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1 Introduction
1.1 Quantum Optical Networks
One of the most prominent motivations for quantum computing research is predicting
the properties and dynamics of complex quantum systems. Simulating their non-classical
features using classical methods appears increasingly impractical due to the exponential
growth in complexity [Fey81]. Consequently, there is a growing interest in developing
quantum simulation algorithms that are physically motivated and tailored to leverage spe-
cific near-term quantum hardware [SOEC18]. Among various proposals, Quantum Optical
Neural Networks (QONNs) stand out as a type of variational algorithm able to efficiently
perform a range of quantum information processing tasks, including quantum simulations,
by relying on the unique properties of light particles as information carriers in photonic
hardware [OFV09].

Experiments involving light are at the heart of our understanding of the complex im-
plications of the laws of quantum mechanics, with the entanglement of photon pairs, for
example, as a historically crucial piece of evidence in support of quantum mechanics over
hidden variable theories [ADR82]. Photons do not naturally interact with each other easily,
constituting a robust system that is inherently free from decoherence. In addition, photons
can be manipulated and individually addressed at room temperature with a high degree of
experimental control using various components, including passive optics, non-linear crys-
tals, single-photon detectors, and homodyne detectors [CHK+20] [AGW12]. They can be
transported in free space or through waveguides, allowing interaction beyond nearest neigh-
bors and high-speed transmission of information. Notably, many of the building blocks of
neural networks in machine learning have a very natural mapping into the quantum op-
tical domain [KBA+19], with beam splitters, programmable phase shifters, and optical
nonlinearity playing the analog roles to weights, biases, and activation functions in net-
work layers, respectively. These properties, along with the rapid development of photonic
quantum technologies have resulted in some quantum advantage experiments already being
conducted using photonic systems, making them a logical choice and a leading approach
to quantum information processing [ZWD+20],[MLA+22].

1.2 Continuous Variables Quantum Information
The Continuous Variable (CV) framework is characterized by the encoding of quantum
information in observables that span continuous ranges of values, such as position and
momentum, or analogously amplitude and phase. The standard approach to quantising
the motional degrees of freedom of a bosonic non-relativistic particle consists in defining
a pair of self-adjoint ’canonical’ operators x̂, p̂, known as quadratures, that satisfy the
so-called canonical commutation relation (CCR):

[x̂, p̂] = i1̂ (1)

in which we have assumed natural units, where ℏ = 1. These quadrature operators rep-
resent the position and momentum of the particle in the quantum harmonic oscillator
description, with continuous spectra covering the whole real line. If more than one degree
of freedom or mode is considered, one can generalize the CCR above by defining a vector
of canonical operators ŝ = (x̂1, . . . x̂N , p̂1, . . . p̂N )T such that:

[̂s, ŝT ] = iJ, with J =
(

0N 1N

−1N 0N

)
equivalent to [x̂j , p̂k] = iδjk (2)
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The commutation relation in Eq.1 may be equivalently expressed in terms of the non-
hermitian bosonic ladder operators, which in this same harmonic oscillator picture account
for the creation or destruction of a quantum of energy.

âj = 1√
2

(x̂j + ip̂j)

â†
k = 1√

2
(x̂k − ip̂k)

 =⇒ [âj , â†
k] = δjk (3)

In quantum field theory, where relativistic systems with varying number of particles are
considered through the formalism of second quantization, the action of these two operators
describes the creation and destruction of particles, while x̂, p̂ stand for a pair of bosonic
field operators (like the electric and magnetic components of the electromagnetic field, for
example).

It can be shown that the algebra defined by the canonical commutation relations (Eq.1)
does not allow for a representation through finite dimensional matrices, not even when a
finite number of degrees of freedom are considered [Ser21]. The particularly complex infor-
mation and correlation properties of systems that require Hilbert spaces of infinite dimen-
sion lead to a dichotomy between the ’easily tractable’ subset of continuous variable states
and those that lie out of this realm. The next two sections discuss these two categories,
known as Gaussian and non-gaussian, respectively.

1.2.1 Gaussian states. Covariance matrix formalism

Gaussian states are a central object of study within continuous-variable quantum informa-
tion despite comprising a very reduced fraction of the whole Hilbert space. They are the
ones involved in most experimental processes, owing to their manipulability with current
technology. Any Gaussian state ρG can be written as:

ρG = e−Ĥ/kBT

Tr(e−Ĥ/kBT )
(4)

where T is the temperature of the system and kB is the Boltzmann constant, correspond-
ing the limit T → 0 to pure states. Ĥ is any bounded-from-below Hamiltonian, at most
quadratic in the quadrature variables. The restriction to Gaussian probability distribu-
tions in phase space notably simplifies the mathematical treatment of Gaussian states. It
implies that they can be fully characterized by their vector of first moments r̄ and their
covariance matrix σ, which are in practice accessible as the first and second statistical mo-
ments, respectively, of measurements of the canonical operators. First moments contain
information that is relevant in the context of quantum communication or metrology, but
since they can be arbitrarily adjusted by unitary displacement operators, they do not play
any role in properties regarding entropy or entanglement, which are invariant under local
unitary operations. Hence they are often set to zero and neglected in literature [CC22], as
will be the case in our analysis. We will thus proceed by focusing solely on the covariance
matrices (CM), which, with regard to the previous considerations, uniquely characterize
Gaussian states.

Through the normal decomposition or Williamson’s theorem first proposed in [Wil36],
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one can express the covariance matrix1 of the most general N -mode Gaussian state as:

σ = S

( N⊕
j=1

νj12

)
ST (6)

where S ∈ Sp2n,R is a generic symplectic matrix and the νj ≥ 1 are referred to as the
symplectic eigenvalues, related to the temperature of the system and the frequency of each
of the normal modes through the expression:

νj(γj) = 1 + 2
e1/γj − 1

(7)

where we have defined the dimensionless parameter

γj ≡
kBT

ωj
(8)

The symplectic matrix S embeds all possible Gaussian transformations (i.e. operations
that map Gaussian states to Gaussian states, and which are by definition generated by
at most second-order Hamiltonians in x̂, p̂) that can act on a state, disregarding linear
displacements which leave the covariance matrix unchanged and affect the first moments
vector only. Among a series of possible decompositions of symplectic transformations, the
Bloch-Messiah or singular value decomposition [BM62] appears to be especially useful to
our purposes due to its physical interpretability:

S = O1ZO2 ∀S ∈ Sp2n,R (9)

with O1, O2 ∈ O(2N) ∩ Sp2n,R
∼= U(N) and Z =

N⊕
j=1

(
zj 0
0 z−1

j

)

The transformations O1, O2 are energy-preserving or passive optics transformations, each
of them comprising beam splitters (semi-reflective mirrors parametrised by their transmis-
sivity cos(θ)2 that mix up two modes) and phase shifters (dielectric plates that rotate
the optical phase of an electromagnetic wave by some angle φ). A scheme of alternating
applications of these two operations to create the most general linear interferometer is
detailed in [TR19]. Matrix Z represents local or single-mode squeezing, which in contrast,
is an active operation, requiring energy from an external laser field that pumps a nonlinear
crystal through which the optical modes travel, and also injecting energy into the system.
The result of this transformation is a contraction of the variance of one of the canonical
variables and the expansion of that of its conjugate one, and an output state with the po-
tential of acquiring correlations among the different modes once mixed in the beam splitter.

1Independently of such factorization, there exists a geometric necessary and sufficient condition, known
as the Robertson-Schrödinger uncertainty relation, for a symmetric matrix to represent the covariances of a
quantum state, namely:

σ + iΩ ≥ 0 with Ω =
N⊕

j=1

(
0 1

−1 0

)
(5)

which is in fact equivalent to the condition νj ≥ 1 ∀j ∈ {1 . . . N} on the symplectic eigenvalues. It is
also worth noting, for completeness, that a Gaussian state is pure if and only if its covariance matrix has
determinant 1, if and only if all its symplectic eigenvalues are equal to 1.
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The parametrization of covariance matrices given in Eqs.6-9 allows for an alternative
definition of Gaussian states in terms of the just defined universal set of Gaussian trans-
formations. According to the Bloch-Messiah prescription, a Gaussian state of N modes is
then described as any state that can be obtained by applying a product of N single-mode
squeezers, N phase shifters and N(N−1)

2 two-mode beam splitters on the vacuum state⊗N
j=1 |0⟩j , after thermalisation with a reservoir at temperature T .

1.2.2 Non-gaussian continuous variable states

As explained above, the restriction to Gaussian states fails to exhaust most of the continuous-
variables Hilbert space, which, in the context of variational algorithms, makes an ansatz so
little expressive that the possibility to find the optimum within the explored subset barely
exists. From a more fundamental point of view, the statistics of Gaussian states can be
reproduced by classical distributions, so no real quantum effects can be observed with this
limitation. Instead, non-gaussianity must be considered to exploit quantum non-locality
and observe computational supremacy.

The possibilities for our non-gaussian ansatz are infinite, however, we have chosen
to focus on a particular, iteratively-constructed form of states, namely those built from
consecutive photon additions or subtractions2 3 on a previously Gaussian state.

ρNG =
{

(â†
1)mUGρ0U †

G(â1)m for additions
(â1)mUGρ0U †

G(â†
1)m for subtractions

m = 1, 2 . . . (10)

Several aspects contribute to motivating this choice. First, adding or subtracting a
single photon from the radiation field is the most fundamental process by which matter
interacts with light, and thus the most straightforward way in which novel non-classical
states of light have so far been experimentally produced. Although the effective prepa-
ration of photon added and subtracted states on readily available quantum hardware
[BJML10][NNNH+06] is technically challenging and only achievable in a stochastic fashion,
with vanishing success probability as the number of single-photon operations m increases,
it is still interesting to study this protocols at least theoretically, due to the valuable in-
sights they provide on the behaviour of quantum correlations in light modes.

On the one hand, because the form of photon added and subtracted states constitutes
an approach to universality, owing to the fact that any continuous variable state can be
approximated by a polynomial in the ladder operators applied to a Gaussian state. On
the other hand, by inspection of Equation 10, one realizes that photon-additions, when the
Gaussian operation UG is the identity, yield nothing but the Fock basis; so by means of
tuning the Gaussian parameters, these states offer an interpolation between the discrete
and continuous variables realms.

Precisely due to the probabilistic nature of photon subtraction and addition, the statis-
tics of states yielding from these processes exhibit some counter-intuitive and interesting
properties [BFGS18]. As a most prominent example, there is the fact that the mean photon
number for an initial thermal state can be increased by subtracting photons from it, which

2A schematic description of how these operations are experimentally performed is given in Appendix D
3Note that all photon additions/ subtractions act on the first mode without loss of generality, since

swapping two modes is a Gaussian operation[CFGM21].
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would be impossible due to photon-number conservation if the procedure was determinis-
tic. Many of these properties, which we seek to prove are resources for energy processing
matters, are highly influenced by the nature of the initial photon-number distribution, and
by whether it undergoes photon antibunching, an inherently quantum process described in
Appendix C.

Quantifying non-gaussianity of an arbitrary state is typically carried out through the
so-called stellar rank, a parameter that counts the amount of zeros in the state’s Husimi
Q-characteristic function. This approach to assessing non-gaussianity is in general com-
putationally complex, however, when it comes to states engineered through consecutive
single-photon operations, like the ones we are restricting ourselves to, it can be proven
[CM22] that a non-gaussian state, either pure or mixed, has stellar rank n if at least n
photon subtractions or additions are needed to prepare this state from the vacuum. This
criterion will be key to grounding our conclusions in the coming sections.

1.2.3 Entanglement in CV states

Most well-known entanglement criteria (PPT, Giedke-Cirac, logarithmic negativity) are
based on second moments, can thus be fully computed upon knowledge of the covariance
matrix and establish necessary and sufficient conditions for a Gaussian state to be entan-
gled. Outside the Gaussian domain, states are no longer fully described by accessing first
and second-order moments only, due to the higher complexity of their correlations. The
above-mentioned criteria can still be applied, but for non-gaussian states one can only
aspire to obtain entanglement witnesses out of them, rather than if and only if conditions.
However, in [SV05] a more powerful inequality was proposed, able to detect continuous-
variable bipartite entanglement of generic states4 by involving higher-order statistical mo-
ments of the quadrature operators. Below we provide the two-mode version of the theorem
for the sake of simplicity:

Theorem 1 (SV Criterion for entanglement). Let â and b̂ be the annihilation operators for
modes A and B, respectively. Then, the negativity of the determinant of any of the principal
submatrices of matrix M (see Eq.11) is a sufficient condition for the non-positivity of the
partial transposition of a two-mode bipartite state, and hence for its entanglement.

M=



1 ⟨â⟩
〈
â†
〉 〈

b̂†
〉

⟨b̂⟩
〈
ââ†

〉 〈
âb̂†
〉

· · ·〈
â†
〉 〈

â†â
〉 〈

â†2
〉 〈

â†b̂†
〉 〈

â†b̂
〉 〈

â†ââ†
〉 〈

â†âb̂†
〉
· · ·

⟨â⟩
〈
â2〉 〈

ââ†
〉 〈

âb̂†
〉

⟨âb̂⟩
〈
â2â†

〉 〈
â2b̂†

〉
· · ·

⟨b̂⟩ ⟨âb̂⟩
〈
â†b̂
〉 〈

b̂†b̂
〉 〈

b̂2
〉 〈

ââ†b̂
〉 〈

âb̂†b̂
〉
· · ·〈

b̂†
〉 〈

âb̂†
〉 〈

â†b̂†
〉 〈

b̂†2
〉 〈

b̂b̂†
〉 〈

ââ†b̂†
〉 〈

âb̂†2
〉
· · ·〈

ââ†
〉 〈

ââ†â
〉 〈

ââ†2
〉 〈

ââ†b̂†
〉 〈

ââ†b̂
〉 〈

ââ†ââ†
〉 〈

ââ†b̂†
〉
· · ·〈

â†b̂
〉 〈

â†âb̂
〉 〈

â†b̂
〉 〈

â†b̂†b̂
〉 〈

â†b̂2
〉 〈

â†ââ†b̂
〉 〈

â†âb̂†b̂
〉
· · ·

...
...

...
...

...
...

...
. . .



(11)

The matrix is infinite-dimensional, as one can unboundedly consider higher orders in the
quadrature operators. However, identifying one single negative principal minor is enough
to certify that the state is entangled. In fact, for the states that concern us (up to three

4It must be taken into account that, although irrelevant and non-exploitable for information processing,
communication and computation, this criterion is able to qualify distillable but not bound entanglement.
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single-photon operations), it will be shown that it is sufficient to test the minor given by
rows and columns 2 and 4 of matrix M , so our simplified version of the SV criterion reads:

SV = ⟨â†â⟩⟨b̂†b̂⟩ − ⟨â†b̂†⟩⟨âb̂⟩ < 0 =⇒ entangled (12)

1.3 CV QONN architecture
In our quantum-optical approach to implementing a continuous-variable variational algo-
rithm, each mode of the electromagnetic field is modeled as a quantum harmonic oscillator
with its associated creation and annihilation operators and its canonically conjugate pair
of quadrature variables playing the role of position and momentum observables. Our op-
timization routines recover the algorithm architecture proposed in [SAC+24], a schematic
diagram of which is displayed in Fig.1 for clarification.

Figure 1: One-layer structure of our Quantum Optical Neural Network proposal

• The input of the quantum neural network is the N -mode (thermal) vacuum state,
encoded in its covariance matrix.

• This initial state undergoes squeezing through nonlinear crystals and interference
through a set of linear passive optics gates (beam splitters and phase shifters). This
Gaussian block is parametrized by the vectors z⃗, θ⃗, and φ⃗, randomly initialized.

• The introduction of non-gaussianity is accomplished by successive photon subtrac-
tions or additions on one of the modes. As commented before, the probability of
success of these non-gaussianity creation methods is very low, in account for the
preservation of fidelity of the resulting non-gaussian states, meaning that in the post-
selected runs of detector clicks, we may assume we have a perfect photon added or
subtracted state.

• Conditioned on successful subtraction or addition (that is, discarding all no-click
events), the expectation value of our observable of interest (which acts as the cost
function of the algorithm) is computed through homodyne measurements of field
quadratures.

• Lastly, a classical gradient-descent-based optimizer is used to perform an update of
the variational parameters of the Gaussian operations until the cost function reaches
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an extremum value (either maximum or minimum, depending on the specific prob-
lem). The final vector of parameters comprises a complete description of the optimal
state.

The manipulation of photon-added and subtracted states, both in terms of implementa-
tion and in theory, is far from trivial. However, throughout the execution of the algorithm,
all we require is the computation of expectation values of interest5 on our non-gaussian
states:

⟨M̂⟩ρ̂NG
= Tr

[
M̂ρ̂NG

]
.

which can be accomplished on account of Isserlis’ theorem [ISS18], by simply accessing the
entries of the covariance matrix of the Gaussian state prior to single-photon addition or
subtraction. The calculation of these expectation values is explained in appendix A.

Once its structure has been formulated, this neural network can be applied to ground-
state finding in many different scenarios, by simply adequately defining the observable to
optimize, and the number of modes needed to represent the available degrees of freedom in
the system. In the following sections, we will exploit its versatility in such diverse contexts
as quantum thermodynamics and quantum field theory.

2 Quantum batteries
2.1 Motivation and basic concepts
The investigation of quantum batteries (QB) is crucial in the realm of quantum thermody-
namics and quantum information science. Quantum batteries are devices that store and
deliver energy by exploiting the unique properties of quantum mechanical systems, thus of-
fering a novel approach to energy processing and manipulation that could potentially give
a significant advantage in charging and storage performance and open new avenues for
practical applications in various fields, from nano-scale devices to large-scale quantum net-
works. Moreover, as quantum technologies continue to advance and integrate into various
applications, from quantum computing to quantum communication, the efficient storage
and management of energy within these systems become increasingly essential.

A QB is defined as a system whose internal (or bare) Hamiltonian H0 has non-degenerate
energy levels6, such that energy can be temporarily stored by performing unitary opera-
tions U on an initial state (assumed to be the groundstate ρ0) in order to prepare the
system in some excited state ρ = Uρ0U †. The stored, and later extractable energy from
this process (known as ergotropy) is measured with respect to the internal Hamiltonian:

Eextr = E − E0 = Tr(H0ρ)− Tr(H0ρ0) (13)

Most literature regarding this topic focuses on optimizing battery performance in terms of
measures like charging power, charging times or energy storage capacity [FCA+18][CGQ+23].

5The analytical tools at hand impose the restriction that these observables be products of ladder
operators. However, we encounter this as not such a restrictive condition because any quantum observable
can be approximated by a polynomial in the ladder operations [HJ19]

6In fact, a more relaxed condition of a partially degenerated spectrum, i.e. such that the eigenvalues
satisfy the relation ϵk ≤ ϵk+1 as long as the bandwidth ϵmáx − ϵmin is non-zero, is sufficient for the definition
of a quantum battery.

7



However, little attention has been so far given to precision, a parameter that has a strong
relationship with the intrinsic properties of quantum systems and at which these are far
more likely to provide useful advantage over classical ones. Minimizing the uncertainty
in the amount of energy accumulated in a quantum battery has promising applications
in nanotechnology or other accuracy-related tasks. Hence the figure of merit that we will
seek to maximize in this work is the inverse relative error in the extractable energy of the
system, an adimensional quantity which we will refer to as extractable signal-to-noise ratio
(SNRextr):

SNRextr = Eextr

∆E
= E − E0

∆E
= E − E0√

⟨E2⟩ − ⟨E⟩2
(14)

Actually, this metric is closely related to the second-order correlation function g(2)(0),
which characterizes photon antibunching and makes a powerful distinction between classi-
cal and non-classical light. The analytical link between this celebrated parameter and our
signal-to-noise ratio is derived in Appendix C.

In the context of CV quantum information, the batteries we consider are infinite-
dimensional bosonic systems of N modes, i.e. collections of N coupled harmonic oscillators,
which are assumed to all have unit frequency ωi = ω = 1 ∀i ∈ {1, . . . N} and to be initially
thermalized at some ambient temperature T . The Hamiltonian of this system is

Ĥ0 =
N∑

n=1

(
â†

nân + 1
2

)
=

N∑
n=1

(
N̂n + 1

2

)
(15)

although the zero-point energy constant N
2 can be omitted in calculations since removing

it yields the exact same operator’s spectrum, it cancels when taking the difference in Eq.13
and as an additive constant, it does not influence the variance.

Our input state will be the tensor product of N single-mode thermal states:

ρ0 =
N⊗

n=1
τn(γ) where τn(γ) = e−Ĥ0/γ

Tr(e−Ĥ0/γ)
(16)

These initial Gaussian states are the lowest energy eigenstates of the bare Hamiltonian at
the fixed temperature T , and coincide with the N -mode vacuum |0⟩⊗N in the limit T → 0
(which corresponds to γ = 0 by the definition in Eq. 8). Once defined the input states, and
given that our chosen figure of merit (see Eq.14) is constructed from expectation values
of observables which consist of products of ladder operators, we have arrived at a suitable
formulation of the problem for the application of our CV QONN.

We seek to maximize SNRextr over the continuous variable states that we can gen-
erate through our universal set of Gaussian operations, plus consecutive single photon
subtractions and additions. Among the non-gaussian states, Fock states are optimal at
null temperature, since they have a well-defined energy (∆E = 0). However, at fluctuation
levels that are more realistic for implementations, this is no longer true, and there is in
fact a critical temperature Tc above which finding the optimum becomes a non-trivial task,
since Fock states not only lose optimality but turn to be the worst in terms of SNRextr.
Our approach to show the existence of such Tc can be found in appendix B. It is in this
noisy regime in which experiments are normally conducted that we are interested in per-
forming our optimization analysis. In what follows, we will restrict ourselves for simplicity
to the two-mode (N = 2) case, and for the squeezing operation we will consider the second
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mode always anti-squeezed (1
z ) with respect to the first one (z), although the results can

be generalised to arbitrary N and free squeezing parameters in a straightforward manner.

2.2 Results
2.2.1 Gaussian battery charging

First we study the phenomenon of battery charging through the application of Gaussian
unitaries only. The analytical expression for the extractable signal-to-noise ratio after
squeezing, beam splitting, and phase shifters turns out to be:

SNRextr(ν, z) = ν
z2 − 2z + 1√

ν2z4 + ν2 − 2z2
(17)

which is expressed in terms of the symplectic eigenvalue ν, uniquely mapped to γ through
Eq.7, and only dependent on temperature once the assumption of homogeneous unit fre-
quency has been fixed (see Eq.8). The dependence on the squeezing parameter for various
noise levels γ ∈ [0, 1.4] is shown below.
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Figure 2: SNRextr as a function of the squeezing parameter for several thermal fluctuation levels

Ratio values decrease as the setup becomes more noisy, being pure states (T = 0K)
the optimal case. Nevertheless, from Eq.17 we encounter a strong limitation of Gaussian
battery charging: its dependence solely on ν, z means that given a fixed temperature of the
system, the only source of performance improvement is by means of varying the squeezing
parameter. However, squeezing is an active process that can change the energy of the
quantum states involved. This makes the system more complex to analyze and control,
especially in terms of managing energy flow and avoiding unwanted energy injection or
loss. Ideally, we would like to be able to charge our quantum states through passive optics
operations, which are linear, energy-preserving maps applied through stable and little
technically demanding optical elements. The fact that these operations do not yield any
gains (i.e. the SNRextr function is constant with respect to their parameters) motivates
us to explore continuous variable states out of the Gaussian realm.
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2.2.2 Non-gaussianity

Our next object of analysis is the performance of states to which, after the Gaussian block,
consecutive single photon operations are applied. Figures 3 and 4 show the numerical
results of extractable signal-to-noise energy ratio as a function of z obtained with the
QONN, for increasing number of single-photon operations (additions and subtractions,
respectively). The temperature for the simulations has been fixed at γ = 0.5.
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Figure 3: Bounds on SNRext for increasing amounts of photon additions as a function of z
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Figure 4: Bounds on SNRext for increasing amounts of photon subtractions as a function of z

The predominance of non-gaussian states over Gaussian ones in the context of energy
processing had already been stated in previous references [FH18] [SAC+24]. Through
simple set theory reasoning, one can conclude that for any function of interest F , and in
particular for SNRextr:

max
UG∈G(U)

F(UGρ0U †
G) ≤ max

U∈U
F(Uρ0U †) (18)

since the set of Gaussian unitaries is a subset of all possible unitaries G(U) ⊂ U . How-
ever, here we show that the inequality in Eq.18 is in fact strict, and propose a concrete
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iterative construction of non-gaussian states which has a feasible physical realization, and
that establishes a hierarchy by which the bound on SNRextr imposed by the restriction to
gaussian states is violated by a greater amount as the stellar rank of our states (i.e. the
number of single-photon operations required to engineer them [CM22]) increases.

Another feature worth noting is that, for the Gaussian and m = 1 cases, the plot dis-
plays a single SNRextr curve, while for higher orders in the ladder operators, there is an
area delimited by worst and best case scenarios. The reason for this is that the extractable
signal-to-noise ratios for one single-photon operation still display no analytical dependence
on θ, ϕ1, or ϕ2. This implies that neither Gaussian nor single-photon added or subtracted
states admit charging precision enhancement through passive optics. However, from two
single-photon operations onwards, we do observe a periodic behaviour as a function of the
angle of the beam splitter. It seems reasonable to interpret this effect as a result of the
correlations that are created by the introduction of higher degrees of non-gaussianity into
the system, and conjecture that there could exist a tight relationship between bipartite
entanglement and SNRextr of our states, by means of which the former is a direct resource
for the latter. To test this hypothesis, we employ the SV criterion as a measure of bipartite
entanglement, and plot both quantities as a function of the angle θ of the BS, for different
squeezing values.
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Figure 5: Periodic dependence of entanglement and SNRextr on the beam splitter angle for two-photon
subtracted non-gaussian states at γ = 0.5. Analog results hold for two-photon-added states.

Figure 5 shows numerical evidence that such relationship exists, since the more entan-
gled states coincide exactly with those with higher extractable signal-to-noise ratios. This
correlation would also explain why there exists no dependence of SNRextr on the other
passive optics operation, namely the phase shifter, not even when more than one single-
photon operations are executed: PS is a transformation which introduces a phase on one
of the quadratures with respect to the other, but always in a local sense, i.e. within each
mode independently; as opposed to BS, which is a mode-mixing (and thus entangling)
transformation.

Finally, we generalize the above results to higher number of modes. In this case, the

11



plotted values are the result of a free optimization over all parameters in the Gaussian
set: N squeezing variables, N(N−1)

2 beam splitter angles, and N phase shifts. The ab-
sence of intersection in the curves shown in Fig.6 accounts for the fact that the hierarchy
in extractable signal-to-noise ratios established by the stellar rank in the two-mode case
is a property that can be generalized to larger N , and the existent increasing trend of
SNRextr with N suggests that bigger and more complex non-gaussian battery systems
hold a promising potential as highly precise energy storage devices.
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Figure 6: Scaling of maximum SNRextr with number of modes, for different amounts of non-gaussian
operations

The next chapter focuses on a second proposal for the application of our CV QONN.
The same structure that we have employed for energy charging optimization is now utilized
to address the simulation of Quantum Field Theory models. Light fields are systems with
infinite-dimensional Hilbert spaces that abide by the bosonic statistics, which, as we will
shortly argue, makes the CV framework a particularly natural choice for their description.
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3 Simulation of lattice field theories
3.1 Motivation
The Standard Model of particle physics, which describes the electromagnetic, weak and
strong nuclear forces, and which has so far demonstrated impressive success in making ex-
perimental predictions, is formulated within the framework of Quantum Field Theory. It
inherits the description of particles as excitations of the underlying fields, the Lagrangian
formalism, the central concept of gauge symmetry, and techniques such as renormalization
and Feynmann diagrams [PS19]. This poses great importance on QFT as an indispens-
able tool in the comprehension of the fundamental interactions in nature. Moreover, QFT
bridges different areas of physics by providing methods for solving complex problems rang-
ing from high-energy to condensed matter physics [Wil75] [GQW74], or even aspects in
quantum information theory [Kit03], with the systematic calculation of scattering ampli-
tudes or the study of critical phenomena in statistical mechanics as some relevant examples.

Although much of the physics in the Standard Model is well understood and inves-
tigated through analytical perturbation theory, certain phenomena, such as confinement
and chiral symmetry breaking, demand the application of non-perturbative methods[PS19].
The most commonly used technique to allow for numerical simulations and to cure diver-
gences naturally present in the model is lattice regularization, which involves discretizing
space-time into a grid and restricting the system to a finite volume [Rot11]. Lattice Gauge
Theory, which emerges from this approach, is essential e.g. in Quantum Chromodynam-
ics (QCD) because strong nuclear interactions cannot be treated as small perturbations
[Wil74] in the low energy regime. Simulating gauge theories on a lattice not only rigor-
ously tests various quantum field theories but also serves as a benchmark for theoretical
predictions, helping to verify the consistency and accuracy of different models [MM94].
The connection with experimental realizations is achieved by taking the infinite volume
and continuum (zero lattice spacing) limits [Cre84].

Current numerical simulations of gauge theories are unavoidably limited by the inher-
ent difficulty faced by classical computers when reproducing quantum properties. On top
of this, the so-called sign problem in the context of LGT limits the applicability of Monte
Carlo methods, which are the state-of-the-art technique for the study of certain quantum
systems, especially those with strong interactions where phase factors experience wide
fluctuations. Other situations, like the study of dense nuclear matter, entail a sufficient
increase in the complexity of the Lagrangian density as to turn Montecarlo simulations un-
feasible. For these reasons, implementing QFT on quantum computers stands out as one of
the most promising applications towards achieving significant quantum advantage. Some
preliminary successful demonstrations in 1D gauge theories have already been achieved
[MMS+16], but the leap to higher spatial dimensions appears to be extremely challenging,
since the models become increasingly complex. Consequently, moving to simulations in
2D represents a major opportunity to tackle questions that are over the scope of classical
devices.

The first step in this direction is to find a suitable Hamiltonian representation and
encoding of the theory we seek to simulate. In particular, U(k) Yang-Mills theory has so
far mainly been reproduced relying on the traditional Hamiltonian formulation developed
by Kogut and Susskind (KS) [KS75]. However, another possible Hamiltonian formulation
can be derived from the lattice Yang-Mills action through the Orbifold construction intro-
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duced by Kaplan, Katz, and Unsal in 2002 [KKU03]. This proposal was originally intended
for the representation of supersymmetric theories, where it shows by construction a clear
advantage over traditional lattice regularizations. However, even for non-supersymmetric
theories, there is a motivation for studying Orbifold lattices when it comes to real-time
quantum simulations, due to the simplicity of its Hamiltonian formulation. In the following
section, we give an insight on this alternative Orbifold approach, in an attempt to compare
it with the well-studied Kogut Susskind one, evaluate its performance at revealing the dif-
ferent phenomena and study its advantages and limitations.

3.2 Orbifold construction of U(1) lattice field theory
We will focus on pure gauge U(1) Yang-Mills theory in (2 + 1) space-time dimensions.
The restriction to the symmetry group U(1) makes our system serve as a simplified model
for understanding the basic principles of gauge field theories before generalizing to more
complex non-abelian gauge groups, and is also directly applicable to Quantum Electrody-
namics (QED), whose gauge symmetry is precisely U(1).

We introduce labels n⃗ = (nx, ny) ni = 1, 2 . . . L for each of the points in our two-
dimensional lattice of size L × L. xn⃗, yn⃗ represent the complex dynamical variables that
live on the links connecting n⃗ and n⃗ + x̂, n⃗ + ŷ, which are associated to the spatial field
components of the theory. The temporal component of the gauge field is denoted by An⃗,
and will be set to zero for all lattice sites upon gauge fixing.

A local U(k) gauge transformation at site n⃗ parametrised by Ωn⃗ is given by:

x⃗n⃗ → Ωn⃗xn⃗Ω−1
n⃗+x̂ y⃗n⃗ → Ωn⃗yn⃗Ω−1

n⃗+ŷ

An⃗ −→ Ωn⃗An⃗Ω−1
n⃗ + i

g1d
Ωn⃗∂tΩ−1

n⃗

The gauge-invariant parametrization of variables in the Orbifold formulation reads:

x = 1√
2ag1d

ea5/2g1ds1eia5/2g1dA1

y = 1√
2ag1d

ea5/2g1ds2eia5/2g1dA2

In the limit of infinite scalar mass m → ∞, that is, when the scalar fields decouple,
s1, s2 are frozen to zero and hence we have that our variables x, y are the same as the uni-
tary link variables Ux, Uy appearing in the Kogut-Susskind formulation up to a constant
factor 1√

2ag1d
. The dimensionless parameter g1d is the Yang-Mills coupling constant, defin-

ing the interaction strength between the gauge fields. In the Orbifold lattice and other
formulations of Yang-Mills theory, quantities are often computed as a function of 1

g2 , a
convention that arises naturally from perturbative expansions in the classical limit of the
theory, corresponding to weak coupling g → 0, where the fields are strongly suppressed
and the quantum fluctuations become negligible. The generalization of this coupling con-
stant to n space-time dimensions depends on the lattice spacing a through the relation:
g2

nd = an−1g2
1d

The expression for the Hamiltonian is given in terms of the link variables x, y and their
canonical conjugates px, py [BHRS24]:
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Ĥorb =
∑

n⃗

Tr

∣∣px,n⃗

∣∣2 +
∣∣py,n⃗

∣∣2︸ ︷︷ ︸
Ĥkin

+ g2
1d

2

∣∣∣xn⃗x†
n⃗ − x†

n⃗−x̂xn⃗−x̂ + yn⃗y†
n⃗ − y†

n⃗−ŷyn⃗−ŷ

∣∣∣2︸ ︷︷ ︸
Ĥel

2g2
1d|xn⃗yn⃗+x̂ − yn⃗xn⃗+ŷ|2︸ ︷︷ ︸

ĤB

+ ∆Ĥ

(19)

where ∆Ĥ = µ2g2
4d

2a

∑
n⃗

Tr

∣∣∣∣∣xn⃗x†
n⃗ −

1
2a2g2

1d

∣∣∣∣∣
2

+
∣∣∣∣∣yn⃗y†

n⃗ −
1

2a2g2
1d

∣∣∣∣∣
2
 (20)

is a scalar mass term added as a correction so that our lattice regularization satisfies
the necessary condition that xn⃗x†

n⃗ ≃
a

2g2
4d

1N , yn⃗y†
n⃗ ≃

a
2g2

4d
1N ∀n⃗

The commutation relations are (where ẑµ stands for the generalized spatial coordinate
operator, µ, ν = 1 for x̂, 2 for ŷ):[

ẑµn⃗, p̂†
νn⃗′

]
= iδµνδn⃗n⃗′

[ẑ, p̂] =
[
ẑ†, p̂†

]
= [ẑ, ẑ] = [p̂, p̂] =

[
ẑ†, ẑ†

]
=
[
p̂†, p̂†

]
= 0

Each complex link variable can be decomposed in its real and imaginary parts, yield-
ing two new independent, self-adjoint variables: ẑ = ẑ(R)+iẑ(I)

√
2 , (and analogous for the

conjugate momenta) with the following non-vanishing commutation relations:[
ẑ

(R)
µn⃗ , p̂

(R)
νn⃗′

]
= iδµνδn⃗n⃗′

[
ẑ

(I)
µn⃗ , p̂

(I)
νn⃗′

]
= iδµνδn⃗n⃗′ (21)

The generator of a local U(1) transformation at site n⃗ is:

Ĝn⃗ = i
2∑

µ=1
(−ẑµ,n⃗p̂†

µn⃗ + p̂µ,n⃗ẑ†
µ,n⃗ − ẑ†

µ,n⃗−µp̂µ,n⃗−µ + p̂†
µ,n⃗−µẑµ,n⃗−µ) (22)

Due to the fact that the Hamiltonian is invariant under local U(1) transformations,
[Ĝn⃗, H] = 0, Gauss’ law constraint derives from this group generator and imposes that for
any physical state, the expectation value of the operator Ĝn⃗ vanishes at all lattice sites n⃗.

Ĝn⃗|phys⟩ = 0 (23)

It is important to note that in lattice field theory, the gauge fields, which are defined on
the links between neighboring lattice points, are continuous functions Aµ(x) of space-time
coordinates x. However, most quantum simulations of QFT use qubits or qudits, which are
inherently discrete systems. This implies truncating the Hilbert space to a finite dimension
by discretizing the range of possible field values. In [BGH+21] a truncation in the Fock
basis is proposed, while the advantages of truncating in the coordinate basis are analysed
in [BHRS24]. Either way implies a loss of accuracy in the simulation of the fields as the
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cutoff becomes more restrictive.

In contrast with this, one can find a very natural mapping between the gauge degrees
of freedom and those of continuous variable systems, making the latter more suitable simu-
lators for LGT. In CV, the quadrature operators of a bosonic mode, which span continuous
ranges of values, can be used to represent the field at each lattice point, taking advantage
of the fact that field operators in QFT behave the same way (i.e. satisfy analogous com-
mutation relations, see Eq.21) as bosonic position and conjugate momentum.

For this reason, the ultimate goal and current efforts in this project are being put to-
wards removing the above-mentioned dimension cutoff, mandatory in discrete implementa-
tions, by embedding this theory into our CV QNN architecture. The Orbifold Hamiltonian
reformulates the problem of simulating Yang-Mills theory and translates it into the simula-
tion of a collection of coupled harmonic oscillators, allowing for the expression of position
and momentum of each of them in terms of ladder operators applied to the different modes.
With this, the admissibility condition on the observables of the theory to be cost functions
of our neural network is directly fulfilled, making the Orbifold representation an ideal fit
for our purposes. What we present in the results section below is a yet preliminary study
of the one-plaquette system through exact diagonalisation of the Orbifold Hamiltonian,
with Hilbert space truncation in the Fock basis with dimension Λ = 3 for each independent
oscillator (i.e. with a maximum of two excited levels).

3.3 Results
For simplicity, we consider one single plaquette with four sites on its vertices without
matter fields. This accounts for eight link variables representing the interacting gauge
fields, considering real and imaginary parts separately. Each of these variables is treated
as a quantum 3-level oscillator, so the dimension of the composite Hilbert space of the
system is |H| = 38. The Hamiltonian defining the dynamics of the plaquette is just
obtained through the restriction of Eq. 19 to sites n⃗ ∈ {(0, 0), (0, 1), (1, 0), (1, 1)}.

Figure 7: One plaquette lattice

The first quantities we are interested in obtaining are the ground state energy of the
plaquette, together with the contribution to this energy of each of the four terms in the
Hamiltonian. These values are plotted in Figures 8 and 9 with respect to the inverse of the
squared coupling constant 1

g2 , as mentioned above. The numerical values of the parameters
applied to the figures are lattice spacing a = 1 and scalar mass µ = 1.
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Figure 8: G.s of Ĥ via exact diagonalisation
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Figure 9: Contributions of Ĥ terms to g.s energy

An important sanity check worth making is that Gauss’ law is fulfilled. This condition
can be used to lower the requirements of a quantum simulation: in the Hamiltonian formu-
lation of a gauge theory, only a very small subspace of H consists of gauge-invariant states.
By applying Gauss’ law, it is possible to eliminate some of the gauge fields (thus yielding an
effective Hamiltonian with a lower amount of degrees of freedom) and obtain a formulation
directly constrained to the gauge-invariant subspace. This results in a more resource-
efficient encoding but also implies the appearance of long-range many-body interactions
in the effective Hamiltonian which may lead to harder computational and implementation-
related challenges. In our case, it has been sufficient to compute the expectation value of
the four Gauss operators (associated to the four sites of the plaquette) on the obtained
groundstate of Ĥ as a function of the coupling parameter, in order to conclude that Gauss
law is satisfied so that all of our states of interest are physical.

We have also performed separate diagonalization of all the four terms Ĥel, ĤB, Ĥkin,
∆Ĥ independently, and then computed the overlap between the resulting individual ground-
states and those of the full Hamiltonian (see Fig.10).

We observe there is a clear regime separation at the intersection of the kinetic and
electric curves, corresponding to 1

g2 ≈ 0.7. At this same point, there is also an interesting
peak in the scalar mass corrections ∆Ĥ curve, meaning that a phase transition is likely to
be taking place around those coupling values. This transition comes, in addition, with a
decrease in the energetic gap between the ground and first excited state, as can be observed
in Figure 11. In contrast to what occurs in the Kogut-Susskind formulation, where the
electric basis is used at small values of 1

g2 , here the electric term’s eigenstates coincide with
those of the full Hamiltonian for small couplings, while in the 1

g2 < 1 region the ground
states are superpositions of many different elements of the electric basis.
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Figure 10: Overlaps between groundstates of full
Ĥ and those of individual Hamiltonian terms
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Figure 11: Mass gap of the Orbifold Hamiltonian

Lastly, we are interested in identifying an order parameter for the above-mentioned
transition. In the context of lattice gauge theory, Wilson loops are the ones to play this
role. A Wilson loop is a gauge-invariant observable constructed from the gauge field along
a closed loop in space-time. Due to its local nature, it can be simulated on small lattices,
such as the one we are considering. A particular example of Wilson loop, namely the
plaquette operator:

□̂ = 1
2N

N∑
n=1

(
x̂†

αŷ†
β ŷδx̂γ + x̂αŷβ ŷ†

δx̂†
γ

)
n

N = number of plaquettes

which in the Kogut-Susskind representation has the same form as the magnetic field
term in the Hamiltonian, allows for the identification of a transition between confinement
and deconfinement regimes as its expectation value on the groundstates changes sign. In
the Orbifold Hamiltonian there is a significant shift between the plaquette operator and
the magnetic field term, as shown in Fig.12, and neither of them seems to be the adequate
quantity to consider as order parameter, because although displaying a local minima in
the seemingly interesting region, their values remain negative for all coupling strengths.

In Figure 13 the bipartite entanglement entropy of the ground state with respect to
the bipartition of the system in half is plotted as a function of the coupling constant. We
observe that in the two extremes the ground states are approximately product states, while
correlations experience a rapid growth as the critical point is approached.

All the above results converge at pointing out a characteristic signature of three differ-
ent phases, with a central one of stronger correlations close to the regime of unit coupling.
Given these preliminary findings, it would be interesting to test our results on larger sys-
tems of N plaquettes, perhaps making use of tensor networks in order to make simulations
computationally manageable. Exploring the effect of the truncation by gradually increasing
the cutoff, and extrapolating our results to predict the behavior as the cutoff approaches
infinity is also left for future work, together with the implementation of our continuous-
variable QONN for infinite-dimensional, truncationless simulations of the Orbifold model,
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which could potentially give us deeper insights on how this formulation compares to its
alternatives and how accurately it resembles the underlying theory.

4 Conclusions and outlook
Throughout this thesis we have explored the potential of photonic circuits as simulation
platforms for systems with infinite-dimensional degrees of freedom, by adopting a partic-
ular encoding of information in the continuous-valued quadrature observables. We have
studied the components of a variational algorithm that naturally embeds features from
quantum optics into classical optimization processes, and analysed both the experimental
and mathematical construction of the most general Gaussian state, through parametrized
squeezing and passive optics operations. Finally, upon introduction of non-gaussianity
by means of iterative single-photon subtractions and additions, we have accessed a whole
broader realm at which genuine non-classical properties can be observed and exploited for
quantum information processing matters.

Our results regarding the evaluation of quantum batteries in terms of energy charging
precision have shown not only that non-gaussian distributions outperform Gaussian ones,
but also that within the former, there exists a hierarchy by which states with higher stel-
lar ranks realize signal-to-noise ratio bounds that are not attainable for lower stellar rank
states. Moreover, we have demonstrated that for non-gaussianity degrees above two single-
photon operations, unitary charging through passive optics constitutes a source of precision
enhancement and can be related to the generation of bipartite entanglement within battery
systems. Lastly, the potential gain that could be obtained by scaling these energy storage
devices to higher number of optical modes has also been outlined in this work.

With respect to the simulation of gauge theories, we have investigated the Orbifold
construction of U(1) Yang-Mills theory, which emerges as a more formally straightforward
formulation than the traditional approach, encompassing features that make it particularly
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suited to our variational architecture. We have looked at several properties of the Orbifold
Hamiltonian’s groundstate, including its energy and the contribution to it of the different
Hamiltonian terms, its bipartite entanglement, the expectation value of the so-called pla-
quette operator and the mass gap of the model. Our results, obtained by means of exact
diagonalization in a truncated Hilbert space, allow for identification of different regimes as
a function of the coupling strength even in a yet simple model of maximally reduced size
as is the case of one single plaquette. The main conclusion distilled from these outcomes
is that further investigation of the Orbifold representation involving larger systems and
easing the truncation constraints by employing a continuous-variable framework has the
potential to unveil interesting attributes of the theory and exploit the power of quantum
simulations in a classically intractable domain.

A number of directions stem from this work as possible topics of future research. On
the one hand, a primary focus is set on overcoming the current limitations of our quantum
optical neural network proposal, turning it into a more expressive algorithm, able to solve
complex optimization problems and applicable to a wide spectrum of quantum simulation
tasks. One of our initial assumptions was that of zero-mean Gaussian distributions, which,
despite being the usual approach in most applications within the CV framework, still en-
tails some degree of information loss. Thus, considering a generalization that includes the
first-moments vector could be of interest to our purposes. Regarding non-gaussianity, our
current ansatz is restricted to states consisting of a single product of ladder operators ap-
plied to a Gaussian state, and the admitted objective Hamiltonians must also display this
same structure of single products of â and â†. Hence, a possible enhancement would consist
in removing these constraints so that the NN allows for different Hamiltonians and more
general non-gaussian transformations, taking into account a wider portion of the Hilbert
space of possible states of the system. On top of this, the implementation of natural gradi-
ent descent as optimization method in place of the classical alternatives could also result
in a significant upgrade, thereby taking advantage of the continuous-variable formulation
of the problem. Lastly, the conducted work described here focuses on a one-layer circuit,
first performing passive optics operations on the input Gaussian state, and then applying
non-linearity through photon additions and subtractions. However, linear combinations of
these operations can be implemented in optical setups by alternating Gaussian unitaries
and non-gaussian ladder operators. It is then natural to think that more expressivity could
be achieved by resembling these alternating blocks through a multi-layer version of the neu-
ral network.

Once all these refinements to the QONN architecture have been accomplished, the next
step would be the aforementioned application of the algorithm to simulations of infinite
dimensional Hilbert space systems, extending its scope from the Orbifold one-plaquette
model to more complex Hamiltonians, appearing in Quantum Field Theory and beyond.
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A Calculation of expectation values on non-gaussian states
The procedure for computing the cost function in our variational algorithm picks up the
assumption that the observable of interest can be written as a product of ladder operators,
and also that the output state after the whole gate set can be written as another product
of ladder operators acting on an underlying Gaussian state with density matrix ρ̂G :

M̂ = Πj â#
j , ρ̂NG = 1

K
Πiâ

#
i ρ̂G(â#

i )†

where # ∈ {†, ·} denotes the type of ladder operator (creation or annihilation, respectively),
and K := Tr

[
Πiâ

#
i ρG(â#

i )†
]

is a normalization factor that comes from the fact that ladder
operators are non-unitary, whose numerical value can be obtained through the exact same
method that we are describing. By the cyclic property of the trace:

Tr
[
M̂ρ̂NG

]
= 1

K
Tr
[
â†

Sn
. . . â†

S1
â†

Cm
. . . â†

C1
âC1 . . . âCm âS1 . . . âSn ρ̂G

]
where operators with subscript Si are those implementing the photon subtractions (analo-
gous for additions by taking hermitian conjugates) on mode i of the Gaussian state, and
those with subscript Cj comprise the expression of the observable M̂ whose expectation
value we wish to calculate. From Wick’s theorem [Wic50] we know that the expectation
value of a single product of ladder operators can be decomposed as the following sum:

Tr
[
â†

Sn
. . . â†

S1
â†

Cm
. . . â†

C1
âC1 . . . âCm âS1 . . . âSn ρ̂G

]
=
∑
P

∏
{(p1,#),(p2,#)}∈P

Tr
[
â#

p1 â#
p2 ρ̂G

]
,

where P is the set of all possible perfect matchings of the 2n + m indices (pk, #) ∈
{C1, . . . , Cm, S1, . . . , Sn}× {†, ·} of the ladder operators. It is worth noting that the group-
ing of the operators in pairs is possible due to the fact that for an initial Gaussian state
with no displacement, all the odd order correlations vanish, thus if we had an odd number
of â# in the product, the expectation value would trivially be zero. All we are left with
are expectation values of pairs of annihilation or creation operators on a Gaussian state,
which can be computed by using the following identities:

I1 = Tr
[
â†

j â†
kρ̂G

]
= 1

4 [Vjk − Vj+N,k+N − i (Vj,k+N + Vj+N,k)] ,

I2 = Tr [âj âkρ̂G] = I∗
1

I3 = Tr
[
â†

j âkρ̂G

]
= 1

4 [Vjk + Vj+N,k+N + i (Vj,k+N − Vj+N,k)− 2δjk] ,

I4 = Tr
[
âj â†

kρ̂G

]
= δjk + I∗

3

where Vjk is the (j, k) matrix element of the 2N×2N covariance matrix of the quadratures
of the state ρ̂G. A pseudocode illustrating this approach for trace computation is shown
below.
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Algorithm 1 Expectation value of observable M̂ on a non-gaussian state
σ ← covariance matrix of ρG (array)
NonGaussOps ← list of non-gaussian operations

▷ e.g [-1] for subtraction on mode 1

OpsM ← list of ladder operators defining M̂
ModesM ← list of modes on which OpsM acts

▷ e.g for M̂ = N̂1 = â†
1â1, OpsM=[’adag’,’a’] and ModesM=[1,1]

FullString ← JOIN(NonGaussOps, OpsM, ModesM)

▷ Joins ladder operators from M̂ and ρNG, applying cyclic property of the trace

Matchings ← PERFECT MATCHINGS(FullString)
Trace ← 0
for matching in Matchings do

factor ← 1
for item in matching do

factor × = TRACE(item) ▷ TRACE implements the identities I1, I2, I3, I4

Trace += factor

return Trace

B Critical temperature
In order to demonstrate that Fock states are not trivially optimal regardless of the system
fluctuations, we consider the two-mode vacuum |0⟩ state, to which we apply a squeezing
operation, no passive optics, and one single-photon addition. After this circuit, for all
values of z, the outcome will be a squeezed photon-added state, except for z = 1 (no
squeezing), which will correspond to the Fock state |1⟩. In Fig.14 we show a density plot
in which SNRextr is evaluated with respect to both z and noise of the system.

What we observe is that the Fock state, for low fluctuations γ (temperature close to
zero), is indeed optimal. However, as temperature increases, the Fock state’s ratios un-
dergo a significant drop, up to a point where they are the worst in comparison to other
CV states to which some squeezing has been applied. In contrast, highly-squeezed states
are less sensible to the increase in noise level, and they display good signal-to-noise ra-
tios independently of temperature. Analogous behaviours are obtained for more photon
additions (i.e. for Fock states |2⟩,|3⟩, etc) although the switch in regimes (from optimal
to suboptimal) takes place at different temperatures for each of them. Nonetheless, the
simple existence of such a transition justifies our optimization purposes, since otherwise
one could always state that Fock states were trivially the solution to the problem.

In Figure 14 we have also added a dashed curve along the points of the graph where
SNRextr = 1. This value is precisely the maximum ratio attainable by Gaussian states (in
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Figure 14: SNRextr as a function of squeezing and noise. The limit z = 1 corresponds to the thermal
Fock state |1⟩

the limit of zero noise γ = 0) according to Figure 2 and Eq.17. This curve establishes a
boundary between classical and quantum regimes, in the sense that one can find classically
reproducible distributions that are better batteries than all states with SNRextr < 1, while
states on the bottom left have either sufficient squeezing or enough purity as to outperform
all possible Gaussian states.

C Photon antibunching and signal-to-noise ratio
Different light sources give rise to different photon statistics (i.e. different distributions of
the time intervals elapsed between successive photons). Three regimes can be distinguished
among these distributions, according to whether the mean number of photons ⟨N⟩ within a
time interval is smaller (super-Poissonian), equal (Poissonian) or greater (sub-Poissonian)
than its variance (∆N)2. Both Poissonian and super-Poissonian light can be described by
a semi-classical theory, in which the light source is modeled as an electromagnetic wave,
while sub-Poissonian statistics are indicative of strictly non-classical light.

Sub-Poissonian light sources are preferable in various applications because they exhibit
lower photon-number fluctuations, which is advantageous in high-precision measurements
and information processing tasks where minimization of the noise plays a significant role.
Moreover, devices with well-defined photon statistics, such as single-photon emitters, are
essential for quantum communication and quantum cryptography, since a controllable pho-
ton output in this context is critical for encoding and transmitting quantum information
securely.

An equivalent definition for sub-Poissonian statistics is the presence of photon anti-
bunching, a quantum optical phenomenon that implies that two photons are more likely
to be detected independently than in pairs. Quantum states of light undergo this process
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whenever the so-called second-order correlation function is smaller than unity:

g(2) =

〈
:
(∑

k â†
kâk

)2
:
〉

〈∑
k â†

kâk

〉2 < 1 ⇐⇒ antibunching (24)

The following derivations show that this quantum-optical parameter has a strong re-
lationship with our figure of merit, namely the extractable signal-to-noise ratio, in terms
of which the requirement for the antibunching phenomenon to take place can also be ex-
pressed. Calculations are performed for the two-mode case for the sake of simplicity.
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and since
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we arrive at

g(2) = (∆N)2 − ⟨N⟩+ ⟨N⟩2

⟨N⟩2
= (∆N)2

⟨N⟩2
− 1
⟨N⟩

+ 1 (27)

which, on account of Eq.14, relates to the extractable signal-to-noise ratio as:

SNRextr = E − E0
∆E

= ⟨N⟩ −N0
∆N

=⇒ g(2) =
(

SNRextr + N0
∆N

)−2
− 1
⟨N⟩

+ 1 (28)

So the condition for photon antibunching established in Eq.24, only fulfilled by non-
gaussian states, can equivalently be written in terms of our figure of merit through the
following relation: (

SNRextr + N0
∆N

)2
> ⟨N⟩ ⇐⇒ antibunching (29)

This inequality implies, since N0 is a constant, that for a fixed average energy (or equiv-
alently mean photon number ⟨N⟩), the process of antibunching will be favored by more
precise batteries, which will display smaller ∆N (and consequently higher SNRextr) so
that the left-hand side of Eq.29 is more likely to outweigh the right-hand side.

D Experimental realization of non-gaussianity
Despite being mainly concerned about their mathematical representation, we found it use-
ful to give a brief insight into how the single photon operations of subtraction and addition
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are realized in state-of-the-art quantum hardware.

For photon subtraction, the input Gaussian state is sent through a weakly reflective
beam splitter, which splits the incoming light into two modes: one that continues in the
original path (transmitted mode) and one that is reflected. The latter is directed to a
single-photon detector. When the detector clicks it indicates that a photon has been de-
tected, so given that this condition occurs, the state of the transmitted mode is effectively
a photon-subtracted state.

Figure 15: Conditional photon subtraction by means of a beam splitter and a photodetector.

Instead of fixing the reflectivity of the beam splitter, we could also consider it as a
tunable parameter included in the optimization. Different values of this parameter would
lead to potentially higher success probabilities of the photon-subtraction process (more
frequent clicks), and at the same time to more general non-gaussian states, increasing the
expressivity of the resulting neural network.

To add a photon to an incoming Gaussian state, a pump laser beam is directed onto a
nonlinear crystal to produce pairs of photons (signal and idler) via spontaneous parametric
down-conversion. The idler photon heralds the addition of a photon to the signal mode,
in the sense that conditioned on its detection (that is, on the click of the photodetector),
the state of the signal mode is a photon-added state.

Figure 16: Conditional photon addition using a pump beam, a non-linear crystal, and a photodetector.

E Codes on Github
All the Python files and figures related to and appearing in this thesis can be found in the
following repositories:

SNR for Gaussian batteries project
Orbifold formulation of LGT project
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https://github.com/beapolo13/SNR
https://github.com/beapolo13/Orbifold-lattice
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