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Spontaneously symmetry-broken (SSB) phases are locally ordered states of
matter. Because of their specific ordering, their presence is usually witnessed
by means of local order parameters. In this Thesis, we investigate different
characterization schemes that allows one to detect spontaneously broken sym-
metries in cold atom experiments where single-site imaging of optical lattices
is not accessible. For that, we characterize several detection methods, includ-
ing time-of-flight measurements and noise correlation measurements. Using
tensor network methods, we first motivate our approach on a Bose-Hubbard
model, where the salient physics is be presented. Later on, we benchmark our
approach on an extended Fermi-Hubbard model, where the final protocol is
presented. Our numerical analysis shows that noise correlations can accurately
capture the presence of spontaneously broken symmetries, thus representing an
alternative and powerful strategy to characterize strongly interacting quantum
matter.
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1 Introduction
In condensed matter physics, correlations and fluctuations of quantum many-body systems
lead to exciting phenomena that do not have a classical counterpart [DDM+23]. Some
examples are high-temperature superconductors [BM86], quantum spin liquids [DS13], and
the fractional quantum Hall effect [Lau83].

To understand the microscopic origin of such phenomena, one common approach is
to propose a simplified Hamiltonian that replicates the interactions responsible for these
properties. One of this toy models, for example, is the Hubbard model for high Tc super-
conductors [GK63].

Hubbard models consist of quantum particles, either bosons or fermions, arranged in
a lattice, which are characterized by the competition between non-commuting terms. The
first is the tunneling, equivalent to the kinetic term in the Schrödinger equation, which
favors the delocalization of the particles. Subsequently, interactions are incorporated into
the system. For the simplest models local interactions are considered, while long-range
interactions can be introduced to find even more exotic phenomena. These additions result
in a many-body Hamiltonian that is difficult to solve numerically and requires different
strategies to tackle them.

In the early 80s, Feynman proposed to use quantum systems as computers with the
goal of understanding quantum systems themselves [Fey82]. In recent years, this idea has
been further developed, and early prototypes of digital quantum computers are becoming
available.

As this technological revolution occurs, platforms, such as ultracold atomic gases in op-
tical lattices have proven to offer experimental benchmarks for condensed matter models
[LSA+07] [GB17]. This is the idea behind analog simulation: mimicking the physics of

interest by a highly controllable quantum system, where precise measurement techniques
provide information about it. In general, this characterization is achieved by order param-
eters, i.e., expectation values of some operators. The problem with such platforms is that
not all observables are easily accessible.

In the case of atoms trapped in the effective optical lattice induced by a retrorreflected
beam, contact forces induce local interactions. Together with the tunneling to neighbor
sites, this provides an immediate realization of a hubbard model. In addition, recent
experimental progress in atomic gas microscopy has allowed a real space imaging of the
occupation of each lattices site, offering an easy detection of phases where atoms are highly
localized.

Nevertheless, the addition of nearest neighbor interactions is not straightforward. A
feasible solution is using dipolar atoms in subwavelength lattices [SDS+23]. Their dipolar
interaction is however weak and, in order to achieve nearest-neighbor interactions that
compete with the tunneling rate, one needs to use short lattice spacings (in the order
of 200 nm). The challenge is that atoms are now at subwavelength distances, and the
diffraction limit does not allow for spatial resolution using visible light. In such cases,
time-of-flight measurements can be carried out [GME+02], leaving atoms in free expansion
for a given time. In this way, the particles are more distant from each other at the imaging
stage, enabling a real space measurement. Interestingly, after this ballistic expansion, the
detected position of the atom is related to initial momentum it had in the lattice, which
allows one to access the atomic configuration in reciprocal space. Even if convenient for
states with a narrow momentum distribution, characterization of localized states become
less accessible.

Measuring the correlations between different momenta (noise correlation measurements)
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can provide further information about the system, but this is not always sufficient for its
complete understanding. Thus, protocols that exploit such measurements as much as
possible are needed to make quantum simulators practical when single-site imaging is
not accessible [ADL04]. In this work, we will propose different strategies to distinguish
among different quantum phases using these correlations of noise, as we will test them with
numerical simulations, predicting experimental outcomes and checking their usefulness.

To choose the appropriate numerical method, several points have to be considered.
Firstly, quantum phase transitions appear in the thermodynamic limit, so large-scale nu-
merical simulations are needed. This is the biggest handicap of exact diagonalization, as
the current computing power and memory are far from sufficient, due to the exponential
growth of the Hilbert space with the number of atoms involved in the calculation. In
some cases, these simulations can be carried out using quantum Monte Carlo methods,
but this is challenged in the case of fermionic and geometrically frustrated systems due
to the ’minus-sign problem’ [dS03]. Mean field theory can capture the behavior of the
thermodynamic limit, but it does not account for quantum correlations [ANB77].

A good candidate that circumvents the previous weaknesses is tensor networks: an
economical ansatz for many-body systems with local entanglement. Its limitations are
the amount and structure of entropy in the quantum many-body state, but not system
size or type of particle. Those, however, are not a problem for ground states of gapped
Hamiltonians with low dimensionality, making these methods highly suitable for studying
such systems [Sch11]. It should be noted, though, that many other problems in nature do
not meet these conditions, so their usefulness is highly limited. This is where quantum
simulators, once fully developed and practical, are expected to outperform.

Thus, the main goal of this project is to use such tensor network methods to test a new
procedure proposed for the detection of some phases in quantum simulators, improving
their versatility. For this purpose, in Section 2 we will start by analyzing bosonic mod-
els, developing a strong intuition about the momentum distribution of both, localized and
delocalized states. In Section 3, we will study fermionic models, understanding the limita-
tions of the experimental setups to detect some localized phases. Finally, we will discuss
an alternative detection scheme, which enables to detect such phases with the available
resources.

2 Bosonic models
Describing large-scale phenomena is a challenging task. In many-body physics, the Hilbert
space grows exponentially with the number of particles, making it impractical to solve
the Schrödinger equation. Then, to better understand macroscopic phenomena, simplified
microscopic models are proposed with the goal of capturing this large-scale behavior.

One of these examples are Hubbard models, where space is discretized as an effective
lattice, and interactions are defined by two types of terms. The first is the kinetic term,
captured by the tunneling term â†â between lattice positions. The second term involves
the interactions between particles, which can be either local (on-site interactions, i.e.,
interactions when particles occupy the same lattice sites) or non-local.

2.1 Local interactions
Historically, the approach to understanding macroscopic phenomena began with one of the
simplest models, where only tunneling and local interactions are considered. Although not
the most exotic system, it was sufficient to demonstrate that this methodology is practical.
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2.1.1 Bose-Hubbard model

The Bose-Hubbard (BH) model [GK63] aimed to explain superconductivity, where moving
electrons are modelled as bosons that propagate along discretized space. It takes the kinetic
and local interactions into account, described by the Hamiltonian:

H = −J
∑
i

â†
i âi+1 + 1

2U
∑
i

n̂i (n̂i − 1) ,

where J > 0 is the hopping constant, U > 0 is the interaction constant, âi, â
†
i are the

annihilation and creation operators acting on site i, and n̂i = â†
i âi is the site density. The

hopping constant J resembles the tunneling between two different sites, while U comes
from the collision forces between atoms in the same lattice site. For the analysis of the
system, the number of particles will be the same as the lattice sites.

The hopping term favors the tunneling of the particle, while the interaction term in-
creases the energy of the system when two particles are at the same lattice position.

Here, a competition between the two terms is observed: one favors delocalization,
while the other favors localization. Depending on the magnitudes of t and U , one term will
dominate over the other, resulting in two different ground states for each case. A phase
transition will then appear between them.

When J ≫ U , the hopping term dominates, and the particles will be delocalized with
long range phase coherence:

|ΨSF⟩U=0 ∝
(
M∑
i=1

â†
i

)N
|0⟩, (1)

which is called a superfluid (SF) phase.
For the case where U ≫ J , the interaction term dominates and the particles will be

localized:

|ΨMI⟩J=0 ∝
M∏
i=1

(
â†
i

)n
|0⟩, (2)

which is a Mott insulator phase, where the movement of bosons is frozen. Here, each atoms
will only occupy a specific site.

This model, thus, has two different phases. In the presented experimental setups,
those are easily detected based on time-of-flight measurements [GME+02]. After the free
expansion, the spatial densities are indeed the momentum densities of the original state
⟨n̂τ (x)⟩τ ≈ m/(hτ)

〈
n̂q(x)

〉
0

[GJL+24]. As usual, the creation (annihilation) operators in
momentum space are related to real space according to:

â†
k =

∑
xj

eik·xj âj ; âk =
∑
xj

e−ik·xj âj

The SF phase (1) is characterized by a null momentum k = 0, while the Mott insulator,
has a flat momentum distribution.

The implementation of such model in an atomic system was proposed by Cirac et al.
in 1998 [CLMZ98], and experimentally proven 4 years later by Greiner et al. [GME+02].
As expected from the theoretical derivations, the SF phase was detected by a narrow mo-
mentum distribution, and the MI by a high uncertainty in the momentum measurements.
From this successful realization, this approach has evolved and allowed to study the ther-
malization of quantum systems and transport properties.
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In the meanwhile, new numerical methods have been developed to the study of such
systems. Far from the limiting cases, the previous approximations no longer apply, and
alternative approach are needed for their analysis. In this context, tensor networks (TN)
arise, a method that exploits the entanglement structure of the state to efficiently represent
them.

2.2 Frustated geometry
From the successful implementation by Greiner, experimental developments have allowed
to add new interactions to the system, resulting into a richer phase diagram. Similar to the
competition between t and U , the additional terms require strong numerical methods. Even
if extended interactions increase the entanglement of the ground state, tensor networks are
still a good choice for their study.

2.2.1 Tensor Networks

Basics of Tensor Networks
One of the biggest issues with many-body quantum systems is the size of the Hilbert
space [Orú14]. For example, in a spin-1/2 system, the dimension of the space grows as
2N , where N is the number of particles. Thus, representing such a state would require
2N coefficients, which is not practical. As an example, writing the state of 300 spins,
would require 2300 ≈ 1080 coefficients, which is more than the number of particles in the
observable universe.

The reasons is that when two particles are put in the same system, the new full Hilbert
space is the tensor product between their respective spaces. This combined space is much
larger than the product of spaces, as the new state can be in any superposition of the new
elements of the space. Indeed, this motivates the definition of entanglement: a state is
entangled if it is not a product state. Mathematically, entanglement is often measured by
the von Neumann entropy. When a system is divided in two parts, this value is null if the
state is a product state, and a non zero when entangled.

Despite the enormous size of the Hilbert space, it has been observed that the ground-
state of local Hamiltonians actually live in a smaller region where entanglement entropy
scales with the area rather than the volume of the system. This is known as the area law
[Sre93].

However, the common representation of the state in the local basis does not give any
intuition about its entanglement. Using a formalism where the entropy of the state is
clearly presented would then be convenient, as the region with low entanglement could be
only described, saving resources.

Generally, this approach is practical for low-dimensional systems. As, for instance, in a
1D Hamiltonian, the ground state’s entropy remains constant, whereas in a 2D Hamiltonian,
it scales with the system’s length. Higher-dimensional systems, though, are less suitable
for this formalism.

In this work we will only focus on 1D Hamiltonians, which are well described with the
MPS representation [VC06]. Higher dimensional TN calculations are the focus of ongoing
research, and will not be the focus of this work.

MPS representation
In this section we present an intuitive description of the TN method used find an economical
representation of the ground-state of the Hamiltonian. A more mathematical derivation of
the method is presented in Appendix A.1
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(a) |Ψ⟩ = ΦL ΦRΛ
α α

|iL⟩ |iR⟩

(b) ⟨Ψ|Ψ⟩ =

ΦL ΦR

Φ̄L Φ̄R

Λ

Λ

α α

α α

Figure 1: (a) Diagrammatic representation of Schmidt decomposition. (b) Diagrammatic representation
of inner product

To exploit the low entanglement of these states, it is essential to understand the rela-
tionship between entanglement and the representation of a state. For a given partition in
a left and right regions, L/R, the measure of entanglement is given by the von Neumann
entropy:

S = − Tr
(
ρL/R log ρL/R

)
= −

∑
α

Λ2
α log Λ2

α

where ρL/R is the partial density matrix. In the last step the Schmidt decomposition has
been used:

|Ψ⟩ =
D∑
α=1

Λα
∣∣∣ΦL

α

〉
⊗
∣∣∣ΦR

α

〉
=

D∑
α=1

∑
iL,iR

ΛαΦiL
α ΦiR

α |iL⟩ ⊗ |iR⟩ → ΛαΦiL
α ΦiR

α . (3)

Here, the set of left |ΦL
α⟩ and right |ΦR

α ⟩ vectors form an orthonormal basis for each
section of the partition. In the last equality these vectors have been represented in the
computational basis, being ΦiL/R

α their coefficients. Λα is understood as a diagonal matrix,
so only one index is shown, the other being hidden.

Due to the normalization conditions, note that
∑
α Λ2

α = 1. This implies that high
entanglement is characterized by a very uniform distribution of values Λ1 ≈ Λ2 ≈ .... ≈ ΛN ,
while low entanglement is characterized by large differences Λ1 ≫ Λ2 ≫ ... ≫ ΛN . In the
specific case of 1D gapped Hamiltonians, this decay is usually exponential. This is key for
the efficient representation of states, as the state can be approximated by:∥∥∥∥∥|Ψ⟩ −

χ∑
α=1

Λα
∣∣∣ΦL

α

〉
⊗
∣∣∣ΦR

α

〉∥∥∥∥∥ < ϵ

where χ < D, so the smallest values of Λα have been removed.
The expansion in (3) is easily understood, but for more complex representations, the

introduction of Penrose notation [P+71] is essential. In this notation, circles and squares
represent tensors, and the legs represent indices. The connected legs indicate the contrac-
tion of indices, i.e., summation over repeated indices. The free legs, on the other hand,
represent elements in the vector or dual spaces.

As a practical introduction to Penrose notation, we refer to Figure 1 (a) and equation
(3). In the Schmidt decomposition of |ψ⟩, an additional index α is created. To recover
the original state, a summation over α needs to be performed. This is represented by the
connected lines between the Λ and ΦL/R tensors.

The free legs arising from ΦL/R represent elements of the vector space. For each possible
value of |iL/R⟩, the tensor ΦiL/R will return the corresponding coefficient. An inner product
would be illustrated by repeating the same tensor structure but with the free |iL/R⟩ legs
contracted with themselves, as in Figure 1 (b).

This dimensionality reduction can be extended to any partition of the system. For the
case of 1D Hamiltonians, partitions can be performed at any site of the chain. The diagram
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representation is given in Figure 2, while analytic expressions are provided in Appendix
A.1. Here, the αi represent the virtual bonds created in the decomposition, while i1, ..., iN
represent the physical degrees of freedom. In the case of a bosonic system, for example,
those can represent the occupation of the lattice site. As before, Λ[N ] are the Schmidt
coefficients for a given partition N − 1/N .

Λ[1] Γ[1] Λ[2] Γ[2] Λ[N ] Γ[N ] Λ[N+1]... ...
α1 α2 α2 α3 αN αN αN+1α1

i1 i2 iN

Figure 2: MPS representation of a state

This representation is dense, meaning that it can represent any state perfectly. However,
it requires more coefficients than the standard representation. It only becomes useful when
the values of Λ are truncated. In those cases, it saves a significant amount of memory.

Even if this representation is convenient, it is sometimes useful to gather the Λ and
Γ tensors into a larger tensor by contracting their indices, as shown in Figure 3. Due
to the construction of the MPS A.1, the new A[i] and B[i] tensors are isometries, so their
contractions with their conjugates yield identities. This actually recovers the normalization
condition, as the inner product of a state with itself is always one.

∣∣ΦL
α

〉 ∣∣ΦR
α

〉

Λ[n−2] Γ[n−2] Λ[n−1] Γ[n−1] Λ[n] Γ[n] Λ[n+1] Γ[n+1] Λ[n+2]

A[n−2] A[n−1] B[n] B[n+1]

... ...

in−2 in−1 in in+1

Figure 3: Canonical form of an MPS

MPO representation
In the MPS representation, only vectors in the vector space have been used. However,
linear operators are composed of a vector and a dual vector.

In Penrose notation, this is represented by additional legs coming out from the tensors.
In Figure 4, O[i] represents the local operator acting on particle i, with the indices going
upwards and downwards representing the vectors and dual vectors at each position, respec-
tively. When an operator admits this decomposition, it is called a matrix product operator
(MPO).

The expectation value of the operator would then be computed contracting the j1, ...jN
indices with i1, ..., iN . Together with the canonical representation of the MPS, local expec-
tation values are efficiently computed. As A[i] and B[i] are isometries, all tensor contracted
with their conjugates return identities (straight lines in Penrose notation). Thus, only
contractions where the operator is acting are computed, as in Figure 5.

Ground-state
So far, the problem of large Hilbert spaces has been partially solved, as ground-states
of the 1D Hamiltonian lie into a small region of the space, and thus, can be efficiently
represented. Nevertheless, the search for such states is still challenging due to frustration
effects between phases.
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O[1] O[2] ... O[N ]vL vR

j′1 j′2 j′N

j1 j2 jN

Figure 4: MPO representation of an operator.

=

... ...A[N−2] A[N−1] Λ[N ] B[N ] B[N+1]

... ...Ā[N−2] Ā[N−1] Λ[N ] B̄[N ] B̄[N+1]

O[N ]

Λ[N ]

Λ[N ]

B[N ]

O[N ]

B̄[N ]

Figure 5: Simplification of expectation value computation

To find them, more properties of these systems have to be exploited. One is that a
ground state with the same symmetries as the Hamiltonian can be found. Therefore, pro-
vided translational symmetry, if only two-body, nearest neighbour interactions contribute
to the Hamiltonian, the system’s energy is determined by the reduced density operator of
these two sites [VC06].

On the other hand, the variational principle, which states that for a ground state |ψ⟩:

⟨Ψ|H|Ψ⟩
⟨Ψ|Ψ⟩

≥ E0

is satisfied, suggests that the total energy can be decreased by minimizing the energy of
two neighbouring particles, taking the rest as fixed. Repeating this process with the rest
of the particles would lead to the ground state.

Putting these concepts together, White proposed the Density Matrix Renormalization
Group (DMRG) algorithm to find the lowest energy state [Whi92].

DMRG
The first assumption made for this algorithm is that the Hamiltonian can be expressed as
an MPO. The initial state will be represented by a random MPS (or a motivated choice for
faster convergence), which will be variationally optimized to reduce the energy contribution
from two neighboring sites. Repeating this process throughout the MPS will converge to
the ground state [HP18].

First of all, the MPS is expressed in mixed canonical form (Figure 3). The two neigh-
bouring sites to be optimized are contracted with the Schmidt values as shown in Figure
6 (a), resulting in the tensor in Figure 6 (b). At this point αn and αn+2 are the virtual
indices created in the Schmidt decomposition and are connected to other A or B tensors.
The jn and jn+1 are physical legs connected to the MPO, i.e. the Hamiltonian.

At this point, all the Hamiltonian except these four legs are contracted. For optimiza-
tion purposes, H [N ]

L , H [N+1]
R and the local operators O[N ], O[N+1] are left uncontracted as

shown in Figure 6 (c), but this is just by choice.
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(a) Λ[n] B[n] B[n+1]
αn αn+1

αn αn+2

jn jn+1

(b) Θαn αn+2

jn jn+1

(c) H
[N ]
L H

[N+1]
RO[n] O[n+1]

Θ
αn αn+2

jn jn+1

(d) A[n] Λ[n+1] B[n+1]
αn+1 αn+1

αn αn+2

jn jn+1

Figure 6: (a) Tensor gathering two lattice positions. (b) Tensor to optimize. (c) Effective Hamiltonian
and matrix multiplication. (d) SVD decomposition after minimization

Notice that vectorizing the state Θ and the MPO results in a usual matrix multiplication
with a vector (the state with four legs is contracted with the Hamiltonian, but another state
with four legs is created) with dimensionality χ2d2, where χ and d are the dimensions of αi
and ji respectively. This is much lower than the original Hamiltonian, so the optimization
can be effectively done.

The minimization of the energy is achieved by taking the vector Θ̃ with the lowest
eigenvalue. For the optimization, as the full diagonalization might be expensive for large
χmax, variational algorithms such as Lanczos [Lan50] might be useful.

Afterwards, the Singular Value Decomposition (SVD) is computed to recover the struc-
ture of the canonical MPS, Figure 6 (d). Now, the values of the Schmidt decomposition
are in Λ[N+1], already moved one position to the right to apply the next iteration. Fi-
nally, the smallest values are truncated to keep the maximum bond dimensions fixed to
χ, only keeping the indices associated to the largest eigenvalues. Analytical details of the
algorithm are provided in the Appendix A.4.

These steps are repeated with the next pair of tensors, until the ground state is reached.
Some criteria are needed to decide when the state is converged, usually based on small
variation of the energy is used.

Time evolution
DMRG gives access to the ground state of the Hamiltonian, but time-evolution of states
keeps unsolved, which can be crucial for some scenarios. According to quantum mechanics,
this is given by:

|ψ(t)⟩ = U(t)|ψ(0)⟩.

where U(t) = exp
(
−itĤ

)
. A naive approach would be to take the exponential of the

Hamiltonian’s matrix form, and then apply it to the state. However, this encounters the
same problem of the large Hilbert space, which suggest that an alternative method is
necessary. In the majority of cases, Time Evolution Block Decimation (TEBD) is used (a
detailed description is given in Appendix A.3), whose key contribution is the truncation of
the lowest Schmidt values after each interaction, keeping the MPS representation effective.
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(a) ... ...M [1] M [2] M [3] M [4]

↓

... ...M [1] M [2] M [1] M [2]

(b) M [1] M [2]

M
[1]

M
[2]

α

α

γ

γ

T

β

β

Figure 7: (a) Simplification of the MPS after applying the translational symmetry (b) Transfer matrix
diagram

Infinite case
Finite size simulations provide valuable insights into the behavior of specific systems. How-
ever, such simulations can be affected by finite size effects, potentially altering the system’s
properties. Quantum phase transitions, and particularly the non-analytical behavior of the
order parameters, are observed only in the thermodynamic limit. In this section, we intro-
duce the generalization of the MPS designed to handle infinite systems.

One approach to tackle this is by considering the symmetries of the Hamiltonian. Usu-
ally, for local interactions, the Hamiltonian has a translation symmetry. Thus, the ground
state will also have this translational symmetry. This means that A[n] = A[n+L] ∀n with
L being the translation length Figure 7 (a). This facilitates the calculations, as only one
unit cell needs to be effectively computed.

Computing expectation values of this state might look hard. For the finite case, or-
thonormality conditions of the Schmidt decomposition restores identities at the edges, so
only the local operator have to be applied (recall Figure 5). For the infinite case, though,
it is not possible to contract the edges of the MPS.

For this analysis, it is useful to define a new tensor called transfer-matrix (Figure 7 (b)),
which is the contraction of the unit cell with its conjugate. The spectral decomposition (in
Penrose notation) is shown in Figure 8.

Now, the orthonormality conditions of the Schmidt decomposition imply that the great-
est eigenvalue is one, while others η2, η3, ... are strictly smaller. This expansion is handy,
as powers of the transfer matrix are computed just taking powers of the eigenvalues.
At the same time, it gives a good intuition of the behaviour of correlation functions as
⟨ψ|OnOm|ψ⟩.

α

α

Λ[1]

Λ[1]

γ

γ

+(η2)
N

α

α

η2R

γ

γ

η2R +(η3)
N

α

α

η3R

γ

γ

η3R

Figure 8: Eigenvector expansion of the transfer matrix

When n ≪ m or n ≫ m, the reconstruction of the state is achieved introducing many
transfer matrices between the corresponding On, Om tensors. Knowing that the greatest
eigenvalue of the transfer matrix is one, its powers will tends to δαᾱδγγ̄ , with a small
correction proportional to (η2)N .

On the other hand, the correlation length, with captures the exponential decay of
correlations with respect to the length, is closely related to η2 A.5.

⟨Ψ|OnOm|Ψ⟩ = C exp
(
NL

ξ

)
⇒ ξ = − L

log |η2|
Which means that for distances greater than ξ, the operators ⟨ψ|OnOm|ψ⟩ can be (very
effectively) approximated by:
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⟨ψ|OnOm|ψ⟩ = ⟨ψ|On|ψ⟩⟨ψ|Om|ψ⟩ (4)
With the unit cell defined, the DMRG and TEBD algorithms can be generalized to

take the thermodynamic limit into account [Sch11][Vid07]. The main difference, is that
the edges have to be considered, such that when two unit cells are put next to each other,
the edges still represent the bond between two lattice sites (L,L+ 1) ≡ (L, 1).

2.2.2 Frustated Extended Bose-Hubbard

Once the appropriate numerical methods for the system are established, systems with more
interactions can be analyzed.

One choice of adding a nearest neighbor interaction to the Bose-Hubbard model is
proposed by the Frustated Extended bose Hubbard model (FEBH) [BCJ+23]. This system
represents a geometrically frustrated many-body system, where an extended tunneling
to a second-neighbor site is possible. This can occur, for example, in zig-zag atomic
configurations where there is some overlap between the wavefunctions that are two-sites
apart [GSV13]. It is characterized by the following Hamiltonian:

HFEBH = −
∑
j

[
J2
(
a†
jaj+2 + h.c.

)
+ J1(−1)j

(
a†
jaj+1 + h.c.

)]
+ U

2
∑
j

nj (nj − 1) .

As usual, J1 is the nearest neighbour tunneling, whose alternating sign is defined by a
gauge transformation, J2 is next-nearest neighbour tunneling, U is the on-site interaction
and V is the nearest neighbour interaction.

To better understand this system, first, consider the case where J2 ≪ J1. In this
case, the Bose-Hubbard model is almost recovered, with the only difference of the gauge
b̂j → expi(j2−j)π/2 b̂j in the creation and annihilation operators. Thus, a SF is recovered,
but with a non zero momentum. The SF is captured by the non-zero value of the long
range correlator defined as:

g1(|i− j|) =
〈
b†
ibj
〉

When J2 is switched on, the behavior is similar to the J1, but without the alternat-
ing sign. Thus, a SF is still present, but with a null momentum. This frustation will be
captured by a SF which phase is neither of both, called chiral SF. Such phases are charac-
terized by a complex phase between lattice points, captured by the local order parameter
(LOP) ⟨κi⟩ [GSV13] , with κj = i

2

(
b†
jbj+1 − h.c.

)
.

Nevertheless, the Hamiltonian does not break the symmetry, so the actual ground state
will be a superposition of both symmetry sectors. As a consequence, this chirality will only
be observe when the computing the correlator defined as:

κ2(|i− j|) = ⟨κiκj⟩ .

This creates a competition between the SF and chiral SF, such that a new phase, the
bond-order wave (BOW) appears between them. It is characterized by localized particles
which are in a superposition between two neighboring lattice site. The LOP capturing this
phase is:

∆B = 1
L

∑
j

⟨Bj +Bj+1⟩ ,

where Bj =
(
b†
jbj+1 + b†

j+1bj
)
. The three phases are shows in Figure 9 (a), (b) and (c).

As expected, for low J2 there is a superfluid phase, and for large J2 the chiral superfluid
arises. Due to the frustation effects, the BOW appears between both phases.
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Figure 9: Parameters for the detection of the (a) SF, (b) BOW and (c) CSF phases. (d) Momentum
distribution of the ground states for different values of J2 Parameters: U = 6J1, χmax = 200

Experimental detection
As mentioned, the efforts made to improve quantum simulators have grown. Those, how-
ever, present a big problem when adding new type of interactions. In some cases, they
imply putting particles very close to each other.

While using a microscope is the best way to detect positions, it is highly limited by the
diffraction limit. As the resolution becomes insufficient, the positions can not be resolved.
Thus, adding new interactions reduces the spatial resolution of particles.

The solution, first proposed in [GME+02], is to let the particles expand freely, such
that their relative distances become larger, allowing for a spatial resolution. The drawback
is that the momentum space is accessed rather than the usual position space.

For the Bose-Hubbard model, this is not a problem at all. For the SF phase, all the
particles are in a superposition of different lattice sites, which translate into a big peak in
the momentum space, meaning that a clear signal will be observed after the free expansion.
For the Mott Insulator, though, particles are highly localized. Moving into momentum
space, this translates into a flat distribution of momenta, without any clear peak.

The FEBH shows a slightly more challenging spectrum of phases: two superfluids and
a localized phase. As stated, the SFs show a peak in the momentum distribution, but the
BOW does not due to the localization of the atoms, as shown in Figure 9 (d). In this
particular system, the spectrum is enough to differentiate between the three phases. How-
ever, there might be some issues if more localized phases were present, as the momentum
distribution would not allow one to identify such phases. Thus, alternatives strategies are
needed to successfully detect them. To develop them, systems with more localized phases
are needed, which usually arise when the non-local interactions are considered.

3 Fermionic systems
Bosons have historically been a good starting point in condensed matter physics due to
their relatively simple behavior and well-understood phenomena. Nevertheless, fermions
also exhibit some of the exotic phases of bosonic systems, attracting significant attention.
For some particular systems, fermions even show richer phase diagrams.
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3.1 Non-local interactions
With the goal of developing the protocol to classify phases, a more complex system is pre-
sented. Indeed, interesting phenomena and phases arise when extended range interaction
are added [MW66].

3.1.1 Extended Fermi Hubbard

A good example of a system with several localized phases is the Extended Fermi Hubbard
(EFH) model. This model of spinful fermions is described by following Hamiltonian:

Ĥ = − J
∑
i,σ

(
ĉ†
iσ ĉi+1σ + H.c.

)
+ V

∑
i

n̂in̂i+1 + U
∑
i

n̂i↑n̂i↓ + Jz
∑
i

Ŝzi Ŝ
z
i+1

where ĉ(†)
i,σ is the annihilation (creation) operator of a fermion in position i and spin σ,

which can be ↑ or ↓, and Ŝzi = (n̂i↑ − n̂i↓) /2 =
(
ĉ†
i↑ĉi↑ − ĉ†

i↓ĉi↓
)
/2 is the spin operator.

Here, the fermionic behavior of the particles, as well as their spin, needs to be taken into
account. A pictorial representation of the terms is shown in Figure 10

Figure 10: Schematic of the three main terms of the Hamiltonian: U is the on-site interaction, V the
nearest neighbor interaction, J is the tunneling and Jz the spin interaction

As it happened with the bosonic systems, the first term corresponds to the hopping
of the particles through the lattice. The second term is the nearest neighbor interaction,
which gives an energy penalty if two neighboring sites are occupied at the same time. The
on-site interaction term, though, is slightly different from the previous case. Here, due
to the Pauli exclusion principle, only two particles of different spins are allowed at each
position. Finally, the spin interaction between particles is also included.

For the analysis of the phases, U = 4, Jz = 0.5 and J = 1 will be used. The same
number of fermions as the lattice positions N = L will be considered, half of them for each
spin component. The U and J are fixed such that the spatial localization of different spin
fermions is energetically favored.

The parameter of interest in this model is V , the nearest neighbor interaction. For
small values V , the dominant term is the interaction U between particles, so the uniform
distribution of atoms minimizes the energy. Additionally, the spin interaction will force the
anti-alignment of spins. This will create an antiferromagnetic (AF) phase, where symmetry
breaking lead to two possible ground-states: | ↑↓↑↓ ...⟩ and | ↓↑↓↑ ...⟩. This is captured by
the LOP:

Sz = 1
L

∑
i

(−1)i
〈
Ŝzi

〉
,

which gives a larger value if the spins of neighbouring sites are antialigned.
One can observe that this is an example of symmetry breaking, where the translational

invariance of the Hamiltonian has been spontaneously broken into two possible symmetry
sectors. Such phases are called spontanously symmetry broken (SSB) phases, and the
symmetry breaking, indeed, provides an easy path for their detection: checking if the
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Figure 11: Phases of the EFH model. (a) is the CDW, (b) is the AF and (c) is the BOW

ground state has broken a specific symmetry of the Hamiltonian, which is indeed, the
LOP.

For large V , though, the nearest neighbor interaction dominates over the on-site one,
and occupying neighboring sites is energetically more expensive. This will create a phase
called charge density wave (CDW), charactererized by the alternating density of fermions
in the lattice. The symmetry breaking is characterized by the occupation between the even
or odd positions of the lattice. This is captured by the LOP:

Sc = 1
L

∑
(−1)i ⟨n̂i↑ + n̂i↓⟩ /2,

which gives the largest value if the density has a periodicity of two.
As in the previous case, the competition of this two phases creates an additional phase

between them: the BOW. Here, in the same way as with the FEBH, particles will be in a
superposition of two neighboring lattice sites. Additionally, this bond occupation will vary
every two positions. The only difference from the FEBH, is the chosen gauge. Here, as J
is constant for all the positions, so the LOP is:

B = 2
L

∑
iσ

(−1)ibiσ

with biσ = b̂†
i b̂i+1 + h.c. The phase diagram can be observed in Figure 12, while the picto-

rial representations of the phases in Figure 11. The experimental detection of such phases,
though, is not properly achieved with the momentum distribution, as all of them would
give a gaussian distribution, due to the localization of the states. For a good detection of
the states, correlations between momenta should be accessed.

3.1.2 Noise Correlation Measurements

A usual definition of such correlators are called noise correlation measurements (NCM)
[ADL04] :

N(q) = 1 − ⟨nknk+q⟩
⟨nk⟩⟨nk+q⟩

where nk defines the density operator of states with momentum k. As these are measured
through a time-of-flight measurement, the spatial densities obtained after some ballistic
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Figure 12: LOP parameters of the three phases of the Extended Fermi Hubbard model. Parameters:
J = 1.0, U = 4.0, Jz = 0.5

expansion are indeed the momentum densities of the original state [GJL+24] ⟨n̂τ (x)⟩τ ≈
m/(hτ)

〈
n̂q(x)

〉
0
. Then, the noise correlator transforms into:

N(d) = 1 −
∫
dx⟨n̂(x+ d/2) · n̂(x− d/2)⟩τ∫
dx⟨n̂(x+ d/2)⟩τ ⟨n̂(x− d/2)⟩τ

.

This density correlations, expressed in terms of the ĉ(†)
i,σ annihilation (creation) operator of

a fermion in positioni and spin σ, result into an already simplified noise correlator:

N(d) = 1 −
∑
rsr′

〈
ĉ†
r,σ ĉs,σ ĉ

†
r′,σ′ ĉr′+r−s,σ′

〉
eiQ(d)[(r−s)]∑

rsr′

〈
ĉ†
r,σ ĉs,σ

〉〈
ĉ†
r′,σ′ ĉr′+r−s,σ′

〉
eiQ(d)[(r−s)]

, (5)

This would allow one to start the analysis of such phases, but the computational cost
is challenging. Even if it has been reduced from O(N4) expectation values to O(N3), the
cost grows too fast for large systems. As the main objective of this thesis is to make our
calculations with systems as large as possible, further improvements are needed.

Optimization
There are several properties that can be exploited to reduce the computational cost when
using TNs. The first is the translational symmetry of the iMPS, that, even in these SSB
phases, repeat every two sites. Therefore, for this system, the iMPS is reconstructed from
a single unit cell with length two, meaning that all expectation values translated by two
lattice sites are the same:〈

c†
r,σcs,σc

†
r′,σcs′,σ

〉
=
〈
c†
r+2i,σcs+2i,σc

†
r′+2i,σcs′+2i,σ

〉
∀i ∈ N.

Applying this property to the correlation function, the numerator becomes:∑
rsr′

〈
ĉ†
r,σ ĉs,σ ĉ

†
r′,σ′ ĉr′+r−s,σ′

〉
=
∑
r,s

[〈
c†

0,σcs,σc
†
r,σ′cr−s,σ′

〉
+
〈
c†

1,σcs,σc
†
r,σ′cr−s,σ′

〉]
Ntr, (6)

where r, s go from −N to N , with the condition that the expectation value lies within
the limits of the reconstructed state, e.g. , if the noise correlator for N = 8 is being
computed, the expectation value

〈
c†

0,σc3,σc
†
7,σ′c4,σ′

〉
is allowed, but

〈
c†

0,σc3,σc
†
−3,σ′c−6,σ′

〉
is

not. Ntr is the number of times that this expectation value is repeated within the chain.
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Regarding the number of expectation values, this already improves the initial compu-
tational cost from O(N3) to O(N2). Nevertheless, there is one additional problem to this
computations. When the expectation value for a larger system is computed, the number
of tensor contractions also grows, implying an additional cost that will rapidly becomes
inconvenient for large systems.

This problem can slightly be tackled considering the structure of the iMPS and the
shape of equation (6). If s is fixed, the changing value of r only affects the last two operators.
As the iMPS is divided into tensors, this allows to re-use computations performed in
previous cases.

Take, for example, the expectation value of
〈
c†

0,σc1,σc
†
3,σ′c2,σ′

〉
. Notice that the fol-

lowing expectation values
〈
c†

0,σc1,σc
†
3+r,σ′c2+r,σ′

〉
, with r even, are computed introducing

transfer matrices between the operators. Thus, saving in memory the partial contractions
of the operators with the transfer matrices, avoids repeating previously performed calcula-
tions.

Even if the implementation is not straightforward, as there are many details to take
into account (Appendix B), those are very useful when computing NCM for large system.
Figure 13 shows the computational time of the NCM for different number of particles N
with three methods.
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Figure 13: Computation time of the NCM vs. N for different methods. ST is using (5), T is the using
translation symmetry (6), and T+O with all the optimizations from Appendix B.

Experimental detection
This NCM give additional information about the states. The momentum distribution of
Figure 14 shows that atoms are highly localized, due to the gaussian-like distributions.
Nevertheless, it does not give any intuition of the state. The correlation measurements,
instead, show that momenta with a difference of d = π are correlated. This means that for
each spin occupation, or tunneling, there is an alternating occupation every two positions.
Assuming that the correlation are short range and the states are perfectly converged, the
noise correlations measurement can be simplified to [GJL+24]:

N(νℓ/2) =
∑
σ [
∑
r(−1)νrnrσ]2 + 0.5

∑
σ [
∑
r(−1)νrbrσ]2

(
∑
σr nrσ)2 − 0.5 (

∑
σr brσ)2

where nrσ denotes the occupation of particles in site r and brσ =
〈
ĉ†
rσ ĉr+1σ+ h.c.⟩. This

clearly shows that the three phases give a non-zero value of the NCM for d = π.
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This is an important fact because the Extended Fermi Hubbard has three SSB phases
which show this dimerization. Obviously, the dimerization is closely related to the broken
symmetry of the state. One possible way of detecting such phases would be decreasing or
increasing the energy of each symmetry sector. If the dimerization is affected due to this
change, it means that this broken symmetry this symmetry was already broken. If it is
unaffected, it is not.
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Figure 14: (a) Momentum distribution and (b) correlation function of the Extended Fermi Hubbard
model. The momentum distribution shows the localization of the particles, while the correlations show
the periodicity in the lattice.

This subtle idea can be exploited to identify the three phases, but more details are
needed for that.

3.1.3 Lattice modulation

As stated, the NCM for the Fermi-Hubbard model shows the dimerization of the three
phases, but the signal might actually correspond to any of them. The connection between
NCM and the broken symmetry of each phase, though, could help classifying them.

As explained in the theory part, these phases are SSB phases. Thus, there is a LOP
associated with each of them. Even if these observables are not accessible experimentally,
their corresponding operators can be added to the Hamiltonian.

The point comes from the fact that for each phase, there is one symmetry which is
broken (the one captured by the LOP), that is not broken by the other two phases. If
this symmetry is artificially broken in the Hamiltonian, the states will change according
to their phase. The objective is to understand how it will be affected if the evolution is
adiabatically carried out.

If the added term corresponds to the broken symmetry and it reduces the energy of the
present symmetry sector, the state will remain unchanged along this adiabatic evolution.
However, if the opposite symmetry sector is favoured, the state cannot reach adiabatically
the new ground state of the hamiltonian, as the gap closes along that path.This will
resulting into a state with a completely different value of the NCM, as the dimerization
will be lost.

If the phase does not correspond to the artificially broken symmetry, there is no pre-
ferred symmetry sector. This means that the final state will be the same for both paths
and their final NCM will be equal.

At this point, this gives enough information to know which phase the system is at.
After carrying out the time evolution for the different sectors of the LOP, if the NCM show
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a different value, the the phase will be the one corresponding to the LOP.
To illustrate this methodology, consider the case of the AF. The LOP is:

Sz = 1
L

∑
i

(−1)i
〈
Ŝzi

〉
= 1

2L
∑
i

(−1)i (n̂i↑ − n̂i↓) ,

This means that spins tend to be anti-aligned. The broken symmetry is the spin direction
in a fixed site, for example, the first spin being is up or down. This symmetry breaking
term can be added to the Hamiltonian as:

ĤAF(t) = −∆AF(t)
∑

i∈even
odd

(n̂i↑ − n̂i↓) ,

where ∆AF = −10(t/T )2, with T = 50, and t ∈ [0, 7.5] carries out the lattice modulation.
If the ground state corresponds to the one having the spin up in the first position and
down in the second, the addition of this term will respect the symmetry sector, and the
adiabatical evolution will keep the state unchanged.

If the added term was the opposite (down in position zero and up in one), the gap
would need to close before reaching the ground-state of the new hamiltonian, which cannot
be adiabatically followed. At this point, the state will mix with the rest of the spectrum,
directly affecting its dimerization. The NCM of both lattice modulations will consequently
show a different value after each of the two possible paths. One should note that, in an
experiment, the breaking of the symmetry occurs spontaneously, and one does not know
which of the sectors is present. Therefore, the presence of a SSB phase will manifest as a
bimodal distribution of NCMs.

Figure 15 shows that the LOP after the two possible modulations only end up with a
different value if the added term corresponds to the same LOP.
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Figure 15: Evolution of the LOP for the two possible symmetry sectors associated with each LOP, (a)
for the AF, (b) for the BOW and (c) for the CDW. As V = 0, the ground states is in the AF phase, and
only the time-evolution associated with the AF separates both LOP

For the CDW, the methodology is analogous. The LOP is:

Sc = 1
L

∑
(−1)i ⟨n̂i↑ + n̂i↓⟩ /2 = 1

2L
∑
iσ

(−1)i⟨n̂iσ⟩ = 1
2L

∑
σ

⟨n̂e,σ − n̂o,σ⟩.

This captures the non-uniform occupation of even and odd sites. Thus, the broken sym-
metry is between occupation of even and odd sites. The additional term to break the
symmetry of the Hamiltonian is:

ĤCDW = −∆CDW(t)
∑

σ,i∈odd
even

n̂i,σ,
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where ∆CDW(t) = (t/T )2, with T = 50 carries out the adiabaticall expansion.
For the BOW, the same strategy can be carried out. Starting form the LOP:

B = 1
L

∑
i

(−1)i
(
b̂ib̂

†
i+1 + b̂†

i+1b̂i
)
.

Finding the two different sectors, leads to the Hamiltonian term:

ĤBOW(t) = ∆BOW(t)
∑
σ

∑
i∈even

odd

[
ĉ†

2i,σ ĉ2i+1,σ + ĉ†
2i+1,σ ĉ2i,σ

]
,

with ∆BOW = 10(t/T )2, with T = 50 and t ∈ [0, 7.5].
As a proof of concept, the evolution of the LOP and NCM with respect to the time

has been plotted in Figure 16 for the three phases of the system. As expected, the lost
dimerization directrly affects the NCM, resulting into a signal when the lattice modulation
is compatible with the LOP.
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Figure 16: Evolution of the LOP (a),(b) and (c) and the NCM (d),(e) and (f) for the different sectors
associated with each symmetry of the LOP. (a) and (d) correspond to the AF, (b) and (e) to the BOW,
(c) and (f) to the CDW

Finally, the phase diagram can be computed. Numerical details in Appendix D. First,
the ground state of the Hamiltonian is found, and then, the evolution of the two possible
Hamiltonian for each phase is carried out. The different between the two paths is then
plotted in Figure 17 (a).

At this point, the advantage of NCM over the momentum distribution is clear, as its
signal is much more sensitive to the loss of the dimerization, as shown in Figure 18

Thermodynamic limit
Even if tensor networks and the optimization of the NCM allows one to reach N ≈ 100 in
a reasonable computation time, finite size effects are still observed in the phase diagram
represented in Figure 17 while the AF and the CDW give a null value in the regimes where

18



0 1 2 3 4 5
V/J

0.0

0.1

0.2

0.3

0.4

0.5
∆

N
(ℓ

/2
)

(a) ∆NCDW
∆NAF
∆NBOW

0 1 2 3 4 5
V/J

0.0

0.1

0.2

0.3

0.4

0.5

∆
N

(ℓ
/2

)

(b) ∆NCDW
∆NAF
∆NBOW

Figure 17: Difference in NCM after the two possible lattice modulation for phase. (a) is the finite case
with N = 100, while (b) is the thermodynamic limit
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Figure 18: (a) Spectrum of momenta and (b) correlations after the evolution of the two symmetry
sectors. The NCM at d = π capture the dimerization of the particles more effectively.

the phase is not present, the BOW gives a finite value in the whole AF regime, and part
of the CDW.

To solve this problem, some properties of these phases will be recovered. In SSB phases,
correlations always decay for large systems. This can be clearly observed with the transfer-
matrix formalism and equation (4). When two operators are far from each other, and there
is no phase transition present, the main expansion of the transfer-matrix powers will be
the identity, i.e. for large N , (η2)N will tend to zero.

From the simplified expression of (6), it can be observed that for large N , the main
contribution will correspond to j ≈ 0 of j ≈ k. Additionally, in most of the cases, j ≫ k
or j ≪ k, so the repeated projection onto the project matrix will simplify the terms to:{

⟨ĉ†
0,σ ĉj,σ ĉ

†
k,σ′ ĉk−j,σ′⟩ ≈ ⟨ĉ†

0,σ ĉjσ⟩⟨ĉ†
k,σ′ ĉk−j,σ′⟩ if j ≈ 0

⟨ĉ†
0,σ ĉk−j,σ′ ĉ†

k,σ′ ĉj,σ⟩ ≈ −⟨ĉ†
0,σ ĉk−j,σ′⟩⟨ĉ†

k,σ′ ĉjσ⟩ if j ≈ k, j ̸= k

Due to the translational symmetry of the iMPS, ⟨ĉ†
0,σ ĉk−j,σ′ ĉ†

k,σ′ ĉj,σ⟩ will be the same for
k → k + 2, resulting into the addition of the same term to the noise correlator. This gives
the intuition that in the thermodynamic limit, the noise correlator converges to a given
value, in particular, the one given by the contribution of distant couples of creation and
annihilation operators.

Another cause of finite size effect are the boundaries. In (6), the repetitions of the same

19



0 200 400
Nparticles

0.34

0.36

0.38

0.40

0.42
N

(π
)

(a) Exact
Limit

0 500
Nparticles

0.15

0.20

0.25

N
(π

)

(b) Exact
Limit

0 100 200
Nparticles

0.495

0.496

0.497

0.498

0.499

0.500

N
(π

)

(c) Exact
Limit

Figure 19: Exact values of the NCM compared with the proposed limit. (a) is for the AF (V = 0), (b)
for the BOW (V = 2.16) and (c) for the CDW (V = 5.0)

observable within the chain length are considered. In the thermodynamic limit, though,
one would expect all possible expectations values to be repeated the same amount of times.

Putting this concepts into practice, one can deduce that noise correlator in the ther-
modynamic limit will look like the one in (6), with the Ntranslation the same for all cases,
and using the sinplifications states above for the specific cases. The complete expression
is given in Appendix C.

For the three phases, Figure 19 shows that the NCM approaches the limit for large N .
This is important, because for the AF and the BOW, the exact value only approaches the
proposed limit for large N , meaning that finite size effects are present even in very large
systems. Using this limit, finite size effects from Figure in 17 (a) are corrected in 17 (b).

4 Conclusions
This project has proposed a new method to detect SSB phases in ultracold optical lattices,
accompanied by a scaling analysis of the methodology. This approach involves understand-
ing optical lattices and several detection techniques. To develop them, two systems have
been presented and analyzed, with the goal of motivating the introduction of new concepts
such as tensor networks and noise correlations measurements.

After establishing the theoretical foundation, the final methodology has been presented,
highlighting the challenge of NCM calculations for large systems. To tackle it, new opti-
mization methods have been presented and implemented. This optimization has enabled
the study of systems with up to 100 particles, compared to the approximate 12 particles
achievable with exact diagonalization.

Using the insights gained from this optimization, the NCM limit in the thermodynamic
limit has been proposed and compared to large systemshowing good agreement. The
resulting phase diagram suggests this strategy effectively identifies SSB phases even in the
large system limit where current experiments operate.

The next step would be to proof that this can actually be implemented in an experi-
mental setup. Once achieved, it would open a wide variety of possibilities, as the proposed
approach is general to any phase where traslational invariance is broken. For example, the
SSB phases of the 2D EFH system could be studied, as the experimental implemention
should be straightforward from the 1D case, and the proposed alternative is completely
applicable. This would indeed give access to information that cannot be reached within the
actual numerical methods, which serves as a motivation for the experimental investigation
of this advance in the field.
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A Tensor Networks
A.1 MPS
To exploit the low entropy of this states, we need to make a partition of of the system in
two parts. This is achieved by the Schmidt decomposition of a state:

|Ψ⟩ =
D∑
α=1

λα
∣∣∣ΦL

α

〉
⊗
∣∣∣ΦR

α

〉
.

Where the set of left |ΦL
α⟩ and right |ΦR

α ⟩ vector form an orthonormal basis of each of the
parts of the partition. The reduced density matrix related to each partition is then:

ρR/L = TrL/R (|Ψ⟩ ⟨Ψ|)

Where TrL/R is the partitial trace over the left/right subspace. If the entanglement is
measured by the von Neumann entropy, it can be measured using the Schmidt coefficients:

S = − Tr
(
ρR log ρR

)
= −

∑
α

λ2
α log λ2

α

This sets a clear relation between the Schmidt decomposition for a given partition and
its entropy. However, to use the full potential of the area law, it is useful to represent
all the possible partitions at the same time. To achieve this, note that any state can be
represented in the computational basis by:

|Ψ⟩ =
∑

i1i2...iN

Ci1i2...iN |i1⟩ ⊗ |i2⟩ ⊗ · · · ⊗ |iN ⟩

Where the i1...iN indices represent the physical index of the Hilbert space. Based on the
Schmidt decomposition for each possible partition, and expressing the left and right vectors
in the computational basis, it is recover [Orú14]:

Ci1i2...iN = Λ[1]
α1Γ[1]i1

α1α2Λ[2]
α2Γ[2]i2

α2α3Λ[3]
α3Γ[3]i3

α3α4 · · · Λ[N ]
αN

Γ[N ]iN
αNαN+1Λ[N+1]

αN+1 , (7)

In this representeation, i1...iN keeps being the physical index, but now there are some
virtual bonds α1...αN . Due to the mess of indices, Penrose notation is used [P+71]. This
representation corresponds to the networks in Figure 2

Note that some additional bonds have been created, which precisely correspond to
the entanglement between the constituent parts. One property of such decomposition
is that this representation is dense, meaning that any state can be represented by such
decomposition. At a first glance, this might not effective, as the new bonds require a
higher amount of parameters.

However, as the ground state of 1D Hamiltonian follow the area law, the entropy has
to be obey the area law, so the values of Λα have to decay exponentially . Thus, a cutoff
of such value, will still represent the partition and the state properly. Indeed, for all ϵ > 0,
a maximum bond dimension χ can be chosen satisfying:∥∥∥∥∥∥∥∥∥∥∥

|Ψ⟩ −
χ∑
α=1

Λα
∣∣∣ΦL

α

〉
⊗
∣∣∣ΦR

α

〉
︸ ︷︷ ︸

|ψtrunc ⟩

∥∥∥∥∥∥∥∥∥∥∥
< ϵ
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Additionally, this representation is highly convenient, as the Schmidth coefficients are
accesible, while it is expressed in the simple computational base. This makes the com-
putation of local operators extremely efficient 5. Note that local operators only send a
given |ik⟩ to another element |ik⟩ from the same space. The rest of the indices are not
touch, and due to the orthonormalized condition imposed in the construction, identities
are automatically recovered.

A.2 MPO
An operator will be represented by the so called matrix product operator (MPO).

O =
∑

j1,...,jN
j′

1,...,j
′
N

vLO[1]j1j′
1O[2]j2j′

2 . . . O[N ]jN j′
N vR |j1, . . . , jN ⟩

〈
j′

1, . . . , j
′
N

∣∣
Where O[n]jnj′

n are d×d matrices and |jn⟩ represent the local basis of the positions n. The
tensor representation is given by Figure 4

A.3 TEBD
As mentioned in the main text, the DMRG is used for local 1D Hamiltonian, which have
a gap in the energy spectrum. The fact of only having local interaction, can also be used
for the time evolution. The biggest problem to break U(t) into smaller pieces is that the
local terms of the Hamiltonian do not neccesarily commute. See for example

H = σz1 ⊗ σz2 + σz2 ⊗ σz3

where the two terms do not commute.
The better known algorithm that handles this problem is the Time Evolution Block

Decimation, which makes used of the Suzuki-Trotter decomposition [Suz91] to break oper-
ator U(t) into smaller pieces. It gives the decomposition:

e(X+Y )δ = eXδeY δ + O
(
δ2
)

e(X+Y )δ = eXδ/2eY δeXδ/2 + O
(
δ3
)

Indeed, if the interaction terms are only of nearest neighbours, the full Hamiltonian can
be broken into two an even and odd Hamiltonians, which do not commute between them,
but whose terms commute:

H =
∑
n odd

h[n,n+1]

︸ ︷︷ ︸
Hodd

+
∑

n even
h[n,n+1]

︸ ︷︷ ︸
Heven

.

In this way, using the decomposition, each of Heven/odd can be written as a product of
exponent operators as:

eHeven/oddδ =
∏

n even/odd

eh
[n,n+1]δ

Which gives the general decomposition of:

U(δt) ≈
[ ∏
n odd

U [n,n+1](δt)
] [ ∏

n even
U [n,n+1](δt)

]
,
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A.4 DMRG
In the DMRG algorithm, only two neighboring sites will be optimized. The state is given
by:

|ψ⟩ =
∑

αn,jn,jn+1,αn+2

Θjnjn+1
αnαn+2 |αn⟩L |jn⟩ |jn+1⟩ |αn+2⟩R .

Where |ψ⟩L and |ψ⟩R are the left and right environments, and the tensor Θ has rank 4 and
represents the two neighbouring sites. The upper indices represent the physical legs and
the two lower ones the bonds 6:

Θjnjn+1
αnαn+2 =

∑
αn+1

Λ[n]
αnαn

B[n],jn
αnαn+1B

[n+1],jn+1
αn+1αn+2 .

Now, using the MPO representation of the Hamiltonian, it can be projected into this
space contracting the legs that are not in this subspace, i.e. all expect jn, jn+1, αn, αn+2.
This will enable to minimize the energy of this effective Hamiltonian:

E =
〈
ψ̃
∣∣∣Heff

∣∣∣ ψ̃〉 ,
which has dimensions χ2

maxd
2d2χ2

max, much smaller than the original one. This process
is sketched in Figure 6. For the minimization, a vectorization is first carried out, such
that the state becomes a vector and the Hamiltonian a matrix. For the optimization, as
the diagonalization might be expensive for large χmax, any variational algorithms such
as Lanczos might be useful. After the minimization, the new bond dimension will have
grown to χd. At this point, the renormalization is carried out. First, a SVD is applied,
which will decompose the matrix into Ã[n]

αnαn+1Λ̃[n+1]
αn+1αn+1 , B̃

[n+1]
αn+1αn+2 . Then, the amount of

singular values of Λ̃[n+1]
αn+1αn+1 will be truncated, such that the maximum bond dimension is

respected.

A.5 Transfer matrix
The explicit representation of an infinite MPS would be:

|ψ⟩ =
∑

...jn−1,jn,jn+1,...

· · ·M [n−1]jn−1M [n]jnM [n+1]jn+1 · · · |. . . , jn−1, jn, jn+1, . . .⟩

for the symmetry,M [n] → M [n+L] can be demanded, where theM [n]M [n+1] . . .M [n+L−1]M [n+L]

tensors are repeated after L positions, L being the unit cell length.
The contraction for the transfer-matrix is:

Tαᾱ,γγ̄ =
∑

j1,j2,β,β̄

M
[1]j1
αβ M

[1]j1
ᾱβ̄

M
[2]j2
βγ M

[2]j2
β̄γ̄

Where, M̄ denotes the complex conjugate. The diagram can be observe in Figure 7
The transfer matrix is the contraction of the states with its conjugate.

This matrix can obviously be written in the canonical form. For that case, the or-
thonormality condition of the Schmidth vectors translate into eigenvector equations.

When normalizing a vector, the norm is one. As in this case there is a matrix, the
matrix must map the identity vector into another identity vector. mathematically:∑

γγ̄

Tαᾱ,γγ̄δγγ̄ = δαᾱ

∑
αᾱ

(
Λ[1]
α

)2
δαᾱTαᾱ,γγ̄ = δγγ̄
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This implies that the largest eigenvalue is normalized to one, so the rest of the eigenvalues
must be smaller than one. Thus, the repeated multiplication of this matrix projects any
state into the dominant left and right eigenvectors, i.e. the one corresponding to the
eigenvalue one.

Taking the espectral decomposition of the transfer matrix:

Tαᾱ,γγ̄ =δαᾱδγ̄γ̄ + (η2) ηR2,αᾱηL2,γγ̄ + (η3) ηR3,αᾱηL3,γγ̄ + . . .

where η2, η3, ... represent the eigenvalues and ηR2,αᾱ, η
R
3,αᾱ, ... the right and ηL2,αᾱ, η

L
3,αᾱ, ...

left eigenvectors (Figure 8).
Due to the orthogonalization of the elements, taking the powers of this matrix is

straightforward:

TNαᾱ,γγ̄ =δαᾱδγ̄γ̄ + (η2)N ηR2,αᾱηL2,γγ̄ + (η3)N ηR3,αᾱηL3,γγ̄ + . . .

The expectation value can then be approximated using just:

⟨ψ |OnOm|ψ⟩ = ⟨ψ |On|ψ⟩ ⟨ψ |Om|ψ⟩ + (η2)N
(
OLnη

R
2

) (
ηL2 O

R
n

)
+ · · · .

where N is the number of unit cells between n and m. OLn represent the contraction of the
M with the On operators. As the terms between the parenthesis is just a number, and the
only dependence of the length is (η2)N , we can extract the correlation length as:

⟨Ψ|OnOm|Ψ⟩ = C exp
(
NL

ξ

)
⇒ ξ = − L

log |η2|

iDMRG
The general approach to compute states in the thermodynamic limit is to observe how it
changes with the size of the system.

In the infinite DMRG [Sch11], the starting point is the unit cell of the iMPS. As with
the finite case, the first step is the optimization of two neighboring sites with respect to the
local effective Hamiltonian. The subtle change is that the edges also have to be optimized,
such that when the unit cells are put next to each other, the edges still represent the bond
between two lattice sites (L,L+ 1) ≡ (L, 1)

Once a complete sweep is carried out, an extra unit cell is added to each of sides, which
will form part of the environment. As before, a new sweep over the unit cell is carried out,
but now the system will be larger and the environments will have the effect of previous
optimizations. With each sweep, the environment takes more neighbours into account, so
the unit cell starts approaching the thermodynamic limit.

The last important fact about the iDMRG, which is crutial for studying the SSB phases,
is that the ground state usually breaks the symmetry of the corresponding phase. This
is caused by the broken symmetry of the initial environments added to the edges. With
other numerical methods, if the Hamiltonian has a symmetry, this will still be present in
the ground state. For those, a pinning Hamiltonian is used for breaking this symmetry
[JGP+22]. This can, however, slightly change the state, affecting the results.

iTEBD
For infinite lattices, translational invariance can be exploited to efficiently implement one-
dimensional time-evolution simulations [Vid07]. The only requirement is that the Hamil-
tonian is translationally invariant by L sites. Since applying the operator eih[n,n+1] also
affects positions [n+L, n+L+ 1], only the time evolution of a single unit cell is necessary.

The primary difference from the finite case, similar to iDMRG, is the additional evolu-
tion of the bond h[L,L+1] ≡ h[L,1].
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B Optimization of NCM
If 0, s < r, r − s is satisfied, notice that there are three blocks for the contractions: the
left environment with c†

0,σcs,σ, the transfer matrix, and c†
s,σ′c0,σ′ . In the last one, the r is

absorbed in the transfer matrix. This is convenient because larger values of r are easily
computed using previous calculations

For the first step, the left environment is contracted with the transfer matrix, and saved
in memory. Then, it is contracted with the right environment, giving the first expectation
value of the operators with a single transfer matrix in the middle. For the next expectation
value, the previous left environment is recovered, contracted with the same transfer matrix
again and saved in memory. Finally, it is again contracted with the right environment,
giving the expectation value with two transfer matrices in the middle.

To illustrate this procedure, consider the example where s = 1. The first computation
will give

〈
c†

0,σc1,σc
†
3,σ′c2,σ′

〉
, while the second one will move the two tensors in the right

two positions, giving
〈
c†

0,σc1,σc
†
5,σ′c4,σ′

〉
.

For small systems, this might not be the most efficient method to compute such noise
correlators, but it is needed for larger systems, where the number of contractions grows
rapidly.

Even if easy to implement for the some values, the case where 0, s < r, r − s is not
satisfied is problematic, as the transfer matrix cannot be inserted in the middle. For such
cases, though, the commutation relations of the creation and annihilation operators can
be used. The idea is to arrange the positions such that 0, s < r, r− s is satisfied, compute
the expectation values efficiently, and go back to the original order.

First, for simplicity, consider that r ̸= s ̸= 0. Those are the cases where two elements of
the expectation value are the same, and the operators do not anti-commute. For the general
case where spin is different, note that the terms that are not ordered, e.g.

〈
c†

0,σc2,σc
†
3,σ′c1,σ′

〉
, can be deduced from the expectation value of

〈
c†

0,σc1,σ′c†
3,σ′c2,σ

〉
, where the condition is

satisfied. However, the sign has to be recovered:〈
c†

0,σc2,σc
†
3,σ′c1,σ′

〉
= −

〈
c†

0,σc1,σ′c†
3,σ′c2,σ

〉
. (8)

An additional trick comes from, noticing that using the commutation relations and trans-
lational symmetry, the negative values of s can also be recovered:〈

c†
0,σc2,σc

†
3,σ′c1,σ′

〉
=
〈
c†

3,σc1,σc
†
0,σ′c2,σ′

〉
=
〈
c†

1,σc−1,σc
†
−2,σ′c0,σ′

〉
,

which reduced the computation to s > 0.
Alternatively, the negative values of r can also be recovered taking the hermitian con-

jugate of the initial expectation value.(〈
c†

0,σc2,σc
†
3,σ′c1,σ′

〉)†
=
〈
c†

1,σc3,σ′c†
2,σ′c0,σ

〉
=
〈
c†

0,σc2,σc
†
3,σ′c1,σ′

〉∗
.

Reducing the computation to r > 0.
For the case where the spins are the same, there are still more simplifications. 8 now

becomes: 〈
c†

0,σc2,σc
†
3,σc1,σ

〉
= −

〈
c†

0,σc1,σc
†
3,σc2,σ

〉
.

This is important because now the two terms appear in the original definition of the noise
correlator. In that expression, there is a term eid(r−s) multiplying the expectation value.
In the next section, it will be shown that the interesting case is that of d = π, so it becomes
eiπ(r−s). Thus, there are some cases where the two terms cancel out, and they do not need
to be computed.
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C Thermodynamic limit
The full expression is:

NCM =
∑
σ,σ′

(
⟨ĉ†

0,σ ĉ0,σ ĉ
†
100,σ′ ĉ100,σ′⟩ + ⟨ĉ†

1,σ ĉ1,σ ĉ
†
100,σ′ ĉ100,σ′⟩

+⟨ĉ†
0,σ ĉ0,σ ĉ

†
101,σ′ ĉ101,σ′⟩ + ⟨ĉ†

1,σ ĉ1,σ ĉ
†
101,σ′ ĉ101,σ′⟩

)
+
∑
σ,σ′

(
⟨ĉ†

0,σ ĉ100,σ′ ĉ†
100,σ′ ĉ0,σ⟩ − ⟨ĉ†

0,σ ĉ101,σ′ ĉ†
101,σ′ ĉ0,σ⟩

−⟨ĉ†
1,σ ĉ100,σ′ ĉ†

100,σ′ ĉ1,σ⟩ + ⟨ĉ†
1,σ ĉ101,σ′ ĉ†

101,σ′ ĉ1,σ⟩
)

+ (−1)jRe
(∑

σ

⟨ĉ†
0,σ ĉj,σ⟩ ·

∑
σ′

⟨ĉj,σ ĉ†
0,σ⟩

)
× 2

+ (−1)jRe
(∑

σ

⟨ĉ†
1,σ ĉj+1,σ⟩ ·

∑
σ′

⟨ĉj+1,σ ĉ
†
1,σ⟩

)
× 2

+ (−1)jRe
(∑

σ

⟨ĉ†
0,σ ĉj,σ⟩ ·

∑
σ′

⟨ĉj+1,σ ĉ
†
1,σ⟩

)
× 2

+ (−1)jRe
(∑

σ

⟨ĉ†
1,σ ĉj+1,σ⟩ ·

∑
σ′

⟨ĉj,σ ĉ†
0,σ⟩

)
× 2

+ (−1)jRe
(

−
∑
σ

(
⟨ĉ†

0,σ ĉj,σ⟩ · ⟨ĉj,σ ĉ†
0,σ⟩

))
× 2

+ (−1)jRe
(

−
∑
σ

(
⟨ĉ†

1,σ ĉj+1,σ⟩ · ⟨ĉj+1,σ ĉ
†
1,σ⟩

))
× 2

+ (−1)j−1Re
(

−
∑
σ

(
⟨ĉ†

0,σ ĉj,σ⟩ · ⟨ĉj+1,σ ĉ
†
1,σ⟩

))
× 2

+ (−1)j−1Re
(

−
∑
σ

(
⟨ĉ†

1,σ ĉj+1,σ⟩ · ⟨ĉj,σ ĉ†
0,σ⟩

))
× 2

D Numerical simulations
The numerical sumations were performed using TenPy [HP18]. The iMPS had maximum
bond dimension of χ = 200 and the unit cell had length L = 2. Ground states were found
using iDMRG. No optimization was carried out in the first four sweeps, so the environments
broke the symmetry of the ground state. For faster convergence and symmetry breaking,
the initial states for V < 2.4 where | ↑↓↑↓⟩, while for V > 2.4 where | ↑↓ − ↑↓ −⟩. Particle
number N and spin Sz were conserved.

For the time evolution, iTEBD was used. For the truncation, SVD was used, with
minimum significant value of 10−12. Fourth order approximation were used, with a time
steps of dt = 0.05. The computation of the NCM were performed using the reconstruction
of a state with 100 particles.

Used parameters for the Hamiltonian were: t = 1, U = 4, J = 0.5,∆ = 10.
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