all
0 ď k ă j.
First, we prove that for every path starting with ϕ1 U ϕ2 P ∆0, the second condition
—to have ϕ1 P ∆k for all 0 ď k ă j— always holds: since FLpψq is closed under
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subformulas and negations modulo equivalences, we know ϕ1, ϕ2,␣ϕ1,␣ϕ2 P FLpψq.
Also, by Lemma 2.2.19 we have that

either ϕ1 P ∆0 or ␣ϕ1 P ∆0, and either ϕ2 P ∆0 or ␣ϕ2 P ∆0.

If ϕ2 P ∆0, the proof is complete, as we can pick j “ 0 so ϕ2 P ∆j , and the
requisite 0 ď k ă j will be void, making the second condition trivially hold. We
assume, then, ␣ϕ2 P ∆0. By the consistency of ∆0, we can show that necessarily
ϕ1 P ∆0. Otherwise, we would have ␣ϕ1 P ∆0, which would give us a contradiction
as shown below. By iteratively using the Substitution Lemma and equivalences
given by instances of propositional tautologies, we see that the following formulas
are equivalent:

§ ␣␣ϕ1 _␣␣ϕ2 _␣pϕ1 U ϕ2q;
§ ϕ1 _ ϕ2 _␣pϕ1 U ϕ2q;
§ ϕ1_ϕ2_␣pϕ2_pϕ1^X pϕ1 U ϕ2qqq, by the equivalence given in axiom (U2);
§ ϕ1 _ ϕ2 _ p␣ϕ2 ^␣pϕ1 ^ X pϕ1 U ϕ2qqq;
§ ϕ1 _ ϕ2 _ p␣ϕ2 ^ p␣ϕ1 _␣X pϕ1 U ϕ2qqq;
§ ϕ1 _ ϕ2 _ p␣ϕ2 ^␣ϕ1q _ p␣ϕ2 ^␣X pϕ1 U ϕ2qq;
§ pϕ1 _ ϕ2q _ ␣pϕ2 _ ϕ1q _ p␣ϕ2 ^␣X pϕ1 U ϕ2qq.

Since we know $LTL pϕ1_ϕ2q_␣pϕ2_ϕ1q, we would deduce that ∆0 is inconsistent,
which is a contradiction. Then, we necessarily have ␣ϕ1 R ∆0, that is, ϕ1 P ∆0.
A similar argument would show us that if ϕ1 U ϕ2,␣ϕ2, ϕ1 P ∆0, then we necessarily
also have X pϕ1 U ϕ2q P ∆0. Therefore, we can deduce that ϕ1 U ϕ2 P ∆1. As before,
we will have either ϕ2 P ∆1, so we could choose j “ 1, or ␣ϕ2, ϕ1,X pϕ1 U ϕ2q P ∆1.
Inductively, we conclude that if there is some j ě 0 such that ϕ2 P ∆j , then ϕ1 P ∆k

for all 0 ď k ă j; and also ϕ1 P ∆k for all 0 ď k ă ω if there is no j verifying
ϕ2 P ∆j .
Now we need to prove that, in our specific path ρψ, there is such j with ϕ2 P ∆j .
This will follow from our curated definition of ρψ. In our case, we can assume that
we have already defined ∆0, and that some subsequent states of the path are given
by Step 1 of the path definition procedure. However, for clarity and generality, we
will consider the last defined state to be ∆k´1, with subsequent states along the
path provided by Step i.
By assumption ϕ1 U ϕ2 P FLpψq, so we know that this formula is of the form
ϕ1 U ϕ2 “ ϕm U ϕ1m for some m ă n, by the enumeration presented when defining
ρψ. Now we need to distinguish between two possible cases: m ” i pmodnq and
m ı i pmodnq.
If m ” i pmodnq, then we know that Step i has defined the subsequent states of the
path through a sequence of states, ensuring that ϕ2 “ ϕ1m belongs to the last state
in the sequence. Thus, our objective is achieved.
If m ı i pmodnq, then Step i has provided the path with some sequence of states,
the last of them including ϕ1j1 for some j1 ” i pmodnq, or it has added one arbitrary
state R-related to ∆k´1, our last considered state of ρψ. Then, we know that Step
i will add at least one state, let us call it ∆k, and potentially some more states,
∆k`1, . . . ,∆l1 for some k ď l1 ă ω. In any case, the procedure does not explicitly
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guarantee that some of these states will contain the formula ϕ2 “ ϕ1m. However, we
can see that the states ∆k, . . . ,∆l1 that have been added still preserve the satisfaction
of ϕ1 U ϕ2, that is, they contain ϕ1 until some of them include ϕ2, or they all contain
ϕ1 and ϕ1 U ϕ2. We prove it by induction on l1:
We recall a previous argument: ϕm U ϕ1m P ∆ P S implies that,

ϕ1m P ∆ or ␣ϕ1m, ϕm,X pϕm U ϕ1mq P ∆.

Observe that X pϕm U ϕ1mq P ∆ gives us that ϕm U ϕ1m P ∆1 for every possible ∆1

such that p∆,∆1q P R.
Then, as we assumed ϕ1 U ϕ2 P ∆k´1, we deduce that we may have ϕ2 P ∆k´1, so
our proof is finished, or ϕ1 P ∆k´1 and ϕ1 U ϕ2 P ∆k. Again, we have that either
ϕ2 P ∆k, and so we achieve our goal, or ϕ1 P ∆k and ϕ1 U ϕ2 P ∆k`1, which also
shows the base case of our induction.
Now we assume that the satisfiability of ϕ1 U ϕ2 is preserved until the state ∆k1 . We
can suppose ϕ1 U ϕ2 P ∆k1 and that no previous state contains ϕ2, otherwise the
argument is settled. Then we know that either ϕ2 P ∆k1 , and so ϕ1 U ϕ2 is satisfied
in this state, or we have ϕ1 P ∆k1 and ϕ1 U ϕ2 P ∆k1`1. This last option ensures
that the satisfiability of ϕ1 U ϕ2 is also extended to ∆k1`1.
In conclusion, we have shown, by induction on l1, that the added states ∆k, . . . ,∆l1

preserve the satisfaction of ϕ1 U ϕ2, in the sense that they contain ϕ1 until some of
them includes ϕ2, or all states contain ϕ1 and ϕ1 U ϕ2.
In this way, we see that although Step i adds states that do not necessarily include
the formula ϕ2 “ ϕ1m, if these states do not contain ϕ2 then, roughly speaking, we
propagate the formula ϕm U ϕ1m to them.
In this last case, we have ϕm U ϕ1m P ∆l1 . The subsequent states of ρψ will be defined
by Step i`1 of our path definition procedure. The same argument as above applies,
so we will continue to preserve the satisfiability of the formula ϕm U ϕ1m, either by
propagating it or by ensuring that ϕ2 is contained in some state. In the propagation
case, this process will repeat until we reach the state or states defined by Step m1,
where m ” m1 pmodnq. With the application of Step m1, we will finally obtain a
state in ρψ that contains ϕ1m “ ϕ2, with the preceding states including ϕm “ ϕ1.
In conclusion, we have proved that for every i P N we have:

ϕ1 U ϕ2 P ∆i ùñ K, ρiψ , ϕ1 U ϕ2.

As we have done so far, we can demonstrate the other implication by contraposition.
We consider a path ρ such that ϕ “ ϕ1 U ϕ2 R ∆0, and we need to prove that
K, ρ . ϕ1 U ϕ2. That is, for any path ρ “ x∆0,∆1, . . . y of K with ϕ1 U ϕ2 R ∆0, we
must show that if ϕ2 P ∆j for some j ě 0, then there is some ∆k, for 0 ď k ă j,
such that ␣ϕ1 P ∆k. We prove this by reductio ad absurdum: suppose we have
ϕ1 U ϕ2 R ∆0 with ϕ2 P ∆j for some j ď 0, and that ␣ϕ1 R ∆k for every k ă j; we
will get a contradiction.
First, we recall that ϕ1 U ϕ2 R ∆0 and ␣ϕ1 R ∆k imply that we have ␣pϕ1 U ϕ2q P ∆0

and ϕ1 P ∆k, respectively. Now, observe that the following formulas are equivalent
in LTL:

§ ␣pϕ1 U ϕ2q;
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§ ␣pϕ1 _ pϕ1 ^ X pϕ1 U ϕ2qqq;
§ ␣ϕ2 ^␣pϕ1 ^ X pϕ1 U ϕ2qq;
§ ␣ϕ2 ^ p␣ϕ1 _␣X pϕ1 U ϕ2qq;
§ ␣ϕ2 ^ pϕ1 Ñ ␣X pϕ1 U ϕ2qq.

From that last formula and our assumption ϕ1 P ∆0, we can deduce ␣X pϕ1 U ϕ2q P
∆0, which also means X␣pϕ1 U ϕ2q P ∆0. This is true by the definition of the
Fischer-Ladner closure and by the maximal aspect of ∆0. Then, by our definition
of the relation R, we will have ␣pϕ1 U ϕ2q P ∆1.
Iteratively repeating the previous argument, we can conclude ␣pϕ1 U ϕ2q P ∆k for
all k ď j. As we supposed ϕ2 P ∆j , we get a contradiction, because ∆j must be
consistent, but tϕ2,␣pϕ1 U ϕ2qu Ď ∆j is not: ␣ϕ2 _ ␣␣pϕ1 U ϕ2q is equivalent to
␣ϕ2_ ϕ2_ pϕ1^X pϕ1 U ϕ2qq, which is clearly derivable since ␣ϕ2_ ϕ2 is so. That
is, by Lemma 2.2.15 we find that ∆j is inconsistent, contradicting our hypothesis.
Then, by reductio ad absurdum, we have shown that if the first state of a path ρ
does not contain ϕ1 U ϕ2, then K, ρ . ϕ1 U ϕ2. And this gives us, by contrapositive,
the implication:

K, ρiψ , ϕ1 U ϕ2 ùñ ϕ1 U ϕ2 P ∆i.

This ends the inductive case proof for ϕ “ ϕ1 U ϕ2.

In conclusion, we have demonstrated, by induction on the construction of ϕ P FLpψq,
that we have the Truth Lemma, for every i P N:

K, ρiψ , ϕ ðñ σρψ , i (LTL ϕ ðñ ϕ P ∆i.

△
In particular, we have K, ρψ , ψ and σρψ , 0 (LTL ψ, because ψ P ∆0 by definition.

That is, we have found some model where ψ holds, where ψ is satisfiable, as required.
This concludes the proof of the completeness theorem for LTL. ▲

Observation 2.2.25. Consider the so-called weak until operator W, defined for every
σ P PpΣqω, every i P N, and ϕ1, ϕ2 P FmLTpΣq, as follows:

σ, i (LTL ϕ1Wϕ2 :ðñ σ, i (LTL pϕ1 U ϕ2q _ ˝ϕ1.

That is, W is similar to U , but ϕ1Wϕ2 does not require the existence of a future state
where ϕ2 holds. Clearly, we have that ϕ1 U ϕ2 implies ϕ1Wϕ2. If we were working with W
instead of the usual U , the definition of the path ρψ in the previous proof of completeness
could have been simplified to consider an initial state containing ψ and then concatenate
arbitrary R-related states. This is because, in the induction used to prove Claim 4, the
Truth Lemma, the only point where we needed to reference the definition of the path ρψ
was to show that if ϕ1 U ϕ2 belongs to some state of the path, then there is a later state
containing ϕ2. As can be seen from our proof, all other conditions we needed to satisfy
were guaranteed for every path of K with only the initial formula constraint.
Remark. In the previous proof, the use of the Fischer-Ladner closure was unnecessary.
We could have defined a single canonical model with an infinite number of states, specif-
ically, with S “ tΓ : Γ is an MCSu. Such an infinite Kripke structure would work just
as well for any ψ, similar to the finite structures we have employed, only requiring a
slight adjustment in the path definition. However, these finite structures pave the way
for further results, such as the decidability of LTL. Nevertheless, these topics are beyond
the scope of this thesis.
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2.2.3 On the Strong Completeness of LTL

We will extend the weak completeness result we found in Theorem 2.2.24 to a finitary
strong completeness. Essentially, we only need to define the usual consequence relations
distilled from $LTL and (LTL, and show that they present the Deduction Theorem. Then
the finitary strong completeness will easily follow from the weak completeness.

Regarding the semantic relation, we will define it as follows:

Definition 2.2.26. Consider a set of propositional variables Σ, and a set of LTL-formulas
ΓY tφu Ď FmLTpΣq. We define (1LTLĎ PpFmLTpΣqq ˆ FmLTpΣq by:

Γ (1LTL φ :ðñ for σ P PpΣqω and i P N, if σ, i (LTL Γ then σ, i (LTL φ.

Observation 2.2.27. We clearly have ∅ (1LTL φ ðñ (LTL φ.

We can find a semantic Deduction Theorem for (1LTL, without major difficulties:

Theorem 2.2.28 (Semantic Deduction Theorem). Consider Σ a set of propositional
variables. For ΓY tφ,ψu P FmLTpΣq, we have:

ΓY tφu (1LTL ψ ðñ Γ (1LTL φÑ ψ.

Proof. By definition, Γ (1LTL φÑ ψ gives us that, for every σ P PpΣq and every i P N, if
σ, i (LTL Γ, then σ, i (LTL φÑ ψ. By the definition of satisfiability:

σ, i (LTL φÑ ψ ðñ if σ, i (LTL φ then σ, i (LTL ψ.

It is not difficult to see that the following statements are equivalent:

§ if σ, i (LTL Γ then σ, i (LTL φÑ ψ;

§ if σ, i (LTL Γ and σ, i (LTL φ then σ, i (LTL ψ;

§ if σ, i (LTL ΓY tφu then σ, i (LTL ψ.

The last expression can be translated to Γ Y tφu (1LTL ψ. This proves the Semantic
Deduction Theorem. ▲

Now we define a syntactical consequence relation from the axiomatization of LTL, and
we will also see that the Deduction Theorem holds for it:

Definition 2.2.29. Consider Σ a set of propositional variables. For Γ Y tφu P FmLTpΣq,
we define the relation $1LTLĎ PpFmLTpΣqq ˆ FmLTpΣq by:

Γ $1LTL φ :ðñ $LTL

˜

ľ

γPΓ0

γ

¸

Ñ φ for some finite Γ0 Ď Γ.

Observation 2.2.30. It is trivial to see that ∅ $1LTL φ ðñ (LTL φ. Also, due to
instances of propositional tautologies, for a finite Γ it suffices to consider only the case
where Γ0 “ Γ. Moreover, by definition, it is clear that $1LTL is compact: if Γ $LTL φ, then
there is some finite Γ0 Ď Γ such that Γ0 $LTL φ.
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Theorem 2.2.31 (Syntactic Deduction Theorem). Consider Σ a set of propositional
variables. For ΓY tφ,ψu Ď FmLTpΣq, we have:

ΓY tφu $1LTL ψ ðñ Γ $1LTL φÑ ψ.

Proof. The proof is similar to the given for Theorem 2.2.28, its semantic counterpart. We
see that:

ΓY tφu $1LTL ψ ðñ $LTL

˜

ľ

γPΓ0

γ ^ φ

¸

Ñ ψ for some finite Γ0 Ď Γ.

To establish this, we have considered that, by an instance of a propositional tautology
and using MP , we have:

if $LTL

˜

ľ

γPΓ0

γ

¸

Ñ ψ, then $LTL

˜

ľ

γPΓ0

γ ^ φ

¸

Ñ ψ.

Now, we can deduce, again by an instance of a propositional tautology and an application
of MP :

$LTL

˜

ľ

γPΓ0

γ ^ φ

¸

Ñ ψ ðñ $LTL

˜

ľ

γPΓ0

γ

¸

Ñ pφÑ ψq.

And, by the definition of $1LTL and recalling that Γ0 Ď Γ, we see:

$LTL

˜

ľ

γPΓ0

γ

¸

Ñ pφÑ ψq ðñ Γ $1LTL φÑ ψ.

Combining all the correlations we have presented, we conclude,

ΓY tφu $1LTL ψ ðñ Γ $1LTL φÑ ψ.

▲

Now we can show the finitary strong completeness theorem we were looking for:

Theorem 2.2.32 (Finitary Strong Completeness of LTL). Given a set of propositional
variables Σ, for every finite ΓY tφu Ď FmLTpΣq we have:

Γ $1LTL φ ðñ Γ (1LTL φ.

Proof. We observe that, by our Deduction Theorems, Theorem 2.2.28 and Theorem 2.2.31,
and considering that Γ “ tγ1, . . . , γnu is finite, we have

Γ (1LTL φ ðñ ∅ (1LTL ψ ðñ (LTL ψ;

Γ $1LTL φ ðñ ∅ $1LTL ψ ðñ $LTL ψ;

where ψ :“ γn Ñ pγn´1 Ñ p. . . pγ1 Ñ φqq . . . q. So, we have reduced our task to proving
the statement:

(LTL ψ ðñ $LTL ψ.

And we know this holds by the weak completeness of LTL, Theorem 2.2.24. Thus, we
conclude the proof of the Finitary Strong Completeness of LTL. ▲
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A more compelling result than the one presented above would be achieving strong
completeness for LTL, rather than just finitary strong completeness. However, this will
not be the case as (1LTL is not compact. We provide a counterexample to demonstrate
that we do not have strong completeness when the set of assumptions is infinite:

Consider the infinite set Γ “ tφ Ñ ψ,φ Ñ Xψ,φ Ñ XXψ, . . . u, for φ and ψ LTL-
formulas. Unraveling the satisfiability definitions, we can see that Γ (1LTL φÑ ˝ψ holds.
However, it is not possible to deduce Γ $1LTL φ Ñ ˝ψ, considering that no finite subset
Γ0 Ď Γ will satisfy

$LTL

˜

ľ

γPΓ0

γ

¸

Ñ pφÑ ˝ψq.

2.2.4 Beyond Classical LTL

At this point, it is worth noting that this thesis has focused solely on the classical LTL
framework. As we have seen, this classical approach does not yield a strong completeness
theorem. However, strong completeness results can be achieved with intuitionistic LTL
formalizations, as demonstrated in works such as [Dav96; Ewa86; Fer18; Mai04]. We also
refer to papers such as [BDF19; CM21; KW10; KI11; Hir82] for more details on calculi
and axiomatizations related to intuitionistic LTL that are strongly complete regarding
their semantic counterparts.

In this quest for completeness, note that we have presented characterizations of star-
free languages in this second chapter that are analogous to those provided in the first
chapter for regular languages. We have also identified a characterization using LTL, a
propositional modal logic that captures a notion of time. Then, a discerning reader
might wonder whether there exists a characterization of regular languages using some
modal temporal logic that, when suitably restricted, would lead us to LTL, similar to how
regular languages lead to free-star languages through a restriction on the application of
the Kleene star.

We will not delve into the details but highlight two logics that extend LTL and are as
expressive as MSO logic over words, thus characterizing regular languages. The first is
Extended Temporal Logic, introduced by Wolper in [Wol83], which takes inspiration from
the theory of context-free and regular grammars. The second is Regular Linear Temporal
Logic, presented by Leucker and Sánchez in [LS07], which is built upon a variant of regular
expressions.
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Chapter 3

A Matter of Being Positive

The LTL Satisfiability Problem refers to, given an LTL-formula φ P FmLTpΣq, answering if
φ is satisfiable in LTL or not. That is, if there is a word σ P PpΣqω and some i P N such
that σ, i ( φ. Observe that the satisfiability problem is equivalent to the complement
of the LTL Validity Problem, which can be stated as: given φ P FmLTpΣq, answering if
(LTL φ.

It is well known that both the LTL Satisfiability Problem and the Validity Problem
are PSPACE-complete, as is proved in [SC85], and in textbooks as [BK08; HV18]. Several
authors, see [Art+13; Bau+09; CL93; DS02; DFK07; FG16; Hem05; Mar04; ON80; SR99],
have searched for better complexity results by studying syntactic fragments of LTL. Some
of these fragments include operators related to the past, in contrast to our work, which
has focused solely on operators related to the future. As an example of an improvement
in the complexity, in [ON80] it is demonstrated that for the LTL fragment with only the
operators ˝ and ˛, the Satisfiability Problem becomes NP-complete, instead of PSPACE-
complete.

In this final chapter, we consider another syntactical fragment of LTL. Our fragment
will be based or inspired by the so-called strictly positive fragments of modal logics, specif-
ically, the Reflection Calculus introduced in [Bek12; Das12]. Articles such as [AJ23a;
AJ23b] suggest that the strictly positive character of the fragment will ensure a more
favorable complexity than that of the standard LTL.

Next, we will present the syntax for what we will call the Strictly Positive Linear
Temporal Logic (SPLTL). We will seek a syntactic calculus that defines the consequence
relation in which we are interested, and we will prove the soundness between the given
syntactical and semantic relations of SPLTL.

3.1 Strictly Positive LTL

We start by defining the syntax, the set of formulas, of SPLTL:

Definition 3.1.1. Given a set of propositional variables Σ, we inductively define the set
of SPLTL-formulas, FmSPpΣq, as follows:

§ J P FmSPpΣq;

§ p P FmSPpΣq for every p P Σ;
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§ If φ,ψ P FmSPpΣq, then pφ^ ψq, Xφ, pφ U ψq P FmSPpΣq.

3.1.1 Calculus of SPLTL

We suggest a syntactic calculus that defines a consequence relation

$`Ď PpFmSPpΣqq ˆ FmSPpΣq.

For Γ Y ∆ Y tφ,ψu Ď FmSPpΣq, we use the notation φ $` ψ instead of tφu $` ψ. We
denote Γ $` ∆ to indicate that we have Γ $` δ for every δ P ∆. And by Γ %$` φ we
mean that we have Γ $` φ and φ $` Γ:

Definition 3.1.2. Given a set of propositional variables Σ, we define the calculus of
SPLTL by the following axioms and rules, for every ΓY tφ,ψ, ϕu Ď FmSPpΣq:
Axiom Schemes:

φ $` φ; (Id)
∅ $` J; (Top)
φ^ ψ $` φ; (^L)
φ^ ψ $` ψ; (^R)
X pφ^ ψq %$` Xφ^ Xψ; (DistX)
φ U ψ $` J U ψ; (U1+)
φ U φ $` φ; (UId)
ψ $` φ U ψ; (U21)
φ^ X pφ U ψq $` φ U ψ; (U22)
φ U pφ U ψq $` φ U ψ; (UR)
pφ U ψq U ψ %$` φ U ψ; (UL)
φ U pφ^ ψq %$` φ^ Xφ U ψ; (M)
φ U pψ ^ ϕq $` φ U ψ ^ φ U ϕ; (DistUR)
pφ^ ψq U ϕ %$` φ U ϕ^ ψ U ϕ; (DistUL)
Xφ U Xψ %$` X pφ U ψq. (DistUX)

Inference Rules:

Γ $` ψ Weakening
Γ1 $` ψ

Γ $` ψ Γ $` ϕ
I^

Γ $` ψ ^ ϕ

Γ $` ψ ψ $` ϕ
Cut

Γ $` ϕ

Γ $` ψ
NX

XΓ $` Xψ
φ $` ψ

N U
1ϕ1 U φ $` ϕ1 U ψ

φ $` ψ
N U

2φ U ϕ1 $` ψ U ϕ1

Where we have considered Γ1 Ě Γ and XΓ :“ tXγ : γ P Γu.

Observation 3.1.3. The axiom (M) is called this way because the formula φ U pφ^ ψq
is conventionally also stated as φMψ, where M is the so-called strong release operator.
Semantically, the formula φMψ indicates that φ is true until and including the first state
where ψ holds, which must occur in the present state or some future state.

Notation. We will refer to the expressions of the form Γ $` φ that can be proved using
the previous calculus as theorems of SPLTL.
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The axioms and rules of the SPLTL calculus have been chosen to verify the Soundness
implication shown in Theorem 3.1.16. Before proving that result, we will present some
secondary, yet still interesting, theorems and derivable rules for SPLTL, which will help
us to understand the given system.

3.1.2 Some theorems and results for SPLTL

Now we introduce some expressions and properties that hold in the calculus of SPLTL.
We will prove the most relevant results but only sketch some straightforward, routine
proofs.

Lemma 3.1.4. For every SPLTL-formulas φ and ψ, and for every n ă ω, we have:

∅ $` X nJ;

Where we take X 0φ :“ φ and X i`1φ :“ X iXφ for every i ă ω.

Proof. By induction on n: for n “ 0 is clear, as it is the axiom (Top). If we assume
∅ $` X nJ, then we can apply the NX rule to get X∅ $` X n`1J. It is immediate to see
that X∅ “ ∅. ▲

Lemma 3.1.5. For every SPLTL-formulas φ and ψ, and for every j, k ă ω such that
j ď k ` 1, we have:

i) X jφ $` J U φ;

ii) X kφ^ X jψ $` pJ U φq U ψ;

iii) φ^ Xφ^ ¨ ¨ ¨ ^ X kφ^ X k`1pφ U ψq $` X jpφ U ψq;

iv) φ^ Xφ^ ¨ ¨ ¨ ^ X kφ^ X k`1ψ $` X jpφ U ψq;

v) φ U pφ^ Xφ^ ¨ ¨ ¨ ^ X kφ^ X k`1pφ U ψqq $` X jpφ U ψq;

vi) φ U pφ^ Xφ^ ¨ ¨ ¨ ^ X kφ^ X k`1ψq $` X jpφ U ψq.

Proof. We prove i) by induction on j. For j “ 0 is clear, since we have the instance of
the axiom (U1+):

φ $` J U φ.

For the inductive case, we can deduce:

1. X jφ $` J U φ; Induction Hypothesis
2. X j`1φ $` X pJ U φq; NX over 1.
3. X j`1φ $` J; Weakening over instance of (Top)
4. X j`1φ $` J^ X pJ U φq; I^ over 2. and 3.
5. J^ X pJ U φq $` J U φ; instance of (U22)
6. X j`1φ $` J U φ. Cut over 4. and 5.

This shows, by induction on j, that X jφ $` J U φ for every j ă ω.
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We also prove ii) by induction on j. Consider j “ 0, for every k ă ω, we see:

1. ψ $` pJ U φq U ψ; instance of the axiom (U21)
2. X kφ^ ψ $` ψ; instance of the axiom (^R)
3. X kφ^ ψ $` pJ U φq U ψ. Cut over 1. and 2.

Now we assume that X kφ^X jψ $` pJ U φq U ψ holds, for k ě j ´ 1 ě 0. We need to
show

X k1

φ^ X j`1ψ $` pJ U φq U ψ,

for every k1 ě j ą 0. Taking into account that k1 ´ 1 ě j ´ 1 ě 0, we can derive:

1. X k1´1φ^ X jψ $` pJ U φq U ψ; Induction Hypothesis

2. X pX k1´1φ^ X jψq $` X ppJ U φq U ψq; NX over 1.

3. X k1

^ X j`1ψ $` X pX k1´1φ^ X jψq; instance of (DistX)

4. X k1

φ^ X j`1ψ $` X ppJ U φq U ψq; Cut over 2. and 3.

5. X k1

φ $` J U φ; derived above

6. X k1

φ^ X j`1ψ $` J U φ; Cut over 5. and an instance of (^L)

7. X k1

φ^ X j`1ψ $` J U φ^ X ppJ U φq U ψq; I^ over 4. and 6.
8. J U φ^ X ppJ U φq U ψq $` pJ U φq U ψ; instance of axiom (U22)

9. X k1

φ^ X j`1ψ $` pJ U φq U ψ. Cut over 7. and 8.

So, we achieved the expression we wanted. This concludes the proof, by induction on j,
of the second statement of the lemma.

We will not provide explicit proofs for the rest of the items. The statement iii) can
be shown by induction on k, similarly to ii). Using an instance of the axiom (U21), we
can derive iv) from iii). By instances of axioms (UR) and (DistUX), we can prove v) by
induction on k. Finally, thanks again to (U21) we can derive vi) from v). ▲

We also find interesting results by generalizing conjunctions to handle any finite num-
ber of arguments:

Lemma 3.1.6. Consider a finite set of SPLTL-formulas ΓY tφu. For every Γi Ď Γ and
every i ď n ă ω, we define the formulas pγi :“

´

Ź

γPΓi
γ

¯

. The following expressions hold:

i)
Ź

γPΓ γ $
` γ1, for every γ1 P Γ;

ii)
Ź

γPΓXγ %$` X
´

Ź

γPΓ γ
¯

;

iii) φ U
´

Ź

γPΓ γ
¯

$` φ U γ1, for every γ1 P Γ;

iv)
´

Ź

γPΓ γ
¯

U φ $` γ1 U φ, for every γ1 P Γ;

v)
Ź

γPΓ γ $
`

pγ1 U ppγ2 U ppγ3 U p. . . pγn´1 U pγnq . . . q;

vi)
´

Ź

γPΓ γ
¯

U φ $` pγ1 U ppγ2 U ppγ3 U p. . . pγn U φq . . . q;
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vii) φ U
´

Ź

γPΓ γ
¯

$` φ U ppγ1 U ppγ2 U ppγ3 U p. . . pγn´1 U pγnq . . . qq .

Proof. The first two items are shown by induction on the cardinality of Γ, using the axioms
(^R) and (DistX), respectively. The relations iii) and iv) are derivable from applying the
rules N U

1 and N U
2 over i), respectively. The expression v) can be proved by induction

on the cardinality of Γ with a secondary induction on n. The expression vi) can be easily
shown by an instance of (DistUL) and then concatenate instances of axiom (U21). The
last statement derives from v) by employing the rule N U

1 . ▲

It is important to note that the strictly positive fragment of any modal logic is typically
defined using the diamond operator, see [Bek12]. However, in our definition of SPLTL,
we use the U operator, which offers greater expressivity. Nevertheless, as with LTL, we
can define ˛φ :“ J U φ for φ P FmSPpΣq. As the following lemma suggests, the operator ˛
exhibits some interesting properties. Certain expressions in this lemma can be generalized
as theorems where U substitutes ˛, replacing the occurrences of J with an arbitrary
formula.

Lemma 3.1.7. For every SPLTL-formulas φ and ψ, and every k, n,m ă ω with m ą 0,
we have:

i) φ $` ˛φ;

ii) ˛φ $` ˛˛φ;

iii) ˛˛φ $` ˛φ;

iv) ˛nφ $` ˛mφ;

v) φ U p˛nψq $` φ U p˛mψq;

vi) p˛nφq U ψ $` p˛mφq U ψ;

vii) ˛φ U φ $` ˛φ;

viii) X kφ $` ˛mφ;

ix) ˛nX kφ $` ˛mφ;

x) X k˛nφ $` ˛mφ;

xi) φ U ψ $` ˛mψ.

Proof. The first two expressions come from an instance of the axiom (U21). The third
is an instance of (UR). The expression iv) is given by induction on 0 ď n ă ω with a
secondary induction on 0 ă m ă ω, using the previous three relations. To deduce v) and
vi) we only need to apply the rules N U

1 and N U
2 over iv), respectively. The relation vii)

is given by

1. φ $` ˛φ; i)
2. ˛φ U φ $` ˛φ U ˛φ; rule N U

1 over 1.
3. ˛φ U ˛φ $` ˛φ; instance of (UId)
4. ˛φ U φ $` ˛φ. Cut over 2. and 3.
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Theorem viii) can be shown by induction on k: for k “ 0, we know φ $` φ from axiom
(Id), and φ $` ˛φ from (U21). Applying the Cut rule over the last expression and iv), we
deduce φ $` ˛mφ. On the other hand, if we assume X kφ $` ˛mφ, then we can derive:

1. X kφ $` ˛mφ; Induction Hypothesis
2. X k`1φ $` X˛mφ; NX over 1.
3. ∅ $` J; instance of (Top)
4. X k`1φ $` J; Weakening over 3.
5. X k`1φ $` J^ X˛mφ; I^ over 2. and 4.
6. J^ X˛mφ $` ˛mφ; instance of (U22)
7. X k`1φ $` ˛mφ. Cut over 5. and 6.

The elements ix) and x) are proved similarly to the previous one, and xi) is given by
an application of Cut over an instance of (U1+) and iv). ▲

Observation 3.1.8. Expression iv) indicates that it is redundant to concatenate the ˛
operator, as any concatenation of ˛ is equivalent to a single application.

Although we could prove additional theorems of SPLTL, let us now focus on some
meta-theorems. We can first consider compactness:

Lemma 3.1.9. Given a set of propositional variables Σ, we have, for ΓYtφu Ď FmSPpΣq:

Γ $` φ ðñ Γ0 $
` φ for some finite Γ0 Ď Γ.

Proof. Immediate, as we defined $` using a syntactic calculus. The right-to-left implica-
tions is immediate by Weakening. We can demonstrate the other implication by induction
on the derivation Γ $` φ. If Γ $` φ an instance of an axiom, then there clearly exists
a finite subset Γ0 Ď Γ such that Γ0 $

` φ, since Γ itself is finite. Inductive cases, where
the application of a rule leads to Γ $` φ, easily follow by considering the corresponding
induction hypothesis. The only case that requires some work is the rule I^:

Suppose that Γ $` φ is of the form Γ $` φ1 ^ φ2, and we know that Γ $` φ1 and
Γ $` φ2. By Induction Hypothesis, there are some finite Γ1,Γ2 Ď Γ such that:

Γ1 $
` φ1 and Γ2 $

` φ2.

By Weakening, we easily derive that

Γ1 Y Γ2 $
` φ1 and Γ1 Y Γ2 $

` φ2.

An application of I^ over these two last expressions ensures that Γ1 Y Γ2 $
` φ1 ^ φ2.

Since Γ1 and Γ2 are finite subsets of Γ, we know that Γ1 Y Γ2 also is. ▲

As a direct consequence of compactness, we can derive the following:

Lemma 3.1.10. Given a set of propositional variables Σ, we have, for ΓYtφu Ď FmSPpΣq:

Γ $` φ ðñ
ľ

γPΓ0

γ $` φ for some finite Γ0 Ď Γ.
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Proof. By compactness, it suffices to show that, for every finite Γ0 Ď FmSPpΣq, we have:

Γ0 $
` φ ðñ

ľ

γPΓ0

γ $` φ.

To prove the right-to-left implication, we use axiom (Id) and Weakening to deduce that
Γ0 $

` γ for every γ P Γ0. Then iteratively applying the rule I^, we have Γ0 $
`

Ź

γPΓ0
γ.

The Cut rule leads us to conclude that
Ź

γPΓ0
γ $` φ implies Γ0 $

` φ, as desired.
The left-to-right implication can be shown similarly: applying the axioms (^L) and

(^R) we derive
Ź

γPΓ0
γ $` Γ0. Then, if we assume Γ0 $

` φ, by Cut we get the expression
Ź

γPΓ0
γ $` φ. ▲

Perhaps the most relevant meta-theorems are the Substitution Lemma for SPLTL and
the Positive Replacement Lemma. Recall that φrp Ð ϕs refers to the formula obtained
by substituting the variable p with the formula ϕ in φ.

Lemma 3.1.11 (Substitution Lemma for SPLTL). Consider Σ a set of propositional
variables. For φ,ψ, ϕ P FmSPpΣq and p P Σ, we have:

if φ $` ψ, then φrpÐ ϕs $` ψrpÐ ϕs.

Proof. Immediate, as all axioms and rules of the calculus of SPLTL are closed under
substitutions. ▲

Lemma 3.1.12 (Positive Replacement Lemma). Consider Σ a set of propositional vari-
ables. For φ,ψ, ϕ P FmSPpΣq and p P Σ, we have:

if φ $` ψ then ϕrpÐ φs $` ϕrpÐ ψs.

Proof. By induction on the construction of ϕ. If ϕ “ J or ϕ “ p P Σ is clear. Consider
φ $` ψ and ϕ “ ϕ1 ^ ϕ2 with, this is our Induction Hypothesis,

ϕirpÐ φs $` ϕirpÐ ψs for i P t1, 2u.

To simplify the notation, we will use the abbreviations φi :“ ϕirpÐ φs and ψi :“ ϕirpÐ
ψs for i P t1, 2u. Then we have:

1. φ1 ^ φ2 $
` φ1; by axiom (^L)

2. φ1 ^ φ2 $
` φ2; by axiom (^R)

3. φ1 $
` ψ1; Induction Hypothesis

4. φ2 $
` ψ2; Induction Hypothesis

5. φ1 ^ φ2 $
` ψ1; Cut on 1. and 3.

6. φ1 ^ φ2 $
` ψ2; Cut on 2. and 4.

7. φ1 ^ φ2 $
` ψ1 ^ ψ2. I^ on 5. and 6.

As ϕrpÐ φs “ φ1 ^ φ2 and ϕrpÐ ψs “ ψ1 ^ ψ2, we deduce:

ϕrpÐ φs $` ϕrpÐ ψs.
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The case ϕ “ Xϕ1 follows easily from the rule NX , while the case ϕ “ ϕ1 U ϕ2 is given
by the rules N U

1 and N U
2 . The proofs for both cases are straightforward and similar;

therefore, we will show only the case where ϕ “ ϕ1 U ϕ2:

1. φ1 $
` ψ1; Induction Hypothesis

2. φ2 $
` ψ2; Induction Hypothesis

3. φ1 U φ2 $
` ψ1 U φ2; N U

2 on 1.
4. ψ1 U φ2 $

` ψ1 U ψ2; N U
1 on 2.

5. φ1 U φ2 $
` ψ1 U ψ2. Cut on 3. and 4.

In conclusion, by induction on the construction of ϕ, we have ϕrpÐ φs $` ϕrpÐ ψs, as
intended. ▲

Now we can provide more results, whose proofs would come directly from the last two
lemmas. In some sense, the following rules are just examples of the power or expressiveness
given by the Substitution Lemma and the Positive Replacement Lemma.

Lemma 3.1.13. Given a set of propositional variables Σ, for φ,ψ, ϕ1, ϕ2 P FmSPpΣq and
p P Σ, we have:

i) if φ %$` ψ and ϕ1rpÐ φs $` ϕ2rpÐ φs, then ϕ1rpÐ ψs $` ϕ2rpÐ ψs;

ii) if φ $` ψ, then φ^ ϕ1 $
` ψ ^ ϕ1 and ϕ1 ^ φ $` ϕ1 ^ ψ;

iii) if φ $` ψ and ϕ1 $` ϕ2, then φ^ ϕ1 $
` ψ ^ ϕ2;

iv) if φ $` ψ and ϕ1 $` ϕ2, then φ U ϕ1 $` ψ U ϕ2. ▲

3.1.3 Soundness of SPLTL

We will present a soundness result between the consequence relation $`, defined through
the calculus given in Definition 3.1.2, and the semantic relation (` given below.

Definition 3.1.14. Consider a set of propositional variables Σ, and a set of SPLTL-
formulas ΓY tφu Ď FmSPpΣq. We define (`Ď PpFmSPpΣqq ˆ FmSPpΣq by:

Γ (` φ :ðñ for σ P PpΣqω and for i P N, if σ, i ( Γ then σ, i ( φ.

The notation σ, i ( Γ is shorthand for stating that σ, i ( γ for every γ P Γ.

Observation 3.1.15. This relation (` can be seen as a restriction of the relation (1LTL,
from Definition 2.2.26, over the set of SPLTL-formulas. This is because we are using the
same satisfaction relation ( that was introduced for LTL in Definition 2.2.2.

Notation. As we have done so far, we will denote tψu (` φ by ψ (` φ, for φ,ψ P FmSPpΣq.
Also, Γ (` ∆ refers to Γ (` δ for every δ P ∆, for Γ,∆ Ď FmSPpΣq.

As in the LTL formalization, the characterization of (` using Kripke structures will
also be useful. We determine it by, for ΓY tφu Ď FmSPpΣq:

Γ (` φðñ for K a Kripke structure and ρ a path of K, if K, ρ , Γ then K, ρ , φ;

where we consider K, ρ , Γ to mean that we have K, ρ , γ for every γ P Γ.
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Observe that for every finite Γ0 Y tφu Ď FmSPpΣq, it is immediate that Γ0 (
` φ is

equivalent to
Ź

γPΓ0
γ (` φ. So, working with single formulas is equivalent to doing it

with finite sets.
With the definitions introduced, we can now prove soundness:

Theorem 3.1.16 (Soundness of SPLTL). Consider a set of propositional variables Σ.
For every ΓY tφu Ď FmSPpΣq, we have:

Γ $` φ ùñ Γ (` φ.

Proof. By induction on the assumed derivation of Γ $` φ. It suffices to show that all
axioms of Definition 3.1.2 are valid and that the rules preserve validity. To prove this,
we will use the following chain of implications, where Γ0 is some finite subset of Γ:

Γ $` φ
p1q
ðñ Γ0 $

` φ
p2q
ùñ $LTL

ľ

γPΓ0

γ Ñ φ
p3q
ðñ (LTL

ľ

γPΓ0

γ Ñ φ
p4q
ðñ

p4q
ðñ

ľ

γPΓ0

γ (1LTL φ
p5q
ðñ Γ0 (

1
LTL φ

p6q
ùñ Γ (1LTL φ

p7q
ðñ Γ (` φ.

The first double implication is due to the compactness from Lemma 3.1.10. The
implication p2q is the one we need to prove. p3q is satisfied thanks to the completeness
theorem for LTL, Theorem 2.2.24. The correlation p4q is an application of the Semantic
Deduction Theorem, Theorem 2.2.28. The expressions p5q and p6q are immediately proved
by the definition of the relation (1LTL. And p7q is straightforward by the definition of (`,
as also indicates Observation 3.1.15.

We can prove p2q by induction on the derivation Γ0 $
` φ. As we will see below,

referring to the completeness of LTL and unraveling the semantic relation simplifies the
proof. However, we want to work with our SPLTL calculus, therefore, we will limit the
semantic translation to selected cases, and prove the remaining expressions syntactically
within the calculus.

If Γ0 $
` φ is an instance of some of our first four axioms, from Definition 3.1.2, then

the proof is settled since for every ψ, ϕ P FmSPpΣq, we know from propositional tautologies
that $LTL ψ Ñ ψ, that $LTL J, and $LTL pψ^ϕq Ñ ψ and $LTL pψ^ϕq Ñ ϕ. If Γ0 $

` φ
is an instance of axiom (DistX), then we recall that

$LTL X pψ ^ ϕq Ñ pXψ ^ Xϕq;

$LTL pXψ ^ Xϕq Ñ X pψ ^ ϕq;

as they are theorems of KX (see also Example 2.2.10).
If Γ0 $

` φ is an instance of axiom (U1+), we only need to consider an instance of the
LTL axiom (U1):

$LTL ψ U ϕÑ J U ϕ.

If Γ0 $
` φ is given by the axiom (UId), then we need to show that we have

$LTL φ U φÑ φ.
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As we mentioned, by the completeness of LTL, or equivalently by the correlation p3q, we
know it is enough to prove its semantic counterpart. For every σ P PpΣqω and every i P N,
we see:

σ, i (LTL φ U φ ðñ there is j ě i that for every i ď k ď j, we have σ, k (LTL φ.

This gives us that, if σ, i (LTL φ U φ, then, in particular, σ, i (LTL φ. That is, we see that
we have σ, i (LTL φ U φÑ φ. Since this applies for every σ P PpΣqω and every i P N, we
deduce (LTL φ U φÑ φ, as needed.

Now consider Γ0 $
` φ to be given by an instance of the axiom (U21). This means

that we have Γ “ tϕu and φ “ ψ U ϕ, for some ψ, ϕ P FmSPpΣq. We derive:

1. $LTL ϕ_ pψ ^ X pψ U ϕqq Ñ ψ U ϕ; instance of (U2)
2. $LTL ϕÑ ϕ_ pψ ^ X pψ U ϕqq; instance of propositional tautology
3. $LTL ϕÑ ψ U ϕ. (prop)+1.+2.

So we deduce $LTL
Ź

γPΓ0
γ Ñ φ, as required. If Γ0 $

` φ follows from the axiom (U22),
then a similar argument to the previous one demonstrates that $LTL pψ ^ X pψ U ϕqq Ñ
ψ U ϕ, as needed.

Now consider Γ0 $
` φ to be an instance of the axiom (UR). As previously established,

it is enough to deduce
(LTL ψ U pψ U ϕq Ñ ψ U ϕ.

We do prove it by unraveling the semantic satisfaction definition. For every σ P PpΣqω
and every i P N, we see that

σ, i (LTL ψ U pψ U ϕq ðñ there is some j ě i such that σ, j (LTL ψ U ϕ,
and σ, k (LTL ψ for every i ď k ă j;

σ, j (LTL ψ U ϕ ðñ there is some j1 ě j such that σ, j1 (LTL ϕ,

with σ, k1 (LTL ψ for every j ď k1 ă j1.

Then, if σ, i (LTL ψ U pψ U ϕq we see that there is some j1 ě j ě i such that σ, j1 (LTL ϕ
and σ, k2 (LTL ψ for every i ď k2 ă j1. That is, we have σ, i (LTL ψ U ϕ. This gives us
that the relation (LTL ψ U pψ U ϕq Ñ ψ U ϕ holds.

If Γ0 $
` φ is an instance of axiom (UL), then we proceed similarly as before:

σ, i (LTL pψ U ϕq U ϕ ðñ there is some j ě i such that σ, j (LTL ϕ,

and σ, k (LTL ψ U ϕ for every i ď k ă j.

If such j is j “ i, we have σ, i (LTL ϕ, and so σ, i (LTL ψ U ϕ. If j ą i, then we also have
σ, i (LTL ψ U ϕ since trivially i ď i ă j. Therefore, we conclude

(LTL pψ U ϕq U ϕÑ ψ U ϕ.

On the other hand, suppose that we have σ, i (LTL ψ U ϕ, that is, there is some j ě i
such that σ, j (LTL ϕ, and σ, k (LTL ψ for every i ď k ă j. Then, we easily observe
that σ, k (LTL ψ U ϕ also holds. This gives us that if σ, i (LTL ψ U ϕ, then there is some
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j ě i such that σ, j (LTL ϕ, and σ, k (LTL ψ U ϕ for every i ď k ă j. Therefore, we have
σ, i (LTL pψ U ϕq U ϕ. This shows the satisfiability of

σ, i (LTL ψ U ϕÑ pψ U ϕq U ϕ.

Since this applies for every σ P PpΣqω and every i P N, we deduce (LTL ψ U ϕ Ñ

pψ U ϕq U ϕ, and then $LTL ψ U ϕÑ pψ U ϕq U ϕ, as we wanted.
Now suppose Γ0 $

` φ to be an instance of the axiom (M). We have:

σ, i (LTL ψ U pψ ^ ϕq ðñ there is some j ě i such that σ, j (LTL ϕ,

and σ, k (LTL ψ for every i ď k ď j.

If σ, i (LTL ψ U pψ ^ ϕq holds, in particular we have σ, i (LTL ψ, and

σ, i (LTL Xψ U ϕ ðñ there is some j ě i such that σ, j (LTL ϕ,

and σ, k (LTL ψ for every i ă k ď j;

will also hold. Then, we can conclude that

$LTL ψ U pψ ^ ϕq Ñ pψ ^ Xψ U ϕq.

A similar unraveling of the semantic satisfiability definition also ensures the theorem

$LTL pψ ^ Xψ U ϕq Ñ ψ U pψ ^ ϕq.

For the case where Γ0 $
` φ is an instance of (DistUR), suppose for every σ P PpΣqω,

every i P N, and for ψ, ϕ, ξ P FmSPpΣq, that we have σ, i (LTL ψ U pϕ ^ ξq. Then, there is
some j ě i such that σ, j (LTL ϕ^ ξ, with σ, k (LTL ψ for every i ď k ă j. In particular,
σ, j (LTL ϕ and σ, j (LTL ξ, and so we conclude that σ, i (LTL ψ U ϕ ^ ψ U ξ also holds.
That is,

σ, i (LTL ψ U pϕ^ ξq Ñ pψ U ϕ^ ψ U ξq.

We now consider Γ0 $
` φ to be of the form pψ^ϕq U ξ $` ψ U ξ^ϕ U ξ, an instance of

one of the sides of (DistUL), for ψ, ϕ, ξ P FmSPpΣq. By definition, for σ P PpΣqω and i P N,
if σ, i (LTL pψ^ϕq U ξ, then there is some j ě i such that σ, j (LTL ξ, and σ, k (LTL ψ^ϕ
for every i ď k ă j. Since σ, k (LTL ψ ^ ϕ gives us that σ, k (LTL ψ and σ, k (LTL ϕ, we
deduce, as desired, that we have

(LTL pψ ^ ϕq U ξ Ñ pψ U ξ ^ ϕ U ξq.

If Γ0 $
` φ is an instance of (DistUL) of the form ψ U ξ^ϕ U ξ $` pψ^ϕq U ξ, a similar

argument as before ensures that we have:

(LTL pψ U ξ ^ ϕ U ξq Ñ pψ ^ ϕq U ξ.

Therefore, we conclude that $LTL pψ U ξ ^ ϕ U ξq Ñ pψ ^ ϕq U ξ.
Finishing with the axiom instances, if Γ0 $

` φ is derived by the axiom (DistUX), it
suffices to show that we have:

(LTL Xψ U XϕÑ X pψ U ϕq and (LTL X pψ U ϕq Ñ Xψ U Xϕ.
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We see, for every σ P PpΣqω and every i P N:

σ, i (LTL Xψ U Xϕ ðñ there is some j ě i such that σ, j (LTL Xϕ,
and σ, k (LTL Xψ for every i ď k ă j.

Then, we have:

σ, i (LTL Xψ U Xϕ ðñ there is some j ě i` 1 such that σ, j (LTL ϕ,

and σ, k (LTL ψ for every i ă k ă j.

Notice that the last expression is equivalent to state σ, i (LTL X pψ U ϕq. This gives
us:

(LTL Xψ U XϕÑ X pψ U ϕq and (LTL X pψ U ϕq Ñ Xψ U Xϕ;

as required to conclude

$LTL Xψ U XϕÑ X pψ U ϕq and $LTL X pψ U ϕq Ñ Xψ U Xϕ.

Regarding inductive cases: suppose that an application of the Weakening rule derives
Γ0 $

` φ. Then we know Γ10 $
` φ for some Γ10 Ď Γ0. By Induction Hypothesis, we have

$LTL

¨

˝

ľ

γPΓ1
0

γ

˛

‚Ñ φ.

Thus, by instances of propositional tautologies, we clearly have

$LTL

˜

ľ

γPΓ0

γ

¸

Ñ φ.

If Γ0 $
` φ is given by the rule I^, then φ is of the form φ1 ^ φ2 and, by Induction

Hypothesis, we have:

$LTL

˜

ľ

γPΓ0

γ

¸

Ñ φ1 and $LTL

˜

ľ

γPΓ0

γ

¸

Ñ φ2.

By instances of propositional tautologies, it is easy to deduce

$LTL

˜

ľ

γPΓ0

γ

¸

Ñ pφ1 ^ φ2q.

A similar argument works for the case where Γ0 $
` φ is derived from the Cut rule.

Suppose Γ0 $
` φ is given by the application of the rule NX . This means that we have

some relation Γ10 $
` φ1, with Γ0 “ XΓ10 and φ “ Xφ. Then, we derive:

1. $LTL

¨

˝

ľ

γPΓ1
0

γ

˛

‚Ñ φ1; Induction Hypothesis

2. $LTL X

¨

˝

¨

˝

ľ

γPΓ1
0

γ

˛

‚Ñ φ1

˛

‚; rule NX over 1.
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3. $LTL X

¨

˝

ľ

γPΓ1
0

γ

˛

‚Ñ Xφ1; MP over 2. and an instance of axiom (KX )

4. $LTL X

¨

˝

ľ

γPΓ1
0

γ

˛

‚Ø

¨

˝

ľ

γPΓ1
0

Xγ

˛

‚; from logic KX

5. $LTL

¨

˝

ľ

γPΓ1
0

Xγ

˛

‚Ñ Xφ1. Substitution Lemma on 3. by 4.

The last expression is equivalent to

$LTL

¨

˝

ľ

γPXΓ1
0

γ

˛

‚Ñ Xφ1.

Therefore, since XΓ10 “ Γ0, we get the LTL theorem we wanted.
If Γ0 $

` φ is derived from the rule N U
1 , then we know, by Induction Hypothesis, that

$LTL γ Ñ φ1, with Γ0 “ tϕ1 U γu and φ “ ϕ1 U φ1 for some ϕ1 P FmSPpΣq. We need to
show that we have $LTL ϕ1 U γ Ñ ϕ1 U φ1.

We will not explicitly state this verification since it just mirrors the inductive case
ψ “ ψ1 U ψ2 from the proof of the Substitution Lemma for LTL, Lemma 2.2.8. While in
the Substitution Lemma we started a sequence of theorems of LTL with the assumptions
ϕ11 Ø ϕ12 and ϕ21 Ø ϕ22, now we do it with γ Ñ φ1 and, if not, ϕ1 Ø ϕ1. Note that
we do not require the first assumption to be an equivalence, a double implication, as we
only want to prove $LTL ϕ1 U γ Ñ ϕ1 U φ1, not $LTL ϕ1 U γ Ø ϕ1 U φ1. The case where
Γ0 $

` φ is derived using the rule N U
2 can be demonstrated in a similar manner.

In conclusion, we have proved, by induction on the derivation Γ0 $
` φ, that we have:

Γ0 $
` φ ùñ $LTL

˜

ľ

γPΓ0

γ

¸

Ñ φ.

This proves the implication p2q, closing the previously introduced chain of implications.
Then, we can finally conclude our soundness theorem: for every Γ Y tφu Ď FmSPpΣq, we
have:

Γ $` φ ùñ Γ (` φ.

▲

3.1.4 On the Completeness of SPLTL

In this section, we will introduce some theories and concepts that may be useful for
proving a possible completeness theorem between $` and (`. Specifically, the objective
would be to obtain the reverse implication of the soundness Theorem 3.1.16, so that for
every ΓY tφu Ď FmSPpΣq, we have:

Γ (` φ ùñ Γ $` φ.

In [Das12], by applying results from [CJ97; Dun95], some completeness results are
demonstrated for strictly positive fragments of various modal logics. Consequently, it
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should be relatively straightforward to establish completeness results for the strictly pos-
itive fragments of LTL that include only the operators ˝, ˛, or X . To investigate the
strictly positive fragment that only considers the modal operators X and ˛ could also be
particularly interesting, as this logic has already been suggested and utilized within the
framework of database queries, see [Jun+24], for instance.

In the conclusions of that same paper [Jun+24], they propose studying the LTL frag-
ment containing the U operator instead of just ˛, along with X . This is precisely what
we are doing with our introduced SPLTL calculus, although we are exploring SPLTL
outside the context of database queries. Unfortunately, because it uses U rather than ˛,
our logic does not directly benefit from the completeness results mentioned above.

Then, the best way we find to prove a completeness theorem for SPLTL, is by mim-
icking the argument we gave for the LTL completeness, in Theorem 2.2.24, adapting it to
the SPLTL framework.

First, we note that the concept of consistency in SPLTL is not expressible, as the
formalization of SPLTL does not include the connective ␣ or K. Therefore, instead of
maximal consistent sets, we will consider deductively closed sets:

Definition 3.1.17. Given a set of propositional variables Σ, the set Γ Ď FmSPpΣq is
deductively closed (DCS) if Γ $` φ implies φ P Γ, for every φ P FmSPpΣq.

We recall that for every numerable set of propositional variables Σ, we can enumerate
our SPLTL-formulas. Specifically, we consider FmSPpΣq “ tθi : i ă ωu. The next definition
will easily show us that we have a version of Lindenbaum’s lemma for DCSs:

Definition 3.1.18. Let Γ Ď FmSPpΣq “ tθi : i ă ωu over the set of propositional variables
Σ. We consider the deductive closure of Γ, and we denote it by DCpΓq, to be the set

DCpΓq :“
ď

iăω

Γi;

where we define Γ0 “ Γ and, for every i ă ω:

Γi`1 :“

"

Γi Y tθiu if Γi $` θi;
Γi otherwise.

We abbreviate DCptφuq by DCpφq.

Lemma 3.1.19. Consider a set of propositional variables Σ. For every set of formulas
Γ Ď FmSPpΣq, its deductive closure DCpΓq is a DCS. Moreover, we have Γ Ď DCpΓq.

Proof. Let Γ Ď FmSPpΣq “ tθi : i ă ωu be a set of SPLTL-formulas. By the definition of
the deductive closure of Γ, the inclusion Γ Ď DCpΓq is immediate. To check that DCpΓq
is deductively closed, we suppose, for φ P FmSPpΣq, that we have DCpΓq $` φ, and we
need to show that φ P DCpΓq.

By compactness, we know that DCpΓq $` φ implies that there is some finite Γ1 Ď
DCpΓq “

Ť

iăω Γi such that Γ1 $` φ. In addition, there is some k ă ω such that Γ1 Ď Γk.
And clearly φ “ θj for some j ă ω. Therefore, if j ě k, we have φ P Γj`1 Ď DCpΓq by
definition, since Γ1 $` φ implies Γk $

` φ and so Γj $
` φ, by the Weakening rule.

On the other hand, suppose that j ă k. By the construction of the sets Γi, we know
that Γk is of the form Γk “ Γj Y tθj1 , . . . , θjnu for some n ď k ´ j, with Γj $

` θjl for
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every 1 ď l ď n. In this way, it is easy to derive that we have Γj $
` Γk. Since we

know that Γk $
` φ, we also have, by the Cut rule, that Γj $

` φ. Then, by definition,
φ “ θj P Γj`1 Ď DCpΓq. This shows that, in any case, DCpΓq $` φ implies φ P DCpΓq,
so DCpΓq is a DCS, as expected. ▲

The following two lemmas could be useful, in addition to providing some intuition on
the deductive closure notion:

Lemma 3.1.20. Consider Σ to be a set of propositional variables, and ΓYtφu Ď FmSPpΣq.
We have:

Γ $` φ ðñ DCpΓq $` φ.

Proof. If Γ $` φ, then it is clear by Weakening that DCpΓq $` φ, as we know Γ Ď DCpΓq
by the previous lemma. We show the other implication by contraposition:

We suppose Γ &` φ. By Definition 3.1.18, we know that DCpΓq is of the form
DCpΓq “

Ť

iăω Γi. Considering that $` is compact and that, by their definitions, we
have Γ “ Γ0 Ď Γ1 Ď ¨ ¨ ¨ Ď Γk Ď . . . , it suffices to show Γk &

` φ for every k ă ω. We
prove it by induction:

The base case is clear, as we have assumed Γ &` φ. For the inductive case, consider
Γk &

` φ. We have Γk`1 “ Γk or Γk`1 “ Γk Y tθku, with Γk $
` θk. If the first option

holds, it follows immediately that Γk`1 &
` φ.

On the other hand, if Γk`1 “ Γk Y tθku and we suppose Γk`1 $
` φ, then we get a

contradiction by applying the Cut rule: as Γk $
` γ for every γ P Γk`1, and Γk`1 $

` φ,
we deduce Γk $

` φ, which contradicts our Induction Hypothesis. This leads us to deduce
Γk`1 &

` φ.
This shows, by induction on k ă ω, that Γk &

` φ, and so we have DCpΓq &` φ. In
conclusion, we have proved by contraposition the other implication needed to state

Γ $` φ ðñ DCpΓq $` φ.

▲

Lemma 3.1.21. For every Γ Ď FmSPpΣq over a set of propositional variables Σ, we have
DCpDCpΓqq “ DCpΓq.

Proof. The inclusion DCpΓq Ď DCpDCpΓqq is clear by Lemma 3.1.19. We show the other
inclusion:

By the previous lemma, we know

DCpΓq $` φ ðñ DCpDCpΓqq $` φ.

If φ P DCpDCpΓqq, then clearly DCpDCpΓqq $` φ, and thus DCpΓq $` φ by the
expression above. Since DCpΓq is a DCS, as we have seen in Lemma 3.1.19, we conclude
φ P DCpΓq, which demonstrates the inclusion DCpDCpΓqq Ď DCpΓq. ▲

Although we will use DCSs to replace the class of MCSs, it is important to note that
DCSs do not exhibit the same maximal behavior as MCSs. For instance, for Γ Y tφu Ď
FmSPpΣq, consider Γ to be a DCS and that we have φ R DCpΓq, so Γ &` φ. Then, thanks
to Lemma 3.1.19, we have that DCpΓ Y tφuq will be a DCS containing Γ Y tφu, so we
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conclude Γ Ă DCpΓYtφuq. Therefore, every DCS that does not contain a certain formula
is included in a larger DCS. In this sense, the only DCSs with the notion of maximality
introduced for MCSs would be the whole FmSPpΣq, as it is the only set such that every
SPLTL-formula belongs to it.

Regarding the Fischer-Ladner closure that we used in the LTL completeness proof, we
point out that, since we do not have the connectives _ or ␣ in the SPLTL context, we
can simplify the definition:

Definition 3.1.22. Consider Σ a set of propositional variables. For φ P FmSPpΣq, we will
denote its (strictly positive) Fischer-Ladner closure by the notation FL`pφq. We
inductively define it by:

§ φ P FL`pφq;

§ FL`pφq is closed under subformulas;

§ if φ1 U φ2 P FL
`pφq, then X pφ1 U φ2q P FL

`pφq.

Clearly, for every φ P FmSPpΣq, the set FL`pφq is finite.
Now, following the proof given for LTL, to show the completeness implication:

Γ (` φ ùñ Γ $` φ;

for Γ Y tφu Ď FmSPpΣq, we proceed by contraposition. We suppose Γ &` φ and want to
demonstrate that Γ *` φ. Then, we need to provide a Kripke structure and a path of it
such that Γ holds but φ does not.

We consider picking K “ pS,R, V q with

S :“ t∆X FL`pΓY tφuq : ∆ is deductively closedu.

We define the relation R and the valuation V similarly as in the LTL completeness proof,
for ∆,∆1 P S:

p∆,∆1q P R :ðñ X´1∆ Ď ∆1;

and V p∆q :“ ∆XΣ, that is, V p∆q is the set of propositional variables appearing in ∆ as
(atomic) formulas. Note that we have defined a Kripke structure K for every pair pΓ, φq.
As in the LTL case, it can be seen that R is left-total, so K is certainly a Kripke structure.

The first difficulty will be to define a path ρpΓ,φq that satisfies a Truth Lemma of the
form, for every ϕ P FL`pΓY tφuq and ∆0 P S the first state of the path:

K, ρpΓ,φq , ϕ ðñ ϕ P ∆0.

In fact, we will abandon the search for that Truth Lemma and instead focus on pro-
viding a path that specifically ensures that Γ holds while φ does not. We could consider
showing a kind of semi-truth lemma only satisfying one of the implications of the real
Truth Lemma, that is, that for every ϕ P FL`pΓY tφuq and ∆0 P S being the first state
of the path, we have:

ϕ P ∆0 ùñ K, ρpΓ,φq , ϕ.

We provide two examples to illustrate why choosing these approaches is preferable to
seeking the usual Truth Lemma:
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First, consider Γ “ tψ1 U ψ2u. We will see that attempting to preserve the Truth
Lemma introduces some complications. We want K, ρpΓ,φq , ψ1 U ψ2, so we include
ψ1 U ψ2 P ∆0, the first state of the path ρpΓ,φq. Now, to make K, ρpΓ,φq , ψ1 U ψ2 to
hold, we need K, ρj

pΓ,φq , ψ2 for some j ě 0 and K, ρk
pΓ,φq , ψ1 for every 0 ď k ă j.

Observe that K, ρpΓ,φq , ψ1 or K, ρpΓ,φq , ψ2, so either ψ1 P ∆0 or ψ2 P ∆0. We
know ψ1 U ψ2 &

` ψ1 and ψ1 U ψ2 &
` ψ2. Therefore, when constructing the path ρpΓ,φq,

particularly the first state ∆0, the role of the formula φ becomes crucial. We must carefully
choose the elements of ∆0 to ensure that φ R ∆0; otherwise, φ would be satisfied. In our
case, if φ “ ψ1, then we need ψ2 P ∆0 but ψ1 R ∆0, and vice versa for φ “ ψ2. But for
φ R tψ1, ψ2u, we would need more information about ψ1, ψ2 and φ in order to properly
construct ∆0. In essence, this shows that defining our path now requires a procedure to
determine which formulas should belong to each element of the path and which do not.

In the LTL context, the axioms, along with the consistency and maximality aspect of
the path elements, ensured that all possible formulas were included in each state. For
instance, thanks to the LTL axiom (U2), if ψ1 U ψ2 P ∆0, then it necessarily follows that
ψ2 _ pψ1 ^ X pψ1 U ψ2qq P ∆0. Thus, if we knew that ψ2 R ∆0, consistency required
that ψ1 ^ X pψ1 U ψ2q P ∆0, and vice versa. In the SPLTL framework, we must actively
incorporate or exclude those elements from ∆0, since we lack an axiom like (U2) and both
consistency and maximality of our states. With this in mind, ensuring that a specific
formula φ is not satisfied seems more achievable than ensuring that all formulas that
should not be satisfiable are indeed not satisfied. This reinforces the strategy of defining a
particular path that ensures the satisfiability of Γ while guaranteeing the non-satisfiability
of φ, although it might compromise the generality of the Truth Lemma.

The second example is similar but even more direct and clear. Suppose that in the
second element of the path ρpΓ,φq, call it ∆1, we have ψ P ∆1. Then, we clearly have
K, ρpΓ,φq , Xψ. However, we do not necessarily have Xψ P ∆0. Observe that we have
X´1∆0 Ď ∆1, but not X∆1 Ď ∆0.

This example, like the first one, does not present an issue in the LTL framework. If
ψ P ∆1, then we can also derive Xψ P ∆0, in the LTL context. Otherwise, we would
have ␣Xψ P ∆0, which is equivalent to X␣ψ. By the definition of R, this would imply
␣ψ P ∆1, leading to a contradiction with the assumption ψ P ∆1.

Given these two examples, if we still wish to preserve the Truth Lemma, we essentially
have two options: modify the definition of the Kripke structure K or carefully define the
path ρpΓ,φq to ensure that the lemma holds. However, pursuing these alternatives would
forfeit a valuable tool, outlined below, which we consider indispensable. Nevertheless, we
will explicitly discuss some of the alternatives we have considered.

That crucial tool or strategy benefits from the non-maximality of DCSs. Consider
∆ P S and ψ R ∆. According to Lemma 3.1.19, we have that

∆1 :“ DCp∆Y tψuq X FL`pΓY tφuq P S,

satisfies ∆Y tψu Ď ∆1. Furthermore, if p∆2,∆q P R for some ∆2 P S, then p∆2,∆1q P R
as well, since X´1∆2 Ď ∆ Ď ∆1. This flexibility allows us to include as many formulas as
needed when defining the elements of the path ρpΓ,φq. However, note that if p∆,∆2q P R,
we cannot necessarily conclude that p∆1,∆2q P R, because ∆1 might include a formula
Xψ not present in ∆, where ψ R ∆2.

It is noteworthy that to achieve the semi-truth lemma introduced above, we need to
use this method of expanding the elements of the path: as we pointed out before, if we
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want to satisfy K, ρpΓ,φq , ψ1 U ψ2, for some ψ1, ψ2 P FmSPpΣq, then we need

K, ρpΓ,φq , ψ1 ^ X pψ1 U ψ2q or K, ρpΓ,φq , ψ2.

That is, we need ψ1 ^ X pψ1 U ψ2q P ∆0 or ψ2 P ∆0 and, in principle, we cannot derive
these memberships from our only premise ψ1 U ψ2 P ∆0 (although in the LTL framework
we could, by axiom (U2) and the maximality and consistency of the states). So, we need
to expand ∆0 to include ψ1 ^X pψ1 U ψ2q or ψ2, while maintaining its deductively closed
character.

The core issue is that the alternatives we explore to establish the other implication of
the Truth Lemma compromise the expanding method we have developed:

The first easy option would be to adapt the relation R. We could redefine it as, for
∆,∆1 P S:

p∆,∆1q P R :ðñ X´1∆ Ď ∆1 and X∆1 Ď ∆.

In this way, we easily settle the problem introduced in our second example. However, we
would no longer be able to expand our sets, as the new condition would not be preserved
during the expansion.

A second option would be to define the path ρpΓ,φq strictly and carefully to ensure the
desired implication of the Truth Lemma. We could approach this by defining the elements
of ρpΓ,φq to be minimal, taking ∆0 to be ∆0 :“ DCpΓq and, for every k ě 1:

∆k :“ DCpX´1∆k´1q X FL
`pφ^ ψq.

These sets would contain the minimum number of formulas necessary to guarantee that
they belong to S and are R-related. However, this again prevents us from extending the
sets and also does not allow us to ensure the satisfiability of formulas containing the U
operator.

The final alternative we will mention involves accepting that ρpΓ,φq satisfies the semi-
truth lemma, and modifying the path definition to also grant the full Truth Lemma. The
modification would consist of expanding the already defined states of ρpΓ,φq to include Xϕ
for every formula ϕ in the subsequent state of the path, iteratively for each step of the
construction. This process should start taking the last two defined states and be repeated
for each previous state until ∆0. Since the Fischer-Ladner closure is finite, there exists a
number n ă ω such that no formula is nested by X more than n times. Therefore, at step
n` 1, the state ∆0 becomes definitive —no further formulas will be added in subsequent
expansions—. Likewise, ∆1 will be definitive at step n` 2, and so on.

The issue with this approach is that while we are adding these X formulas, the de-
ductive closure may introduce additional new formulas. It remains a difficult task to
determine whether these additional formulas might affect the satisfiability of the Truth
Lemma. For example, problems could arise if a state includes a formula of the form
φ1 U φ2 without also including φ1 ^ X pφ1 U φ2q or φ2.

In conclusion, preserving the Truth Lemma proves to be challenging, if not virtually
impossible. Therefore, our focus should shift to defining a path that specifically guarantees
that Γ holds while ensuring φ does not. However, finding such a path is not easy either.

We try to inductively define the path ρpΓ,φq “ x∆0,∆1, . . . y, as in the LTL case. Step
0, where we define ∆0, should proceed in this way: we consider ∆

p0q
0 :“ Γ. Since the

Fischer-Ladner closure is finite, for some m ă ω we can establish the enumeration

tψ1 U ψ11, . . . , ψm U ψ1mu “ tϕ U ϕ1 : ϕ U ϕ1 P FL`pΓY tφuqu XDCpΓq.
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We take, for i ď m:

∆
pi`1q
0 :“

#

∆
piq
0 Y tψ1iu, if ∆piq0 Y tψ1iu &

` φ;
∆
piq
0 Y tψi,X pψi U ψ1iqu, otherwise.

Then, we define ∆0 :“ DC
´

∆
pmq
0

¯

X FL`pΓ Y tφuq. By Lemma 3.1.19, we know that

DC
´

∆
pmq
0

¯

is a DCS, and so ∆0 P S, as needed.

In this way, we ensure that ∆0 is the smallest set of formulas in S that will allow
all formulas in Γ to hold. The purpose of defining the sets ∆

pi`1q
0 is to establish the

satisfiability of the U formulas and subformulas of Γ while preventing the satisfaction of
φ. However, we encounter a problem: to guarantee the non-satisfiability of φ, we need to
prove that it is not possible for both ∆

piq
0 Y tψ1iu $

` φ and ∆
piq
0 Y tψi,X pψi U ψ1iqu $` φ

to hold simultaneously. We will refer to this condition as the Until’s disjunction problem.
Additionally, defining ∆0 as the deductive closure of ∆pmq0 introduces new formulas, which,
as mentioned before, could be problematic. We will not define them, as similar challenges
arise when trying to specify the subsequent elements of ρpΓ,φq.

We can see that LTL does not have the Until’s disjunction problem:

Proposition 3.1.23. Consider Σ a set of propositional variables. For ∆ Y tφ,ψ, ψ1u Ď
FmLTpΣq, the following statements cannot hold at the same time:

§ ∆ &1LTL φ;

§ ∆ $1LTL ψ U ψ1;

§ ∆Y tψ1u $1LTL φ;

§ ∆Y tψ,X pψ U ψ1qu $1LTL φ.

Proof. We assume the statements to hold, and we will get a contradiction. Specifically,
we will derive ∆ $1LTL φ from the last three expressions, which contradicts the first
assumption.

For simplicity, we assume ∆ to be finite. If ∆ is infinite, the argument is the same,
due to the compactness stated in Observation 2.2.30. We derive:

1. $LTL

˜

ľ

δP∆

δ

¸

Ñ ψ U ψ1; assumption and Observation 2.2.30

2. $LTL

˜

ľ

δP∆

δ ^ ψ1

¸

Ñ φ; assumption

3. $LTL

˜

ľ

δP∆

δ ^ ψ ^ X pψ U ψ1q

¸

Ñ φ; assumption

4. $LTL ψ U ψ1 Ø pψ1 _ pψ ^ X pψ U ψ1qqq; instance of the LTL axiom (U2)

5. $LTL

˜

ľ

δP∆

δ

¸

Ñ pψ1 _ pψ ^ X pψ U ψ1qqq; Substitution Lemma on 1. by 4.

6. $LTL

˜

ľ

δP∆

δ

¸

Ñ pψ1 Ñ φq; (prop)+2.
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7. $LTL

˜

ľ

δP∆

δ

¸

Ñ ppψ ^ X pψ U ψ1qq Ñ φq; (prop)+3.

8. $LTL

˜

ľ

δP∆

δ

¸

Ñ φ. (prop)+5.+6.+7.

The last LTL theorem implies that ∆ $1LTL φ. This contradicts our first assumption
∆ &1LTL φ. Then, we deduce that the four statements of the proposition cannot hold
simultaneously. ▲

As mentioned, we need the previous proposition to hold within the SPLTL framework.
However, in the proof for LTL, we essentially relied on the LTL axiom (U2). In the
SPLTL context, we cannot express the disjunction specified by that LTL axiom. We
conjecture that SPLTL satisfies the proposition and thus avoids the Until’s disjunction
problem. However, as part of this conjecture, we currently lack the appropriate tools
to provide definitive proof. We are in a similar situation concerning whether deductive
closures introduce problematic formulas.

A small glimmer of hope in addressing the disjunction issue is the following identifica-
tion of a weaker notion of disjunction in SPLTL:

Proposition 3.1.24. Let Σ be a set of propositional variables. For the Kripke structure
K defined in Page 79 and every path ρ “ x∆0,∆1, . . . y of K, we have, for p P Σ:

K, ρ , Xp U p ðñ p P ∆0 or p P ∆1.

Proof. Almost immediate by the satisfiability definition:

K, ρ , Xp U pðñ there is some j ě 0 such that K, ρj , p and
K, ρk , Xp for every 0 ď k ă j;

K, ρ , Xp U pðñ there is some j ě 0 such that p P V p∆jq Ď ∆j and
Xp P ∆k for every 0 ď k ă j.

We see that, if j “ 0, then p P ∆0, and if j ą 0 then Xp P ∆0, and so p P ∆1 by the
definition of K. This shows the first implication.

On the other hand, if p P ∆0, then we have K, ρ , p. This also gives us K, ρ , Xp U p
—in this case, j would be 0—. If, instead, we have p P ∆1, then we know K, ρ , Xp and
K, ρ1 , p, so we also deduce K, ρ , Xp U p —now we would have j “ 1—. ▲

This proposition suggests that the formula Xp U p can be interpreted as a disjunction
of the form Xp_p. While this result does not fully capture the disjunction in SPLTL and
is specific to the Kripke structure K introduced earlier, this weak notion of disjunction
can be generalized and extended to include a wider range of formulas. For instance, if
we accept the semi-truth lemma, we can extend the previous proposition to include the
formula Xφ U φ, for every φ P FmSPpΣq. Or we also have, for p, q P Σ:

K, ρ , Xp U q ðñ K, ρ , q or K, ρ , X pp U pp^ qqq.

Recall that p U pp^ qq is also known as the strong release notated by pMq.
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Besides the weak notion of disjunction, deriving lemmas involving formulas that are
syntactically non-derivable could also be beneficial. The following lemma serves as an
example of such results:

Lemma 3.1.25. Let Σ be a set of propositional variables. For every ΓYtφ,ψu Ď FmSPpΣq,
we have:

i) Γ &` φ ùñ Γ &` φ U φ and Γ &` φ^ ψ;

ii) Γ &` φ U ψ ùñ Γ &` ψ;

iii) Γ &` φ U ψ ùñ Γ &` φ^ X pφ U ψq;

iv) Γ &` φ U ψ ùñ Γ &` φ U pφ^ Xψq.

Proof. All items are shown similarly by contraposition. For i), we assume Γ $` φ U φ or
Γ $` φ ^ ψ and easily conclude, in both cases, that we have Γ $` φ. We only need to
apply the Cut rule over our assumptions and instances of the SPLTL axioms (UId) and
(^L), respectively. For ii) we repeat the same argument with an instance of the axiom
(U21). The statement iii) is given by the axiom (U22).

The final expression, iv), requires some additional work. We suppose

Γ $` φ U pφ^ Xψq.

We can derive:

1. Γ $` φ U pφ^ Xψq; assumption
2. φ U pφ^ Xψq $` φ^ Xφ U Xψ; instance of (M)
3. Γ $` φ^ Xφ U Xψ; Cut over 1. and 2.
4. Xφ U Xψ $` X pφ U ψq; instance of (DistUX)
5. φ^ Xφ U Xψ $` φ^ X pφ U ψq; Lemma 3.1.13.ii) over 4.
6. Γ $` φ^ X pφ U ψq; Cut over 3. and 5.
7. φ^ X pφ U ψq $` φ U ψ; instance of (U22)
8. Γ $` φ U ψ. Cut over 6. and 7.

This gives us what we wanted, Γ $` φ U ψ, to prove by contraposition the expression
iv). ▲

The idea would be to address the Until’s disjunction problem in SPLTL using lemmas
similar to the one stated above. Instead of applying the last three assumptions from the
Until’s disjunction problem to derive a contradiction of the first assumption, as we did in
Proposition 3.1.23, we would use the first expression to obtain a statement that contradicts
one of the other assumptions. Although this alternative approach seems promising, we
still lack the appropriate theory and tools to fully prove the SPLTL completeness result
we are aiming for.

One final consideration is the possibility that the current calculus may not be complete.
In principle, this could be addressed by adding new axioms or rules to those specified in
Definition 3.1.2. For instance, we could add as a rule:

Γ $` ψ U ψ1 ΓY tψ1u $` φ ΓY tψ,X pψ U ψ1qu $` φ
Γ $` φ
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This rule would solve our Until’s disjunction problem. However, it does not settle whether
this new rule was already admissible, and it also appears somewhat ad hoc. Moreover,
increasing the number of axioms or rules complicates working with the system, which
already includes numerous axioms and rules.

3.2 Conclusions and Open Questions

We began this thesis by examining the class of regular languages and its diverse character-
izations through regular expressions, regular grammars, finite automata, and MSO logic
over words. We also introduced Büchi’s Theorem, which links the automata and logic
characterizations, and provided a finely detailed proof.

In the second chapter, we shifted our focus to the subclass of star-free languages, which
also has several characterizations, notably including LTL. We centered our attention on
the LTL framework, defining its syntax, semantics, and axiomatization, and concluded
with an in-depth study of the LTL Completeness Theorem.

In this last chapter, we defined a new syntactic fragment of LTL called SPLTL, in-
spired by the theory of strictly positive fragments of modal logics. We derived several
lemmas on SPLTL and proved soundness with respect to the standard semantic relation.
The last section explored the potential completeness of SPLTL. We developed tools and
results to adapt the completeness proof of LTL to the SPLTL framework. However, this
approach presents challenges, particularly due to the absence of the disjunction connective
in SPLTL, which appears crucial for describing the behavior of the U operator.

In addition to the original content presented in the third chapter, the first two chap-
ters have offered a comprehensive overview of the topic. It is worth noting that we
have presented a broad perspective that highlights both foundational concepts and recent
developments. Furthermore, we provided detailed proofs for results that are often not
thoroughly explored in the literature.

However, our contributions have raised more questions than they have answered. The
produced overview stimulates a need for further investigation into the class of context-
free grammars that generate star-free languages (see 2.1, Page 35), as well as a more
detailed exploration of validities in MFO over words, independent of the translation of LTL
tautologies (see 2.1, Page 35). Moreover, a complete explanation of counter-free automata
(Definition 2.1.4), the characterization of star-free languages by aperiodic finite monoids
(see 2.1, Page 35), and MFO logic (see 2.1, Page 35) would also have added significant
value to the thesis.

Focusing on the third chapter, several questions remain open regarding the axiomatiza-
tion and completeness of some strictly positive fragments of LTL. Although we proposed
that these fragments might not be particularly difficult to address, given their potential to
benefit from existing results, they would still require formal proof. But undoubtedly, the
most significant question we would have most liked to resolve is the completeness of our
SPLTL calculus. As suggested, such results could be beneficial in the context of databases
and related applied areas. We remain strictly positive that proving the completeness of
SPLTL will be achievable in the future.
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Appendix

A An Alternative Axiomatization of LTL

We will introduce an alternative LTL axiomatization to the standard one given in Def-
inition 2.2.6. To show that both axiomatizations are indeed equivalent, we will present
a syntactic consequence relation $1ALTĎ PpFmLTpΣqq ˆ FmLTpΣq, and prove a version of
the Deduction Theorem, Theorem A.9. Both the axiomatization and the proof of the
Deduction Theorem are inspired by [KM08].

Actually, the following alternative axiomatization of LTL may not offer more practi-
cal benefits than the usual one. However, it is noteworthy as it involves fewer axioms
and significantly reduces the occurrences of the operator ˝, a derived connective, in the
formalization.

Definition A.1. Let Σ be a set of propositional variables. We define the alternative
axiomatization of LTL as the set of LTL-formulas given, for every φ,ψ P FmLTpΣq, by:
Axiom Schemes:

Any classical propositional tautology; (prop)
X pφÑ ψq Ñ pXφÑ Xψq; (KX )
␣XφØ X␣φ; (Lin)
φ U ψ Ñ ˛ψ; (U1)
φ U ψ Ø pψ _ pφ^ X pφ U ψqqq. (U2)

Inference Rules:

φ φÑ ψ
MP

ψ

φ
NXXφ

φÑ ψ φÑ Xφ
IndR

φÑ ˝ψ

We will call the elements of the alternative axiomatization of LTL as A-theorems of LTL,
and if φ is an A-theorem, we denote it by $ALT φ.

Example A.2. We can show that, for φ an LTL-formula, we have

$ALT ˝φÑ pφ^ X˝φq. (A˝Unr)

To verify this, we must first recall that ˝φ is an abbreviation of ␣pJ U ␣φq. Next,
we consider the following sequence, which is essentially the same as the one in
Example ˝Unr:

1. J U ␣φØ p␣φ_ pJ ^ X pJ U ␣φqqq; instance of axiom (U2)
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2. J U ␣φØ p␣φ_ X pJ U ␣φqq; (prop)+1. (see Notation in Page 40)
3. p␣φ_ X pJ U ␣φqq Ñ J U ␣φ; (prop)+2.
4. ␣pJ U ␣φq Ñ ␣p␣φ_ X pJ U ␣φqq; (prop)+3.
5. ␣pJ U ␣φq Ñ p␣␣φ^␣X pJ U ␣φqq; (prop)+4.
6. ␣␣φÑ φ; instance of prop. tautology
7. ␣pJ U ␣φq Ñ pφ^␣X pJ U ␣φqq; (prop)+5.+6.
8. ␣X pJ U ␣φq Ø X␣pJ U ␣φq; instance of axiom (Lin)
9. ␣pJ U ␣φq Ñ pφ^ X␣pJ U ␣φqq; (prop)+7.+8.
10. ˝φÑ pφ^ X˝φq. by 9. and the definition of ˝

Then, we conclude $ALT ˝φÑ pφ^ X˝φq.

Our main objective is to prove that the alternative axiomatization of LTL is equivalent
to the standard one, so the A-theorems of LTL are exactly the usual theorems of LTL.
To demonstrate this, it suffices to verify that the axioms and rules of each axiomatization
are derivable from the other. Given that they share most of their axioms and rules, we
only need to show the derivability of the rules, for every φ,ψ P FmLTpΣq:

$LTL φÑ ψ $LTL φÑ Xφ
$LTL φÑ ˝ψ

$ALT φ
$ALT ˝φ

And the A-theorems:

$ALT ˝pφÑ ψq Ñ p˝φÑ ˝ψq;

$ALT ˝pφÑ Xφq Ñ pφÑ ˝φq.

In the case of the rules, we see that they follow easily:

Proposition A.3. For Σ a set of propositional variables and φ,ψ P FmLTpΣq, we have
that:

$LTL φÑ ψ and $LTL φÑ Xφ imply $LTL φÑ ˝ψ.

Proof. For φ,ψ P FmLTpΣq, we derive:

1. $LTL φÑ ψ; assumption
2. $LTL ˝pφÑ ψq; N˝ rule over 1.
3. $LTL ˝pφÑ ψq Ñ p˝φÑ ˝ψq; instance of axiom (K˝)
4. $LTL ˝φÑ ˝ψ; MP over 2. and 3.
5. $LTL φÑ Xφ; assumption
6. $LTL ˝pφÑ Xφq; N˝ rule over 5.
7. $LTL ˝pφÑ Xφq Ñ pφÑ ˝φq; instance of axiom (Ind)
8. $LTL φÑ ˝φ; MP over 6. and 7.
9. $LTL φÑ ˝ψ. (prop)+4.+8.

This leads us to conclude that if we assume $LTL φ Ñ ψ and $LTL φ Ñ Xφ, then we
also have $LTL φÑ ˝ψ, as we wanted. ▲
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Proposition A.4. For Σ a set of propositional variables and φ P FmLTpΣq, we have that:

$ALT φ implies $ALT ˝φ.

Proof. We suppose $ALT φ for some φ P FmLTpΣq. We derive:

1. $ALT φ; assumption
2. $ALT Xφ; rule NX over 1.
3. $ALT φÑ Xφ; (prop)+2.
4. $ALT φÑ φ; instance of prop. tautology
5. $ALT φÑ ˝φ; rule IndR over 3. and 4.
6. $ALT ˝φ. MP over 1. and 5.

This ensures that if we have $ALT φ, then we can also derive $ALT ˝φ, as required. ▲

Now we only need to show the derivability of the A-theorems:

$ALT ˝pφÑ ψq Ñ p˝φÑ ˝ψq;

$ALT ˝pφÑ Xφq Ñ pφÑ ˝φq.

To prove this, we will define a relation $1ALT, which provides a syntactic deduction system
for LTL. The idea is that $1ALT will satisfy a version of the Deduction Theorem that
simplifies the derivation of the two A-theorems we need.

Definition A.5. For Σ a set of propositional variables and ΓY tφu Ď FmLTpΣq, we state
Γ $1ALT φ if there is a proof or derivation of φ by Γ in the alternative axiomatization
of LTL. Such proof is a finite sequence xφ0, . . . , φny where φn “ φ and, for every i ď n,
either:

§ φi P Γ;

§ φi is an A-theorem of LTL; or

§ φi is obtained from previous formulas in the sequence by applying some rule of the
alternative axiomatization of LTL.

If Γ $1ALT φ, we say that Γ is the set of assumptions, and φ is a conclusion of Γ.

This relation $1ALT is strictly different from the standard consequence relation of LTL,
the relation $1LTL introduced in Definition 2.2.29. For instance, consider tφu $1ALT ˝φ, for
φ P FmLTpΣq. The rule derived in Proposition A.4 makes this derivation clear. However,
we do not have tφu $1LTL ˝φ since &LTL φÑ ˝φ. Yet another example, by the IndR rule,
is clear that we have, for φ,ψ P FmLTpΣq, the expression tφÑ ψ,φÑ Xφu $1ALT φÑ ˝ψ.
But it is not true that we have tφÑ ψ,φÑ Xφu $1LTL φÑ ˝ψ in general. Later, thanks
to Proposition A.12, we will also be able to demonstrate the inclusion $1LTLĂ$1ALT.

The following three results are immediate yet relevant, and they also help to clarify
the behavior of $1ALT and the A-theorems:

Proposition A.6. For Σ a set of propositional variables and every φ P FmLTpΣq, we have:

∅ $1ALT φ ðñ $ALT φ.
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Proof. If φ is a theorem of the alternative axiomatization of LTL, then we easily conclude
∅ $1ALT φ since the sequence xφy would serve as a proof.

On the other hand, if ∅ $1ALT φ, then there exists a sequence, a proof, consisting only
of A-theorems and formulas obtained by applying the inference rules to previous formulas
in the sequence. Let φk be the first element in the sequence obtained in this second
manner. Since the previous formulas in the sequence are all A-theorems and we have
applied an inference rule from the alternative axiomatization, it follows that φk is also an
A-theorem. Inductively, we deduce that all elements in the sequence are A-theorems of
LTL. In particular, the conclusion φ is also an A-theorem, as desired. ▲

Proposition A.7 (Compactness of $1ALT). For Σ a set of propositional variables and for
all ΓY tφu Ď FmLTpΣq, if Γ $1ALT φ, then there is some finite Γ0 Ď Γ such that Γ0 $

1
ALT φ.

Proof. If Γ $1ALT φ, then there is some proof xφ0, . . . , φny of φ by Γ in the alternative
axiomatization of LTL. We can simply pick Γ0 :“ tγ P Γ : γ “ φi for some i ď nu. Since
the proof is a finite sequence of formulas, we have that Γ0 Ď Γ is finite. Moreover, by the
construction of Γ0, every formula of Γ needed in the proof xφ0, . . . , φny is also in Γ0, so
the same proof also guarantees Γ0 $

1
ALT φ. ▲

Proposition A.8 (Weakening of $1ALT). For Σ a set of propositional variables and for
ΓY tφu Ď FmLTpΣq, if Γ $1ALT φ, then also Γ1 $1ALT φ for every Γ1 Ě Γ.

Proof. If Γ $1ALT φ, then there is a sequence, a proof, of φ by Γ. Since every element of
Γ is also in every Γ1 Ě Γ, we clearly have that the same sequence will serve as a proof of
φ by Γ1. ▲

Without further delay, let us demonstrate the version of the Deduction Theorem we
will need:

Theorem A.9 (Deduction Theorem for $ALT). Consider Σ to be a set of propositional
variables and ΓY tφ,ψu Ď FmLTpΣq. We have:

ΓY tφu $1ALT ψ ðñ Γ $1ALT ˝φÑ ψ.

Proof. We first show the left-to-right implication: we assume ΓYtφu $1ALT ψ and we need
to prove that we also have Γ $1ALT ˝φÑ ψ. We do it by induction on the assumed proof
of ψ:

§ If ψ is an A-theorem, or if it is equal (or equivalent) to some element of Γ, then we
clearly have Γ $1ALT ψ, and so we can derive Γ $1ALT ˝φÑ ψ by using the instance
of a propositional tautology ψ Ñ p˝φÑ ψq and Modus Ponens.

§ Consider ψ “ φ (or ψ to be equivalent to φ, that is, $1ALT φØ ψ). We need to prove
Γ $1ALT ˝φ Ñ φ. This follows essentially from the A-theorem (A˝Unr), derived in
the previous example. In this way, we have:

1. $ALT ˝φÑ pφ^ X˝φq; derivable
2. $ALT ˝φÑ φ; (prop)+1.
3. Γ $ALT ˝φÑ φ. Weakening of 2.

So we got what we wanted.
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§ If the last step of the proof is the application of Modus Ponens, then we have
Γ Y tφu $1ALT ϕ and Γ Y tφu $1ALT ϕ Ñ ψ, for some LTL-formula ϕ. By Induction
Hypothesis, we know Γ $1ALT ˝φ Ñ ϕ and Γ $1ALT ˝φ Ñ pϕ Ñ ψq. Thanks to the
instance of a propositional tautology

p˝φÑ ϕq Ñ pp˝φÑ pϕÑ ψqq Ñ p˝φÑ ψqq,

and two consecutive applications of MP , we deduce Γ $1ALT ˝φÑ ψ, as intended.

§ If the final step in the proof of ψ was achieved by applying the rule NX , then ψ is of
the form ψ “ Xϕ with ΓY tφu $1ALT ϕ, for some LTL-formula ϕ. By our Induction
Hypothesis, we also know Γ $1ALT ˝φÑ ϕ. We can deduce Γ $1ALT ˝φÑ Xϕ by:

1. Γ; set of assumptions
2. ˝φÑ ϕ; derivable from Γ

3. X p˝φÑ ϕq; NX rule over 2.
4. X p˝φÑ ϕq Ñ pX˝φÑ Xϕq; instance of axiom (KX )
5. X˝φÑ Xϕ; MP over 3. and 4.
6. ˝φÑ φ^ X˝φ; A-theorem (A˝Unr)
7. ˝φÑ X˝φ; (prop)+6.
8. ˝φÑ Xϕ. (prop)+5.+7.

§ If the last step of the proof of ψ has been given by applying the rule IndR, then we
know, for some ϕ1, ϕ2 P FmLTpΣq:

ψ “ ϕ1 Ñ ˝ϕ2;

ΓY tφu $1ALT ϕ1 Ñ ϕ2;

ΓY tφu $1ALT ϕ1 Ñ Xϕ1.

By Induction Hypothesis, we get

Γ $1ALT ˝φÑ pϕ1 Ñ ϕ2q;

Γ $1ALT ˝φÑ pϕ1 Ñ Xϕ1q.

As in the example with the A-theorem (A˝Unr), we can easily adapt the derivation
given in Example 2.2.10 to derive the A-theorem, for φ,ψ P FmLTpΣq:

$ALT X˝φ^ Xψ Ñ X p˝φ^ ψq. (ADistX)

Now we can show Γ $1ALT ˝φÑ ψ from the following sequence:

1. Γ; set of assumptions
2. ˝φÑ pϕ1 Ñ ϕ2q; derivable from Γ

3. ˝φÑ pϕ1 Ñ Xϕ1q; derivable from Γ

4. ˝φ^ ϕ1 Ñ ϕ2; (prop)+2.
5. ˝φ^ ϕ1 Ñ Xϕ1; (prop)+3.
6. ˝φÑ φ^ X˝φ; A-theorem (A˝Unr)
7. ˝φÑ X˝φ; (prop)+6.
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8. ˝φ^ ϕ1 Ñ X˝φ^ Xϕ1; (prop)+5.+7.
9. X˝φ^ Xϕ1 Ñ X p˝φ^ ϕ1q; A-theorem, as stated above
10. ˝φ^ ϕ1 Ñ X p˝φ^ ϕ1q; (prop)+8.+9.
11. ˝φ^ ϕ1 Ñ ˝ϕ2; rule IndR over 4. and 10.
12. ˝φÑ pϕ1 Ñ ˝ϕ2q. (prop)+11.

Thus, we have Γ $1ALT ˝φÑ ψ, as expected.

In summary, by induction on the proof of ψ by Γ Y tφu, we have proved that the first
implication of the Deduction Theorem holds.

The converse implication of the theorem, namely the direction from right to left, is
simpler to demonstrate: on the one hand, if we assume Γ $1ALT ˝φÑ ψ, then Weakening
ensures that we also have

ΓY tφu $1ALT ˝φÑ ψ.

On the other hand, we clearly have ΓY tφu $1ALT φ, and so, from the N˝ rule derived in
Proposition A.4, we can get

ΓY tφu $1ALT ˝φ.

By concatenating the proofs assumed by the A-theorems Γ Y tφu $1ALT ˝φ Ñ ψ and
Γ Y tφu $1ALT ˝φ, and applying MP over the formulas ˝φ Ñ ψ and ˝φ of the resulting
sequence, we deduce

ΓY tφu $1ALT ψ.

This shows the lacking implication and finishes the proof of the Deduction Theorem for
$1ALT. ▲

This version of the Deduction Theorem will help determine the A-theorems we need
to demonstrate the equivalence between our two axiomatizations of LTL:

Proposition A.10. For Σ a set of propositional variables and φ,ψ P FmLTpΣq, we have:

$ALT ˝pφÑ ψq Ñ p˝φÑ ˝ψq.

Proof. By Proposition A.6, we know

$ALT ˝pφÑ ψq Ñ p˝φÑ ˝ψq ðñ ∅ $1ALT ˝pφÑ ψq Ñ p˝φÑ ˝ψq.

By the newly derived Deduction Theorem, we see:

∅ $1ALT ˝pφÑ ψq Ñ p˝φÑ ˝ψq ðñ tφÑ ψu $1ALT ˝φÑ ˝ψ ðñ

ðñ tφÑ ψ,φu $1ALT ˝ψ.

By MP over φ Ñ ψ and φ, we can easily deduce tφ Ñ ψ,φu $1ALT ψ. Finally, from
the rule N˝, derived in Proposition A.4, we can conclude tφ Ñ ψ,φu $1ALT ˝ψ. This
guarantees us the A-theorem:

$ALT ˝pφÑ ψq Ñ p˝φÑ ˝ψq.

▲
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Proposition A.11. For Σ a set of propositional variables and φ P FmLTpΣq, we have:

$ALT ˝pφÑ Xφq Ñ pφÑ ˝φq.

Proof. By Proposition A.6 and Theorem A.9, the Deduction Theorem for $1ALT, we have:

$ALT ˝pφÑ Xφq Ñ pφÑ ˝φq ðñ tφÑ Xφu $1ALT φÑ ˝φ.

Now we can easily build the sequence

xφÑ Xφ,φÑ φ,φÑ ˝φy.

The first element is our assumption. The second one is an instance of a propositional
tautology, so it is an A-theorem. The third item is obtained by applying the IndR rule
to the previous two elements in the sequence. We see that the defined sequence serves as
a proof of φ Ñ ˝φ by tφ Ñ Xφu in the alternative axiomatization of LTL, that is, we
have tφÑ Xφu $1ALT φÑ ˝φ. ▲

These last two results, together with Proposition A.3 and Proposition A.4, give us
what we were looking for: the alternative axiomatization of LTL given in Definition A.1
is equivalent to the standard axiomatization stated in Definition 2.2.6. This means that
the A-theorems of LTL are exactly the theorems of LTL, for every φ P FmLTpΣq, we have:

$ALT φ ðñ $LTL φ.

Although we already know that the consequence relations $1ALT and $1LTL are not
identical, we observe that our findings reveal that

∅ $1ALT φ ðñ ∅ $1LTL φ.

Also, as advanced before, we have the inclusion $1LTLĂ$1ALT:

Proposition A.12. For Σ a set of propositional variables and Γ Y tφu Ď FmLTpΣq, we
have:

Γ $1LTL φ ùñ Γ $1ALT φ.

Proof. If Γ $1LTL φ, then there is some finite Γ0 Ď Γ such that $LTL

´

Ź

γPΓ0
γ

¯

Ñ φ.
Then, we deduce that we also have

$ALT

˜

ľ

γPΓ0

γ

¸

Ñ φ.

Now, from the last expression and the (A-)theorem

$ALT ˝

˜

ľ

γPΓ0

γ

¸

Ñ

˜

ľ

γPΓ0

γ

¸

;

we easily deduce, by an instance of a propositional tautology and MP , that:

$ALT ˝

˜

ľ

γPΓ0

γ

¸

Ñ φ.
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As we know, by our Deduction Theorem, this will imply the satisfaction of the expres-
sion

ľ

γPΓ0

γ $1ALT φ.

Since Γ0 Ď Γ, it is not difficult to check that we have Γ $1ALT γ for every γ P Γ0, and so
Γ $1ALT

Ź

γPΓ0
γ. Then, the Cut rule allows us to conclude Γ $1ALT φ. ▲

This proposition ensures $1LTLĎ$1ALT. We know that the relations are not identical, as
we have seen that, for instance, tφu $1ALT ˝φ but tφu &1LTL ˝φ. Therefore, we get:

$1LTLĂ$
1
ALT .

In Theorem 2.2.32, we show a finitary strong completeness result between the syntactic
relation $1LTL and (1LTL, the standard semantic consequence relation of LTL. From our
previous result, we can deduce that, for every finite ΓY tφu Ď FmLTpΣq:

Γ (1LTL φ ùñ Γ $1ALT φ.

But the converse does not hold. This implies that the alternative syntactic relation we
have introduced does not achieve finitary strong completeness with respect to the standard
semantic relation. While we will not explore this topic further, it is worth noting that this
does not invalidate the possibility of defining a different semantic relation that satisfies
completeness.

We conclude this appendix with two propositions, to compare or contrast to work with
$1LTL and with our alternative relation $1ALT. In some cases, a relatively straightforward
derivation within the $1LTL framework can become more intricate in the $ALT context,
primarily due to the lack of the standard Deduction Theorem:

Proposition A.13. Consider Σ a set of propositional variables and φi, ψ P FmLTpΣq for
i ă n ă ω. If φ0, . . . , φn´1 $

1
LTL ϕ, then Xφ0, . . . ,Xφn´1 $1LTL Xϕ.

Proof. By definition of $1LTL, the expression φ0, . . . , φn´1 $
1
LTL ϕ means that we have

$LTL

˜

ľ

iăn

φi

¸

Ñ ϕ.

Then, we see:

1.

˜

ľ

iăn

φi

¸

Ñ ϕ; derivable

2. X

˜˜

ľ

iăn

φi

¸

Ñ ϕ

¸

; NX over 1.

3. X

˜

ľ

iăn

φi

¸

Ñ Xϕ; MP over an instance of (KX ) and 2.

4.

˜

ľ

iăn

Xφi

¸

Ñ X

˜

ľ

iăn

φi

¸

; derivable, see Example 2.2.10
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5.

˜

ľ

iăn

Xφi

¸

Ñ Xϕ. (prop)+3.+4.

Then, by the Deduction Theorem of $LTL, Theorem 2.2.31, and the Observation 2.2.30,
we can deduce

ľ

iăn

Xφi $1LTL Xϕ;

and so, as we required:
Xφ0, . . . ,Xφn´1 $1LTL Xϕ.

▲

By Proposition A.12, we know that the same statement will also hold within the
relation $1ALT, so the following proposition could be shown effortlessly. However, we will
effectively prove it, to compare it to the $1LTL case:

Proposition A.14. Consider Σ a set of propositional variables and φi, ψ P FmLTpΣq for
i ă n ă ω. If φ0, . . . , φn´1 $

1
ALT ϕ, then Xφ0, . . . ,Xφn´1 $1ALT Xϕ.

Proof. The first steps in the argumentation essentially reproduce the proof given in the
previous proposition. However, we will need to perform certain modifications to align
with the $1ALT version of the Deduction Theorem.

We suppose φ0, . . . , φn´1 $
1
ALT ϕ. By Theorem A.9, the Deduction Theorem for $1ALT,

and Proposition A.6, we know that we have

$ALT ˝φ0 Ñ p˝φ1 Ñ ¨ ¨ ¨ Ñ p˝φn´2 Ñ p˝φn´1 Ñ ϕq . . . q;

$ALT

˜

ľ

iăn

˝φi

¸

Ñ ϕ.

Then, we see:

1.

˜

ľ

iăn

˝φi

¸

Ñ ϕ; derivable

2. X

˜˜

ľ

iăn

˝φi

¸

Ñ ϕ

¸

; NX over 1.

3. X

˜

ľ

iăn

˝φi

¸

Ñ Xϕ; MP over an instance of (KX ) and 2.

4.

˜

ľ

iăn

X˝φi

¸

Ñ X

˜

ľ

iăn

˝φi

¸

; derivable, generalization of (ADistX)

5.

˜

ľ

iăn

X˝φi

¸

Ñ Xϕ; (prop)+3.+4.

6.

˜

ľ

iăn

˝Xφi

¸

Ñ

˜

ľ

iăn

X˝φi

¸

; derived below

7.

˜

ľ

iăn

˝Xφi

¸

Ñ Xϕ; (prop)+5.+6.
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8. ˝

˜

ľ

iăn

Xφi

¸

Ñ

˜

ľ

iăn

˝Xφi

¸

; derived below

9. ˝

˜

ľ

iăn

Xφi

¸

Ñ Xϕ. (prop)+7.+8

Then, applying again the Deduction Theorem, we deduce
˜

ľ

iăn

Xφi

¸

$1ALT Xϕ;

from which we can derive, as we were looking for,

Xφ0, . . . ,Xφn´1 $1ALT Xϕ.

To conclude the proof, we need to derive the expressions:

$ALT

˜

ľ

iăn

˝Xφi

¸

Ñ

˜

ľ

iăn

X˝φi

¸

;

$ALT ˝

˜

ľ

iăn

Xφi

¸

Ñ

˜

ľ

iăn

˝Xφi

¸

.

By induction, we can reduce our task to proving the following LTL theorems for
φ,ψ P FmLTpΣq:

$ALT ˝XφÑ X˝φ; (˝Lin)

$ALT ˝pφ^ ψq Ñ p˝φ^ ˝ψq. (˝Dist)

Proof of (˝Lin):

1. ˝XφÑ pXφ^ X˝Xφq; instance of (A˝Unr)
2. pXφ^ X˝Xφq Ñ X pφ^ ˝Xφq; derivable from Example 2.2.10
3. ˝XφÑ X pφ^ ˝Xφq; (prop)+1.+2.
4. pφ^ ˝Xφq Ñ ˝φ; derivable from Example ˝Unr
5. X ppφ^ ˝Xφq Ñ ˝φq; rule NX over 4.
6. X pφ^ ˝Xφq Ñ X˝φ; MP over instance of (KX ) and 5.
8. ˝XφÑ X˝φ. (prop)+3.+6.

Proof of (˝Dist): by the Deduction Theorem, we only need to show

tφ^ ψu $1ALT ˝φ^ ˝ψ.

This is clear since φ ^ ψ implies φ and ψ, and, by the derived rule N˝ from Proposition
A.4, we have both ˝φ and ˝ψ, so we deduce that there is some proof of ˝φ ^ ˝ψ by
φ^ ψ. Alternatively, observe that (˝Dist) holds in K˝, and therefore also holds in LTL,
as discussed in Section 2.2.1, on Page 44. ▲
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