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In this master’s thesis, we consider quantum linear maps as a tool to derive
new sufficient conditions for separability in bipartite and multipartite systems.
In specific, we focus on the so-called reduction map to strengthen the existing
criteria for absolute separability in bipartite systems, i.e., for states that re-
main bi-separable under any global unitary transformation. To this aim, using
powerful convex geometry techniques, we introduce tighter volumes and char-
acterization of the set of absolutely separable states w.r.t. any bi-partition for
arbitrary dimensions. Furthermore, we derive new conditions on the spectrum
of bipartite entanglement witnesses. In addition, we address the multipartite
scenario by presenting some non-optimal results. Finally, we provide some in-
sights on the conjecture that having a positive partial transpose from spectrum
is equivalent to being separable from spectrum for the symmetric subspace of
N−qudits, as well as a new criterion for positive partial transpose from spec-
trum for arbitrary system sizes N .
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1 Introduction
The 20th century quantum revolution led to massive technological breakthroughs, such as
the invention of transistors, microchips, or lasers. However, entanglement and non-locality,
two of the most surprising phenomena of quantum physics, were seen, for a long time, as
an inconsistency of quantum mechanics[EPR35]. Entanglement, non-locality and super-
positions are, nowadays, widely acknowledged to be the most significant quantum features
that allow to perform tasks in the processing of information that otherwise will not be
possible. Typical examples are secure quantum key distribution [LCT14], quantum tele-
portation [BBC+93] or secure quantum cryptography using Bell correlations [Eke91], just
to name a few. Recently, the experimental advances in controlling and manipulating quan-
tum systems at the micro and nanoscale (from single atoms to many body systems, ions,
mechanical resonators or photons) has made possible the preparation of entangled states
in various systems [LKS+05, HLC23, JKP01], allowing to test and develop novel quantum
information protocols [FGBL22]. Moreover, to unleash the true power of quantum com-
putation, quantum correlations are required. For all these reasons, the characterization,
verification, and detection of entanglement, keep being one of the most fundamental re-
search areas in the field of quantum information. In particular, the separability problem,
that is, determining whether a state is separable or entangled, remains one of the most
relevant open problems in the broad field of quantum information, with major implications
for the development of quantum technologies.

Nevertheless, detecting and quantifying entanglement is typically extremely challeng-
ing, and determining if a given quantum state is entangled or not has been proven to
be an NP-Hard problem [Gha10, Gur03]. As a consequence, the separability problem is
still an open question whose solution as a set of analytical sufficient and necessary con-
ditions exists only for a few simple cases. A necessary condition for a statement to be
true must be satisfied, but satisfying it alone does not guarantee that the statement is
true. A sufficient condition, if met, guarantees that the statement is true, but not meeting
it does not necessarily mean that the statement is false. For pure states, entanglement
and non-locality are equivalent, meaning that all entangled states violate a Bell inequality
and vice versa; all states that violate a Bell inequality are entangled. For bipartite pure
states there exists, moreover, the so-called Schmidt decomposition, which easily provides
a way to check if a pure state is entangled or not. However, for mixed states, necessary
and sufficient criteria are only established for low dimensions [Per96, HHH96]. Sufficient
conditions for entanglement, such as entanglement witnesses or Bell inequalities, have been
exhaustively scrutinized in the literature. Conversely, sufficient conditions for separability
remain much less explored. In the present thesis, we focus on the latter. Remarkably, it
has been recently shown that quantum maps can provide sufficient criteria (not necessary)
for separability both in the case of bipartite systems [LAC+16, HHH01] and also in the
multipartite scenario, where different types of entanglement exist [LMRTS22, FMJ17].

This master’s thesis focuses on the latest line of research: quantum maps, and con-
nects it with the concept of absolute separability (AS) or separability from spectrum
[KZ01, GB02], i.e., states whose separability is certified with only the eigenvalues of the
density matrix and therefore are invariant in front of unitary transformations. Specifically,
we derive extreme sufficient linear conditions on the eigenvalues of a state for AS that
provide a better bound than the existing criteria. By convexity arguments, we combine
our new conditions with existing criteria to provide a tighter characterization of the AS set
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for general dimensions. Our contribution extends also to the spectral properties of entan-
glement witnesses, since we also derive a lower and higher bounds for their minimal and
maximal eigenvalues, respectively. The novel conditions can be cast as a standard convex
program, which, in particular, allows one to test compatibility with bipartite AS states of
a given set of experimentally-inferred mean values. Finally, we address the multipartite
scenario and, in particular, symmetric states. We derive new sufficient criteria to certify a
positive partial transpose from spectrum for general systems of N−qudits.

The structure of this thesis is as follows: in Section 2 we introduce all preliminary
concepts used and needed for the derivation of our results. In Section 3, we focus on the
use of quantum maps as sufficient criteria for separability, and we present some of our
results, regarding simplexes of AS states and the properties that can be derived from the
corresponding entanglement witnesses. In Section 4, we report on the improvement ob-
tained with our results as compared with other criteria already existing in the literature.
We also deploy various convex techniques to combine all these criteria, leading to stronger
conditions for bipartite AS. We finish this master’s thesis, by analyzing the application of
our results in multipartite systems and symmetric states in Section 5. Conclusions and
open questions resulting from our study are stated in the Section 6.

Some of the proofs of our results are quite involved and, for the easiness of reading, we
include them as complementary appendices at the end.
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2 Preliminaries
The main objective of this master’s thesis is to approach the problem of separability of
mixed states using quantum maps. In this first section, we present some necessary concepts
used through this work.

2.1 Quantum states
According to the postulates of quantum mechanics, the state of any physical system S,
is encoded into a unit trace positive semidefinite (PSD) operator, ρS ∈ B(HS), where
B(HS) denotes the set of bounded operators acting on the associated Hilbert space HS .
Isolated quantum systems have a simpler description given by a unit vector |ψk⟩ ∈ HS ,
and are called pure. Equivalently, a state is pure, if and only if, Tr

(
ρ2

S
)

= 1, corre-
sponding to rank one operators ρS = |ψk⟩⟨ψk|. Otherwise, the state is called mixed,
and can be represented as a convex combination of projectors onto pure states. Let
D(HS) = {ρS ∈ B(HS)|ρS ⪰ 0,Tr(ρS) = 1}, denote the space of density matrices. Notice
that D(HS) is a convex set, with pure states being its extreme points. The maximally
mixed state (MMS) is the state with the smallest purity: Tr

(
ρ2) = 1/D, and thus it is

proportional to the identity operator, 1D, where D is the dimension of the corresponding
Hilbert space.

The state space of composite systems is given by the tensor product of the individual
state spaces. For example, for bipartite composite systems AB, the global Hilbert space can
be expressed as HAB = HA ⊗ HB. The subsystems are usually called parties. Considering
{Ai}, {Bi} to be Hermitian operators of the subsystems A and B, respectively, in the
density matrix representation, the state of the composite system can be represented as

ρAB =
∑

i

Ai ⊗Bi. (1)

The density matrix of the subsystems ρA ∈ B(HA) and ρB ∈ B(HB) can be ob-
tained through the partial trace of the composite state. Specifically, ρA = TrB(ρAB) =∑

i Tr(Bi)Ai and similarly for ρB = TrA(ρAB) =
∑

i Tr(Ai)Bi. In addition, one can also
define the partial transpose w.r.t. subsystem A as ρTA

AB =
∑

iA
T
i ⊗Bi, where T is the usual

transposition (the definition is analogue for B).

2.2 Quantum maps
A quantum map or super-operator Λ : B(H1) → B(H2) transforms operators A1 ∈ B(H1)
onto operators A2 = Λ(A1) ∈ B(H2). Thus, maps are used to describe state transforma-
tions when using the density matrix formalism. For a map to correspond to a quantum
channel, i.e., a physical transformation that converts a physical system ρ1 ∈ D(H1) into
another physical state ρ2 = Λ(ρ1) ∈ D(H2), it must comply with the following properties.
(i) Linearity Λ(

∑
i piρi) =

∑
i piΛ(ρi), (ii) hermiticity-preserving Λ(ρ†

1) = Λ(ρ1)†, (iii)
positivity Λ(ρ1) ≥ 0, ∀ρ1 ∈ D(H1), (iv) trace preserving Tr(Λ(ρ1)) = Tr(ρ1) = 1 and (v)
complete positivity. That is, the extended map 1⊗ Λ, where 1 is the identity map, is also
positive. The maps that fulfill the above conditions and are trace preserving are called
completely positive trace preserving (CPTP). In this thesis, we make use of positive maps
which are not necessarily CPTP to derive sufficient conditions for separability. In this con-
text, the map should be understood as a mathematical tool to derive the aforementioned
conditions.

3



2.3 Entanglement
The quantum formalism admits parties to be correlated in ways that cannot be explained by
classical statistical mechanics. In order to describe such phenomena, we have to introduce
the notion of entanglement. We begin the discussion with the simplest scenario of just two
parties.

2.3.1 Bipartite entanglement

Let us consider two subsystems A, B in a global pure state |ϕAB⟩ ∈ HA ⊗ HB := HAB.
Below, we provide the definition of separability for such states.

Definition 2.1. A pure state of a composite system |ϕAB⟩ ∈ HAB is said separable if and
only if it can be written as |ϕAB⟩ = |ϕA⟩ ⊗ |ϕB⟩.

Clearly, not all states in the composite Hilbert space are separable – those that are not
are called entangled. The previous definition is extended to mixed states as follows:

Definition 2.2. A given state ρAB ∈ D(HAB) is called to be separable if and only if it
can be written as ρAB =

∑
i piρ

(i)
A ⊗ ρ

(i)
B , where ρ

(i)
k ∈ Hk and {pi} forms a probability

distribution. The set of separable states is denoted by SEP(A|B). States that do not admit
such a decomposition are called entangled.

Although this previous notion of entanglement can be generalized to an arbitrary num-
ber of parties, one needs to be careful when defining multipartite entanglement because
its characterization is very subtle [GT09, HHHH09]. For example, it is not clear how to
define a maximally entangled state, since different states maximize different entanglement
measures.

2.3.2 Multipartite entanglement

The extension of Def. 2.2 to the multipartite case can be cast as follows.

Definition 2.3. A quantum state ρ ∈ D(H1 ⊗ · · · ⊗ HN ) is fully separable if it can be
written as

ρ =
∑

i

pi · ρ(1)
i ⊗ · · · ⊗ ρ

(N)
i ∈ SEP(H1| · · · |HN ), (2)

where ρ
(k)
i ∈ D(Hk) are quantum states acting on the k − th Hilbert space Hk and the

coefficients {pi} form a convex combination. Otherwise, it is called entangled.

Notice that one can take an N−partite system of qudits of local dimension d and work
with it as a bipartite system acting on a Hilbert space H = (Cd)⊗k ⊗(Cd)⊗N−k of dimension
dk ·dN−k = dN . Nevertheless, (Cd)⊗k ̸= Cd·k. Despite being isomorphic, the two spaces are
not equivalent. Moreover, multipartite entangled states can be classified in a wide number
of classes that increases with the dimension of the system [DC00]. Next, we introduce two
classifications of entanglement for multipartite systems.

A quantum state of a multipartite system ρ ∈ D(H1 ⊗ · · · ⊗ HN ) is separable w.r.t.
the bi-partition of the state on two groups A|B if it can be written following Def. 2.2 for
that partition. This definition applies to all the possible partitions Ai|Bi, independently
of their local dimensions. Then, bi-separability is defined as follows.
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Definition 2.4. A state ρ ∈ D(H1 ⊗ · · · ⊗ HN ) is bi-separable if it can be written as

ρbi-sep =
∑

i

pi · ρsep
Ai|Bi

, (3)

where ρsep
Ai|Bi

are PSD operators that are separable in each Ai|Bi possible bi-partition.

One can clearly see that a state that is separable (SEP) w.r.t. a certain bi-partition is
already bi-separable, but the converse is not true.

2.3.3 Entanglement criteria for bipartite systems

Entanglement detection is a complex subject and, in fact, the separability problem has been
proven to be NP-hard [Gur03]. While it is expected that there is no efficient procedure to
determine whether a given mixed state is separable [Gha10], there exist some criteria for
certain subsets of states or specific cases. The Schmidt decomposition gives rise to a well
known sufficient criteria for pure bipartite systems.

Definition 2.5. Given |ΨAB⟩ ∈ HAB, there exist two orthonormal bases {|ψi⟩} ∈ HA,
{|ϕi⟩} ∈ HB such that

|ΨAB⟩ =
r∑

i=1
λi |ψi⟩ |ϕi⟩ , (4)

where the Schmidt coefficients λi ∈ R+ satisfy
∑r

i=1 λ
2
i = 1 and r ≤ min(dA, dB) is the

so-called Schmidt rank.
If the Schmidt rank (SR) of a state is r = 1, then the state is separable, otherwise is

entangled. For bipartite mixed states, the Schmidt rank can be generalized to the Schmidt
number (SN) m, however, it is generally not possible to determine the SN of a given state
ρAB, preventing us from a complete characterization of entanglement.

Definition 2.6. A bipartite mixed state ρAB has Schmidt number m if: i) for any
decomposition ρ =

∑
k pk |ψk⟩⟨ψk| at least one of the vectors {|ψk⟩} has at least Schmidt

rank m, and ii) there exists a decomposition of ρ with all the vectors {|ψk⟩} of Schmidt
rank at most m.

As it happens for pure state, any bipartite mixed state is separable if and only if it has
Schmidt number m = 1, otherwise it is entangled. This condition is key to prove quantum
maps as a sufficient separability criterion in Ref. [LAC+16].

On the other hand, for mixed states, the positivity of the partial transpose provides a
simple way to detect entanglement with the so-called postive partial transpose (PPT) or
Peres-Horodecki criterion.

Theorem 1. [Per96, HHH96] If ρAB ∈ B(HAB) is a bipartite separable state, then it is
PPT, i.e., ρTA

AB ≥ 0.
Thus, states with negative partial transpose (NPT) are certified as entangled. It also

paves the way for the existence of PPT entangled states (PPTES), since it is only a neces-
sary condition. However, for low dimensions dim(HAB) ≤ 6, PPT becomes also a sufficient
condition. Sufficient criteria for separability are substantially more intricate to derive than
just necessary conditions, and are the main focus of this master’s thesis.

Finally, positive but not completely positive maps are also used to detect entanglement,
by finding counterexamples to the following theorem.

Theorem 2. [HHH96] A state ρAB ∈ D(HA ⊗ HB) is separable if and only if, for every
positive map Λ : HB → HC , it holds that (1⊗ Λ)[ρAB] ≥ 0.
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2.3.4 Separability from spectrum and PPT from spectrum

Some states have the property that are not entangled under the action of any global uni-
tary operation U . As unitary matrices do not change the spectrum of the eigenvalues of
the given state ρ, it is possible to infer some separability criteria that only depend on the
eigenvalues of the given state [VADM01]. So, if ρ fulfills any separability criterion, UρU †

also fulfills it for any global unitary. Moreover, the criterion will be valid for the different
partitions of the whole system, as the spectrum does not change. It is specially interest-
ing to characterize such separable states because obtaining the eigenvalues of a system is
easier than inferring full tomography [EAO+02, TOK+14]. Obtaining the eigenvalues of
a quantum state is easier than full tomography because a density matrix of dimension D
has D2 complex entries to reconstruct, whereas there are only D eigenvalues to determine.
On the other hand, determining whether a state is separable from spectrum is also of
great importance for quantum enhanced applications in which entanglement constitutes
a resource. Such states remain separable under any global unitary map. Unitary trans-
formations are by far the most common method to generate entanglement, e.g., through
quantum circuits or quenches. Thus, if a state is certified separable from spectrum, it is
apparently useless, as it cannot lead to entanglement in these experiments. Nonetheless,
some methods to create entanglement from them without global unitary operations have
already been proposed [HMS21].

States that remain separable under the action of any global unitary are called separable
from spectrum states or absolutely separable states (AS). We have followed the notation
in [FMJ17], naming them A(i|j), where i, j are the dimensions of each of the separable
partitions. Despite the efforts, characterizing AS states is still one of the most important
open problems in quantum theory [Kni13]. It is interesting to note that the set of AS states
is convex (see Appendix A), and it is compact [GCM14], the border of the set is included
in it. Some sufficient criteria have been derived for such states, as we present next.

Theorem 3. [GB02] Let ρ ∈ D(CM ⊗ CN ) be a normalized density matrix and {λi} its
eigenvalues. Then, it is AS w.r.t. any partition if

Tr
(
ρ2
)

=
M ·N−1∑

i=0
λ2

i ≤ 1
M ·N − 1 . (5)

Notice that this equation is actually defining a ball in the space of eigenvalues. The
previous theorem is general and holds for arbitrary dimensions, but it does not provide a full
characterization of the set of AS states. For partitions of the type C2 ⊗CM , the set A(2|M)
has been completely characterized in Ref. [Joh13], where they obtain a single equation for
the ordered eigenvalues λ0 ≤ · · · ≤ λ2M−1 as a necessary and sufficient condition for AS.

Theorem 4. [Joh13] Let ρ ∈ D(C2 ⊗ CM ) be a normalized density matrix and {λi} its
eigenvalues in non-decreasing order. Then, it is AS w.r.t. any partition C2 ⊗ CM if and
only if

λ2M−1 ≤ λ1 + 2 ·
√
λ2 · λ0. (6)

It is interesting to note that all AS states that have been characterized are close to the
MMS and, indeed, there is a maximum bound on the purity of such set,

Tr
(
ρ2
)

≤ 9
M ·N + 8 , (7)
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for which AS states can exist [FMJ17].

The concept of AS can be extended to PPT states, introducing the so-called PPT from
spectra or absolutely PPT states (APPT). These remain PPT for any global unitary U . It
has been conjectured in Ref. [AJR15], that being APPT is equivalent to being AS. Also, it
has been shown that, at least, being APPT is equivalent to fulfilling many of the necessary
conditions for separability. Finally, the conjecture has been proven for C2 ⊗CM [Joh13]. In
the general case CM ⊗ CN , APPT has been completely characterized by a series of linear
matrix inequalities (LMI) [Hil07b]. However, the number and the dimension of the LMI
depend on M,N , making their resolution daunting.

2.3.5 Entanglement criteria for multipartite systems

In this section, we extend the separability criteria to detect states as completely separable,
i.e., that can be written as in Def. 2.3. Unlike the bi-separable case, the characterization
of full separability from spectrum remains largely unexplored.

Let us start with the simplest multiparty system, namely, a collection of three qubits.
It is immediate to notice that A(2|2|2) ⊆ SEP(2|2|2) ⊆ SEP(2|4). It is also possible to
verify that, the inclusion A(2|2|2) ⊆ A(2|4) holds. However, it is crucial to realize that
A(2|4) ̸⊂ SEP(2|2|2), i.e., there exist states that are simultaneously absolutely separable
w.r.t. any bi-partition 2|4 but nonetheless entangled (see also Section 5).

The result of AS from Ref. [GB02] can be extended to separability w.r.t. any bi-partition
for multipartite systems. The same author extended the result to full separability of
multipartite systems of N parties in Hilbert spaces of dimension d.

Theorem 5. [GB03] Let ρ ∈ D((Cd)⊗N ) be a normalized density matrix of N qudits of
local dimension d. Then, ρ is fully separable if

Tr
(
ρ2
)

≤ 1
dN

·
(

1 + 2−N+2

dN − 2−(N−2)

)
. (8)

Again, the trace of the matrix squared is defining a ball in the space of eigenvalues.
This bound has been improved for the d = 2 case [Hil05] as follows:

Theorem 6. [Hil05] Let ρ ∈ D((C2)⊗N ) be a normalized density matrix of N qubits. Then,
ρ is fully separable if

Tr
(
ρ2
)

≤ 1
2N

(
1 + 54

17 · 3−N
)
. (9)

Interestingly, these two latter results present much smaller balls than Theorem 3 and,
the latest Ref. [Hil07a] also establishes an upper bound for the radius of the fully separable
ball around the MMS for an N−qubit system,

Tr
(
ρ2
)

≤ 1
2N

·
(
1 + 4 · 3−N

)
. (10)

This ball is much smaller than the one for bi-separability leading to the existence of states
that are APPT and AS w.r.t. any bi-partition, full rank and yet, entangled.
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3 Quantum maps as sufficient criteria for separability
Having introduced the main concepts related to separability and entanglement, we switch
now to the subject of the master’s thesis, the use of quantum maps. The properties of
a linear quantum map can depend on a set of parameters p, from which the properties
of the map can be changed. The action of maps Λp(ρ) = σ onto a state ρ to check the
entanglement or separability conditions on the output of the channel σ have been studied
(see, e.g., [FMJ17, HHH01]). Here, we focus on the use of the inverse of linear maps
Λ−1

p (σ) = ρ as sufficient conditions for entanglement or separability on a given state σ.
The starting point of my master’s thesis is encoded in the following theorem:

Theorem 7. [LAC+16] Let S, S’ be convex and compact subsets of B(H1 ⊗ · · · ⊗ HN ),
and let Λp : S → S′ be a family of maps, invertible for almost all p. By, PSS′ we denote
the subset of the parameters set p. The maps have the property that, for every ρ ∈ S,
Λp(ρ) ∈ S′ provided p ∈ PSS′. Then, if Λ−1

p (σ) ∈ S → σ ∈ S′

In other words, the theorem provides sufficient criteria to certify σ ∈ S′. In practice,
the choice of Λp is such that (i) we can easily check that Λ−1

p (S′) ⊂ S and (ii) we can
prove the assumption that Λp(S) ⊂ S′. The difficulty on the derivation of such criteria
is hidden in demonstrating condition (ii) and in technical difficulties of inverting Λp. In
practice, we take S the set of states, or, up to normalization, positive-semi definite (PSD)
matrices and S′ a subset of states with certain separability conditions to be specified.

3.1 The reduction map
In this thesis, we focus on the family of reduction maps, as a function of a single parameter
α, which can be related to the robustness as introduced in [VT99]. The expression

Λα(ρ) = Tr(ρ) · 1+ α · ρ (11)

defines positive but not completely positive maps. Let us also fix S′ ⊂ S as the set of
separable states w.r.t. a certain bi-partition. States ρ ∈ D(H) fulfill Tr(ρ) = 1, but one
might consider the action of the map on a partition of a state or even on a non-normalized
state, so that, in general, the Tr(ρ) term is not necessarily equal to one.

Inverting a map is, in general, an involved task. However, for the reduction map
Eq. (11), the inverse can be obtained in a few steps (see Appendix B). It reads

Λ−1
α (σ) = 1

α

(
σ − Tr(σ) · 1

D + α

)
. (12)

After the presentation of the inverse, we outline its associated separability theorem:

Theorem 8. [LAC+16] Given a state ρ ∈ D(HM ⊗ HN ), let Λα(ρ) = Tr(ρ)1+ αρ be the
family of maps, and −1 ≤ α ≤ m + 1. Then, ρ ≥ 0 → Λα(ρ) =: σ has at most Schmidt
number m.

Similarly, if σ ∈ D(CM ⊗ CN ) ≥ 0, and ρ = Λ−1
α (σ) ≥ 0, then σ has SN at most m.

It is important to mention here that the theorem is only giving us an upper bound for the
SN, so a separable state will also be detected for any SN. Then, it is more natural to focus
on the smallest of such sets, namely the separable one with m = 1.

Corollary 8.1. [LAC+16] Given a state σ ∈ D(CM ⊗ CN ) and α ∈ [−1, 2]. If Λ−1
α (σ) =

1
α(σ − Tr(σ)1

M ·N+α) ≥ 0, then σ is separable.
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In order to verify the bi-separability condition Λ−1
α (σ) ≥ 0, it is sufficient to check

that the minimal eigenvalue of Λ−1
α (σ) is non-negative. This observation, leads to our first

result:

Result 1. Given a state σ ∈ D(CD), the inverse map Λ−1
α (σ) = 1

α

(
σ − Tr(σ)·1

D+α

)
provides

the two following conditions for the state σ to be separable w.r.t. any bi-partition:

λmin(σ) ≥ 1
D + 2 , λmax(σ) ≤ 1

D − 1 , (13)

where λmin, λmax indicates the smallest and largest eigenvalues of σ respectively.

Proof. The result follows Corollary 8.1 applied to a system of total dimension D. For
2 ≥ α > 0, one has σ − 1/(D + α) ≥ 0 (i.e. λmin(σ) − 1/(D + α) ≥ 0) is sufficient for
separability w.r.t. any bi-partition. On the other hand, for 0 > α ≥ −1, the condition
reads 1/(D + α) − σ ≥ 0, or equivalently, 1/(D + α) − λmax(σ) ≥ 0. The extreme values
α = 2 and α = −1 yield the announced result. Note that it can be extended to sufficient
conditions for Schmidt number SN ≤ m by considering α = 1 +m.

The previous separability criterion is basis-independent and is only based on the ex-
treme eigenvalues of the density matrix. Thus, in particular, it constitutes a condition for
absolute separability.

3.2 Spectral properties of entanglement witnesses
From the previous results, it is possible to derive new conditions on the spectra of entangle-
ment witnesses (EW) that might detect entangled states close to the MMS. We recall that
an entanglement witness is defined as an operator W such that Tr(Wρ) ≥ 0 for all SEP
state ρ and Tr(Wσ) < 0 for some entangled state σ [Ter98, LKCH00]. Witnesses arise as
a consequence of the Hann-Banach theorem and are related to convex sets. The so-called
decomposable EW can be expressed as W = P +QTA . It has been proven that decompos-
able EW cannot detect PPTES, whereas non-decomposable EW can [HHH99, Ter02].

Recent studies have focused on the spectral properties of entanglement witnesses [CK09,
CJMP22, JP18], just as the spectral properties of separable states discussed earlier. An
interesting property that has been derived [JP18, Ran13] (see Appendix D) is that all
decomposable bipartite EW fulfill the relation

λmin(W ) ≥ −Tr(W )
2 . (14)

So far we have focused on the separability problem on states σ, working mostly on their
spectrum. This characterization can also be tackled by studying the spectral properties
of the EW that provide sufficient conditions for a state to be entangled. Specifically, it is
possible to compute the relations for any EW W to detect as entangled states σ that fulfill
Λ−1

α±(σ) ≥ 0. The EW is restricted, as derived in Appendix E, by the following inequalities

α+ > − Tr(W )
λmin(W ) , α− < − Tr(W )

λmax(W ) . (15)

From these relations, we derive the next result on the spectra of any bipartite witness.
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Result 2. Given a bipartite entanglement witness W , either decomposable or non-
decomposable, its spectrum fulfills the following relations on the minimal and maximal
eigenvalues:

λmin(W ) ≥ −Tr(W )
2 , λmax(W ) ≤ Tr(W ).

Proof. By contradiction, no bipartite EW can certify as entangled the separable bipartite
states detected with α+ ∈ (0, 2] or α− ∈ [−1, 0). Thus, the relation in Eq. (15), combined
with the results from Theorem 8, restrict the conditions of the spectrum of any bipartite
EW, whether decomposable or non-decomposable.

An example of decomposable EW saturating the previous lower bound is W = X⊗X+
Y ⊗ Y + Z ⊗ Z + 1, where {X,Y, Z} are the Pauli matrices. Such a witness is maximally
violated by the spin singlet |ψ⟩ = (|0⟩ ⊗ |1⟩ − |1⟩ ⊗ |0⟩)/

√
2.

3.3 Characterizing the set of AS states: simplexes and a geometrical approach
In this section, we proceed to characterize the set of states detected as AS from the criteria
derived from our Result 1. We aim at characterizing geometrically the set of states detected
by the AS criteria. It is also relevant to evaluate its volume, as it has been done with similar
sets [BZ06, KZ01]. According to Ref. [ZHSL98], the set of states S can be interpreted as
the Cartesian product of two sets:

S = P × ∆, (16)

where P is the set of complete families of orthogonal projectors (eigenvectors) and ∆ the
set of eigenvalues. Since our conditions are basis-independent, we will focus on the latter.
The set of normalized eigenvalues λ⃗ := {λi ≥ 0}D−1

i=0 ,
∑

i λi = 1 can be seen as a real vector.
In such a geometrical picture, the set of possible eigenvalues forms a (D− 1)−dimensional
regular simplex. A simplex can be understood as a generalization of a triangle in higher
dimensions and is described either by its extreme points (vertices) or facets. In our case,
the vertices represent pure states (or rank-1 projectors), with eigenvalues of the structure
λ⃗ = (0, ..., 0, 1, 0, ...0). The volume of such an object is given by:

VSN =
√
D

(D − 1)! . (17)

As it turns out, the subsets of eigenvalues detected by our conditions based on linear
maps (Result 1) forms also simplexes. A schematic representation of these sets for D = 3
is depicted in Figure 1. In such a Figure, we offer two views, in the original coordinates
(eigenvalues) and in barycentric coordinates {λ̃i}, where the MMS is at the origin.

The inverse of the reduction map, leads to the inequalities of Eq. (13), which in turn lead
to the D linear conditions of λi ≥ 1/(D+α+) or λi ≤ 1/(D−|α−|), depicted as dashed red
and dotted orange edges in Figure 1. However, if we restrict to the space of non-decreasing
ordered eigenvalues (specifically for D = 3 λ0 ≤ λ1 ≤ λ2), just one condition is enough,
as presented in the text. As already announced, the two sets of inequalities enclose two
(D − 1)−dimensional simplexes in the space of normalized eigenvalues, with each of the
previous inequalities being one of the facets. The two simplexes are dual of each other
(see Appendix C), one of them being inverted w.r.t. the other one. The vertices of the
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simplexes, v, correspond to all permutations of the vectors of eigenvalues

v+(α+) =
( 1
D + α+

, · · · , 1
D + α+

, 1 − D − 1
D + α+

)
, (18)

v−(α−) =
(

1 − D − 1
D − |α−|

,
1

D − |α−|
, · · · , 1

D − |α−|

)
, (19)

considering them ordered λ0 ≤ · · · ≤ λD−1 in the example given. Notice that in the limit
α+ → ∞ we recover the whole simplex of normalized states. The volume of the set of states
detected by the map condition decays fast with the dimension of the system, according
to Vα/VSN = [α±/(D + α±)](D−1) ∼ O

(
D−D

)
. This decay is not surprising, since it is

known that the volume of separable states tends exponentially to 0 as the dimension of
the Hilbert space increases [ZHSL98].

λ0
λ1

λ2

λ̃1

λ̃2

Figure 1: Schematic representation of the set of states in the D and (D−1)−dimensional representation
for D = 3 (left and right panels respectively). The normalized set of states is represented in blue. There
are also plotted the simplexes of detected states with the condition Λ−1

α=2 ≥ 0 (red dashed line) and
the set with Λ−1

α=−1 ≥ 0 (orange dotted line). The double green line displays the convex hull of both
simplexes. Finally, the shaded zone fulfills the ordering λ0 ≤ λ1 ≤ λ2.

From Figure (1) we conclude that some states detected by Λ−1
α=2 ≥ 0 are not detected

by Λ−1
α=−1 ≥ 0 and viceversa. However, crucially, one can consider the convex hull of the

two simplexes (delimited by the green solid line) to build stronger separability criteria
than both conditions alone. The new criterion is represented as a polytope in the space
of eigenvalues, i.e. a convex set with finite number of extreme points. We investigate this
approach in Section 4.

4 Improved sufficient criteria for separability under convexity arguments
We have seen the set of states detected by Λ−1

α ≥ 0 for different values of α are not
necessarily equivalent. As the set A(N |M) is convex and compact, merging the different
criteria with extreme values of α± in a single convex hull can yield to better separability
criteria.

4.1 Convex hull of the simplexes obtained with positive and negative α

Let us consider the convex hull of Λ−1
α=2(σ) ≥ 0 and Λ−1

α=−1(σ) ≥ 0. We have derived a
linear condition on the eigenvalues from the polytope, resulting from the convex hull of

11



both simplexes. The derivation is long, and we move it to Appendix C, while here we state
directly the result. Considering the eigenvalues in non-decreasing order as λ0 ≤ · · · ≤ λD−1,
it is possible to write the inequality as the following Theorem.

Result 3. Let ρ be a bipartite state acting in a global Hilbert space of dimension D and
{λi}D−1

i=0 its corresponding eigenvalues in non-decreasing order {λi ≤ λi+1}i=0,1,..,D−1. If

(
D + 2 − 3 ·

⌊
D + 1

3

⌋)
· λ⌊ D+1

3 ⌋ + 3 ·
⌊ D+1

3 ⌋−1∑
j=0

λj ≥ 1, (20)

then, ρ is separable.

Proof. We detail the proof in Appendix C.

This expression requires our state to be sufficiently mixed, i.e., that the combination
of the smaller eigenvalues is big enough. Note that, since λi+1 ≥ λi, the expression can be
relaxed, at the expense of detecting fewer states, depending on how many eigenvalues are
actually known. Explicitly, it is possible to substitute λi+1 by λi as follows, until recovering
the weaker condition Eq. (13):

ci+1 · λi+1 + · · · + c0 · λ0 ≥ 1,
(ci+1 + ci) · λi + · · · + c0 · λ0 ≥ 1,

...
(D + 2) · λ0 ≥ 1,

(21)

where
∑

j cj = D + 2, cj ≥ 0 are the coefficients of Eq. (20). Considering the two smallest
eigenvalues, one can state that (D−1)λ1 +3λ0 ≥ 1, which already includes the 2D vertices
of both simplexes despite not being the best criterion. The whole polytope is enclosed by
all the possible permutations on the eigenvalues of the inequality (20), but just as with the
case of the simplexes Λ−1

α±(σ) ≥ 0, one is enough for ordered eigenvalues (see Appendix C).

Both simplexes are, indeed, extreme. α = −1 is the minimal value α can take, other-
wise the states presented in Eq. (18) will have one negative eigenvalue. In fact, v−(−1)
is located on the boundary of quantum states, as seen in Figure 1. On the other hand,
considering vα=2+0.01 a diagonal matrix given by Eq. (18), one can find a global unitary
U such that U(vα=2+0.01)U † is NPT. It is possible to see it since there will be an EW W
for which Tr

(
Uvα=2+ϵU

†W
)
< 0, ∀ϵ ≥ 0 (see Section 3.2).

Thus, these two simplexes are indeed the biggest possible ones that one can fit in the
AS set of states. Nevertheless, the presented convex hull (linear) is smaller than the known
bound of Theorem 4 (non-linear) when M or N are 2. Thus, it is almost certain that they
do not achive the general characterization of the AS set of states.

Despite being AS already implies being APPT, one could wonder if we can find different
bounds for α regarding APPT. Since PPT is also a convex set, it is enough to check with
the vertex of the two extreme simplexes again. It is possible to see that considering α = −1,
the states with eigenvalues given by v± from Eq. (13) also saturate the LMI for APPT given
in [Hil07b]. Thus, the biggest possible simplexes in AS are the same as the biggest possible
simplexes in APPT in general dimensions M,N . This insight supports the conjecture of
AS being the same as APPT [AJR15].
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4.2 Convex hull of the simplex with positive alpha and the separable ball
In this subsection we will combine the Gurvits condition (Theorem 3) with our linear
condition (Result 1) to construct an even stronger sufficient condition for separability. To
begin with, it can be seen that the simplex with α− = −1 is always contained inside the
ball from Theorem 3, since for any D,

Tr
(
v2

α=−1

)
= D − 1

(D − 1)2 = 1
D − 1 ≤ 1

D − 1 . (22)

For D ≥ 5 though, the simplex with α ≥ 0 always has some region outside the ball.
Thus, the best CH that can be made is considering the ball and Λ−1

α=2 ≥ 0. In fact, we
verify that the distance of the vertex v+ from the ball in the limit of infinite D, tends to
α+

lim
D→∞

||vα+ − 1
D ||2√

1
D−1 − 1

D

= d

r′ = α+, (23)

where we also introduced the definitions of d and r′ as the numerator and denominator of
the expression, respectively. Next, it is convenient to define an n−ball as all the points
in an Euclidean space that fulfill BD = {λ ∈ RD : ||λ|| ≤ r} and n−sphere as the points
fulfilling SD = {λ ∈ RD+1 : ||λ|| = r}.

Here, our goal is to describe the CH of the simplex generated with α = 2 and the
ball to obtain the biggest possible general criterion for AS for CM ⊗ CN from conditions
Eqs. (5), (13). In turn, the v+ are the vertex of some (D − 1)−dimensional hypercones
whose basis are all the points of the (D − 2)−dimensional ball whose boundary is the
(D − 3)−dimensional sphere of points on the boundary of the Gurvits ball tangent to v+
(see the sketch in Appendix F). In Figure 2 we provide a 2D sketch of the geometry of
such CH and how different regions are detected.

The volume of this CH can be computed, thus, as the sum of the volume of the (D −
1)−dimensional ball plus the volume of the D different (D − 1)−dimensional hypercones
minus the volume of the D caps of the sphere that are contained both in the sphere and
inside the hypercones. The resulting formula is given by the expression

VCH = π(D−1)/2

Γ(D−1
2 + 1

) · r′(D−1) +D · 1
D − 1 · a · π(D−2)/2

Γ(D−2
2 + 1)

· a′′(D−2)− (24)

−D ·
∫ r

′

r′2/d
dx · π(D−2)/2

Γ(D−2
2 + 1)

· (r′2 − x2)(D−2)/2,

where r′ and d have been defined in Eq. (23), a = d − r′2/d and a′′ =
√
r′2 − r′4/d. See

Appendix F for more details.

The evaluation of Eq. (24) signals that for high dimensionality D, only a marginal
improvement in volume of the CH with respect to the volume of the ball can be seen, as
the region covered from the CH is localized around the vertices of the map condition, the
number of which grows linearly with the dimension D. Such fact results in the volume
of the spikes in the whole D−dimensional space approaching 0 faster than the ball does.
However, for finite systems, we identify a remarkable improvement provided by the CH as
quantified in Figure 2 (left panel). In particular, for the specific case of D = 9 (i.e., two
qutrits), the linear convex hull of the two simplexes provides a a clear enhancement over
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the linear map or the Gurvits condition on its own.

Figure 2: Left panel: Plot of the purity Tr
(
ρ2) as a function of the minimal eigenvalue λmin(ρ) for

a 2−qutrit system. It is possible to differentiate the states detected as separable from spectrum by
the ball (yellow region under the horizontal line), by the inverse of the reduction map (blue area, on
the right of the vertical line and above the horizontal one), by both criteria (green region) and with
the CH of the simplex and the ball (red area under the dotted curve). The dashed line represents the
maximum value of Tr

(
ρ2) given a λmin. Finally, the dotted line represents the presented CH. Right

panel: Schematic 2D representation of the CH of a ball and a simplex in barycentric coordinates (c.f.
Figure 1), with the areas shaded as in the right panel.

To recapitulate, we verified through the convexity argument that it is possible to give
a better characterization of the set of AS states, and, thus, to provide a much powerful
criterion for their detection than the ones that already existed. In the next subsection, we
propose a simple numerical method to efficiently test if a state is indeed detectable by our
criterion or not.

4.3 Convex program
Since the criterion on the eigenvalues derived from the CH of the separable w.r.t. any bi-
partition ball [GB02] and the set of states in the space of eigenvalues that fulfill Λ−1

2 ≥ 0
have a long and tedious condition (see Appendix G), we try to derive a numerical method
to check if the given state is in fact separable w.r.t. any bi-partition based on convex opti-
mization techniques [SC23, BV04].

Here, we combine the extreme map condition for α = 2 (Theorem 8) and the Gurvits
criteria based on norms (Theorem 3) to a single disciplined convex program (DCP) which
will easily test AS in the CH of both criteria. DCPs constitute a class of well-behaved con-
vex optimization problems which can be efficiently solved with available routines [ApS24].
To this end, we decompose the state under scrutiny σ (or just a diagonal density matrix
with its eigenvalues) into a convex combination of two (unnormalized) states {σ1, σ2} as
per σ = σ1 +σ2 and ask that σ1 is detected by the map criterion while σ2 is detected with
the norm-based criterion. If one wishes to add more conditions on which to consider the
CH, it is just needed to include more addends σi in the convex sum. In DCP language, it
leads to the following result

Result 4. Let σ be a bipartite state acting in a global Hilbert space of dimension D. If the
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following DCP is feasible

minσ1≥0, σ2≥0 0
s.t. σ = σ1 + σ2

σ1 − Tr(σ1) 1
D+2 ≥ 0

||σ2 − Tr(σ2) 1D ||2 ≤ Tr(σ2)√
D(D−1)

,

(25)

then, σ is AS.

Proof. If the problem is feasible, it implies that the algorithm succeeded in finding {σ1, σ2}
fulfilling the constraints. Hence, both states {σ1, σ2} are certified AS from respective
criteria. Finally, by convexity, their sum, i.e. σ, is also AS (see Appendix A).

The DCP formulation allows us to estimate numerically the volume of states detected
by the CH. To do so, we consider an ordinary Monte Carlo method. This approach gen-
erates uniformly normalized sets of positive eigenvalues in Eq. (17) and, for each of them,
checks if the DCP problem in Eq. (25) has a solution or not. The estimated value of the
volume is obtained by dividing the number of points that had a solution over the number
of vectors of eigenvalues generated. For modest system sizes, D = 10, it provides volumes
with a discrepancy w.r.t. Eq. (24) within ≤ 1%.

Moreover, we notice that the program defined in Eq. (25) admit also other types of
constraints, in particular those that are linear in the state, e.g. {Tr(Aiσ) = ⟨Ai⟩}, since
they do not compromise the convexity of the problem. These constraints could represent
the compatibility conditions with experimentally-inferred expectation values against given
observables {Ai} on an unknown state σ [MRLF22, MRSK+23]. Then, if the DCP is
feasible after including these new constraints and leaving σ as a variable, it implies that
there exists an AS state compatible with our statistics. This approach could be useful when
inferring all eigenvalues of the state is too experimentally costly and one has only access
to a restricted set of observables. Finally, it is worth mentioning that the method can be
extended to compatibility with states of a given SN m by considering the corresponding
criterion (Theorem 8), and minimizing over α = m+ 1 instead.

5 Multipartite absolute separability
In this section, we are going to discuss the possible applications of the separability criteria
based on the inverse of the reduction map on multipartite systems. First, let us consider a
system of N−qudits and a possible generalization of the Result 1 for multipartite systems.
Whenever a given state σN ∈ D((Cd)⊗N ) fulfills the inverse map condition for separability
(we restrict now to α+ = 2),

Λ−1
2 = 1

2 ·
(
σ − Tr(σ) · 1

dN + 2

)
≥ 0 and thus σ ≥ 1

dN + 2 . (26)

Furthermore, any reduced system σN−k = Trk[σN ] ∈ D((Cd)⊗(N−k)) will also be detected
as separable w.r.t. any bi-partition by the map in (Cd)⊗N−k, having

σN−k ≥ dk · 1
dN + 2 ≥ 1

dN−k + 2 . (27)

However, it is important to note that being separable w.r.t. any bi-partition and being sep-
arable w.r.t. any bi-partition in the successive partial traces, is not a sufficient condition for

15



entanglement [DC00]. Even if this result is counter-intuitive, it shows that characterizing
full separability is much harder than characterizing bi-separability.

An example of such states is given usually by the Unextendible Product Basis (UPB)
formalism. For a multipartite quantum system, it is an incomplete orthogonal product ba-
sis whose complementary subspace contains no product state [BDM+99]. UPB states that
are separable w.r.t. any bi-partition, yet inseparable are non-full rank. However, the states
detected with the map need to be full rank to fulfill Eq. (13). Thus, the entanglement that
the detected states might have is very subtle, since they are both AS and APPT w.r.t. any
bi-partition, and full rank. Most of the common entanglement criteria such as negativity
[VW02], the range criterion [Hor97] or decomposable EW [CK09] will not detect them.
Finally, applying the map conditions to the reduced states as per Eq. (27) may be useful
to evaluate entanglement robustness under particle loss [NMB18].

Neither induction procedures, as in Ref. [GB03] nor by direct inspection as in Ref. [VT99]
nor numerical approaches have been useful. The better criteria, namely Theorem 5 for gen-
eral N−qudit systems and Theorem 6 for systems of N−qubits, however, can yield to some
values of α that represent the biggest simplex that is contained inside the respective balls.
For the first case [GB03], it is possible to obtain (see Appendix H)

α± =
4 ± 2 ·

√
(dN − 1) · (2N · dN − 4)

2N · dN − 2N − 4 . (28)

Finally, for the specific case of N−qubits, it is possible to obtain the expression

α± = 3 · (±2 ·
√

102 ·
√

23N · 3N − 22N · 3N − 9 · 2N+2)
2 · (17 · 3−N − 17 · 6N + 54) . (29)

Even though these results do not improve the existing criterion since the simplexes lay
inside the already known balls, they yield full separability of a given state using just its
smallest or biggest eigenvalue, instead of computing the whole purity, as seen in Eq. (13).

Finally, it is convenient to introduce the concept of robustness introduced in Ref. [VT99],
which tackles the separability problem from a similar perspective. Regarding the MMS in
a space of dimension D, it is defined as

s̃ := min
s

1
1 + s

(ρ+ s · 1
D

) such that
1

1 + s̃
(ρ+ s̃ · 1

D
) ≥ 0 (30)

is separable. It is possible to see that, in fact, the parameter α can be cast as a func-
tion of the robustness α = D/s̃. For the multipartite case, the optimal value of s̃ =
(1 + dN/2)N−1 − 1 is translated into a much more restrictive value of α than the ones
computed in Eqs. (28), (29). Interestingly, from the previous work it is possible to provide
a much better value for s̃ than the one given in the original paper.

In the next subsection, we will focus on multipartite states that are totally symmet-
ric under party exchange. We will formalize new relevant criteria for APPT within the
symmetric subspace and compare with existing AS conditions.

5.1 Symmetric states
This subsection is devoted to systems of indistinguishable particles, in specific to multi
qudit systems. The symmetric subspace of a system of N qudits S(Cd ⊗ · · · ⊗ Cd) is
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invariant under permutation of any of the composite systems [Har13]. These states are
also sometimes referred to as the bosonic states.

Definition 5.1. A state ρ ∈ D(H1 ⊗ · · · ⊗ HN ) is a symmetric state if, for every π ∈ GN ,
with GN the permutation group of N elements and Pπ the unitary operator that performs a
given permutation, the following relation holds

ρ = PπρP
†
π = Pπρ = ρP †

π . (31)

Note that the symmetric subspace is a subset of the permutaionally invariant subspace,
where only the first inequality of Eq. (31) is required. The dimension of the symmet-
ric subspace for N−qudit systems is

(d+N−1
N

)
= dim(S(Cd)⊗N )) and the basis elements

considering k a partition of N elements, (Dicke States for N qudits [Dic54]) read∣∣∣DN
k

〉
=
(

N !
k0! · k1! · · · kd−1!

)−1/2
·
∑

π∈GN

π
(
|0⟩⊗k0 ⊗ |1⟩⊗k1 ⊗ · · · ⊗ |d− 1⟩⊗kd−1

) . (32)

AS and APPT have been addressed for CM ⊗ CN systems. However, most of the presented
criteria do not apply to the symmetric subspace, which has a lower dimension than the
global space. Thus, it is convenient to study further the particular cases of symmetric
absolutely separable states (SAS) and symmetric absolutely PPT states (SAPPT). Notice
that not all SAS states are AS. Indeed, SAS states remain separable under any symmetry-
preserving unitary map. However, the action of generic unitary matrices (not necessarily
symmetric) could lead to entanglement.

As done previously, the first step is to study the set S′ such that Λα(S) ∈ S′, being
S the set of all the symmetric states of N−qudits D((Cd)⊗N ). For the case of 2 qubits
(d,N = 2), the bound on α has already been derived.

Theorem 9. [LMRTS22] Let Λα(ρS) = Tr(ρS) · 1S + αρS be the family of maps acting
on the states of 2 qubits in the symmetric subspace, and −3/4 ≤ α ≤ 1. Then, ρS ≥
0 → Λα(ρS) = σS is separable. Similarly, if σS ≥ 0, and Λ−1

α (σS) = ρS ≥ 0, then σS is
separable.

This result considers SAS, which is equivalent to SAPPT for this case. Again, by
characterizing the planes that enclose the CH (see Appendix I) of the states detected by
the map with the highest value of α+ and the smallest value of negative α− and considering
the ordering λ0 ≤ λ1 ≤ λ2, we derive the following result.

Result 5. Let ρ ∈ S(C2 ⊗ C2) be a symmetric state of a 2−qubit system and λ0 ≤ λ1 ≤ λ2
its corresponding eigenvalues in non-decreasing order. If

5λ1 + 7λ0 ≥ 3, (33)

then ρ is SAS.

The latest equation provides a much better criterion than the recently published work
based on EW [SEDM24]. Curiously, the set of detected states has a very similar shape,
although it is bigger for the case of this linear map. Moreover, all the vertex saturate
the best known (necessary and sufficient) bound for this kind of states

√
λ0 +

√
λ1 ≥ 1

[SEM23, CJMP22]. Thus, the given simplex is yet again the biggest possible for SAS states
of two qubits.

17



Theorem 10. [LMRTS22] Let Λα(ρS) = Tr(ρS)1S + αρS be the family of maps acting on
the states of N ≥ 3 qubits in the symmetric space, and −1/N = −λmin ≤ α ≤ 2λmin = 2/N ,
where λmin > 0 is the minimal eigenvalue of 1TA

S . Then ρS ≥ 0 → Λα(ρS) = σS is PPT
in any partition 1:3. Similarly, if σS ≥ 0 and Λ−1

α (σS) = ρS ≥ 0, then σS is PPT in any
partition 1:3.

For N = 3 qubits, it is the last case where PPT is necessary but also sufficient for
separability in the symmetric subspace [ESBL02]. However, the following condition for
being SAPPT is extendible to an arbitrary number of qubits N > 3 for any of the partitions
1 : (N−1) qubits. There is an existing criterion [BWGB17] for the purity of SAS symmetric
states ofN ≥ 3 qubits, given by Eq. (34) in the framework of absolutely classical spin states,
stated as the following theorem.

Theorem 11. [BWGB17] Let ρ ∈ S((C2)⊗N ) be a symmetric state of an N−qubit system.
Then, it is SAS if

Tr
(
ρ2
)

≤ 1
N + 1 ·

(
1 + 1

2 · (2N + 1) ·
(2N

N

)
− (N + 2)

)
. (34)

For the case of N = 3 qubits, the 8 vertices of the SAS simplex given by Λ−1
α ≥ 0 lay

outside the ball given by Eq. (34). Thus, in this case, the equation given by the CH of
Λ−1

α=2/3 ≥ 0 and Λ−1
α=−1/3 ≥ 0 becomes a stronger sufficient criterion to detect SAS states

for systems of 3 qubits. The best approach, though, is the DCP combination of the three
criteria (see Section 4.3). An upper bound of the radius of SAS sates for 3 qubits is also
given in Ref. [SEM23], which lead to a bigger ball than both of the proposed simplexes, so
the presented results agree with existing criteria.

Result 6. Let ρ ∈ S(C2 ⊗ C2 ⊗ C2) be a symmetric state of a 3−qubit system and
λ0 ≤ λ1 ≤ λ2 ≤ λ3 its corresponding eigenvalues in non-decreasing order. ρ is SAS if

5λ1 + 9λ0 ≥ 3, (35)

Even though for N ≥ 4, there exist PPT entangled states [TAH+12], the conjecture
of APPT being equivalent to AS has been stated for any kind of systems [AJR15]. Until
now, no counterexample has been found, and all the results found in this work seem to
back up this conjecture. Again, one can consider the convex hull of the states detected
with the map with the biggest α+ and the smallest α−, (with a similar derivation than
the one in Appendix C) to get the bigger space of states that are SAPPT in any partition
1 : (N − 1) of the space of N−qubits following Theorem 10. However, we have found
that, in the example of N = 4 qubits, it is possible to construct symmetric states that
are SAPPT (APPT under any global unitary matrix that acts on the expression of the
state in the symmetric subspace) w.r.t. the partition 1 : 3 with α ≤ 2/4 and it is still an
NPT state (thus, entangled), since for some global symmetric unitary matrices, the partial
transpose on the partition 2 : 2 has negative eigenvalues [ATSL12]. In other words, it is
possible to find some symmetric states that are SAPPT w.r.t. any partition 1 : A.O. for
N−qubit systems, but that are still entangled for some global U . Nevertheless, we do not
consider these kinds of states as conjecture-breaking, since in the literature for symmetric
systems of N−qubits, only states that are PPT w.r.t. any partition are actually consid-
ered PPT states. Otherwise, they are directly considered NPT (and thus, entangled) states.

Then, the conjecture is still open to symmetric states that might be SAPPT w.r.t. all
partitions. For the specific case of diagonal symmetric states of N−qubits (states that
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are diagonal in the Dicke basis), it is known that being PPT w.r.t. the biggest possible
bi-partition ⌊N/2⌋ : N − ⌊N/2⌋ implies being PPT w.r.t. all partitions [QRS17] and it
implies separability. For this specific case, the conjecture would also remain true.

It is interesting to extend Theorem 10 to SAPPT w.r.t. other partitions and to general
dimension in order to expand the separability criteria (SAPPT in this case), so we now
present the following new Theorem.

Result 7. Let Λα(ρS) = Tr(ρS)1S + αρS be the family of maps acting on the states of
N qudits in the symmetric space, and −

( N
⌊N/2⌋

)−1 = −λmin ≤ α ≤ 2λmin = 2 ·
( N

⌊N/2⌋
)−1,

where λmin > 0 is the minimal eigenvalue of 1TA
S and the partition A includes ⌊N/2⌋ qudits.

Then ρS ≥ 0 → Λα(ρS) = σS is SAPPT w.r.t. any bi-partition.
Similarly, if σS ≥ 0 and Λ−1

α (σS) = ρS ≥ 0, then σS is SAPPT w.r.t. any bi-partition.

Proof: The proof follows the same structure as the one for Theorem 10. As stated in
Theorem 7, we need to prove that Λα(S) ∈ S′, where S′ is the set of PPT symmetric states,
which are permutationally invariant. We define k as the number of qudits included in the
partition A that is transposed, and assume that Tr(ρ) = 1. Now, we use the linearity of the
partial transpose to state that (Λα(ρ))TA = (1S)TA + αρTA ≥ 0. Since the eigenvalues of a
transposed PSD density matrix are constrained between [−1/2, 1] [Ran13], the conditions
become λmin −α+/2 ≥ 0 → α+ ≤ 2 ·λmin and λmin − |α−| ≥ 0 → α− ≥ −λmin. Moreover,
the span of any transpose matrix of the symmetric subspace of N−qudits is contained
in S((Cd)⊗k) ⊗ S((Cd)⊗N−k). From here, it is just needed to consider that the minimal
eigenvalue of 1Tk

S is given by
(N

k

)−1
independently of d and that the biggest partition, given

by k = ⌊N/2⌋ includes the rest of them since it provides the smaller value of α.

We have some numerical evidence that the bounds on α are actually tight, since trying
to expand any of the simplexes leads to NPT states for all the d,N . Nevertheless, a formal
proof has not been achieved. In the case of SAPPT w.r.t. any bi-partition restricted to
qubits (d = 2), it is also possible to compute the linear inequality that encloses the CH of
both simplexes as explained in the Appendix C and shown in the next result.

Result 8. Let ρ ∈ S((C2)⊗N ) be a symmetric state of N qubits and {λi}N+1
i=1 its eigenvalues

in non-decreasing order {λi ≤ λi+1}i=0,1,..,N . If

[(
N

⌊N/2⌋

)
· (N + 1 − 3 · ⌊N + 1

3 ⌋) + 2
]

· λ⌊ N+1
3 ⌋ + 3 ·

(
N

⌊N/2⌋

) ⌊ N+1
3 ⌋−1∑
i=0

λi ≥
(

N

⌊N/2⌋

)
,

(36)
then ρ is SAPPT.

The previous Eq. (36) does not fully include the ball given by the SAS criterion in
Eq. (34) to characterize SAPPT completely. Nevertheless, the DCP approach (see Sec-
tion 4.3) remains as a valid tool to certify SAPPT w.r.t. any bi-partition on the system of
N−qubits. Notice that both v± derived for SAPPT lay outside the SAS ball. In the case
that it is possible to prove that these states are actually separable, the characterization will
be for the SAS set. On the other hand, if one can prove that these states are entangled, the
conjecture SAS⇐⇒SAPPT will be refuted for the symmetric subspace. These questions,
however, remain open after the master’s thesis. Finally, it is also possible to derive this
kind of conditions for the case of general N−qudit systems by finding the linear expression
of the CH for the different cases. We leave these extensions for the future, as well.
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6 Conclusions and outlook
The main objective of this thesis has been the study and understanding of absolute sepa-
rability (AS) and absolute positive partial transpose (APPT) near the maximally mixed
state through the uses of positive linear maps, specifically, the reduction map. In the
present work, we succeed in providing stronger sufficient criterion for separability for any
dimension of the systems, as opposed to other already existing criteria, which are only
necessary or valid in low dimensional systems.

In particular, we employ the inverse of the reduction map to formalize a stronger char-
acterization of the set of absolutely separable states for general dimensions in bipartite
systems. To this end, we start by characterizing geometrically the set detected by our
criteria and verify that it is extreme. Next, by convexity arguments, we combine different
of such conditions to lead to tighter criteria for AS in bipartite systems. The new condi-
tions allow us to certify states as absolutely separable, which cannot be detected by the
previous conditions alone. In addition, spectral properties of absolutely separable states
can be related to spectral properties of entanglement witnesses. In this work, we make
use of this connection to place bounds on the minimal and maximal eigenvalues of any
bipartite entanglement witness. In so doing, we generalize results that are only established
for decomposable witnesses.

The aforementioned conditions can be cast as standard convex optimization programs,
which efficiently test absolute separability by searching over convex combinations of states
detected by the different criteria. These methods admit different levels of knowledge of
the system. In particular, they are useful when only partial information of the state is
available, e.g., in the form of few experimentally-accessible expectation values.

The last part of the thesis is devoted to extend the bipartite conditions to the multi-
partite setting. In this regard, we present some non-optimal conditions for full separability.
Finally, we move to the totally symmetric sector of N qubits. Interestingly, we find exam-
ples of symmetric absolutely PPT states (SAPPT) that are not absolutely separable in the
symmetric subspace (SAS), even though we do not consider that it properly breaks the
AS ⇐⇒ APPT conjecture as they are NPT in other partitions. Nevertheless, we provide
bounds for SAPPT (w.r.t. any partition) for arbitrary system sizes, which would improve
notably known SAS criteria provided the validity of the conjecture. This result paves the
way to the characterization of APPT in the symmetric sector, which remains unexamined
to date.

This work has raised several important questions that require further investigation. It
is clear that more tools are needed to detect the states that are AS and APPT w.r.t. any
bi-partition, full rank, yet still entangled. Also, for the bipartite case, even though the
inverse of the reduction map provides a set of linear conditions, the set of AS states is not
linear, and thus the complete characterization is still missing for arbitrary dimensions. It
remains an open question to explore if the techniques we have used here with the reduction
map can be applied to other maps to obtain a stronger characterization of the problem of
AS and its related problem of the equivalence between APPT and AS.
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A The set of AS states is convex
We briefly prove that the set of AS is indeed convex. Let ρ1 ∈ A(M |N) and ρ2 ∈ A(M |N)
be AS w.r.t. the same partitions and σ = p · ρ1 + (1 − p) · ρ2 a convex combination.
Considering an arbitrary operator U , one can see that

UσU † = p · Uρ1U
† + (1 − p) · Uρ2U

† (37)

Since ρ1, ρ2 are AS, UρiU
† is still separable, which implies that σ ∈ A(M |N). Hence, AS

is convex.

B Inverse of the reduction map
In this Appendix, we explicitly invert the reduction map. First, consider

Λ−1
α (Λα(ρ)) = Λ−1

α (Tr(ρ) · 1+ αρ) = ρ, (38)

which, by linearity of the inverse, leads to

Tr(ρ) · Λ−1
α (1) + αΛ−1

α (ρ) = ρ. (39)

Applying both the map and its inverse to 1, we obtain

Λ−1
α (Λα(1)) = Λ−1

α (Tr(1) · 1+ α1) = 1. (40)

From there, it is possible to isolate Λ−1
α (1) = 1/(D + α). Next, by direct substitution one

obtains the linear expression for the inverse

Λ−1
α (ρ) = 1

α

(
ρ− Tr(ρ) · 1

D + α

)
. (41)

C Derivation of the inequality Eq.(20)
In this Appendix, we derive the condition Eq. (20) from the main text by evaluating the
convex hull of the map conditions for α = 2, α = −1 (13). To this end, we use numerical
packages that already exist to obtain the equations that enclose the CH and analyze them
in order to get the final dependence on D. This procedure is also applied in order to obtain
Eqs. (33), (36).

A (D−1)-simplex does not enclose a definite volume when embedded in D-dimensional
space. For instance, a 2-simplex (a triangle) exists in 2D space and encloses an area, but
when considered in 3D space, it becomes a flat, 2D surface that does not enclose any
volume. Thus, to characterize the geometrical properties of the CH that actually encloses
the set of detected AS, we need to work in D − 1 dimensions. Following the discussion in
the main text, we consider the space of eigenvalues λ⃗ := {λi} of D-dimensional normalized
quantum states Tr(ρ) = (1, · · · , 1) · λ⃗ =

∑
i λi = 1. The unit trace constraint allows us to

eliminate a single variable,
∑

i λi := λ̃0 = 1. Next, the orthogonal complement to the vec-
tor (1, · · · , 1) is used to complete a basis of the D− 1 subspace describing the barycentric
coordinates (see Figure 1 of the main text).

The first that one can realize of is that, in the (D − 1)−dimensional space of eigen-
values satisfying Tr(ρ) = 1 of our state, the D vertices of states v± that are detected as
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separable w.r.t. any bi-partition by Λ−1
2 ≥ 0 form a regular simplex. The states detected

by Λ−1
−1 ≥ 0 form an inverted, smaller simplex. The CH of the two conditions is, then,

the polytope generated by the union of the two sets of vertices. The resulting polytope
is not regular, but it is symmetric under permutations of the eigenvalues, since the set of
vertices is. To analyze it, we introduce the concept of duality. In computational geometry,
the H−representation (half-space representation) of a polytope involves describing it as
an intersection of half-spaces. These half-spaces can be represented by linear inequalities
of the form Aλ + b ≥ 0, being A a matrix. As in Eq.(13), all the obtained equations
are different permutations of a single expression, so for the ordered eigenvalues, just one
formula is actually needed. Another reason to consider is that, indeed, the polyhedron is
defined by D! hyperplanes and, in fact, there are D! possible orderings of the eigenvalues
[FR94].

We remind here that the vertex for Λ−1
2 ≥ 0 are all the possible different permutations

of the vector, (1− D−1
D+2 ,

1
D+2 , · · · , 1

D+2) and the ones for Λ−1
2 the same for (0, 1

D−1 , · · · , 1
D−1),

following Eq. (18). We also remind that a dual polyhedron is a geometric concept associ-
ated to any given polyhedron. This relationship is defined such that the vertices of one
polyhedron correspond to the faces of the dual polyhedron, and vice versa. Whereas
there is one ordered (in the sense that the eigenvalues follow a non-decreasing order
λ0 ≤ λ1 ≤ · · · ≤ λD−1) vertex for α+ and one for α−, the dual polyhedron of the convex
hull only has one ordered vertex.
For low dimensional systems, it is possible to compute the set of linear inequalities ana-
lytically by plotting the different vertices as in Figure 1. Given the difficulty of extending
the calculations ∀D, a numerical approach has been used to compute the equations of the
facets of the polyhedron. Moreover, in higher dimensions, the representation on how the
facets are constructed (as in D = 3, 4) is not possible. To compute the equation of the
(D − 2)−dimensional hyperplanes in the (D − 1)−dimensional space of Tr(ρ) = 1 using
D − 1 points, we will use the generalized cross product given the set of vertices.

Then, it is possible to calculate all the
( 2D

D−1
)

combinations of D − 1 vertex out of the
2D possibilities. Most of them will be far from external, and the majority will be contained
inside the others. The condition to determine which were, indeed, extreme, was to find
the maximum size of the dual polyhedron that allowed each of its vertex to still saturate
an inequality (that is, to verify that the hyperplane contain at least one extreme point in
addition to the D−1 vertices), thus obtaining the set that actually limited our polyhedron.
It is important to notice that each size of the dual polyhedron saturated different sets of
inequalities, all of which were permutations of a single one. Later on, an already existing
package pypoman [Car24] was used to obtain the same set of linear inequalities, confirming
the validity of the numerical method. Moreover, it was more efficient for bigger D than
the manual implementation.

By doing so, we can describe our polyhedron as a set of linear inequalities Aλ⃗T + b ≥
0,where A, b depend on the dimension D. By going back to the D−dimensional space of
eigenvalues, however, it is possible to obtain a set of linear matrix inequalities where b
is a constant vector of value s and A is a matrix containing in each row all the different
permutations of the vector (p, · · · , p, r,−q, · · · ,−q). Considering m(p) the multiplicity of
p in the given vector, the size of the matrix is given by D×

( D
max m(p),m(q)

)
. Where p, r, q, s

can easily be expressed as a function only of the dimension being r = 1, q = D+2
2·(D−1) ,

p = (D−2)·D−2
2·(D−1) and s = 1

D−1 . Considering
∑

i λi = 1, one can eliminate an extra parameter.
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Finally, it is only needed to find the expression that corresponds to the ordered eigenvalues,
i.e., the one that is saturated by the ordered v(α±) and by the ordered vertex of the dual.
The equation obtained for general D can be cast as

[
D + 2 − 3 · ⌊D + 1

3 ⌋
]

· λ⌊ D+1
3 ⌋ + 3 ·

⌊ D+1
3 ⌋−1∑
j=0

λj ≥ 1. (42)

It is important to note that this expression has not been derived in a general manner, it
comes from an observation that the polyhedron obtained fulfills the same form of inequal-
ities ∀D ≤ 22, and it has also been checked for any D = 2N with N up to N = 7.

For the case of the symmetric space, the formula is deduced analogously, having different
dependencies on d for the parameters p, q, r, s.

D Minimal eigenvalue for decomposable bipartite entanglement witnesses
This property is already commented in [JP18], but since it is not actually proven there, we
add the short proof.

First, it is necessary to consider that the eigenvalues of the partial transpose of any
given state of Tr(ρ) = 1 are contained in [−1/2, 1] [Ran13]. From here, one can express
the decomposable entanglement witness as W = P +QTA , being Q,P PSD. The optimal
EW obtainable is considering P = 0 [LKCH00], and restricting to the partial transpose of
Q.

Thus, the minimal eigenvalue for W will fulfill λmin(W ) ≥ −Tr(W )
2 .

E Translation of the separability problem into entanglement witnesses
Although this derivation is not technical, we have set it in the appendix because it does
not provide more insight than the final equations highlighted in the text 14.

We start by considering the effect of the inverse of the map over a specific state.

Λ−1
α = 1

α

(
σ − 1

D + α

)
≥ 0 (43)

Defining ∆ ≥ 0 as the normalized inverse of the map, one can express a state σ which
is detected by the map condition as

σ =
(

1 − D

D + α

)
∆ + 1

D + α
. (44)

Then, being entangled translates into being detected by some entanglement witness W
as

Tr(Wσ) = α

D + α
∆ + Tr(W )

D + α
< 0. (45)

Now, it is necessary to make a distinction for positive and negative values of α, because
D/(D + α) might be smaller or bigger than one for different values of α.
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For α > 0, we consider that Tr(W∆) ≥ λmin(W ), where λmin(W ) < 0 in order to
detect some entangled states. Then,

0 > Tr(W )
D + α

+ α

D + α
· Tr(W∆) ≥ α

D + α
· λmin(W ) + Tr(W )

D + α
. (46)

From there, it is possible to obtain the inequality to have an entanglement witness which
can detect as entangled some states that are detected by the inverse of our linear map.

α > − Tr(W )
λmin(W ) (47)

For negative values of alpha, since (1 − D
D+α) is negative, one can start by Tr(W∆) ≤

λmax(W ) to get

0 > Tr(W )
D + α

+ α

D + α
· Tr(W∆) ≥ α

D + α
· λmax(W ) + Tr(W )

D + α
. (48)

To finally obtain the desired equation

α < −Tr(W )
λmax

(49)

F Notes on the volume of the convex hull of a simplex and a ball.
Here, we introduce the notion of the formula for the Volume of the CH. In the Figure 3, one
can see the basic scheme of the ball and the vertex. We can see, then, that the n−ball of
Gurvits has a radius r′ =

√
1

D−1 − 1
D . From trigonometric expressions, we can see that the

angle of the cone is given by γ = arcsin r′

d and that a′′ =
√
r′2 − (r′ − r′′)2 =

√
r′2 − r′4

d2 .

Finally, the last relevant magnitudes are r′′ = r′ − r′2

d and a = d− r′ + r′′.

Figure 3: Schematic representation of the trigonometry of the hypercone formed by the CH of GurvitsBall
and the simplex Λ−1

α=2 ≥ 0.

The equation of the volume of an n−ball depends only on the radius R as

Vball(n,R) = πn/2

Γ(n
2 + 1) ·Rn.

The volume of a hypercone in n−dimensional space is given by the formula

Vcone = 1
n

· Vbasis · a,
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where Vbasis = Vball(n − 1, a′′) is the volume of the (n − 1)−dimensional ball of radius a′′

that forms its basis, while a is the height of the considered cone.

Finally, the volume of the cap, which is duplicated, can be computed by integrating
from r′ − r′′ to r′ the volume of successive (n− 1)−balls of radius r′ − x, as seen in∫ r′

r′−r′′
dx
π(n−1)/2 · (r′2 − x2)(n−1)/2

Γ(n−1
2 + 1)

G Notes on the separability criterion of the convex hull of a simplex and
a ball

This derivation takes into account the geometrical definitions introduced in Appendix F.
Here, it is necessary to divide the detection space according to the value of the smallest
eigenvalue. From Figure 3, we can see that the sufficient criterion must be broken in two,
the ball and the cone, depending on the region of the space of eigenvalues we are on.

It is possible to see that, in the (D− 1)−dimensional space in barycentric coordinates,
the hypercone that has as vertex the ordered v+ in decreasing order is given by the normal
equation of a hypercone with the vertex in an axis and the basis containing the origin of
coordinates

x2
1 + x2

2 + · · · + x2
D−2 = arcsin r

′

d
· (xD−1 − d)2.

It is also possible to see that this equation is the one to apply as long as xD−1 ≥ r′

d2 .
Otherwise, it is necessary to check for Tr

(
σ2) ≥ 1

D−1 .
The expression as a function of the dimension of the changes of variable is not partic-

ularly simple, but here we present an example of the change of variable for a system of
D = 4, which can be written as

x0 = 0.5 · λ0 + 0.5 · λ1 + 0.5 · λ2 + 0.5 · λ3,

x1 = − 1√
3
λ1 + 3 +

√
3

6 λ2 − 3 −
√

3
6 λ3,

x2 = − 1√
3
λ1 − 3 −

√
3

6 λ2 + 3 +
√

3
6 λ3,

x3 =
√

3
2 λ0 − 1

2
√

3
λ1 − 1

2
√

3
λ2 − 1

2
√

3
λ3.

H Maximum simplex contained in a ball
To compute the maximum value of α that a simplex given by Λ−1

α ≥ 0 can give, it is
necessary to force the vertex from Eq. (18) to have the desired maximum trace given by
the ball. Since the expression of the Tr

(
ρ2) is the same for any α± and only depends on

the eigenvalues, it is possible to obtain both values with a single equation. For the case of
Theorem 5 and considering D = dN , the desired value of α can be obtained by solving the
equation

dN − 1
(dN + α)2 + (1 − dN − 1

dN + α
)2 = 1

dN

(
1 + 2−N+2

dN − 2−(N−2)

)
.
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For the case of Eq. (9), and considering D = 2N for the N−qubit system, the desired
bounds on α can be computed as the solutions of

2N − 1
(2N + α)2 + (1 − 2N − 1

2N + α
)2 = 1

2N
·
(

1 + 54
17 · 3−N

)
.

I Derivation of the inequality Eq. (33)
This derivation is an easier and explicit example of the one presented in Appendix C for
the case of a 2 qubit symmetric system of D = 3. For the bosonic subspaces, the prior
derivations do not work, in general, since it has reduced dimension and, in the computa-
tional basis, some eigenvalues are just 0. Thus, it is convenient to find new conditions for
the specific symmetric subspace, as we present next.

In this case, it is stated that −3/4 ≤ α ≤ 1, so the vertex will be the permutations of
the points (0.5, 0.25, 0.25) for α+ and (4/9, 4/9, 1/9) for α−. In this case, the hyperplanes
are cast from D − 1 = 2 of the 6 points, one from each simplex.

Focusing first on the (4/9, 4/9, 1/9) point, in 2D space, we compute the equation of the
line segment that unites it with all the vα=2 and reverse the change of variables, obtaining

5λ1 + 7λ2 = 3,
5λ0 + 7λ1 = 3,
λ0 − λ1 = 0.

Clearly, the third equation is discarded since the MMS fulfills it, the hyperplane would pass
through the center of the subspace. Doing the same procedure with the rest of the vertices
yields similar results with permutations of the eigenvalues. Thus, the 6 final equations are
indeed the same, and the one that encloses the ordered space as an inequality that must
contain MMS can be cast, considering λ0 ≤ λ1 ≤ λ2 as

5λ1 + 7λ0 ≥ 3.
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