
MASTER IN QUANTUM SCIENCE AND TECHNOLOGY

Master’s thesis

Long-time evolution of quantum systems
with Tensor Network techniques

Marc Farreras Bartra

Supervisor: Stefano Carignano

Long-time evolution of quantum systems with Tensor
Network techniques
Marc Farreras

Supervised by: Stefano Carignano
Barcelona Supercomputing Centre, Plaça Eusebi Güell, 08034 Barcelona
25 August 2024

One of the most significant challenges in simulating the dynamics of many-
body quantum systems is the exponential increase in computational complexity,
driven by the linear growth of entanglement during time evolution. In this work,
we explore a novel algorithm designed to mitigate this complexity by identify-
ing and trading the entanglement by mixture, i.e. depurifying the originally
pure closed-system state. This approach preserves the essential local informa-
tion necessary for computing expectation values, while effectively reducing the
computational resources. Additionally, we propose a method for performing
time evolution with the resulting mixed states, highlighting both the strengths
and limitations of this approach. We also discuss potential avenues for future
improvements to enhance the efficiency and applicability of this method.

Keywords: Tensor Networks, time evolution, out-of-equilibrium, quantum many body,TFM

Acknowledgements
I would like to express my deepest gratitude to my supervisor, Dr. Stefano Carignano, for
his invaluable time and guidance throughout this project. His knowledge and unwavering
support have been of immense value during the many months we have worked together. I
would also like to extend my thanks to the entire Quantic group for their warm welcome,
continuous support, and the insightful discussions that have greatly contributed to my
work. Additionally, I am sincerely grateful to Dr. Luca Tagliacozzo and Carlos Ramos for
their teachings and assistance, which have enriched my knowledge and equipped me with
the tools necessary to undertake this project and future endeavors.

Marc Farreras: mfarreba27@alumnes.ub.edu

mailto:mfarreba27@alumnes.ub.edu

Contents
1 Introduction 1

2 Formalism 2
2.1 Basics of TN . 2
2.2 Matrix Product States . 3
2.3 Infinite MPS . 3
2.4 Time evolution in iMPS . 4

3 Algorithm 5
3.1 Physical motivation . 5
3.2 Identifying long-distance entanglement . 6
3.3 Simple truncation algorithm . 10
3.4 Heuristic Truncation . 10
3.5 Time evolution . 12

4 Numerical results 15
4.1 Factorization results . 15
4.2 Characterization of the algorithm: time evolution 17

5 Conclusion 19

Bibliography 22

A Notation II 24

B Singular Value Decomposition and Schmidt Decomposition 25

C Canonical forms 26
C.1 MPS . 27
C.2 iMPS . 30

D DMRG optimization 33

E Properties of the Truncation 36

F Gradient descent 38

G Time evolution mixed state 38
G.1 iMPDOv1 . 38
G.2 iMPDOv2 . 40

Bibliography 42

1 Introduction
The study of quantum many-body systems has long posed significant challenges. Analyti-
cally, solutions are known for only a limited number of cases, difficulting further progress.
Numerically, the primary obstacle is the curse of dimensionality, which refers to the expo-
nential growth of the Hilbert space as the number of particles in the system increases.

However, in recent decades, it has been recognized that physically relevant states, such
as the ground states of gapped Hamiltonians, exhibit much less entanglement than theo-
retically possible, typically satisfying an area law for entanglement[ECP10]. This suggests
that physically relevant states possess additional local structures that set them apart from
random states in the Hilbert space, indicating that they occupy a much smaller region.

In this context, tensor networks (TN) have emerged as powerful tools for simulat-
ing quantum many-body systems. Their effectiveness stems largely from their ability
to capture the mentioned local structures, for instance, by satisfying an area law for
entanglement[EV11, CPGSV21], thereby enabling an efficient representation of low-energy
states. Moreover, tensor networks can be easily adapted to different geometries and sym-
metries.

In recent years, many numerical methods, particularly for 1-D systems, have been
developed within the Matrix Product State (MPS) framework. Among these methods, the
Density Matrix Renormalization Group (DMRG) algorithm[Whi92, Whi93], along with
its higher-dimensional counterparts[Sch11], stands out as the most accurate method for
studying ground states of quantum systems.

Contrasting with equilibrium systems, studying the dynamical properties of out-of-
equilibrium systems has proven challenging. Although efficient methods exist for simulating
the time evolution of MPS wave functions, such as TEBD[Vid03] and t-DMRG[WF04],
in out-of-equilibrium scenarios, during such evolution, initially localized correlations can
extend over arbitrarily large distances[CC05]. As a result, the entropy of these systems
grows linearly in time, leading to an exponential increase in the computational resources
required to simulate them. Consequently, these methods typically yield reliable results
only for short timescales[TCF+12].

Despite these challenges, the research community has pushed the boundaries of stan-
dard TN, developing new approaches to manage linear entanglement growth. These al-
gorithms generally focus on accurately computing the time evolution of local operator
expectation values rather than fully capturing the entire quantum state. Several strategies
have been explored, such as emphasizing entanglement in the temporal direction and the
light-cone structure of interactions [FPBn22, BnHVC09], or replacing the quantum state
with a mixed state to capture only the locally relevant information[HLB+18, WZMR18].

In this work, we review and characterize an algorithm that falls into the second category
of approaches, as proposed by Frias, Tagliacozzo, and Bañuls in Ref.[FPTBn24]. Build-
ing on concepts from Ref.[SPT19], they developed a tensor network algorithm capable of
identifying and eliminating the contributions of long-range entanglement within a system
by replacing the quantum state with a local mixture. This innovative approach allows for
the removal of long-range entanglement, enabling the accurate benchmarking of the time
evolution of local operators over significantly longer times than was previously possible.

Our objective has been to thoroughly characterize the algorithm, faithfully describing
the various steps involved and the challenges encountered along the way. We have also
highlighted the strengths and weaknesses of the algorithm and suggested further steps that
could be taken to better understand its reliability and the systems and conditions under
which it achieves optimal efficiency.

1

Figure 1: Diagrammatic representation of (a) a scalar A, (b) a vector B, (c) a matrix C, (d) an order-3
tensor D, and (e) the contraction between two order-3 tensors to form an order-2 tensor.

The rest of the work is organized as follows: In Section 2, we define the formalism of
MPS, reviewing the foundational concepts with a particular focus on the infinite system
variant and the methods for performing time evolution. Section 3 details the main ideas
underlying the algorithm, explains how these ideas are implemented within a TN frame-
work, and proposes our method for time evolution. In Section 4, we present the results
of our simulations, and finally, in Section 5, we discuss these results and suggest potential
avenues for further improvement.

2 Formalism
2.1 Basics of TN
Tensors can be defined in various ways depending on the context. In this work, we adopt
a practical approach from a computer science perspective, where tensors are understood
as multidimensional arrays of complex numbers. The order of a tensor is determined by
the number of indices required to uniquely identify each element within it. For instance,
a scalar, with no indices, is an order-0 tensor; a vector, with one index, is an order-1
tensor; a matrix, with two indices, is an order-2 tensor, and higher-order tensors have
correspondingly more indices.

While tensor calculus can sometimes appear obscure and complex, one of the key ad-
vantages of Tensor Networks (TN) is their intuitive and straightforward pictorial notation.
This notation simplifies the study and development of algorithms by making the general
properties of tensors more visually accessible. The structure of the tensor network itself
often reveals essential insights into the underlying properties of the tensors being studied.

In diagrammatic notation, tensors are depicted as geometric shapes with legs extending
from them, where each leg corresponds to an index of the tensor, see Fig.1. Standard
operations involving tensors can also be intuitively represented. For additional examples
of tensor operations and their diagrammatic representations, refer to Appendix A.

Another essential operation in Tensor Networks is the Singular Value Decomposition
(SVD) [KL80]. For an arbitrary matrix M , its SVD is expressed as

M = USV †, (1)

where U and V † are isometries (matrices with orthonormal columns) and S is a diagonal
matrix containing the singular values, which are non-negative real numbers.

SVD plays a crucial role in tensor networks due to its connection with the Schmidt
decomposition and because it offers an optimal method for approximating large tensors by
truncating small singular values. See Appendix B for more details.

2

Figure 2: Diagrammatic representation of an iMPS.

2.2 Matrix Product States
Matrix Product States (MPS) can be defined in various ways, each highlighting different
aspects of the MPS structure. In this work, we adopt a practical approach by viewing the
MPS as a wavefunction ansatz.

Consider a 1-D chain with N sites, where each site corresponds to a d-dimensional
Hilbert space spanned by an orthonormal basis {|si⟩}. To describe an arbitrary quantum
state |Ψ⟩ ∈ Cd

⊗N , we employ the Matrix Product State (MPS) ansatz:

|Ψ⟩ =
∑

s1,...,sN

A[1]
s1A

[2]
s2 · · ·A[N]

sN
|s1, ..., sN ⟩, (2)

where each A[i] is a tensor with dimensions d×mi ×mi+1, where mi and mi+1 are virtual
indices that are contracted sequentially to form a product of tensors. The physical index
si corresponds to the local Hilbert space at each site. Notice that the tensors at the
boundaries of the chain, A[1] and A[N], are treated as order-3 tensors, where the initial and
final virtual indices satisfy m1 = mN = 1. The dimension of the virtual indices, commonly
referred to as the bond dimension, is denoted by D.

The MPS representation drastically reduces the number of parameters needed to de-
scribe a quantum state. Instead of requiring 2N coefficients, which scale exponentially with
N , the MPS form requires only N × d×D2 parameters, scaling linearly with N .

One can construct a MPS via performing several SVD, as described in Appendix C.1.

2.3 Infinite MPS
The MPS formalism can also be extended to the thermodynamic limit for translationally
invariant systems. Since our work is centered on the simulation of infinite systems, we will
briefly explain the infinite case and focus exclusively on this scenario from here onwards.

In the infinite case, the states are constructed by repeating a single tensor, or a group of
tensors (depending on the system’s unit cell), infinitely across all lattice sites. These MPS
are referred to as infinite MPS (iMPS)[Vid07, OV08] or uniform MPS (uMPS)[VHV19] in
the literature.

To illustrate this concept, consider an infinite 1-D lattice where each site r ∈ Z is
associated with a Hilbert space of dimension d. An infinite MPS on this chain can be
described by

|Ψ(A)⟩ =
∑
{s}

∏
r∈Z

Asr |{sr}⟩, (3)

where the unit cell consists of a single order-3 tensor A with dimensions d×D×D, which
is repeated infinitely. The notation {s} represents the set of all sites in the lattice, and,
as before, the contraction of the virtual indices is implied but not explicitly shown. This
state is depicted diagrammatically in Fig.2.

It is important to note that there is a gauge freedom in representing the state: one can
insert an identity XX−1, being X an invertible matrix, between two tensors A, resulting
in a new MPS that, while different, still represents the same physical state. This gauge

3

freedom is typically partially fixed by working in canonical forms, which are representations
where the leading left and right vectors are associated with identities. These canonical
forms are essential for ensuring numerical stability and efficiency. For a more in-depth
explanation of canonical forms in iMPS, refer to Appendix C.2.

2.4 Time evolution in iMPS
Time evolution is essential to studying the dynamics of out-of-equilibrium systems. Various
algorithms have been developed for this purpose, with comprehensive reviews available in
Refs.[Bañ23, Sch11, PKS+19]. In this work, we focus on the time-evolving block decimation
(TEBD) algorithm [Vid03], with particular emphasis on its infinite variant (iTEBD)[Vid07,
OV08], which is specifically designed for iMPS.

The time evolution of an initial state |ψ(0)⟩ to a state |ψ(t)⟩ at time t is governed by

|Ψ(t)⟩ = e−itĤ |ψ(0)⟩ = U(t)|ψ(0)⟩, (4)

where |Ψ(t)⟩ represents the state at time t and U(t) = e−itĤ is the time evolution operator
corresponding to the Hamiltonian Ĥ. To implement this time evolution, the total time
interval is divided into smaller steps, such that t = Ntδt, where δt is the time step. We then
apply a first-order Suzuki-Trotter decomposition[Suz85], which breaks down the evolution
operator into a sequence of simpler, local operators. Specifically, the Hamiltonian Ĥ is
split into He and Ho, corresponding to interactions on even and odd bonds, respectively.
The time evolution operator is thus decomposed into two-body operators U1 = e−iδtHe and
U2 = e−iδtHo .

The iTEBD leverages the translational invariance of the system’s unit cell. Although
applying e−iδtHo(e) disrupts translational invariance under single-site shifts, it preserves it
under two-site shifts. Thus, only the translationally invariant unit cell needs updating,
achievable through simple matrix multiplications and SVD.

Before starting the algorithm, the infinite MPS must be in what we refer to as the
Vidal form, where the unit cell consists of two tensors {Γ,Λ}. In this representation, Γ
is an order-3 tensor, and Λ is a diagonal matrix containing the singular values associated
with the bipartition of the state at the bond where Λ is located, see Appendix C.2 for a
more detailed explanation. Due to the partial breaking of translational invariance, the unit
cell size increases to {ΓA,ΓB,ΛAB,ΛBA}, where A and B represent tensors on even and
odd sites, respectively.

The algorithm begins by applying the evolution operator U1(δt) to all even bonds. This
involves computing a new tensor Θ[1], defined as

Θ[1]σr,σr+1
α,β = (ΛBAΓAΛABΓBΛBA)σr,σr+1

α,β , (5)

where contraction over internal virtual indices is implied. Absorbing ΛBA ensures that the
state remains in the Schmidt basis, enabling controlled truncation during SVD.

Next, we apply the two-body operator U1 to Θ[1], yielding

Θ̃[1]σr,σr+1
α,β =

∑
σ′

r,σ
′
r+1

U
σ′

r,σ
′
r+1

[1]σr,σr+1
Θ[1]σ′

r,σ
′
r+1

α,β , (6)

as illustrated in Fig. 3 (a).
After reshaping Θ̃[1], we perform SVD and reshape the matrices back to obtain

Θ̃[1]σrσr+1 = U [A]σr Λ̃ABV [B]σr+1 , (7)

4

Figure 3: Diagrammatic representation of the update of the even bond in the iTEBD. (a) Application of
the two-body evolution operator U1(δt) to the tensor Θ[1] in an iMPS, showing the contraction with
even-site tensors. (b) Singular value decomposition of the evolved tensor Θ̃[1], followed by truncation to
retain the largest D singular values. (c) Restoration of the Vidal form by updating the Γ[A] and Γ[B]

tensors, ensuring the state remains in the canonical form suitable for further time evolution.

where U [A] and V [B]† are isometries, and Λ̃AB contains the singular values. We truncate
by retaining only the largest D singular values, as shown in Fig. 3(b).

To restore the Vidal form, given that U [A] and V [B]† are left-normalized and right-
normalized tensors, respectively, we can use the relationship from Eq.(47). By inserting
the identity λBA(λBA)−1 where necessary and then absorbing (λBA)−1, we obtain the
updated Γ[A] and Γ[B] tensors, effectively restoring the Vidal form. This final step is
depicted in Fig. 3(c).

The next step is to update the odd bonds, following the same procedure: contract
the tensors to form Θ[2], apply the gate U2, perform SVD, truncate, and recover the new
tensors ΓA and ΓB. This process is repeated Nt times to obtain the final state |Ψ(t)⟩.

3 Algorithm
3.1 Physical motivation
In this work, we address the challenges of simulating out-of-equilibrium dynamics, specifi-
cally those induced by quantum quenches [Mit18, PSSV11] in 1-D infinite systems. Prior
to the quench, the system resides in equilibrium, in the ground state |Ψ⟩ of a local Hamil-
tonian H.

The quench drives the initial state |Ψ⟩ into a highly excited state under the new Hamil-
tonian H̃, which acts as a source of entangled quasi-particle (QP) excitations[CC05]. These
entangled QPs possess well-defined momenta and propagate in opposite directions with a
finite velocity vk, spreading entanglement across the system as they separate over time.
This dynamic results in a linear growth of entanglement [SLRD13, LC08].

This concept is illustrated in Fig. 4 for an infinite system. If we divide the system into
two semi-infinite subsystems, A and B, the number of QPs moving from A to B increases
linearly with time, leading to a corresponding linear increase in entanglement.

This framework reveals that faster QPs rapidly increase the system’s entanglement. If
one can identify these fast modes or QPs and eliminate them without affecting the local
information needed for calculating expectation values, a more efficient description of the
evolved state becomes possible.

This is precisely the approach taken by the proposed TN algorithm. It is important to
note that this algorithm is designed for infinite systems, where the absence of boundary

5

Figure 4: Space-time diagram illustrating the linear entanglement growth in an infinite system partitioned
into subsystems A and B. Black points represent sources of entangled QP pairs moving in opposite
directions. Movement is shown along the light cone for clarity.

conditions allows QPs to travel indefinitely without encountering obstacles that could affect
their behavior.

3.2 Identifying long-distance entanglement
To detect the contributions of fast and slow modes, we focus on a reduced section of our
system, referred to as subsystem S, which consists of l neighboring spins. The remaining
semi-infinite subsystem to the left is denoted as L, and the one to the right as R.

In the QP picture, the entanglement across a bipartition can be understood as the
presence of correlated particles on both sides of a given cut. For example, consider the
bipartition between subsystems L and SR. If a pair of correlated QPs is entirely contained
within L, there is no entanglement between the bipartitions. However, if one QP is in L
and the other in SR, entanglement is present between these regions.

With this setup in mind, we define long-distance entanglement as the entanglement
contribution generated by QPs that have support in both L and R but not in S. As time
progresses, the distance between the QPs increases, eventually causing them to leave the S
subsystem, thereby creating long-distance entanglement. At this point, the entanglement
is only between the L and R subsystems, with S remaining in a product state with respect
to the other two.

In a general scenario, complete factorization of S is not always possible. This is due not
only to potential additional sources of entanglement between S and LR but also because,
even if we assume that the only entanglement arises from the QP picture, QPs with different
velocities could lead to one pair of QPs having support only in L and R, while another pair
has support in L and S. At this stage, even though the subsystem S cannot be completely
factorized from LR, parts of the subsystems that do factorize from S can still be identified.

Mathematically, this can be understood by finding a slow-fast factorization of our
Hilbert space such that L ≡ Ls⊗Lf and R ≡ Rs⊗Rf , where the subsystem Lf ⊗Rf is no
longer entangled with S. In the simple QP scenario, Lf ⊗ Rf represents the fast degrees
of freedom that generate long-distance entanglement, or equivalently, the fast mode QP
pairs.

Once we have identified the fast degrees of freedom, we can factorize our state |Ψ⟩ as

|Ψ⟩ = |ψslowLSR⟩ ⊗ |ϕfastLfRf
⟩, (8)

where |ψslowLSR⟩ represents the part of the state that retains the slow mode QPs, and |ϕfastLfRf
⟩

captures the fast mode QPs.
In a translationally invariant system, we can revisit the LSR cut picture for each

block of l spins. Suppose we are interested in computing the expectation value of a local
observable. In this scenario, we need to trace out all degrees of freedom except those

6

Figure 5: Diagrammatic representation of the initial state for the factorization algorithm, the unit cell is
formed by the tensors {C,Λ−1}.

involved in the operator. Since fast-mode QPs are separated by at least l sites, tracing
out the non-involved degrees of freedom will result in discarding at least one QP from the
fast-mode QP pair, leaving the remaining QP in a mixed state.

Therefore, when computing expectation values of local observables, it is not essential
to preserve the complete description of the entire system. Instead, the system can be
effectively represented as a mixed state by discarding the information linked to the fast
degrees of freedom, thereby eliminating long-range entanglement.

To achieve this, we begin by constructing the density matrix ρ for our state |Ψ⟩. Using
Eq.(8), we obtain

ρ =
∣∣∣ψslowLSR

〉 〈
ψslowLSR

∣∣∣ ⊗
∣∣∣ϕfastLfRf

〉 〈
ϕfastLfRf

∣∣∣ = ρslowLSR ⊗ ρfastLfRf
, (9)

where ρfastLfRf
represents the density matrix of the fast modes, and ρslowLSR represents the

density matrix of the slow modes.
From Eq.(9), the density matrix ρfastLfRf

still retains the long-distance entanglement.
To eliminate this contribution without affecting the relevant local information needed for
computing our expected values, we replace ρfastLfRf

with a mixed state obtained by tracing
out one of the entangled pairs in the fast modes

ρfastLfRf
=

∣∣∣ϕfastLfRf

〉 〈
ϕfastLfRf

∣∣∣ → ρfastLf
⊗ ρfastRf

, (10)

where ρfastLf (Rf) = trR(L)(ρ
fast
LfRf

) is the reduced density matrix obtained by tracing out one
of the subsystems.

The obtained mixed state is globally different from the original state ρ. Nevertheless,
concerning the expectation value of a local operator, both states should be indistinguishable
because they carry the same local information needed for the computation. Moreover, the
mixed state has removed the long-distance entanglement components, thereby providing
a more efficient local description in terms of correlations. Consequently, this mixed state
could enhance methods for simulating the evolution of expected values, particularly in
cases where entanglement growth presents a major computational barrier, such as with
tensor network (TN) methods.

The next step is to translate the above idea into a TN algorithm to leverage the benefits
of this mixed state. Focusing on the time evolution of infinite 1-D systems, we describe
how this QP picture can be integrated into the iMPS framework to obtain a more efficient
description for local observables.

We start by assuming that our system is described by an iMPS in Vidal form, where
the unit cell is composed of {Γ,Λ}, with Γ representing a subsystem S that consists of l
neighboring spins. This configuration can always be achieved by grouping l tensors, such
as when each tensor initially corresponds to a single site. For simplicity, we will assume
l = 2 throughout this work, although the approach applies to any l. Next, we absorb the
singular values at both ends of Γ into Γ itself, resulting in a new unit cell composed of
{C,Λ−1}, as illustrated in Fig. 5. This step enables us to directly utilize the orthogonality
properties of the canonical forms within the tensor C.

7

In this form, when singling out the subsystem S, the state can be described by

|Ψ⟩ =
∑
α,sl,β

Csl
α,β

∣∣∣ΦL
α

〉
|sl⟩

∣∣∣ΦR
β

〉
, (11)

where |sl⟩ represents the basis for the subsystem S, while {
∣∣∣ΦL

〉
} and {

∣∣∣ΦR
〉
} are the

Schmidt basis representing the semi-infinite chains to the left and right of the subsystem
S, respectively. These can be directly understood as the basis representing the subsystems
L and R.

Therefore, by using this representation, we can efficiently analyze and manage the
long-distance entanglement structure within the system at the level of the virtual indices.
Specifically, the fast degrees of freedom that decouple from the subsystem S will correspond
to a new tensor ϕfast, which connects the left and right bond dimensions and forms a
product state with respect to the tensor containing the slow degrees of freedom ψslow.

If such a form exists, there would be a basis transformation U †
L and V †

R acting on the
subsystems L and R respectively, enabling us to factorize them into Lf ⊗Ls and Rf ⊗Rs.
Applying these transformations to our initial state, we obtain

U †
L ⊗ 1S ⊗ V †

R |Ψ⟩ = |ψslowLSR⟩ ⊗ |ϕfastLfRf
⟩. (12)

To determine these unitary transformations, assuming they exist, we need to find them
variationally. The simplest approach involves minimizing the overlap between the left and
right sides of the equality in Eq. (12). This leads to the following minimization problem:

max
UL,VR,|ψslow

LSR⟩,|ϕfast
Lf Rf

⟩
|⟨ψslowLSR| ⊗ ⟨ϕfastLfRf

|U †
L ⊗ 1S ⊗ V †

R |Ψ⟩ |, (13)

where the optimization variables are the unitaries UL and VR, and the final factorized
states

∣∣∣ψslowLSR

〉
and |ϕfastLfRf

⟩.
Although complete optimization is a complex problem, optimizing each component in-

dividually is quadratic and can be solved analytically, as first noted in Ref. [KRB+18].
Therefore, the approach is to start with initial random states and unitaries of fixed dimen-
sions, then iteratively optimize each component while keeping the others fixed until a fixed
point is reached.

First, let’s review the optimization of the states. For simplicity, we will demonstrate
the optimization of |ψslowLSR⟩, noting that the optimization of |ϕfastLfRf

⟩ follows equivalently
by interchanging the states. Our new optimization problem becomes

max
|ψslow

LSR⟩
|⟨ψslowLSR| ⊗ ⟨ϕfastLfRf

|U †
L ⊗ 1S ⊗ V †

R |Ψ⟩ | = max
|ψslow

LSR⟩
|⟨ψslowLSR||φ⟩|, (14)

where |φ⟩ ≡ ⟨ϕfastLfRf
|U †
L⊗ 1S ⊗V †

R |Ψ⟩. The solution to this optimization problem is simply
|ψoptslow⟩ ∝ |φ⟩. This new state in tensor network notation is constructed as shown in Fig. 6
(a). It is worth to highlight that due to the quadratic nature of this optimization problem,
it can equivalently be solved using a DMRG scheme, as discussed in Appendix D.

For optimizing the unitaries, we will follow a similar scheme. We fix all other tensors
while optimizing the one of interest. Here, we will show the optimization for the UL unitary,
noting that the process is equivalent for VR. Our new optimization function becomes

max
UL

|⟨ψslowLSR| ⊗ ⟨ϕfastLfRf
|U †
L ⊗ 1S ⊗ V †

R |Ψ⟩ | = max
UL

|⟨ψslowLSR| ⊗ ⟨ϕfastLfRf
|U †
L|ψ̃⟩|

= max
UL

| tr(U †
L|ψ̃⟩⟨ψslowLSR| ⊗ ⟨ϕfastLfRf

|)| = max
UL

| trL(U †
LρL)|, (15)

8

Figure 6: (a) Representation of how the new state |ψopt
slow⟩ can be achieved using tensor networks. In this

representation, the tensor C represents the original state |Ψ⟩, the tensor ϕ̄fast represents ⟨ϕfast
Lf Rf

|, and
U†

L and V †
R are the unitaries that achieve the factorization.(b)Representation of the process to obtain

the new Uopt
L tensor. The ρL corresponds to the environment tensor. The optimal Uopt

L is achieved by
combining the isometries obtained in the SVD of the environment tensor ρL.

Figure 7: Representation of the calculation of the ρfast tensor. The symbol ≈ is used to indicate that
due to the numerical optimization not being perfect, there may be some difference between the two
cases. Additionally, in the last equality, we use that the tensor ψslow represents a physical state, so
Tr(ρslow) = 1.

where |ψ̃⟩ ≡ 1S ⊗ V †
R |Ψ⟩ and ρL = trS,R(|ψ̃⟩⟨ψslowLSR| ⊗ ⟨ϕfastLfRf

|).
The final expression in Eq. (15) is closely related to the variational form of the trace

norm or Schatten 1-norm [Wil13]. Consequently, the maximum value of the cost function
corresponds to the sum of the singular values of ρL, which can be found using the singular
value decomposition ρL = UρLDV

†
ρL

. The optimal unitary that achieves the maximum
value of the cost function is UoptL = UρLV

†
ρL

. This process is depicted in Fig. 6(b).
After solving the optimization problem, we need to verify whether we have successfully

acquired the desired structure from Eq.(12). A useful measure for this purpose is the von
Neumann entropy of the reduced state S(ρfast). To create the reduced state, we trace out
the subsystem Ls⊗S⊗Rs, obtaining ρfast = trLs⊗S⊗Rs(|Ψ⟩ ⟨Ψ|). In Fig. 7, the calculation
of the reduced density matrix ρfast within the TN framework is shown.

If we have indeed obtained a factorized state as in Eq.(12), our state ρfast = |ϕfastLfRf
⟩⟨ϕfastLfRf

|
corresponds to a pure state. Consequently, the entropy S(ρfast) = 0 because we have a
product state that is completely disentangled from the subsystem Ls⊗S⊗Rs. Conversely,
if the entropy is not zero, this indicates that some entanglement remains between the
subsystems, and the factorization has not achieved a perfect separation.

There are two caveats to this optimization process. The first is that the dimension dfast

9

Figure 8: Diagrammatic representation of the simple truncation process. (a) The density matrix of the
full system before truncation. (b) The reduced density matrices ρfast

Lf
and ρfast

Rf
. (c) The new density

matrix after simple truncation.

for the state |ϕfastLfRf
⟩ is not known a priori. To find the exact decomposition, one should

experiment with different values of dfast and select the best result. The second caveat
is that there are infinitely many solutions to the decomposition problem. Numerically,
we have observed solutions where, for example, the entanglement between the subsystem
Lf ⊗Rf is zero, indicating that the state supposed to contain the long-range entanglement
actually retains none. To avoid such cases, we start our optimization process using a
maximally entangled state as our fast state:

|ϕfastLfRf
⟩ = 1√

dfast

dfast∑
i=1

|i, i⟩. (16)

This ensures that the initial state |ϕfastLfRf
⟩ contains maximum entanglement, helping to

guide the optimization toward a more meaningful factorization.

3.3 Simple truncation algorithm
Once the factorization is achieved, we obtain the desired state |ψslowLsSRs

⟩ ⊗ |ϕfastLfRf
⟩. The

next step involves replacing the pure state with a mixed state as described in Eq.(10).
The method proposed by Miguel Frias et al. in Ref.[FPTBn24] involves substituting

the density operator of the entire system |Ψ⟩ ⟨Ψ|, as illustrated in Fig. 8(a), with a new
mixed state that leaves the subsystem Ls ⊗ S ⊗Rs unchanged while replacing the density
operator of the subsystem Lf ⊗ Rf with its reduced density matrices ρfastLf

⊗ ρfastRf
, as

depicted in Fig. 8(b). In the tensor network picture, this process translates to keeping the
tensors ψslow unchanged and replacing the tensors ϕfast with the tensor product of their
reduced density matrices, as shown in Fig. 8(c). Then we exchange the original density
matrix with the newly found one in all blocks simultaneously, as shown in Fig. 9.

When we have achieved an exact factorization, the newly found mixed state presents
the same reduced density matrices as the original system, ensuring the correct expectation
values for at least observables acting on l sites. For a more detailed explanation, see
Appendix E.

3.4 Heuristic Truncation
To ensure all the desirable properties mentioned above, we rely on achieving a complete
decomposition of the fast and slow degrees of freedom. Nevertheless, there is always a
residual entropy S(ρfast), indicating imperfect factorization of the fast and slow modes.
This results in a systematic error with each truncation, still, the results show that this
error does not change the qualitative behavior of the dynamics, as we will show in the
following.

10

Figure 9: Conversion of the pure state representation of the spin chain to a mixed state by performing
simultaneous simple truncation on each block.

Figure 10: (a) Tensor C from the infinite MPS, represents the initial state before truncations.(b) Pure
state representation after the decomposition of the fast and slow degrees of freedom.(c) Ansatz for the
heuristic truncation, described how are formed the tensors ML, Bl and NR

To mitigate the error due to imperfect factorization between fast and slow degrees of
freedom, the authors of Ref. [FPTBn24] proposed a heuristic algorithm. The approach
is as follows: first, perform simple truncation, as described in the previous section, until
S(ρfast) is below a predetermined threshold νs. Once the factorization falls below this
threshold and the initial truncation is performed, we use the obtained state as a purification
ansatz. We then variationally optimize our state to accurately capture the marginals for
the subsystems LS and RS.

The ansatz used consists of three tensors named ML, Bl, and NR. They are built from
the tensors obtained during the simple truncation, in Fig.10 we depict how these initial
tensors are constructed. Then, we optimize them by minimizing the sum of the Euclidean
distance between the reduced density matrix of the subsystems LS(SR) from the original
state ρLS(SR) and the truncated state ρ̃LS(SR). Therefore, the cost function we need to
minimize is

min
ML,Bl,NR

(
||ρLS − ρ̃LS ||2 + ||ρSR − ρ̃SR||2

)
, (17)

where our optimization variables are the tensors ML, Bl, and NR. These tensors form the
matrices ρ̃ and include terms that are fourth-order in our optimization tensor, hence it can
not be solved using DMRG optimization[CM23]. For this reason, we have used a gradient
descent method to minimize the cost function, for further details see Appendix F. The
state after this second optimization has the form depicted in Fig. 11.

11

Figure 11: The density matrix for the full state after successfully performing the heuristic truncation.
The section highlighted by the dashed rectangle represents the purification MPS form of the state.

3.5 Time evolution
Once we have a new mixed state that accurately captures the local information of our
original state, we can proceed with the time evolution. However, starting from this mixed
state, it is not immediately clear how to perform the time evolution efficiently.

In the literature, when dealing with mixed states, purification MPS are commonly
used [PKS+19]. This technique has been employed in various contexts, such as simulating
master equations [ZV04] and finite temperature states [FW05, VGRC04].

Generally, the approach begins by obtaining a Matrix Product Density Operator (MPDO)
tensor, which extends the MPS framework from pure states to mixed states [VGRC04]. Sub-
sequently, the purification MPS is recovered by combining the purification and physical
legs of the MPDO. The TEBD is then performed by applying the time evolution operator
to the physical legs, while the identity operator is applied to the purification legs.

Mathematically, this can be understood as using a purification state to represent the
mixed state. For any mixed state ρA ∈ HA, there exists a pure state |Ψ⟩AB in an expanded
Hilbert space HA ⊗ HB, such that tracing out the ancillary system B recovers the original
state:

ρA = TrB{|Ψ⟩AB ⟨Ψ|}. (18)

Thus, when we unify the purification leg with the physical leg, we effectively move to an
extended Hilbert space HA ⊗ HB. The resulting MPS represents our purified state |Ψ⟩AB.

Regarding time evolution using TEBD, unifying the physical and purification legs is
equivalent to working with the MPDO tensor, and applying the time evolution operator
only to the physical legs.

To apply this approach in our setup, we first need to create the MPDO for our case.
There are several alternatives for constructing the MPDO. As we have stated in the non-
heuristic truncation, the mixed state we have obtained correctly captures the local infor-
mation from the reduced left (right) density matrix ρL(R) of the system. Additionally, the
ML (NR) tensor is the only purification tensor involved in creating the left (right) density
matrix. This implies that ML contains the long-range entanglement for the left subsystem,
while NR contains the long-range entanglement for the right subsystem.

Consequently, it appears that both tensors already encapsulate the relevant informa-
tion in each purification leg. Therefore, we only need to incorporate the local physical
information contained in the Bl tensor to each one of them. The most natural way to do
this without altering the existing structure of the mixed state is to perform an SVD on
Bl. The result of the SVD consists of two isometries, UA and V †

B, and a diagonal matrix
ΛAB. By absorbing the singular values into the isometries, we obtain the tensors Â and B̂,
separated by the inverse Λ−1

AB.
Finally, we contract the ML and A tensors to yield a new tensor A′, which now contains

both the purification leg and the physical leg. Similarly, we contract B and NR to produce

12

Figure 12: Diagrammatic scheme illustrating the creation of the infinite Matrix Product Density Operator
(iMPDO) from the initial mixed state. In panel (a), we show the singular value decomposition of the
tensor Bl into two new tensors, A and B, each of which has absorbed the singular values ΛAB . In panel
(b), we demonstrate the construction of the new tensor Â, which forms one of the building blocks of the
final MPDO. The construction of B̂ is analogous, replacing ML and A with NR and B, respectively.
Panel (c) presents the final iMPDO.

B′, which also contains one physical leg and one purification leg. The resulting MPDO
is composed of a unit cell containing the tensors {Â, B̂,Λ−1

AB,Λ
−1
BA}. In Fig.12 we show

diagrammatically the main steps described above.
Once we have the iMPDO, we can perform the iTEBD. In this case, as we have already

stated, the iTEBD is equivalent to the MPS case but in an expanded Hilbert space of
dimension Hd ⊗ Hdpur . To see the details of how iTEBD is performed refer to Appendix
G.1.

After several iterations of the TEBD algorithm, we will again factorize our evolved
state’s slow and fast degrees of freedom. When the entropy S(ρfast) of our factorized state
falls below a predefined threshold νs, we will start the gradient descent optimization to
ensure that the local information on both the left and right sides is accurately captured.

However, to apply the slow and fast decomposition, we need to revert to the original
structure with the tensors ML, NR, and Bl to isolate and factorize the relevant local
information encapsulated in the Bl tensor. To accomplish this, we must transform our
iMPDO unit cell from the form Â, B̂,ΛAB,ΛBA back to the desired structure. The simplest
approach is to reshape Â and perform an SVD to separate the left bond dimension and
the purification leg from the right bond dimension and the physical leg. In the final step
of the SVD, we absorb the singular values ΛA into the isometry V †

A to form the new tensor
A, which now only contains the physical leg and not the purification leg. The isometry
UA becomes the desired tensor ML. Using the same method on B̂, we can obtain a new
tensor B and recover the desired purification tensor NR. Lastly, we can contract the new
tensors A and B with Λ−1

AB to yield the last tensor we needed, the Bl tensor. The steps
are summarized in Fig. 13. Once the state has been successfully factorized and its entropy
is below the chosen threshold νs, we have the original ML and NR tensors, plus the new
tensors obtained from the decomposition, named M ′

L, N ′
R, and Bl. We absorb the new M ′

L

and N ′
R tensors into the original ones, causing the purification legs to grow exponentially

after each truncation. To address this issue, we introduce a cut-off after a few truncations,
setting a maximum dimension dpur = 32. The truncation is performed on the iMPDO
by doing an SVD between the purification leg and the left ones, keeping only the largest
singular values to achieve the desired dimension. This process is illustrated schematically
in Fig. 14.

The described algorithm, which we will refer to as iMPDOv1, works well for shorter

13

Figure 13: Diagrammatic scheme illustrating the procedure to recover the initial unit cell with the
tensors ML,NR, and Bl from our iMPDO.

Figure 14: Diagrammatic scheme illustrating the procedure to truncate the purification legs from our
iMPDO. The isometry V †

Â
is discarded because the purification leg will always be contracted with its

complex conjugate, ensuring that V †
Â
VÂ = 1. This redundancy make V †

Â
unnecessary for the purification

leg. The same procedure is also applied to the tensor B̂ of our iMPDO.

times; however, several aspects suggest that it is not the optimal method to fully leverage
the factorization algorithm’s advantages. One key issue is that when we create the iMPDO,
as shown in Fig. 12, we contract the tensors ML(NR) and A(B) to form Â(B̂). This
approach does not utilize the reduced bond dimension obtained from the factorization
algorithm during the initial step of the TEBD. As a result, the first SVD becomes very
computationally expensive and does not provide significant benefits over the standard
TEBD evolution. Additionally, numerical implementation shows that the larger bond
dimension grows exponentially. To address this issue, we have developed a second method
for the iTEBD that aims to utilize the reduced bond dimension better, which we will refer
to as iMPDOv2 in the following.

The key difference between this new method and the previous one lies in how we
perform the first iTEBD step. In the new approach, we start by reshaping the ML tensor,
combining the left leg with the purification leg. We then perform an SVD, resulting in
two isometries, UL and V †

L , and the singular values ΛL. The isometry UL becomes our
new purification tensor M ′

L, while the remaining tensors are absorbed into the Bl tensor.
Subsequently, we apply the same procedure to the NR tensor. The resulting tensor B′

l

encapsulates all the entanglement from our physical state, ensuring that the truncation
minimizes the global error. The schematic representation of this method is illustrated in
Fig. 15.

Then, the first time evolution operator U1 is directly applied to the new B′
l tensor,

ensuring that we are taking advantage of the reduced bond on the factorization. The rest
of the iTEBD is performed similarly to the first method. For a more detailed explanation,
we refer to Appendix G.2

14

Figure 15: Diagrammatic scheme illustrating the procedure for obtaining the new tensor B′
l, designed to

minimize global error during truncation in the first iTEBD step.

4 Numerical results
In this section, we benchmark the algorithm described in the previous section using the
Transverse Field Ising Model (TFIM), governed by the Hamiltonian

H = −
∑
i

(
Jσzi σ

z
i+1 + gσxi

)
, (19)

where σzi and σxi are Pauli matrices acting on the ith site, J determines the interaction
strength between neighboring spins, and g represents the strength of the external transverse
magnetic field.

The initial state used in our simulation is a product state |X⟩ = 1√
2(|0⟩ + |1⟩), which

corresponds to the ground state in the deep paramagnetic phase g → ∞.
We selected the Transverse Field Ising Model for benchmarking the algorithm for two

primary reasons. First, it is one of the rare models with an analytical solution, and
this solution explicitly involves quasiparticles. This makes the TFIM an ideal system for
testing the underlying concepts of our algorithm, particularly those related to quasiparticle
dynamics. Second, the TFIM was used by Frias et al. to benchmark their algorithm,
allowing us to directly compare our results with theirs.

For the simulations, we employed the numpy and scipy libraries for various linear alge-
bra tasks, including SVDs and diagonalizing Hermitian matrices. Tensor contractions were
handled using the ncon package. However, all core routines and more advanced methods,
such as bringing tensors into canonical form and performing the iTEBD algorithm, were
implemented from scratch. Additionally, we utilized the jax Python package for gradient
descent, taking advantage of its automatic differentiation features to efficiently optimize
the system. The complete code for these simulations is available in the GitHub repository
cited in Ref. [Far24].

4.1 Factorization results
We began by analyzing the results from the factorization of the system into fast and slow
modes. To assess the effectiveness of this factorization, we simulated a standard TEBD
time evolution, applying the factorization procedure described in Section 3.2 at each time
step. For the factorization, we set the dimension dfast = 2, consistent with the dimension
used in the time evolution. If the bond dimension of our MPS was not a multiple of two,
we skipped the factorization for that time step and proceeded to the next.

Our initial study involved starting with random tensors UL, VR, ψslow, and ϕfast. Af-
ter each factorization, we computed the von Neumann entropy S(ρfast) to quantify the
entanglement in the fast modes. Additionally, we applied an SVD to the tensor ψslow and
examined the quantity 1 − λmax, where λmax is the largest singular value. This was done
to determine whether the state retained long-range entanglement, as expected.

15

0 2 4
t

0

1

2

3

S(
fa

st
)

×10 4 (a)

0 2 4
t

0

1

2

3

4

|1
m

ax
|

×10 6 (b)

0 2 4
t

0.0

0.2

0.4

0.6

0.8

1.0

S(
fa

st
)

×10 1 (c)

0 2 4
t

0

1

2

3

|1
m

ax
|

×10 2 (d)

Figure 16: (a,b) Results from the optimization without initializing the fast mode as a maximally entangled
state. (a) Shows the von Neumann entropy of the reduced density matrix S(ρfast). (b) Shows the
proximity of the maximum singular value of the state ϕfast to one. (c-d) Results from the optimization
starting with the fast mode as a maximally entangled state. (c) Shows the von Neumann entropy of the
reduced density matrix S(ρfast). (d) Shows the proximity of the maximum singular value of the state
ϕfast to one.

We then compared these results with those obtained by initializing the factorization
with a maximally entangled state for the fast mode. In this scenario, we allowed several
iterations of factorization with the fast tensor fixed as the maximally entangled state before
enabling the standard optimization. The results are shown in Fig.16.

As observed, when we do not start with a maximally entangled state in the fast com-
ponent, we achieve a perfect factorization where the largest singular value between the cut
LfRf is one. This outcome indicates that the subsystems Lf and Rf are not entangled,
which is the opposite of our intended goal. However, when the optimization is constrained
to start with a maximally entangled state, the maximum singular value begins to deviate
significantly from 1 over time, indicating the presence of long-range entanglement. Corre-
spondingly, the entropy S(ρfast) also deviates from 0, indicating that perfect factorization
is not achieved.

It is important to note that the factorization process often gets stuck in local minima.
To mitigate this, we typically repeat the factorization multiple times with different initial
conditions at the same time step and retain the best result. Another effective strategy
is to start the optimization from the tensors obtained in the previous time step rather
than from a random state. However, it is advisable to combine this approach with some
factorizations from random tensors to better explore the optimization landscape and avoid
biased results.

Next, we investigated the performance of the factorization algorithm across different

16

2 3 4 5
t

10 3

10 2

10 1

100

S(
fa

st
) g = 0.5

g = 1
g = 2
g = 4

Figure 17: The von Neumann entropy of the fast degrees of freedom S(ρfast) found by the factorization
algorithm as a function of time t for the Transverse Ising model.

values of g, corresponding to various phases of the Transverse Ising model. For this opti-
mization, we employed the variant where the factorization begins with a maximally entan-
gled state. We focused on the behavior after t ≈ 2, the time at which the factorization
begins to identify fast modes with long-range entanglement.

As illustrated in Fig.17, the efficiency of the factorization strongly depends on the
specific system under consideration. In all cases, the entropy decreases exponentially over
time, indicating that the factorization effectively captures the quasi-particle (QP) dynamics.
As time progresses, the number of QPs that completely disentangle from the subsystem S
increases. However, perfect disentanglement is not achieved in most cases, although the
results consistently improve as the parameter g increases.

The improvement in factorization with increasing g is closely related to the intrinsic
behavior of the system, particularly the distribution of QPs in the initial state. As studied
in Ref. [FPTBn24], the velocity group and occupation number of QPs vary depending
on its momentum k in the Transverse Ising model. In the state under consideration, for
larger values of g, the maximum occupation number aligns with modes that have the
highest velocity group, whereas for smaller g, it coincides with modes of zero velocity
group. This suggests that for larger g, the QPs radiate more effectively and move faster,
leading to quicker disentanglement from the subsystem S. These findings indicate that
the algorithm’s effectiveness is strongly dependent on the specific system and its intrinsic
dynamics.

Another factor affecting the algorithm’s effectiveness is the complexity of the optimiza-
tion landscape, which can easily trap the factorization process in local minima. The goal
of the factorization is to maximize the overlap between the original state and the desired
factorized state. However, there is no assurance that this factorization will result in a clear
separation between fast and slow modes. As seen in cases where the factorization does not
begin with a maximally entangled state, alternative factorizations with similar forms can
exist, which may not align with the intended separation of modes.

4.2 Characterization of the algorithm: time evolution
First, let’s discuss the results obtained using the simple truncation algorithm, which relies
solely on the factorization of fast and slow modes without employing gradient descent
optimization. In this study, we simulated the Transverse Ising model with g = 4 and
compared the results against those from the standard iTEBD algorithm. For the simulation,

17

Figure 18: Transverse magnetization σx as a function of time t for the Transverse Ising model with J = 1
and g = 4 without gradient descent optimization. The red dashed line corresponds to the standard
iTEBD, and the blue continuous line corresponds to iMPDOv2. The inset provides a more detailed view
of the truncations, which are marked by the horizontal dashed lines.

we set an entropy threshold of νs = 0.008. After each truncation, we performed at least 10
time steps with δt = 0.05, retaining only the singular values greater than ϵ > 10−5, before
reapplying the factorization.

The results, shown in Fig. 18, reveal that each truncation introduces a systematic error.
However, the qualitative behavior of the expectation value is preserved, indicating that the
mixed state effectively captures the same expectation values as the pure state.

Moreover, we observed that reducing the entropy threshold νs diminishes the systematic
error, highlighting that this error is closely linked to the degree of disentanglement between
the fast and slow modes. As the threshold decreases, the approximation becomes more
accurate, leading to improved results in the simulation.

We now proceed to characterize the algorithm, with a primary focus on the iMPDOv2
method. Our analysis shows that the results obtained at short times are consistent across
both iMPDOv1 and iMPDOv2 methods, with the bond dimension behavior being nearly
identical. However, the computational complexity scales differently between the two.

In the iMPDOv1 method, the most computationally expensive operation is the SVD
performed after applying the U1 operator. The complexity of this step is O((Dbigdfastd)3),
where Dbig is the bond dimension that remains unaffected by factorization, dfast is the
dimension that increases up to a predefined value (16 in our short-time simulations), and
d is the physical dimension, which is 2 in this case. In contrast, the iMPDOv2 method’s
most expensive operation is the SVD performed after applying the U2 operator, with a
complexity of O((Dsmalldfastd)3), where Dsmall is the bond dimension reduced through
factorization.

To provide a comparative perspective, we have also included results from the iMPDOv1
method in Fig. 19. These results demonstrate similar behavior, albeit with simulation
times that are two to three times longer than those required by the improved algorithm. As
anticipated, for short times, iMPDOv1 recovers the same solutions as the standard iTEBD.
The bond dimension behavior aligns with expectations: Dbig exhibits the same behavior
as the bond dimension in iTEBD, while Dsmall, due to the factorization, is progressively
reduced, leading to a slower increase over time.

To thoroughly evaluate the features of the algorithm, we applied the iMPDOv2 algo-
rithm with various entropy thresholds νs during the factorization and different cost func-
tion thresholds fcost for the gradient descent. These were then compared with a standard
iTEBD for the Transverse Ising model with parameters J = 1 and g = 4. In all cases, we
retained only the singular values from the TEBD truncation that were greater than 10−5,

18

Figure 19: Time evolution of the Transverse Ising model with J = 1 and g = 4 using the iMPDOv1 time
evolution. (a) Transverse magnetization σx as a function of time t. The red dashed line corresponds to
the standard iTEBD, and the blue continuous line corresponds to iMPDOv1. The inset provides a more
detailed view of the truncations, which are marked by the vertical dashed lines. (b) Bond dimension D as
a function of time. The dashed blue line corresponds to the bond dimension reduced by the factorization
Dsmall, the continuous green line corresponds to the bond dimension unaffected by the factorization
Dbig, and the red dashed line represents the bond dimension in the standard iTEBD algorithm DiT EBD.

with a maximum bond dimension of D = 200. Figure 20(a) presents the evolution of the
expected value σx. The simulation results systematically improve as the threshold fcost is
reduced, although this leads to longer intervals between truncations and consequently, the
bond dimension tends to increase. In Fig. 20(b), the different values of the cost function
are shown at each factorization step, after the gradient descent. Two key points emerge:
first, when the spectrum of the cost function is similar, the simulation results are identical,
regardless of the starting entropy thresholds νs. This suggests that the behavior of the
simulation is primarily dictated by the cost function values during the heuristic truncation.
However, setting an overly high entropy threshold combined with a very low gradient de-
scent threshold is suboptimal, as it leads to unnecessary gradient descent optimizations
over many time steps, significantly increasing the simulation time.

Second, there are instances where the cost function yields values as low as 10−11. In
such cases, after factorization, the reduced bond dimension Dsmall quickly returns to its
pre-factorization value after evolving one time step δt = 0.05. This indicates that the
fast state identified in this factorization may not contain any meaningful entanglement,
rendering it ineffective.

Figures 20(c) and 20(d) illustrate the behavior of the non-reduced bond dimension Dbig

and the reduced bond dimension Dsmall, respectively. As with iMPDOv1, the non-reduced
bond dimension Dbig mirrors the behavior seen in the standard iTEBD case, while the
reduced bond dimension Dsmall increases more slowly during the evolution. However, it
appears that after the factorization, Dsmall experiences a significant increase during the
first time evolution step δt, followed by a slower growth. This initial jump could suggest
a potential issue in the method, but when compared to cases where the cost function was
extremely small and the bond quickly recovered its initial value, it seems that these jumps
are intrinsically linked to the degree of entanglement captured by the fast tensors. The
more entanglement that is captured, the smaller the jumps; conversely, if less entanglement
is captured, the jumps are larger, potentially restoring the original bond dimension.

5 Conclusion
In this work, we have reviewed and characterized an algorithm designed to overcome the
entanglement barrier in the simulation of time evolution in out-of-equilibrium quantum

19

0 2 4 6 8 10
t

0.94

0.96

0.98

1.00

x

(a)

s = 0.003 fcost = 9 10 6

s = 0.014 fcost = 2 10 5

s = 0.014 fcost = 7 10 5

iTEBD

2 4 6 8 10
t

0

2

4

f c
os

t(M
L,

B l
,N

R
)

1e 5
(b)

s = 0.003 fcost = 9 10 6

s = 0.008 fcost = 2 10 5

s = 0.008 fcost = 9 10 6

s = 0.010 fcost = 2 10 5

s = 0.014 fcost = 2 10 5

s = 0.014 fcost = 7 10 5

0 2 4 6 8 10
t

0

50

100

150

200

D

(c)

s = 0.003 fcost = 9 10 6

s = 0.014 fcost = 2 10 5

s = 0.014 fcost = 7 10 5

iTEBD

0 2 4 6 8 10
t

0

50

100

150

200

D

(d)
s = 0.003 fcost = 9 10 6

s = 0.014 fcost = 2 10 5

s = 0.014 fcost = 7 10 5

iTEBD

2 3 4 5 6
t

0.9650

0.9675

0.9700

x

Figure 20: Time evolution of the Transverse Ising model with J = 1 and g = 4 using the iMPDOv2
time evolution for different values of the entropy threshold νs and the cost function threshold during the
gradient descent fcost. (a) Transverse magnetization σx as a function of time t. The inset provides a
more detailed view of the expectation values during the truncations. (b) Cost function values at each
truncation after the gradient descent. (c) Non-reduced bond dimension Dbig as a function of time. (d)
Reduced bond dimension Dsmall as a function of time. The jumps correspond to the times at which
the factorization is made.

systems. The core idea of this algorithm is to mitigate the effects of long-range entangle-
ment by replacing the system’s coherence with a mixed state representation that retains
the necessary local information for computing the evolution of local expectation values.

The algorithm draws its inspiration from the QP picture, aiming to identify and sep-
arate the contributions of fast modes, which are responsible for propagating long-range
entanglement across the system. By replacing these fast modes with their corresponding
reduced density matrices, the algorithm simplifies the representation of the state, focus-
ing on the essential degrees of freedom required for accurate time evolution. Once the
factorization is achieved, the state is evolved, allowing the modes to propagate until it
becomes possible to factorize the state again. We proposed two methods for evolving this
mixed state, each designed to exploit the factorization to improve the efficiency of the time
evolution process.

We tested the algorithm against the Transverse Ising model to evaluate its behavior
and efficiency. The algorithm demonstrates good performance at short times, successfully
capturing the key features of the system’s evolution. However, as time progresses, certain
challenges emerge that suggest areas for further improvement.

A primary observation is that the major bottleneck of the algorithm is its computa-
tional time. Although the factorization reduces the working bond dimension, the gradient
descent steps required to achieve this add significant computational overhead, accounting
for more than two-thirds of the total computing time. In our tests, we were able to simulate
up to T/J ≈ 12 over 24 hours on a single GPU-accelerated node in the MareNostrum5
supercomputer by imposing a cutoff D = 200 on the bond dimension. Extending this
cutoff to larger dimensions and further optimizing the gradient descent parameters could
potentially extend the algorithm’s applicability to longer timescales.

20

Another important observation is that, although it does not directly impact the time
evolution step, the non-reduced bond dimension increases at the same rate as in the stan-
dard iTEBD algorithm. Ideally, a more effective method would not only control the growth
of the reduced bond dimension but also mitigate the increase in the non-reduced bond di-
mension. One approach we considered, but did not have the opportunity to fully explore,
involves using the iMPDOv1 algorithm while alternating the bonds where the factorization
is performed. This strategy could potentially achieve a more balanced reduction in both
bond dimensions.

Additionally, in this study, the purification leg of the state was left untouched during
the time of evolution. However, the purification leg offers additional gauge freedom that
could be exploited to search for a purification basis that further reduces the system’s
entanglement. This approach has been explored in other works, such as in Ref. [HLB+18],
and could be an avenue for future improvement.

Another area of potential enhancement is the factorization process itself. In this work,
the decomposition was used to provide an initial ansatz for the gradient descent optimiza-
tion. One possible improvement could be to integrate the factorization and optimization
processes into a single, more cohesive method. For example, cost functions that lend
themselves to DMRG optimization, which is naturally suited for tensor networks, could
be explored. Alternatively, the gradient descent process could be enhanced using more
advanced optimization algorithms, such as ADAM [KB17] or L-BFGS-B [ZBLN97], which
are known to perform better than simple gradient descent in many cases.

Finally, after optimizing and successfully characterizing the algorithm for long-time evo-
lution in the transverse Ising model, the next natural step would be to test its performance
on non-integrable models. In these systems, the simple picture of quasiparticles freely
traveling through the system no longer applies, making it an ideal scenario to evaluate the
algorithm’s adaptability and robustness in more complex settings.

21

Bibliography
[Bañ23] M. C. Bañuls. Tensor network algorithms: A route map. Annual Review of

Condensed Matter Physics, 14(Volume 14, 2023):173–191, 2023.
[BnHVC09] M. C. Bañuls, M. B. Hastings, F. Verstraete, and J. I. Cirac. Matrix product

states for dynamical simulation of infinite chains. Phys. Rev. Lett., 102:240603,
Jun 2009.

[CC05] P. Calabrese and J. Cardy. Evolution of entanglement entropy in one-
dimensional systems. Journal of Statistical Mechanics: Theory and Experi-
ment, 2005(04):P04010, apr 2005.

[CM23] G. Catarina and B. Murta. Density-matrix renormalization group: a peda-
gogical introduction. The European Physical Journal B, 96(8), August 2023.

[CPGSV21] J. Ignacio C., D. Pérez-García, N. Schuch, and F. Verstraete. Matrix product
states and projected entangled pair states: Concepts, symmetries, theorems.
Rev. Mod. Phys., 93:045003, Dec 2021.

[ECP10] J. Eisert, M. Cramer, and M. B. Plenio. Colloquium: Area laws for the
entanglement entropy. Rev. Mod. Phys., 82:277–306, Feb 2010.

[EV11] G. Evenbly and G. Vidal. Tensor network states and geometry. Journal of
Statistical Physics, 145(4):891–918, June 2011.

[Far24] M. Farreras. Tn_factorization_algorithm. https://github.com/
Marc-Farreras/TN_Factorization_Algorithm, 2024. Accessed: 2024-08-
23.

[FPBn22] M. Frías-Pérez and M. C. Bañuls. Light cone tensor network and time evolu-
tion. Phys. Rev. B, 106:115117, Sep 2022.

[FPTBn24] M. Frías-Pérez, L. Tagliacozzo, and M. C. Bañuls. Converting long-range
entanglement into mixture: Tensor-network approach to local equilibration.
Phys. Rev. Lett., 132:100402, Mar 2024.

[FW05] A. E. Feiguin and S. R. White. Finite-temperature density matrix renormal-
ization using an enlarged hilbert space. Phys. Rev. B, 72:220401, Dec 2005.

[HLB+18] J. Hauschild, E. Leviatan, J. H. Bardarson, E. Altman, M. P. Zaletel, and
F. Pollmann. Finding purifications with minimal entanglement. Phys. Rev. B,
98:235163, Dec 2018.

[KB17] Diederik P. K. and J. Ba. Adam: A method for stochastic optimization, 2017.
[KL80] V. Klema and A. Laub. The singular value decomposition: Its computation

and some applications. IEEE Transactions on Automatic Control, 25(2):164–
176, 1980.

[KRB+18] T. Kraft, C. Ritz, N. Brunner, M. Huber, and O. Gühne. Characterizing
genuine multilevel entanglement. Physical Review Letters, 120(6), February
2018.

[LC08] A. M Läuchli and C.Kollath. Spreading of correlations and entanglement after
a quench in the one-dimensional bose–hubbard model. Journal of Statistical
Mechanics: Theory and Experiment, 2008(05):P05018, may 2008.

[Mit18] A. Mitra. Quantum quench dynamics. Annual Review of Condensed Matter
Physics, 9(Volume 9, 2018):245–259, 2018.

[OV08] R. Orús and G. Vidal. Infinite time-evolving block decimation algorithm
beyond unitary evolution. Phys. Rev. B, 78:155117, Oct 2008.

[PKS+19] S. Paeckel, T. Köhler, A. Swoboda, Salvatore R. M., U. Schollwöck, and
C. Hubig. Time-evolution methods for matrix-product states. Annals of
Physics, 411:167998, 2019.

22

https://github.com/Marc-Farreras/TN_Factorization_Algorithm
https://github.com/Marc-Farreras/TN_Factorization_Algorithm

[PSSV11] A. Polkovnikov, K. Sengupta, A. Silva, and M. Vengalattore. Colloquium:
Nonequilibrium dynamics of closed interacting quantum systems. Rev. Mod.
Phys., 83:863–883, Aug 2011.

[Sch11] U. Schollwöck. The density-matrix renormalization group in the age of matrix
product states. Annals of Physics, 326(1):96–192, 2011. January 2011 Special
Issue.

[SLRD13] J. Schachenmayer, B. P. Lanyon, C. F. Roos, and A. J. Daley. Entanglement
growth in quench dynamics with variable range interactions. Phys. Rev. X,
3:031015, Sep 2013.

[SPT19] J. Surace, M. Piani, and L. Tagliacozzo. Simulating the out-of-equilibrium
dynamics of local observables by trading entanglement for mixture. Phys.
Rev. B, 99:235115, Jun 2019.

[Suz85] M. Suzuki. Decomposition formulas of exponential operators and Lie expo-
nentials with some applications to quantum mechanics and statistical physics.
Journal of Mathematical Physics, 26(4):601–612, 04 1985.

[TCF+12] S. Trotzky, Y.-A. Chen, A. Flesch, I. P. McCulloch, U. Schollwöck, J. Eis-
ert, and I. Bloch. Probing the relaxation towards equilibrium in an isolated
strongly correlated one-dimensional bose gas. Nature Physics, 8(4):325–330,
2012.

[VGRC04] F. Verstraete, J. J. García-Ripoll, and J. I. Cirac. Matrix product density
operators: Simulation of finite-temperature and dissipative systems. Phys.
Rev. Lett., 93:207204, Nov 2004.

[VHV19] L. Vanderstraeten, J. Haegeman, and F. Verstraete. Tangent-space methods
for uniform matrix product states. SciPost Phys. Lect. Notes, page 7, 2019.

[Vid03] G. Vidal. Efficient classical simulation of slightly entangled quantum compu-
tations. Phys. Rev. Lett., 91:147902, Oct 2003.

[Vid07] G. Vidal. Classical simulation of infinite-size quantum lattice systems in one
spatial dimension. Phys. Rev. Lett., 98:070201, Feb 2007.

[WF04] S. R. White and A. E. Feiguin. Real-time evolution using the density matrix
renormalization group. Phys. Rev. Lett., 93:076401, Aug 2004.

[Whi92] S. R. White. Density matrix formulation for quantum renormalization groups.
Phys. Rev. Lett., 69:2863–2866, Nov 1992.

[Whi93] S. R. White. Density-matrix algorithms for quantum renormalization groups.
Phys. Rev. B, 48:10345–10356, Oct 1993.

[Wil13] M. M. Wilde. Quantum Information Theory. Cambridge University Press,
2013. See Property 9.1.6, p. 252.

[WZMR18] C. D. White, M. Zaletel, R. S. K. Mong, and G. Refael. Quantum dynamics
of thermalizing systems. Phys. Rev. B, 97:035127, Jan 2018.

[ZBLN97] C. Zhu, R. H. Byrd, P. Lu, and J. Nocedal. Algorithm 778: L-bfgs-b: For-
tran subroutines for large-scale bound-constrained optimization. ACM Trans.
Math. Softw., 23(4):550–560, dec 1997.

[ZV04] M. Zwolak and G. Vidal. Mixed-state dynamics in one-dimensional quantum
lattice systems: A time-dependent superoperator renormalization algorithm.
Phys. Rev. Lett., 93:207205, Nov 2004.

23

A Notation II
While the main text covers the foundational concepts, this appendix aims to deepen your
understanding of diagrammatic notation in tensor networks.

We begin by revisiting tensor contraction in more detail, along with some common
operations that frequently appear in tensor calculus, algebra, and quantum mechanics.

Tensor contraction is the cornerstone of almost all tensor network operations. It in-
volves multiplying the coefficients of tensors and summing over the contracted indices. For
example, consider two order-3 tensors, Ai,j,k and Bl,m,n. If we contract index j with m
and k with n, the result is a new order-2 tensor Fi,l, with coefficients given by:

Fi,l =
∑
α,β

Ai,α,βBl,α,β. (20)

As discussed in the main text, tensor contraction is visually represented by connect-
ing the legs of the tensors. With an understanding of tensor contraction, one can eas-
ily perform standard operations such as the scalar product, matrix-vector multiplication,
matrix-matrix multiplication, and matrix trace. Figure 21 illustrates the diagrammatic
representations of these operations.

Figure 21: Tensor network diagrammatic representation of (a) scalar product between two vectors, (b)
matrix-vector multiplication, (c) matrix-matrix multiplication, and (d) trace of a matrix.

Another fundamental operation in quantum mechanics is the tensor product. The
tensor product of two tensors is performed by taking the element-wise product of their
coefficients. Specifically, if we have a tensor A of order r and a tensor B of order m, the
tensor product A⊗B results in a tensor of order r +m, with coefficients given by

(A⊗B)i1,...,ir,j1,...,jm = Ai1,...,ir ·Bj1,...,jm , (21)

where the multiplication is the standard element-wise multiplication of the coefficients. In
diagrammatic notation, the tensor product is represented by placing the tensors side by
side, as shown in Fig.22(a).

Finally, we delve into how diagrammatic notation can make abstract concepts, which
may initially seem complex in tensor notation, more intuitive. A particularly relevant
example is the concept of isomorphisms in tensor networks.

An isomorphism is a mapping that preserves the structure and relationships between
elements across different mathematical spaces. In the context of tensors, isomorphisms
naturally arise. For example, the tensor spaces Cd1×···×dn and Cd̃1×···×d̃n are isomorphic
whenever their overall dimensions match, i.e.,

∏
i di =

∏
i d̃i. This implies that a tensor can

be reshaped or reorganized into different forms to suit the needs of a particular analysis,
while preserving the original information it encodes.

Consider a tensor T of order 6. If we want to reshape this tensor into a matrix by
grouping the first three indices together and the remaining three into another group, the

24

Figure 22: Diagrammatic representation of tensor network operations: (a) Tensor product of two tensors
A and B, and (b) Reshaping of a tensor T of order 6 into a tensor of order 2 by grouping the first
three legs into one larger leg and the remaining three into a second larger leg, indicating the increased
dimensionality of the new legs.

transformation can be defined as follows

Ti1,i2,i3,i4,i5,i6 ⇔ TI1,I2 , (22)

where the new indices I1 and I2 are defined by

I1 = i1 + (i2 − 1)d1 + (i3 − 1)d1d2,

I2 = i4 + (i5 − 1)d4 + (i6 − 1)d4d5, (23)

with dx representing the dimension associated with each index. The number of elements
in I1 and I2 is d1d2d3 and d4d5d6, respectively, as expected. This reshaping operation
is commonly implemented in computational libraries like NumPy. Diagrammatically, this
operation is represented by grouping legs to reduce the tensor’s order or by splitting legs to
increase it. Figure 22(b) provides a diagrammatic representation of the grouping operation
described by Eq.(22).

B Singular Value Decomposition and Schmidt Decomposition
The Singular Value Decomposition (SVD) is one of the most fundamental tools in linear
algebra, widely used across various fields, including computer science and quantum infor-
mation science, with significant applications in tensor networks. Given its importance and
use in this work, we will briefly review some key aspects.

The SVD of an arbitrary rectangular matrix M of dimensions n×m is a factorization
of the form:

M = USV †, (24)

where U is a left-isometry (an isometric matrix) of dimensions n × min(n,m) that
satisfies U †U = 1, S is a non-negative diagonal matrix of dimensions min(n,m)×min(n,m)
with non-negative entries, and V † is a right-isometry of dimensions min(n,m) × m that
satisfies V V † = 1. The non-zero diagonal entries of S are known as the singular values of
M , and their number is called the Schmidt rank.

In the context of tensor networks, one of the most important properties of SVD is that
it provides the optimal approximation of a matrix M of rank r by a lower rank matrix M̃
with rank r̃ < r in the Frobenius norm ||M ||2F =

∑
i,j |Mij |2 = Tr(M †M) [EY36]. This

optimal approximation is achieved by retaining only the r̃ largest singular values in the

25

SVD of M . The approximation error ϵ is given by the sum of the squares of the discarded
singular values

||M − M̃ ||F =

√√√√ r∑
i=r̃+1

si(M), (25)

where si(M) denotes the singular values of the matrix M .
Another key feature of SVD arises when it is applied to a bipartite quantum state

|ΨAB⟩ =
∑
ij Cij |i⟩A|j⟩B. The result is the Schmidt decomposition, which expresses the

state in the form

|ΨAB⟩ =
min(dA,dB)∑

k

sk|ak⟩A|bk⟩B, (26)

where dA and dB are the dimensions of the subsystems A and B, respectively. Here, sk
are the Schmidt coefficients (the singular values of the matrix C formed by the bipartite
state coefficients Cij), and {|ak⟩A} and {|bk⟩B} are the corresponding orthonormal Schmidt
basis vectors.

The Schmidt decomposition has several important properties. For instance, the Schmidt
coefficients can be used to compute the entanglement entropy of the reduced density ma-
trices ρA(B) = TrB(A)(|ΨAB⟩⟨ΨAB|), which quantifies the entanglement between the sub-
systems. Of particular relevance to us is the fact that, due to the orthonormality of the
Schmidt basis, the vector 2-norm of |ΨAB⟩ is identical to the Frobenius norm of the coeffi-
cient matrix C:

|||ΨAB⟩||2 =
∑
i,j

||Cij ||2 = ||C||2F . (27)

As a consequence, the best approximation |Ψ̃AB⟩ of the state |ΨAB⟩ in the 2-norm is
equivalent to the best low-rank approximation C̃ of the matrix C in the Frobenius norm.
Therefore, the optimal approximation |Ψ̃AB⟩ is obtained by retaining only the r̃ largest
Schmidt coefficients

|Ψ̃AB⟩ =
r̃∑
k

sk|ak⟩A|bk⟩B, (28)

where the Schmidt basis vectors {|ak⟩A} and {|bk⟩B} are the same as in the original state,
but now include only the r̃ largest Schmidt coefficients.

C Canonical forms
In this appendix, we aim to explain the most important representations of a Matrix Product
State (MPS) and the procedures for obtaining them.

As discussed in the main text, a quantum state is not represented by a unique MPS.
There exists a gauge freedom that allows us to insert an identity in the form XX−1 between
any two tensors A[i] and A[i+1] in the MPS. By reabsorbing X and X−1 into A[i] and A[i+1],
respectively, we obtain a new MPS that still represents the same quantum state. This
flexibility, while preserving the physical state, can be leveraged to transform the MPS into
specific forms known as canonical forms.

Canonical forms are particularly useful because they exhibit advantageous properties.
For instance, in these forms, the leading left or right (or sometimes both) vectors are
identities, which generally results in more stable and efficient numerical computations.
Moreover, these forms are closely related to the Schmidt decomposition, enabling optimal
truncation of the state when necessary.

26

Figure 23: Construction of a MPS from a generic quantum state |ψ⟩. The process involves an iterative
series of SVDs across different bipartitions of the state, starting from the complex coefficient vector
Cs1...sN

. The resulting tensors A[i]
L are in the left canonical form.

Although the concepts behind MPS and infinite MPS (iMPS) are similar, canonical
forms play a more critical role in the iMPS context. In MPS, these forms often emerge
naturally during the construction process, whereas in iMPS, achieving canonical forms
requires additional effort. For this reason, we will review the canonical forms separately
for MPS and iMPS, highlighting their significance and the methods to obtain them in each
case.

C.1 MPS
Here we will see how the canonical forms arise naturally when one constructs and MPS,
and how the canonical forms are deeply related to the normalization of our state.

For this reason, first we will review how to construct an MPS from a general quantum
state,

ψ =
∑

s1,...,sN

Cs1...sN |s1, ..., sN ⟩, (29)

we begin by reshaping the state vector, originally of dimension dN , into a matrix with
dimensions d× dN−1, where

Cs1,s2...sN = Cs1...sN . (30)

Next, we apply SVD to C, yielding

Cs1,s2...sN =
∑
a1

U [1]
s1,a1Λ[1]

a1,a1V
[1]†
a1,s2...sN

, (31)

where U [1] is the left-isometry, Λ[1] is the diagonal matrix of singular values, and V [1]† is
the right-isometry.

The first MPS tensor, A[1], is identified with U [1], and the subsequent matrix is defined
as

Ca1,s2...sN = Λ[1]
a1,a1V

[1]†
a1,s2...sN

. (32)

This process is repeated iteratively. At each step, we reshape Cai,si...sN into Caisi,si+1...sN

and perform SVD to obtain the next MPS tensors A[i], continuing until the original coeffi-
cients are decomposed as

Cs1...sN =
∑

a1,...,aN−1

A[1]
s1,a1A

[2]
s2,a1,a2 · · ·A[N−1]

sN−1,aN−2,aN−1A
[N]
sN ,aN−1

= A[1]
s1A

[2]
s2 · · ·A[N−1]

sN−1 A
[N]
sN
, (33)

where the final expression omits repeated indices to emphasize the matrix multiplication
among the tensors. Figure 23 provides a diagrammatic representation of this decomposition
process.

27

When the MPS is constructed following this procedure, the state is said to be in the
left-canonical form, which satisfies the following conditions∑

si

A[i]†
si
A[i]
si

= 1, (34)∑
si

A[i]
si

Ω[i]A[i]†
si

= Ω[i−1], (35)

where Ω[i] is the squared singular value matrix Λ[i]2 from the SVD of the wave function
coefficient Cai−1si,si+1...sN .

The tensors A[i] obtained through this process naturally fulfill these conditions. The
simplest to demonstrate is Eq.(34), which directly follows from the left-normalization prop-
erty inherited from the SVD. Specifically, each left-isometry U [i], corresponding to the MPS
tensors A[i], satisfies∑

si,ai−1

A[i]†
ai,ai−1,si

A
[i]
si,ai−1,a′

i
=

∑
si,ai−1

U †
ai,ai−1si

Usiai−1,a′
i

= δai,a′
i
. (36)

However, Eq.(35) is less straightforward to demonstrate. To understand this, consider
the intermediate coefficient C [i] and perform an SVD

C [i] = U [i]Λ[i]V [i]†. (37)

Multiplying C [i] by its conjugate transpose yields

C [i]C [i]† = U [i]Λ[i]V [i]†V [i]Λ[i]U [i]† = U [i]Ω[i]U [i]†, (38)

which corresponds to the right side of Eq.(35).
Additionally, C [i] can also be expressed as

C [i] = Λ[i−1]V [i−1]†, (39)

as derived from Eq. (32).
Combining Eq.(38) and Eq.(39) leads to the final relationship

Ω[i−1] = Λ[i−1]V [i−1]†V [i]Λ[i−1] = U [i]Ω[i]U [i]† =
∑
si

A[i]
si

Ω[i]A[i]†
si
. (40)

An MPS can also be constructed by performing the same procedure starting from the
right. In this case, each new tensor A[i] is associated with the isometry V [i]† from each
SVD. This procedure yields a right-normalized MPS in the so-called right-canonical form,
which now fulfills the properties∑

si

A[i]
si
A[i]†
si

= 1,
∑
si

A[i]†
si

Ω[i−1]A[i]
si

= Ω[i]. (41)

A mixed-canonical form is achieved by performing SVDs from the left up to site i, and
from the right for the remaining part of the state. The wavefunction coefficients are then
expressed as

Cs1,...,sN = A[1]
s1 · · ·A[i]

si
Λ[i]B[i+1]

si+1 · · ·B[N]
sN
, (42)

28

Figure 24: Matrix Product State (MPS) in Vidal form. The tensors Γ[i] are order-3 tensors that
include the physical indices, while Λ[i] are non-negative diagonal matrices containing the singular values
corresponding to the bipartition of the state at bond i. The figure also illustrates how, by selecting a
specific bond, the state transitions into the mixed-canonical form.

where A[k] are left-normalized, B[k] are right-normalized, and Λ[i] is a diagonal matrix
containing the singular values at bond (i, i+ 1). The mixed-canonical form is particularly
useful due to its direct connection to the Schmidt decomposition. If we describe the state
across the bond (i, i+1) and redefine the basis {|si⟩} into two new sets {|ai⟩A} and {|bi⟩B},
we have

|ai⟩A =
∑

s1,...,si

(A[1]
s1 · · ·A[i]

si
)ai |s1, ..., si⟩,

|bi⟩B =
∑

si+1,...,sN

(B[i+1]
si+1 · · ·B[N]

sN
)ai |si+1, ..., sN ⟩, (43)

where, due to the left-normalization of the A tensors and the right-normalization of the B
tensors, each new set of vectors forms an orthonormal basis.

If we write Λiai,ai
= λi, then the state can be expressed as

|Ψ⟩ =
∑
i

λi|ai⟩A|bi⟩B, (44)

which corresponds exactly to the Schmidt decomposition of the subsystems A ≡ {s1, ..., si}
and B ≡ {si+1, ..., sN}.

This form allows for efficient low-rank approximations by retaining only the largest
singular values, as detailed in Appendix B, and provides numerical stability while enabling
efficient computation.

For this reason, it is highly desirable to work with an MPS that can easily transition
to the mixed-canonical form at each bond. This representation, proposed by Vidal in
Ref.[Vid03], is referred to in this work as the Vidal form. It is expressed as

|Ψ⟩ =
∑

s1,...,sN

Γ[1]
s1 Λ[1]Γ[2]

s2 Λ[2] · · · Γ[N−1]
sN−1 Λ[N−1]Γ[N]

sN
|s1, ..., sN ⟩, (45)

where Γ[i] are order-3 tensors (except for the first and last, which are order-2), and Λ[i] are
diagonal matrices containing the singular values at each bond.

The Vidal form can be easily constructed in the same way as the left-canonical or right-
canonical form MPS. Starting with the wavefunction coefficient Cs1,...,sN , we perform SVD
from the left

Cs1,s2...sN =
∑
a1

A[1]s1
a1 Λa1,a1V

[1]†
a1,s2...sN

=
∑
a1

Γ[1]s1
a1 Ca1s2,s3...sN =

=
∑
a1

∑
a2

Γ[1]s1
a1 A[2]s1

a1,a2Λa2,a2V
[2]†
a2,s3...sN

=
∑
a1

∑
a2

Γ[1]s1
a1 Λ[1]

a1,a1Γ[2]s1
a1,a2Ca2s3,s4...sN , (46)

29

Figure 25: (a) Transfer operator E of an iMPS constructed from the tensor A, showing the leading left
eigenvector VL and the leading right eigenvector VR of the transfer operator. This also illustrates how
expectation values are computed in an iMPS. (b) In the left-canonical form, the leading left eigenvector
corresponds to the identity matrix, while the leading right eigenvector corresponds to the square of
the singular values Λ2. (c) In the right-canonical form, the leading left eigenvector corresponds to the
square of the singular values Λ2, and the leading right eigenvector corresponds to the identity matrix.

where, at each step, we multiply the newly computed left-normalized tensorAi by Λ[i−1](Λ[i−1])−1

on the left and absorb the inverse of the singular values into Ai. The first and last ten-
sors can be handled similarly by introducing a dummy index and defining Λ[0(N)] = 1 to
maintain consistency.

This process can be done symmetrically starting from the right, thereby obtaining the
Γ[i] tensors from the right-normalized tensors B[i]. This procedure establishes a direct
relationship between the Vidal form, the left-canonical form, and the right-canonical form

A[i]
si,ai−1,ai

= Λi−1
ai−1,ai−1Γ[i]

si,ai−1,ai
, B[i]

si,ai−1,ai
= Γ[i]

si,ai−1,ai
Λiai,ai

. (47)

As a result of these relationships, when we select a bond defined by the matrix Λ[i], all
the tensors to the left of this bond transform into left-normalized tensors A, and all the
tensors to the right become right-normalized tensors B, thus achieving the mixed-canonical
form at the chosen bond, see Fig. 24. In this context, we have used A and B to represent
left- and right-normalized tensors, respectively. However, in other sections, we typically
use the notations AL or AR to denote these tensors explicitly. The choice of notation
depends on the context; in this case, we opted for A and B to avoid excessive subscripts.

C.2 iMPS
In the case of an iMPS, obtaining canonical forms is more complex compared to finite
MPS due to the infinite nature of the state, which is composed of an unbounded number
of tensors. However, established procedures exist for achieving canonical forms in iMPS,
and these procedures are closely tied to a central concept in iMPS theory: the transfer
matrix. Therefore, before delving into the methods for obtaining canonical forms in iMPS,
we will first review the concept of the transfer matrix [VHV19] and explore its critical role
in defining canonical forms.

30

The transfer matrix, also known as the transfer operator, is defined as

E =
d∑
s=1

As ⊗ Ās, (48)

where Ā denotes the complex conjugate of the tensor A. The transfer operator is a matrix
with dimensions D2 ×D2, and it is represented diagrammatically in Fig.25 (a).

While the transfer matrix itself possesses significant properties, our primary interest
lies in its leading right and left eigenvectors, vr and vl. These leading eigenvectors are
typically Hermitian and non-degenerate [PGVWC07], capturing key properties of the state.
For instance, they are crucial for computing expectation values in the infinite system, as
expressed by

⟨Ôi⟩ = lim
N→∞

tr(EN−1EOi)
tr(EN) , (49)

where Ôi is a one-body operator applied to site i, and EOi is defined as

EOi =
d∑

si,s′
i=1

As
′
i ⊗ ĀsiÔsi,s′

i
. (50)

We can then perform a spectral decomposition of the transfer operator into left and
right eigenvectors ⟨Lp|, |Rp⟩

E =
∑
p

µp|Rp⟩⟨Lp|, (51)

where |µp| ≤ 1 because the state is normalized. The largest eigenvalue µmax = 1 corre-
sponds to the leading eigenvectors. In the limit N → ∞, only the terms associated with
the leading eigenvectors survive in Eq.(49), simplifying the expression to

⟨Ôi⟩ = ⟨vl|EOi |vr⟩
tr(⟨vl|vr⟩)

. (52)

This equation highlights the crucial role that leading vectors play in calculating expecta-
tion values in infinite systems, as illustrated in Fig. 25(a). To facilitate these computations,
it is beneficial to work in a gauge where these vectors are straightforward to calculate. This
necessity for computational simplicity directly relates to the concept of canonical forms.

If we now recall the properties of the canonical forms in the finite case and apply them
to iMPS, we find that the conditions that each canonical form fulfilled in the MPS context
now correspond to conditions that impose the form of the leading vector in iMPS.

The left-canonical form in iMPS fulfills the conditions∑
s,α

AsL;α,βĀ
s
L;α,γ = δβ,γ ⇔

∑
s

As†LA
s
L = 1,

∑
s,β

AsL;α,βΩβ,βĀ
s
L;γ,β = Ωαγδαγ ⇔

∑
s

AsLΩAs†L = Ω, (53)

where AL is a left-normalized tensor, Ω = Λ2, and Λ are the singular values.
This equation indicates that the iMPS has a left leading vector vl = 1 and a right

leading vector vr = Ω. These conditions are represented diagrammatically in Fig.25 (b).

31

Figure 26: Gauge transformation to convert an iMPS composed of A tensors into the left-canonical
form AL. The matrix L is derived from the decomposition of the leading left eigenvector vL in the
iMPS, expressed as vL = L†L. The figure also provides a graphical demonstration that the resulting
tensor AL is left-normalized.

Alternatively, the right-canonical form can be interpreted as an iMPS where the left
leading vector is vl = Ω and the right leading vector is vr = 1. These conditions are also
represented diagrammatically in Fig.25 (c).

Finally, the mixed-canonical form for an infinite MPS is defined by combining the
left and right canonical forms. Although neither of the leading vectors can be directly
associated with the identity, by focusing on the tensor AC , chosen as the orthogonality
center of the state, the contributions from the left and right subsystems effectively reduce
to identities. This simplification facilitates the efficient computation of expectation values.
Additionally, the orthogonality center AC can be transformed into a diagonal matrix Λ,
enabling the expression of the Schmidt decomposition across the chosen bond, similar to
the finite case.

Understanding the relationship between canonical forms and their leading vectors pro-
vides a method to transition to the desired canonical form. For instance, to transform a
general tensor A into the left-canonical form AL, we can perform a gauge transformation
that converts the left leading vector into the identity matrix. This process involves com-
puting the left leading vector vl of the system, which can be achieved numerically using
techniques like the power method [For15] or the Lanczos algorithm [Pai80]. Since the lead-
ing vectors are Hermitian, vl can be decomposed as vl = L†L. By inserting the identity
L−1L at each bond of the iMPS and reabsorbing the L and L−1 matrices into the tensor
A, we obtain

AL = LAL−1, (54)

where the resulting tensor AL is now left-normalized, see Fig.26. This process partially fixes
the gauge, ensuring that the left leading vector is the identity. However, residual gauge
freedom remains, allowing transformations of the form A′

L = UALU
†, which preserve the

left leading vector. This residual freedom can be utilized to diagonalize the right leading
vector into Ω, which will later be identified with the singular values.

A similar strategy can be applied to obtain the right-canonical form, where the goal
is to find a gauge transformation AR = R−1AR that normalizes the right leading vector,
with the residual gauge freedom used to diagonalize the left leading vector.

With both the left and right canonical forms defined, we can now achieve the mixed-
canonical form. As we have commented, we select a specific tensor Ai to serve as the
orthogonality center. The tensors to the left of this center are transformed into the left-
canonical form, while those to the right are transformed into the right-canonical form. The
resulting center tensor is then given by AC = LAR. It is important to note that the left
and right normalized tensors can be recovered from the center tensor using the following

32

relationships

AC = LAR = LAL−1LR = ALC,

AC = LAR = LRR−1AR = CAR, (55)

where the center tensor AC is expressed in terms of the left (right) normalized tensor AL(R)
and a matrix C = LR.

This matrix C acts as a crucial link between the left-normalized and right-normalized
systems. The relation CAR = ALC, when viewed through the lens of the transfer matrix
formalism, reveals that CC† and C†C correspond to the leading right and left vectors in
the left and right canonical forms, respectively.

By diagonalizing the matrix C using Singular Value Decomposition (SVD), we obtain
the isometries U and V † along with the singular values Λ. We can then use the residual
gauge freedom to transform the tensors on the left of C by U †ALU and similarly, trans-
form the tensors on the right by V ARV †. This process clarifies that, even within the iMPS
framework, the mixed-canonical form is intimately connected to the Schmidt decomposi-
tion. This makes the mixed-canonical form the optimal choice for the efficient truncation
of the iMPS. Furthermore, after applying these residual gauge transformations, the leading
vectors CC† and C†C in the left and right canonical forms are transformed into Ω = Λ2.

As explained in the context of finite systems, it is advantageous to have this canonical
form at every bond. In the infinite case, achieving this is more straightforward due to
translational invariance, where the entanglement spectrum remains consistent across all
bonds. Consequently, we only need to multiply by the identity ΛΛ−1 across all other
bonds to obtain the Vidal form

|Ψ⟩ =
∑
{s}

∏
r∈Z

Γsr Λsr |{s}⟩. (56)

D DMRG optimization
In this appendix, we will briefly explain one of the most standard techniques in TN tools:
the Density Matrix Renormalization Group (DMRG). Originally developed in the context
of many-body physics to obtain low-energy properties of 1-D quantum systems, the core of
the DMRG algorithm can be traced back to a variational optimization of a cost function
that depends quadratically on the tensors.

To clarify its origins, we first review the case where the cost function to optimize is the
expectation value ⟨Ψ|H|Ψ⟩, where H is a given Hamiltonian and |Ψ⟩ is a state in an MPS
form that we want to optimize in order to minimize the cost function. For simplicity, we
assume that H can be written as a matrix product operator (MPO), which is the operator
analog of an MPS, with a physical leg that now has two indices.

The goal is to minimize the cost function variationally while imposing the normalization
condition ⟨Ψ|Ψ⟩ = 1. This can be achieved using a Lagrange multiplier to enforce the
normalization constraint, yielding a new cost function f of the form

f(A, Ā) = ⟨Ψ|H|Ψ⟩ − λ⟨Ψ|Ψ⟩, (57)

where λ is the Lagrange multiplier, and A is the tensor forming the MPS, with Ā as its
complex conjugate.

To optimize this function, we iteratively update each tensor Ai within the MPS until
convergence to a fixed point. The tensor Ai is obtained by extremizing Eq.(57), specifically

33

Figure 27: The algebraic equation to find the optimal Ai written in mixed-canonical form. Here, Ai
L

represents the i-th tensor in left-canonical form, and Ai
R represents the i-th tensor in right-canonical form.

The left and right canonical forms are normalized, reducing the problem to an eigenvector equation.

by solving
∂f

∂Āi
= ∂f

∂Āi
(⟨Ψ|H|Ψ⟩ − λ⟨Ψ|Ψ⟩) = 0, (58)

where Ai and Āi are treated as independent variables. This approach is commonly used
in the optimization of complex functions, relying on the principles of complex calculus,
particularly the Wirtinger derivative[KQKR23].

Due to the linearity of tensor contractions, the derivative of the cost function with
respect to Āi results in the same function with a "hole" where Āi would be. In the mixed-
canonical form, where the orthogonality center is at Ai, the resulting equation directly
corresponds to an eigenvalue problem∑

a′

Ma,a′Aia′ = λAia, (59)

where the tensor Ai has been reshaped into a vector and the remaining tensor network into
the matrix M . This process is illustrated in Fig.27.

Thus, the solution to the minimization function can be found by identifying the eigen-
vector with the smallest eigenvalue, a task well-suited to powerful numerical methods such
as the Lanczos algorithm [Pai80]. Once the optimal Ai is found, it replaces the original
tensor, and the process moves on to the next tensor, repeating until convergence.

The DMRG method is not restricted to only ground state problems, in general, DMRG
can optimize cost functions quadratic in the coefficients of tensors (where "quadratic"
counts A and Ā as the same tensor). For example, in Eq. (14) of the main text, during
the factorization process, one could use DMRG to optimize the slow (or fast) tensor while
keeping all others fixed. In this particular case, DMRG is straightforward and returns the
same solution.

34

Figure 28: The algebraic equation to find the optimal tensor ψslow during factorization using the DMRG
method. On the right-hand side, the contraction between the tensors ϕfast corresponds to the norm of
the tensor, which is equal to 1.

Let’s examine this scenario in detail. The cost function to maximize is

max
|ψslow

LSR⟩
|⟨ψslowLSR| ⊗ ⟨ϕfastLfRf

|U †
L ⊗ 1S ⊗ V †

R |Ψ⟩ |2 =

= max
|ψslow

LSR⟩
tr

(
⟨ψslowLSR| ⊗ ⟨ϕfastLfRf

|φ⟩⟨φ|ψslowLSR⟩ ⊗ |ϕfastLfRf
⟩
)
, (60)

where |φ⟩ ≡ U †
L ⊗ 1S ⊗ V †

R |Ψ⟩.
In this equation, the state to optimize is |opt⟩ ≡ |ψslowLSR⟩ ⊗ |ϕfastLfRf

⟩, which represents a
physical state, thus requiring the normalization constraint ⟨opt|opt⟩ = 1 using a Lagrange
multiplier. When we extremize the cost function to find the optimal tensor ψslow, we obtain
a new eigenvalue problem, where the eigenvector corresponds to the optimal state |ψslowopt ⟩,
as depicted in Fig. 28. Note that in this case, the matrix to find the eigenvectors has the
form M = |Θ⟩⟨Θ|, which is equivalent to the density matrix of a pure state. Therefore,
we know that the maximum eigenvalue (and the only one different from 0) is given by the
eigenvector |Θ⟩, which corresponds to the optimal tensor ψslow obtained by solving Eq.
(14).

The optimization of the unitary tensors UL and VR cannot be directly performed using
the DMRG process, as the unitary constraint cannot be easily imposed with a Lagrange
multiplier. Instead, the unitarity condition is more naturally treated as a singular value
decomposition (SVD) problem rather than an eigenvalue problem. This is the typical
approach for optimization under unitarity or isometry constraints, as seen in Ref. [EV09],
which in our specific case aligns with the analytical solution provided in the main text.

In summary, DMRG is an incredibly powerful tool for solving optimization problems.
It is not only highly efficient from a numerical perspective, allowing the mapping of the
optimization problem to an eigenvalue problem for which highly optimized solvers exist,
but also from an analytical perspective. DMRG provides a robust method for variational
optimization using tensors and, in some cases, as demonstrated here, can offer insights that
lead to analytical solutions.

35

E Properties of the Truncation
During the simple truncation process, we identified the system’s slow and fast degrees of
freedom. Subsequently, the density operator of the entire system |Ψ⟩⟨Ψ| was replaced with
a mixed-state density operator. This involved substituting the fast mode density matrix
ρLfRf

with a product state of its reduced density matrices, ρLf
⊗ ρRf

, as depicted in Fig.8
of the main text.

As a result, although the global state differs from the original, the new mixed state
retains the same reduced density matrix for the subsystem LS. This can be verified by
tracing out the subsystem R in both states, which involves connecting the legs representing
the subsystem R. Specifically, in this context, connecting these legs is equivalent to

VRV
†
R = 1R = 1Rs ⊗ 1Rf

, (61)
where VR is the disentangling unitary from Eq.(12). The tensor product of identities
is represented by connecting the right legs of the slow tensors and the right legs of the
fast tensors. Figure 29 illustrates how this procedure yields identical reduced density
matrices for both the pure and mixed states. Analogous calculations for the subsystem
SR demonstrate that the reduced density matrix is also preserved.

Figure 29: Comparison of the reduced density matrices ρLS . The upper diagram shows the reduced
density matrix obtained from the pure state, while the lower diagram shows the reduced density matrix
obtained from the mixed state. Since |ψfast

Lf Rf
⟩ is a normalized physical state, the full contraction in the

lower diagram between the tensors ϕfast and ϕ̄fast is equal to 1. This operation can be understood as
computing tr(ρfast) = 1.

Additionally, it can be shown that the fixed points of the transfer matrix, specifically
the leading left and right vectors, remain unchanged. To demonstrate this, we leverage
the properties of the left and right canonical forms, see Appendix C, along with their
relationship to the Vidal form as described in Eq.(47).

Recall that before truncation, our initial state was described by a unit cell formed by
{C,Λ−1} tensors, where C describes the block of S in our infinite system, and Λ represents
the singular values. The relationship between the Vidal tensor Γ and the tensor C is
simply:

C = ΛΓΛ. (62)
Next, consider the left-canonical form description AL:

AL = ΛΓ = CΛ−1. (63)

36

Figure 30: Leading vector equations in the left-canonical form. (a) Left leading vector equation, where
AL is substituted with the tensors corresponding to the unit cell used in the algorithm (C and Λ),
showing the appearance of the system’s reduced density matrix ρL. (b) Right leading vector equation,
similarly showing the appearance of the reduced density matrix ρR.

Figure 31: Conservation of the reduced density matrix for two consecutive blocks. (a) The reduced
density matrix obtained from the pure state. (b) The reduced density matrix for the mixed state. (c)
The result for both after applying the contraction of the corresponding isometries UL and VR. In case
(b), we use the fact that tr(ρfast) = 1.

By definition, the left leading vector of the transfer matrix formed by AL is the identity
1L. This must also hold for the transfer matrix expressed in terms of CΛ−1. As shown in
Fig.30 (a), the reduced density matrix ρR appears in the calculation. Since the reduced
density matrix is unchanged during truncation, the same equation holds after truncation.

A similar approach applies to the right leading vector. In the left-canonical form, the
leading right vector corresponds to Ω = Λ2. Again, this must hold if we express AL in
terms of C. From Fig.30(b), we observe that the reduced left density matrix ρL appears in
the calculation, indicating that truncation does not affect the right leading vector either.

If the leading vectors are conserved in the left-canonical form, then the gauge trans-
formations required to transition into other canonical forms will act identically before and
after truncation, ensuring that the leading vectors are preserved.

Since the leading vectors remain unchanged, we can be confident that the expectation
values of operators with support up to 2l sites are also conserved. To demonstrate this,
note that, because we were already in the canonical form before truncation and remain
so afterward, our leading vectors are identities. By using the same approach employed to
show that the reduced density matrices are preserved, we can verify that the expectation
values for up to 2l sites are also conserved, as shown in Fig.31.

37

F Gradient descent
The gradient descent was performed using automatic differentiation libraries, specifically
the Python library JAX. The idea is that if we can access the gradient of our function, we
can move in the direction of the steepest descent to approach the minimum value of the
cost function. This movement follows the simplest approach

Ti+1 = Ti − α∇Tif(T), (64)

where T is the variable of our optimization, α is the learning rate, f(T) is the cost func-
tion that depends on T , and ∇Ti is the gradient of the cost function with respect to its
optimization variable.

Although this method has demonstrated usefulness, particularly in the context of deep
learning, it presents some challenges. The most significant issue is finding the appropriate
learning rate for the optimization. If the rate is too high, we risk moving away from our
minimum and diverging instead of converging. Conversely, if it is too low, the optimization
process will progress too slowly and may not advance towards the minimum. Another
potential problem is getting stuck in a local minimum rather than the global one.

To address these issues, various optimizers help adapt the learning rate based on the
gradient value and even use the second derivative to avoid local minima. Among these
methods, ADAM and L-BFGS-B [KB17, ZBLN97] are ones of the most well-known and
widely used. However, these methods are typically implemented for real tensors, and due
to time constraints, we have not been able to adapt them for complex numbers. Instead, we
experimented with different learning rates and observed which fit best over a few iterations,
specifically 150 iterations. We repeated this process until reaching a fixed total number
of iterations. Finally, we assessed the final value of the cost function. If it did not fall
below a predetermined threshold, we proceeded to the next time evolution step. If it did
fall below the threshold, we truncated and performed the time evolution with the new
truncated state.

G Time evolution mixed state
In this appendix, we will describe in detail the methods we have used to implement the
iTEBD in the factorization algorithm.

Both methods assume that we have applied a first-order Suzuki-Trotter expansion as
stated in the main text, where the initial Hamiltonian H is divided into two reduced
Hamiltonians, Ho and He, corresponding to the odd and even sectors, respectively. The
time evolution operator is then decomposed into small 2-body operators U1 and U2, each
applied to the even and odd bonds, respectively.

G.1 iMPDOv1

In this method, we treat our iMPDO as a purification MPS. The time evolution operator
becomes Uσn,σn+1 ⊗ 1σ′

n
⊗ 1σ′

n+1
, where σ represents the physical index and σ′ refers to the

purification sites. This translates to applying the U1 operator to the physical indices while
leaving the purification indices unchanged, as illustrated in Fig.32.

Before evolving our wave function, let’s expand our initial state in the local basis of our
unit cell centered at sites n and n + 1 using the tensors {Â, λAB, B̂}, where λAB ≡ Λ−1

AB.

38

Figure 32: Diagrammatic scheme illustrating the tensor network to evolve an infinite Matrix Product
Density Operator (iMPDO) one time step δt. The U1 and U2 operators are the local gates obtained
from the first-order Suzuki-Trotter expansion, dividing our Hamiltonian into the odd and even sectors.
The highlighted structure is repeated infinitely along the chains.

Our wave function |Ψ⟩ is then written as

|Ψ⟩ =
χ∑
α,γ

d∑
σ

dpur∑
σ′

Θσn,σ′
n,σn+1,σ′

n+1
[1]α,γ

∣∣∣ΦLn
α

〉 ∣∣σn, σ′
n

〉 ∣∣σn+1, σ
′
n+1

〉 ∣∣∣ΦRn+1
γ

〉
, (65)

where
∣∣∣ΦLn

α

〉
and

∣∣∣ΦRn+1
γ

〉
correspond to the Schmidt bases for the semi-infinite sublattices

to the left and right of sites n and n + 1, respectively. Due to ΛAB and λAB being
diagonal, we have chosen to indicate only the relevant indices for clarity. Additionally, in
the summation over σ and σ′, we have dropped the subscript as both run over the same
dimension.

The coefficient Θσn,σ′
n,σn+1,σ′

n+1
[1]α,γ is given by

Θσn,σ′
n,σn+1,σ′

n+1
[1]α,γ =

χ∑
β

Â
σn,σ′

n
α,β λβABB̂

σn+1,σ′
n+1

β,γ . (66)

The next step is to update our evolved wave function by applying the 2-body gate U1.
Mathematically, this update corresponds to

Θ̃σ̃n,σ′
n,σ̃n+1,σ′

n+1
[1]α,γ =

d∑
σn,σn+1

U σ̃n,σ̃n+1
σn,σn+1 Θσn,σ′

n,σn+1,σ′
n+1

[1]α,γ . (67)

Next, we need to recover the new tensors Ã, B̃, and λ̃AB while preserving the canonical
form. To do this, we reshape our tensor by combining the bond dimension, the purification
leg, and the physical leg to form a matrix Θ̃σ̃nσ′

nα
[1]σ̃n+1σ′

n+1γ
. At this point, we perform an SVD

and truncate the singular values to obtain the desired structure

Θ̃σ̃nσ′
nα

[1]σ̃n+1σ′
n+1γ

=
χmax∑
β

Γσ̃nσ′
nα

[A]β Λ̃βABΓβ[B]σ̃n+1σ′
n+1γ

, (68)

where ΓA and ΓB are isometries, and Λ̃AB are the Schmidt values of the evolved state.
Finally, we multiply the right of the singular values by 1 = Λ̃−1

ABΛ̃AB, reabsorb the
singular values into ΓA and ΓB, and reshape the indices to obtain

Θ̃σ̃n,σ′
n,σ̃n+1,σ′

n+1
[1]α,γ =

χmax∑
β

Ã
σ̃n,σ′

n
α,β λ̃βABB̃

σ̃n+1,σ′
n+1

β,γ , (69)

39

Figure 33: Diagrammatic scheme illustrating the TEBD procedure in our infinite matrix product density
operator (iMPDO).

Figure 34: Diagrammatic scheme illustrating the procedure to perform the first iTEBD step.

where Ã, B̃, and λ̃AB ≡ Λ̃−1
AB form the desired structure of our updated wave function.

To update the wave function and apply the second TEBD step with the operator U2,
we follow an equivalent procedure, interchanging the roles of Â, B̂, Λ−1

AB, and U1 with
the tensors B̃, Ã, Λ−1

BA, and U2, respectively. After this step, we obtain the new iMPDO
representing the updated state |Ψ(δt)⟩, corresponding to the evolved state at time δt. The
steps described above are summarized diagrammatically in Fig.33.

G.2 iMPDOv2

In this method, we take advantage of the reduced bond dimension achieved through the
factorization process. To do so, we first convert the tensor Bl into the new orthogonality
center B′

l, as discussed in the main text.
Next, the first block of operators, U1, is applied directly to the tensor B′

l. For consis-
tency in notation, we denote this tensor as Θ1 ≡ B′

l. After applying the 2-body gate U1,
the resulting tensor is expressed as

Θ̃σ̃n,σ̃n+1
[1]α,γ =

d∑
σn,σn+1

U σ̃n,σ̃n+1
σn,σn+1 Θσn,σn+1

[1]α,γ , (70)

We then reshape the updated tensor by combining the bond dimension and the physical
leg into a matrix Θ̃σ̃nα

[1]σ̃n+1γ
. In this matrix form, we perform an SVD and truncate, yielding

40

Figure 35: Diagrammatic scheme illustrating the procedure to perform the second iTEBD step.

Figure 36: Diagrammatic scheme illustrating the procedure to recover the initial unit cell with the
tensors ML,NR, and Bl from our iMPDO.

the new tensor

Θ̃σ̃nα
[1]σ̃n+1γ

=
χmax∑
β

Γσ̃nα
[A]βΛ̃βABΓβ[B]σ̃n+1γ

, (71)

Here, ΓA and ΓB are isometries, and Λ̃AB are the singular values.
To ensure that the new isometries become the updated orthogonality centers, we multi-

ply the updated singular values by Λ̃−1
ABΛ̃AB and reabsorb the singular values into ΓA and

ΓB. After reshaping the indices, the updated tensor is given by

Θ̃σ̃nσ̃n+1
[1]αγ =

χmax∑
β

Ãσ̃n
α,βλ̃

β
ABB̃

σ̃n+1
β,γ , (72)

where Ã and B̃ are tensors in the standard MPS form, each with one physical index, and
λ̃AB corresponds to the inverse of the singular values Λ̃AB.

It is crucial to note that throughout this process, the purification index is absent.
Consequently, during the SVD of the tensor Θ̃1, the new bond dimension obtained is
guaranteed to be upper-bounded by a smaller value compared to the previous method.
This entire process is depicted diagrammatically in Fig.34.

To perform the second iTEBD step, we apply the 2-body gate U2 to the tensors B̃ and
Ã of two consecutive unit cells. A challenge arises here: these tensors are separated by N ′

R,
Λ−1
BA, and M ′

L. To apply the 2-body gate and then truncate, we must contract all these
tensors, resulting in an updated tensor Θ̃2, which is equivalent to the one obtained in the
previous method. Therefore, the update process remains the same as previously described.
For completeness, this process is illustrated in Fig. 35.

After completing the second iTEBD step, we obtain the updated tensors B̃R and ÃL.
However, these tensors now form an iMPDO rather than the initial MPS structure com-
posed of the tensors ML, Bl, and NR. This issue also arises in the iMPDO method when

41

applying the slow and fast decomposition after a few iTEBD iterations. The solution
remains consistent: we perform an SVD on the tensors B̃R and ÃL to separate the purifica-
tion legs from the physical ones, then transfer the singular values to the tensors containing
the physical indices. Finally, we group the new physical tensors into one, forming the new
tensor Bl. The left isometries become the new ML and NR tensors. The entire process is
illustrated in Fig. 36.

Bibliography
[EV09] G. Evenbly and G. Vidal. Algorithms for entanglement renormalization. Physical

Review B, 79(14), April 2009.
[EY36] C. Eckart and G. Young. The approximation of one matrix by another of lower

rank. Psychometrika, 1(3):211–218, 1936.
[For15] W. Ford. Chapter 22 - Large Sparse Eigenvalue Problems. In William Ford, editor,

Numerical Linear Algebra with Applications, pages 533-549. Academic Press, Boston,
2015.

[KB17] D. P. Kingma and J. Ba. Adam: A Method for Stochastic Optimization. 2017.
[KQKR23] K. Koor, Y. Qiu, L. C. Kwek, and P. Rebentrost. A short tutorial on Wirtinger

Calculus with applications in quantum information. 2023.
[Pai80] C. C. Paige. Accuracy and effectiveness of the Lanczos algorithm for the symmetric

eigenproblem. Linear Algebra and its Applications, 34:235-258, 1980.
[PGVWC07] D. Perez-Garcia, F. Verstraete, M. M. Wolf, and J. I. Cirac, Matrix product

state representations, Quant. Inf. Comput., 7(5-6):401–430, 2007.
[VHV19] L. Vanderstraeten, J. Haegeman, and F. Verstraete, Tangent-space methods for

uniform matrix product states, SciPost Phys. Lect. Notes, 7, 2019.
[Vid03] G. Vidal, Efficient Classical Simulation of Slightly Entangled Quantum Computa-

tions, Phys. Rev. Lett., 91(14):147902, Oct 2003.
[ZBLN97] C. Zhu, R. H. Byrd, P. Lu, and J. Nocedal. Algorithm 778: L-BFGS-B: Fortran

subroutines for large-scale bound-constrained optimization. ACM Trans. Math. Softw.,
23(4):550–560, Dec. 1997.

42

	Introduction
	Formalism
	Basics of TN
	Matrix Product States
	Infinite MPS
	Time evolution in iMPS

	Algorithm
	Physical motivation
	Identifying long-distance entanglement
	Simple truncation algorithm
	Heuristic Truncation
	Time evolution

	Numerical results
	Factorization results
	Characterization of the algorithm: time evolution

	Conclusion
	Bibliography
	Notation II
	Singular Value Decomposition and Schmidt Decomposition
	Canonical forms
	MPS
	iMPS

	DMRG optimization
	Properties of the Truncation
	Gradient descent
	Time evolution mixed state
	iMPDOv1
	iMPDOv2

	Bibliography

