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Abstract
I detail the development and characterization of an experimental setup capa-
ble of generating arbitrary two-dimensional optical potentials using a Digital
Micromirror Device illuminated with spatially incoherent light. Spatially
incoherent illumination significantly reduces phase-related artifacts, thereby
enhancing the quality of the optical potentials. Detailed analyses of the light
source and imaging system were conducted to optimize the setup’s perfor-
mance. The results show significant improvements in the homogeneity and
sharpness of the potentials compared to those obtained with coherent light.
This work lays the groundwork for the final setup, which will be used to trap
potassium atoms in the study of the superfluid-to-supersolid transition of a
spin-orbit coupled spin-1/2 Bose-Einstein condensate.

Keywords: Ultracold atoms, Bose-Einstein condensate, quasi-2D regime, optical dipole potential,
Digital Micromirror Device, spatially incoherent light.
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1 Introduction
When Richard Feynman proposed the concept of a quantum simulator in 1982, he revolutionized
the study of quantum many-body physics by suggesting the use of a highly-controlled quantum
system to simulate another [1]. Feynman’s idea came true thanks to advances in the field
of ultracold atoms. Breakthrough achievements, like the creation of Bose-Einstein condensates,
enabled by advancements in the control of light-matter interactions and atom cooling techniques,
have since opened the door to exploring complex quantum phenomena.

Ultracold quantum gases have now become a powerful tool to study complex quantum many-
body problems. By tuning atom-light interactions, researchers can engineer these systems not
only to probe condensed-matter phenomena such as phase transitions, but also explore entirely
new forms of quantum matter.

A recent example is supersolidity. In Bose-Einstein condensates (BECs), spin-orbit coupling
can give rise to a supersolid phase, a unique state of matter that combines the frictionless flow
of a superfluid with the periodic density modulation characteristic of a crystal. In the context of
spin-orbit coupled BECs, this phase is know as the stripe phase. Supersolidity results from two
spontaneously broken continuous symmetries: U(1) phase for the superfluid and translational
for the solid. The stripe phase of a spin-orbit coupled spin-1/2 BEC has been recently observed
in situ for the first time in our group [2].

Intriguing questions remain about the role of dimensionality in this phase transition. To
control the dimensionality of the system, the three-dimensional cold gas can be confined along
one, two, or three directions. This allows the study of 1D and 2D systems, where the role of
thermal and quantum fluctuations is enhanced. Achieving two-dimensionality requires strong
confinement in the third direction, typically provided by an optical lattice. By using a Digital
Micromirror Device (DMD), which consists of arrays of microscopic mirrors that can reflect light
in two different directions, we can trap atoms in the 2D plane in arbitrary shapes. This provides
a wide range of applications, such as preparing different atomic density profiles. [3].

The main goal of this master’s thesis is to build and characterize a setup for creating 2D
box-shaped optical dipole traps, which will be used in the final experiment to study the effect of
quantum fluctuations on the superfluid-to-supersolid phase transition. To create this potential,
we use a digital micromirror device combined with spatially incoherent light obtained with a
multimode diode laser and a multimode fiber.
The contents of this thesis are structured as follows: Chapter 2 explains the theoretical back-
ground; Chapter 3 details the properties of the laser and the fiber; Chapter 4 is dedicated to
characterizing the incoherent beam after the fiber; Chapter 5 evaluates the performance of the
imaging system; Chapter 6 analyzes several squared-box potentials; and the conclusions are
presented in Chapter 7.

2 Theoretical Background
Alkali atoms are a popular choice for ultracold gases experiments because of their simple elec-
tronic structure, which simplifies their laser cooling and trapping. In this case, the setup built
during this master’s thesis has been designed to create an optical dipole trap in 2D for K atoms.

Optical Dipole Trap
An optical dipole trap relies on the electric dipole interaction that neutral atoms experience
with far-detuned light, which has a frequency significantly different from the considered atomic
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transition. This potential depends on the intensity of the light in the atomic plane, I, and the
detuning, which corresponds to the difference between the driving frequency and the one of the
electronic transition - i.e. δ ≡ ωlaser − ωeg. In alkali atoms, the optical transition ns −→ np is
usually used for cooling and trapping, where n is the principal quantum number, and s and
p refer to the electronic states with orbital angular momentum l = 0 and l = 1, respectively.
Spin-orbit coupling gives rise to the well-known D line doublet between the state 2S1/2 and the
states 2P3/2 and 2P1/2, resulting in an energy splitting of ℏ∆′

F S . Here, we use the notation
2S+1LJ , with S being the electronic spin, L the electronic orbital angular momentum, and
J ≡ L ⊕ S the total electronic angular momentum. Additionally, the coupling to the nuclear
spin, I, produces hyperfine structure in both the s and p states, with energy splittings ℏ∆HF S

and ℏ∆′
HF S , respectively. These states are labeled by the total angular momentum F ≡ J ⊕ I.

The energy splittings follow the hierarchy ∆′
F S ≫ ∆HF S ≫ ∆′

HF S . Assuming that ∆′
HF S ≈

0, we can derive an expression for the dipole potential that accounts for the three-level energy
structure. For linearly polarized light, we obtain the potential

Udip = πc2Γ
2ω3

0

(
2
δ2,F

+ 1
δ1,F

)
I, (1)

where the detunings δ2,F and δ1,F correspond to the energy splitting between the particular
state 2S1/2, F that we are considering and the center of the hyperfine splitting of 2P3/2 and
2P1/2, respectively. Therefore, the terms in brackets represent the contribution of the D2 and
D1 line to the dipole potential [4]. The factor preceding the brackets depends on the central
frequency (ω0) and the average linewidth (Γ) of the D line doublet.

We work with blue-detuned light (δ2,F , δ1,F > 0) so that the atoms will be attracted to the
minima of intensity. Thus, we will employ the DMD to generate box-shaped potentials, which
present a dark central region for the atoms surrounded by light barriers.

Bose-Einstein Condensate in a quasi-2D regime
The DMD will create an optical dipole trap in 2D, while there will be a vertical harmonic trap
in the third direction with a trapping frequency that we will assume to be ωz/2π = 10 kHz
in the following. The three-dimensional BEC will be loaded into this trap. There are two
types of regimes in 2D, which are characterized by the relation between the vertical thickness
of the cloud, given by the harmonic oscillator length lz =

√
ℏ/(mωz), and the range of the

interactions. For ultracold Bose gases, only low-energy collisions are relevant. Thus, the range
of interactions is governed by the s-wave scattering length, as. Since the relation lz ≫ as is
satisfied in our case, we are in the quasi-2D regime, where the collisions can be treated as in
3D. Therefore, the equations of motion of a 3D weakly-interacting Bose gas have to be derived.
Then, these expressions will be transposed to a 2D geometry [5]. For the complete derivation of
the Gross-Pitaevski equation in the quasi-2D regime, refer to Appendix A.

The resulting expression is (
− ℏ2

2m∇2 + ℏ2

m
g|ϕ|2

)
ϕ = µϕ, (2)

where g =
√

8πas/lz is the coupling constant, |ϕ|2 = n is the in-plane density, and µ corresponds
to the chemical potential. In this regime, the coupling constant depends on the strength of the
confinement in the third direction as g ∝ √

ωz, with ωz the frequency of the optical lattice. This
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is in contrast with the 3D case, where the coupling constant is completely determined by the
s-wave scattering length.

If the system is at equilibrium and at T = 0, our ground state is the solution to the equation
(2). Using the Thomas-Fermi approximation, which assumes that the interaction energy is much
larger than the kinetic term, we get

ℏ2

m
g|ϕ|2ϕ = µϕ ⇒ µ = ℏ2

m
gn. (3)

With this expression, the chemical potential can be determined by plugging the corresponding
values of our system [6]. By assuming some typical values for the variables in equation (3), such
as the ones in Table 1, we estimate the chemical potential of our sample: µ ≈ 114nK.

Number of atoms 105

Side of the squared box 50µm
Frequency of the harmonic trap 10kHz

Table 1: Typical values considered for the chemical potential calculations.

For the atoms to be trapped, the optical dipole potential of the barrier has to be greater
than the chemical potential of the atoms. Taking the expression (1), the optical dipole potential
can be represented as a function of the intensity in the atomic plane, I. For the calculations, we
use the relation I = P/A, where P is the final optical power and A is the area of the illuminated
zone, which we assume to be squared. Although we will create a dark hole to trap the atoms, the
intensity in the atomic plane remains constant regardless of the shape of the potential. This is
because the DMD operates by reflecting light away from the imaging path, keeping the intensity
the same for any pattern. Thus, the barrier height can be also computed as the intensity when
all the light is sent. In Figure 1, the value of the potential is represented as a function of
the power for different sizes of the squared illumination. We consider the isotope 39K for the
calculations, whose principal properties are detailed in reference [7]. This plot determines the
possible combinations of power and sizes for the initial illumination.

Figure 1: Potential curves. The dashed line represents the chemical potential.

Introduction to the DMD experimental setup
Having established the theoretical framework, let us detail the experimental setup to generate
potentials using a DMD. We will work in an object-plane configuration: the pattern generated
on the DMD1 is mapped directly onto the image plane, where the atoms would be. As a first

1DLP3000 from Texas Instrument
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approach, we initially set up an optical system with coherent illumination, utilizing a single-
mode laser diode2 and a single-mode polarization-maintaining fiber3. The setup after the fiber
is depicted in Figure 2a.

The optical system labeled D2 images the DMD pattern. It consists of two singlets4, with
focal lengths f1 = 150 mm and f2 = 50 mm, and a camera5. The first lens is positioned at a
distance of f1 from the DMD. The second lens is located at a distance of f1 + f2 from the first
lens, with the camera positioned at a distance of f2 from the second lens. In this so-called 4f
configuration, the image of the DMD is demagnified by a factor of f2/f1 so that the entire pattern
can be captured by the camera. Since the horizontal size of the rectangular chip of micromirrors
(6.57mm × 3.70mm) is 1.14 times larger than the one of the camera (5.76mm × 4.29mm), a
demagnification of at least 0.88 is needed. For the real experiment, this demagnification will
increase by an order of magnitude.

To resize the beam and properly illuminate the DMD surface, a magnification stage labeled
D16 was necessary. This stage also utilizes a 4f configuration, but in this case f2 > f1. A
detailed analysis of this initial test setup can be found in my internship report [8].

With this relatively simple optical setup, it is possible to generate the optical potentials in
the atomic plane.

3 Spatially Incoherent Light
Choosing the appropriate light source is crucial to create smooth and sharp potentials. Using
coherent light sources, such as very narrow lasers, can lead to phase-related artifacts, usually
known as speckle patterns. This results in an inhomogeneous illumination and blurred edges, as
shown in Figure 2b from my internship. To overcome this issue, we use spatially incoherent light
obtained by combining a multimode laser with a multimode fiber. By reducing the coherence
length and adding randomness in the phase, the interference effects decrease, which smoothens
the intensity profile of the potentials.

3.1 Laser characterization
We choose a multimode laser diode7, with a typical wavelength of λ = 675 nm and a maximum
power of 1.2W. Multimode lasers present a wider spectrum than usual ones. In this case, the
minimal and maximum lasing wavelengths are 670 nm and 680 nm when the operation is at a
temperature of 25◦C.

The outcoming power as a function of the current driving the laser diode is represented in
Figure 3a. The obtained value for the threshold current was 0.332 ± 0.014 (A), showing a small
deviation from the one from the Data Sheet: 0.35A. To understand completely the light source,
it is necessary to analyze the spontaneous emission, relevant mostly under and around threshold.
This signal is characterized by a broader spectrum and low power. The photons acquire random

2EYP-DFB-0767-00050-1500-TOC03-0005 Toptica Eagleyard, distributed by AMS Technologies
3PM630-HP from Thorlabs
4LC1715-B and LA1986-B from Thorlabs
5Alvium 1800 U-1236
6LA1433-B and LA1131-B-ML from Thorlabs
7USHIO HL67203HD
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(a) Setup after the fiber. (b) Pattern with coherent illumination. (c) Horizontal cut of the profile.

Figure 2: Results from the tests with coherent illumination [8].

polarizations, which makes the light unpolarized. Its contribution decreases when going above
the threshold due to the amplification experienced by the lasing signal for large current values
(see Figure 3b).

(a) Outcoming power as a function of the current driving
the diode laser for a temperature of 25◦C.

(b) Ratio of the spontaneous emission signal as a function
of the current sent to the laser.

Figure 3: Characterization of the multimode laser diode performance.

Due to the high values for the power that the laser can achieve and the danger for eye safety
that it represents, I implemented a power dumping stage immediately after the light source.
This stage requires two half-wave plates8 and two Polarization Beam Splitters9. To understand
the performance of this stage, it is essential to note that the lasing part of the outcoming light
is predominately linearly polarized, while the spontaneous emission is unpolarized. Unpolarized
light can be described as a mixture of two independent oppositely polarized streams, each with
half the intensity [9].

Let us now examine the different elements of the stage (see Figure 4a). A half-wave plate
rotates linearly polarized light to any desired orientation. Therefore, the first waveplate changes
the polarization angle of the lasing light while leaving the spontaneous emission unchanged.
After passing through the waveplate, the light encounters a polarization cube beam splitter,

8WPMH05M-670 from Thorlabs and a half-wave plate for 698nm from FOCtek
9PBS5204–650-850nm-12.7x12.7x12.7mm from FOCtek.
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which transmits only P-polarized light (polarization with the electric field parallel to the plane
of incidence). By adjusting the angle of the first waveplate, the amount of lasing light passing
through the cube can be controlled, though half of the spontaneous emission is always removed.
With this first beam splitter, we ensure that the light is fully linearly polarized from this point
onward. Thus, by using the second waveplate to modify the polarization angle, we can control
the amount of power exiting the final cube.

The stage is placed inside a box made of anodized aluminum for safety reasons. I designed
it with two rectangular holes for the cables of the temperature and current controllers10, and a
circular hole for the light to exit. The sizes of the panels and profiles were chosen so that both
the laser and the dumping stage fit inside the box. I also added a slidable top panel made of
cellulosic resin to the design for a more comfortable access to the optics inside.

(a) Sketch of the power dumping stage. (b) Laser safety box.

Figure 4: The optical power control stage and the safety box.

3.2 Beam shaping and collimation
Once the diode laser is characterized, it is necessary to reshape and collimate the beam before
entering the fiber. The initial shape of the beam was mainly rectangular, although the sponta-
neous emission is also present as a halo around due to the photons leaving in a broader range
of directions (see Figures 5a and 5b). Before entering the fiber, the shape of the beam should
be as symmetric as possible. A symmetric beam ensures that light is evenly distributed across
the fiber’s core, maximizing the amount of light that enters the fiber and minimizing losses.

Firstly, I measured the vertical and horizontal divergence (θy and θx) by taking images of
the beam at different distances from the laser, obtaining θy = 12.11◦ and θx = −1.287◦. Thus,
the beam is converging horizontally while diverging much faster vertically.

Since the beam at 100mm from the laser has an approximately squared shape, I placed
a spherical lens of 125mm focal length11 at that distance to collimate the vertical direction
and make the horizontal one converge faster. Then, to maintain the squared shape, I added
a cylindrical lens of f = −50mm focal length12 at 40mm from the spherical one to collimate
the horizontal direction (see Figure 5c). With this configuration, a shape close to a square is
obtained for our beam.

10ITC 4005 controller from Thorlabs
11LA1986-B from Thorlabs
12LK1662L1-B form Thorlabs
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(a) Beam at 13cm from the laser. (b) Beam at 20cm from the laser. (c) Horizontal collimation sketch.

Figure 5: Beam at different distances from the laser.

3.3 Fiber coupling
Combining a multimode fiber with our multimode diode laser, it is possible to get spatially
incoherent light for the optical dipole potentials. Since multimode fibers present a spectrally
and spatially dependent propagation speed, a time delay between modes is created when light
from the laser enters. If this time delay at the end of the fiber is greater than the coherence
time of the light source, interference between modes is no longer possible, reducing the spatial
coherence. Therefore, for the conversion from temporal to spatial incoherence to be efficient,
∆t ≫ τt has to be fulfilled, where τt is the coherence time of the light source and ∆t is the
modal delay of the fiber.

We use a step-index fiber13, whose modal delay is given by

∆t = NA2L

2cncore
= 869.5 ps (4)

where L = 5m is the length, NA= 0.39 is the numerical aperture, ncore = 200µm is the core
size, and c is the velocity of light in vacuum. We are interested in using a long fiber with a
high NA to maximize the modal delay. Assuming that the spectrum of the laser diode can be
approximated by a Gaussian, the coherence time depends on the Full Width at Half Maximum
(FWHM) as [10]

τt =
√

8π ln 2
FWHM

. (5)

From the specifications of the laser, a possible value for the FWHM can be estimated as half
the difference between the maximal and minimal wavelength. Changing to frequency,

∆ν = c

λ2 ∆λ = 3.29 THz. (6)

Therefore, τt = 1.27 ps ≪ ∆t is satisfied, ensuring that the conversion from temporally to
spatially incoherence is possible.

Regarding the coupling, we need an in-coupler lens that creates a spot size of the diameter
of the fiber core. Considering Gaussian optics, the spot size wf created by a lens of focal length
f with an incident beam of size w0 is of the form

13M72L05 from Thorlabs
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wf = λf

πw0
. (7)

Due to the relatively large size of the beam, we choose a lens with a focal length of 15mm14.
The efficiency of the coupling goes up to 95% thanks to the characteristics of multimode fibers:
single-mode fibers only guide the lowest order mode, which is excited by rays with 0° angles of
incidence; whereas multimode fibers support multiple propagation modes, meaning that light
entering the fiber at various angles can still be guided effectively.

4 Characterization of the beam after the fiber
A Digital Micromirror Device (DMD) is a device formed by arrays of micromirrors (7.6µm size)
that can be tilted in two positions: +12◦ (ON) or -12◦ (OFF). Therefore, when light is incident
onto the surface of the DMD, it can be reflected in two directions. By choosing the micromirrors
that are tilted ON or OFF, the creation of different light patterns is enabled.

We use a DMD DLP3000 from Texas Instrument to do the potentials. The rectangular chip
of 684x608 micromirrors is illuminated with the incoherent light coming out of the fiber. Thus,
it is necessary to characterize and prepare this beam to make sure that the process of creating
the potential is as efficient as possible.

4.1 Divergence and shape
When working with Gaussian optics, collimation is related to the Rayleigh length, which is the
distance from the waist to where the beam area is twice the beam area at the waist. It is given
by zR = πw2

0/λ, where w0 is the beam waist. A Gaussian beam is said to be collimated if the
Rayleigh length is much longer than the propagation distance. A spatially incoherent beam
of area Abeam is formed by randomly distributed Gaussian beams that cover a coherence area
Ac = πl2c , where lc = cτt is the coherence length. The number of these Gaussian beams is given
by the ratio Abeam/Ac. Then, when the coherence length decreases, more and smaller Gaussian
beams are propagating. Since the Rayleigh length is proportional to the square of the beam
waist, the divergence increases for very incoherent beams, which are characterized by a small lc.
This makes the divergence unavoidable for our beam source [10].

In this case, the convergence of the beam is characterized by a round-shaped beam with a
sharp edge, which corresponds to the image of the fiber core. We want this optimum shape
to be at the DMD plane. If the fiber had been square-shaped, it would have been possible to
perfectly match the beam with the rectangular chip of micromirrors, illuminating almost all
of them without losing power. Using this kind of fiber is the final plan for the experiment.
However, due to extended delivery times, it has not yet arrived for testing. We used a fiber with
a round core instead, which makes us choose between losing power or letting some mirrors not
be illuminated. For our tests, the whole chip was illuminated to characterize the performance
of the entire DMD surface, taking the risk of encountering undesired effects due to scattering at
the edge of the chip.

14AC080-016-A-ML from Thorlabs
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4.2 Out-coupler lens
For optical power to be conserved in an optical system, the etendue can never decrease. This
quantity is related to how spread out the light is in terms of area and angle. For an infinitesimal
surface, dS, crossed by light confined to a solid angle, dΩ at an angle θ with its normal, the
etendue is defined as

dξ = n2dS cos θdΩ, (8)

where n is the refractive index of the medium. Considering an extended source in air emitting
light inside a cone of angle α, we get after performing the integral over the surface and solid
angle that

ξ = πAs(n sinα)2 = πAsNA2 (9)

In a perfect optical system, the etendue of the image is the same as that of the source. The
conservation of etendue ensures that the imaging capability of the system is fully exploited [11].

In this case, the fiber acts as the light source, and the potential is the image. To avoid power
losses in the optical system, it must be ensured that

AfiberNA2
fiber ≤ ApotentialNA2

objective, (10)

where Afiber and Apotential are the areas of the fiber core and the created potential, respectively.
If the equality holds, we also ensure that the imaging potential of the system is maximally
utilized. Thus, the out-coupler lens that images the fiber core onto the DMD surface should not
compromise the etendue conservation by being a restrictive element for the NA.

The NA is not the only decisive property in the choice of the out-coupler lens. The beam
diverges rapidly, and the image must be formed at a relatively large distance, specifically on the
DMD plane. Thus, according to Gaussian optics, the lens must have a sufficiently large focal
length. Since they maintain a high NA (0.6) with a large focal length (f = 20mm), we used a
condenser lens15.

4.3 Inhomogeneities in the intensity profile
In Section 3, we have concluded that the conversion of temporal to spatial incoherence after the
fiber is possible. However, some speckle patterns appear in the intensity profile of the imaged
fiber’s core. This phenomenon is more evident when increasing the lasing. Under threshold, the
spontaneous emission contribution broadens the spectrum of the total signal, and the light is less
coherent after the fiber. However, when lasing starts to predominate, the spectrum narrows and
the light becomes more coherent, causing these inhomogeneities to appear in the beam profile
(see Figure 6). This suggests that the temporal incoherence of the laser diode is not enough to
remove all the speckles with this fiber. Therefore, either a light source with a broader spectrum
or a multimode fiber with a larger modal delay would be necessary to achieve this.

The speckle patterns are also very sensitive to a change in the angle of incidence into the
fiber. This makes acousto-optic modulators and deflectors potential tools to mitigate the inho-
mogeneities of the beam profile. By sending sound waves through a crystal, the light is diffracted
at different angles depending on the frequency. If this frequency oscillates rapidly enough that
the atoms cannot notice the changes in the pattern, they will experience the average potential.
This also results in a more uniform intensity profile on the camera due to its frame rate.

15ACL2520U-B from Thorlabs
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Figure 6: Intensity profile of the focalized beam after the fiber. Left: 0.33A of driving power. 3.81% relative
standard deviation. Right: 0.65A of driving power. 10.15% relative standard deviation

We first placed an acousto-optic modulator16 (AOM) before the fiber. It has a clear aperture
of 1mm, which is large enough for the squared beam, but too small for the entire halo resulting
from spontaneous emission. We also tried a 2D acousto-optic deflector17 (AOD), even if it is not
designed for our wavelength. Its aperture is larger in this case, 7.5mm x 7.5mm, and it can deflect
vertically and horizontally. AOMs and AODs operate based on the same fundamental principle of
acousto-optic interaction, where acoustic waves influence the properties of light. However, their
applications differ significantly. AODs are primarily used for deflecting light paths, enabling
precise control of beam direction. When used together in a 2D configuration, they can provide
accurate control over both horizontal and vertical deflection. In contrast, AOMs are typically
employed to modulate the intensity and frequency of lasers, which is essential in many optical
setups. While modulation is their primary function, AOMs can also work as deflectors. Thus,
it is worthwhile to test both to determine which one performs better in our case.

We align the AOM to maximize the power of the first diffraction order. For the 2D AODs, we
use the 1-1 order, which is the first-order diffraction from the first AOD that is then diffracted
by the second AOD. After coupling the corresponding order to the fiber, the intensity profile of
the beam was measured while changing the amplitude of the oscillations of the driving frequency
(see Figure 7). We employed a Voltage Controlled Oscillator (VCO)18 to convert a DC input
voltage into a radio frequency (RF) signal. The RF frequency output of the VCO is directly
related to the input voltage. This VCO is driven by an arbitrary waveform generator19, which
produces ramped voltage signals. Consequently, the VCO’s output frequency oscillates with the
modulation frequency of the input signal. When setting the modulation frequency, it is crucial
to ensure that it does not coincide with any resonant frequencies of atomic heating mechanisms.
For trapped atoms, these resonances are typically lower than the chosen value: 100kHz.

To compare the performance of both devices, let us consider the mean value and the relative
standard deviation of the profiles. Both AOMs and AODs have a center frequency at which
the efficiency of the first-order diffraction is maximized. As the modulation amplitude increases,
more power is lost due to both the acousto-optic deflector working far from its center frequency,
and the change in the angle of incident affecting the fiber coupling. For a detailed analysis of these
losses, see Appendix B. At the same time, the relative standard deviation decreases due to more
averaging in the profile. The initial relative standard deviation depends on the speckle pattern

16ATM-2001A1 from IntraAction
17DTSXY-400-1064 from AA
18VCO ROS-400 for the AOM and ROS-150 for the AODs from ICFO electronic workshop
19SIGLENT SDG6032X

13



(a) AOM (b) Vertical AOD (c) 2D AODs

Figure 7: Comparison of the profiles for different modulation amplitudes of the oscillations.

of the beam at the time of measurement. This value is different for the AOM and the AODs
analysis because the initial angle of incidence was not the same for both measurements. Thus,
using the difference of the standard deviation relative to each initial value is more convenient
for comparison.

In Figure 7, the mean intensity variation and the decrease in the relative standard deviation
are plotted as a function of the modulation bandwidth. Using the AOM, we achieved a 30%
reduction in the relative standard deviation with losing only slightly more than 5% of intensity.
Then, we tried to modulate the frequency of the vertical AOD while keeping the horizontal
AOD at its center frequency. In this case, to achieve a similar 30% reduction in the relative
standard deviation, the mean intensity is reduced to 45% of its initial value. We also modulated
the frequency of both AODs simultaneously. This approach did not perform as well as the
AOM either: losses were up to 20% for a 30% reduction. Nevertheless, none of the setups could
be useful in the conditions of the test due to the low power efficiency obtained. For the first
diffraction order of the AOM at the test RF power, the efficiency was less than 10%, which is
much lower than the 90% expected. Approximately the same power was obtained for the 1-1
order of the AODs. Due to the time constraints associated with these tests, an extended analysis
of the potential efficiency improvements through increasing RF power has yet to be conducted.
The contribution of the incoherence of the light source to this issue should be also quantitatively
determined.

5 Quality of the imaging system
The optical system for imaging the DMD consists of two lenses, with focal lengths f1 and f2,
and the camera. Using a 4f configuration, the image of the DMD is demagnified by a factor
of f2/f1 and captured by the camera, which is positioned where the atoms would be trapped.
To avoid artifacts due to reflections on a tilted surface, the beam after the DMD should leave
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perpendicular to its surface. By setting an incident angle of ±24◦ with respect to the surface, the
micromirrors tilted ±12◦ are imaged in the plane of the camera, letting us visualize the pattern
sent to the DMD. To ensure the angles were correct, I first placed the DMD so that its front
surface was parallel to the reference grid of the optical table. Then, I set all the micromirrors
to a −12◦ tilt and aligned the incident beam so that the reflection was perfectly perpendicular
to the DMD surface. This ensured that the incident angle was −24◦.

5.1 Analysis of the Point Spread Function
A critical feature for characterizing the imaging system is the resolution, which determines the
minimal distance between two points of the object plane that can be seen independently in the
image. Even for a perfect optical system with no aberrations, the finite aperture limits the
possible resolution and is the so-called diffraction limit. The far-field condition ensures that
the distances in an optical system are such that the angular distribution of the light becomes
nearly uniform, and the effects of curvature of the wavefront can be ignored. If all distances in
the assembly are such that the far-field assumption is valid, the image of a point source - the
point-spread function (PSF) - can be well described as an Airy disk, i.e.

PSF(r) = A

(
J1(αr)
αr

)2
, (11)

where J1 is the Bessel function of the first kind of order one, and A and α are variables related
to the characteristics of the system. Considering the Rayleigh criterion, which states that two
points are still distinguishable if the central maximum of the first Airy disk directly overlaps with
the first diffraction minimum of the second disk, the expected resolution for a diffraction-limited
system is given by

R = 0.61 λ

NA
, (12)

where the limiting NA of the optical system is considered. Therefore, by fitting the PSF from
the optical system to an Airy disk, the resolution can be computed using the extracted width.
However, due to the complexity of Airy disk fits, a 2D Gaussian function can be used instead to
directly determine the resolution. A 2D Gaussian is of the form

G(x, y) = C exp
(

−(x− x0)2

2σ2
x

)
exp

(
−(y − y0)2

2σ2
y

)
, (13)

where C, x0, y0, σx and σy are free parameters in the fit. According to [12], the resolution is
given by R = 2.905σ.

As a first approach to imaging the DMD, we used a couple of singlets20. It was particularly
useful to test the first patterns and images of the PSF. Due to the aberrations that these lenses
introduce, they are not suitable for a high quality imaging system. Then, we changed them
for achromatic lenses21, which are designed to limit the effects of aberrations. In this case, the
diameters and the focal lengths of the achromats are larger than for the singlets, ensuring a
larger aperture and the fulfilling of the far-field assumption. Figure 8 shows the two setups.

20LA1509-A and LA1433-B from Thorlabs
21ACT508-500-B and ACT508-400-B from Thorlabs
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(a) Singlets setup. A telescope before the DMD was needed
to make the beam size suitable for illuminating the DMD
surface (LC1715-B and LA1433-B from Thorlabs). The 1”
mirrors are BB1-E02 from Thorlabs.

Condenser lens
NA = 0.60
f = 20mm

Multimode fiber1’’ E02 mirror

Achromat
f = 500mm

Achromat
f = 400mm Cam

2’’ E02 mirror DMD24°

(b) Achromats setup. A cage system for the first lens and
a translational stage for the camera are set due to the high
sensitivity of the alignment to a change in these distances.
The 2” mirrors are BB2-E02 and BBE2-E02 from Thorlabs.

Figure 8: Different setups for the comparison of the resolution.

We consider a single micromirror as a point source, as it represents the smallest discrete
unit of light emission in our system. For the point source approximation to be valid, the size
of the micromirror, multiplied by the demagnification factor, must be significantly smaller than
the expected resolution of the imaging system. For this DMD, each micromirror is 7.6µm in
size. The demagnification factors are 0.67 for the singlets and 0.8 for the achromats, ensuring
that the entire DMD surface is imaged within the camera. This implies that each micromirror
corresponds to one or two pixels. According to equation (12), the expected resolutions are 4.9µm
and 8.1µm for the singlets and the achromats, respectively. Thus, a single micromirror cannot
be considered as a valid point source, and its shape affects the PSF. For a detailed analysis of
these effects, see Appendix C, which concludes that the Gaussian convoluted with the image of
a micromirror constitutes a suitable fitting function to compute the resolution.

To study the PSF of both optical systems, we use a pattern where a single micromirror
is sending light at each vertex of a 40x40 mirror square. This repeats across the entire DMD
surface, creating a grid of illuminated points (see Figure 9). Using this configuration, we analyze
the imaging quality across different zones of the DMD surface.

Figure 9: Image of the periodic pattern.

In Figure 10, the size of the PSF obtained by the fitting process are plotted as a function
of the distance from the center of the DMD for both singlets and achromats setups. For this
comparison, we consider the actual demagnification of each setup, which can be also obtained
from the images of the periodic PSF. By knowing the distance between the light-sending mirrors
on the DMD and measuring the separation between the centers of the PSFs in the image, the
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demagnification is calculated as the ratio of these two distances.
With the singlets, the PSF gets worse when getting further from the center, specially hori-

zontally. In contrast, the PSF is almost unperturbed along the DMD surface for the achromats
case. It is also worth remarking that the horizontal width is larger than the vertical one, which
implies that the PSF is not completely symmetric.

Figure 10: Values of σx and σy obtained by fitting each PSF to a Gaussian convoluted with the image of a
micromirror. The horizontal axis represents the distances from the center of the DMD image in each direction.

From the results of the fits, we compute the resolution as R = 2.905σ. We compare the
diffraction-limited resolution obtained with equation (12) and the resolution from the fits in
Table 2. As a criterion, the value of Rfit is selected as the one with the highest frequency in the
histograms of Figure 11. They represent the vertical resolution values with a step size of 0.1µm.

RRayleigh Rfit Ratio
Singlets 4.9µm 15.4µm 3.1

Achromats 8.1µm 17.6µm 2.2

Table 2: Values for the resolution.

Although the resolution ratio, defined as Rfit/RRayleigh, is higher for the singlets setup than
for the achromats one, the results with the achromats are still worse than expected. If the
full aperture of the lenses is not utilized, the theoretical resolution is overestimated because it
assumes that the lens diameter is the limiting factor. This discrepancy is related to the non-
conservation of etendue. While etendue does not decrease, ensuring no power losses, it differs
between the source and the image. As a result, the imaging capability is not fully exploited,
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(a) Singlets. (b) Achromats.

Figure 11: Histogram of the vertical resolution with 0.1µm step size.

leading to reduced resolution. Determining how much of the aperture is used for imaging can
help us estimate a more realistic resolution for this optical system. To address this, we studied
the effect of closing an iris just before the lenses on the PSF. In Figure 12, the relative variation
of PSF size is represented as a function of the aperture.

The horizontal PSF size remains approximately constant until the aperture reaches 25 mm,
at which point it decreases before increasing again at 15 mm. This behavior suggests both that
only around 25mm of the aperture is being used, and that cutting the edges of the beam might
be beneficial, specially for the horizontal direction. The edges of the beam could be adding
aberrations that affect the PSF quality. Considering 25mm of aperture in the expression for the
resolution, RRayleigh ≈ 16.5µm, which is a value much closer to the one obtained with the fitting.

(a) 3” iris placed just before the first lens. (b) 3” iris placed just before the second lens.

Figure 12: Relative variation of the PSF width as a function of the aperture size.

At this point, due to the high dependence of the PSF on the position of the camera (see
Figure 13), finding the focus is key for characterizing the performance of the imaging system. As
a criterion, the PSF with a higher Strehl ratio will be considered to be in the focus. The Strehl
ratio corresponds to the ratio between the peak intensity of the aberrated Airy disk and the ideal
one. If it is larger than 0.8, the system can be considered diffraction limited. Since all images
are normalized to their maximum intensity, computing the Strehl ratio involves integrating both
the imaged PSF and the expected Airy disk. The peak intensity for each case is given by the
inverse of the respective integrals. The Strehl ratio is then obtained by taking the ratio of these
peak intensities.
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The Strehl ratio reached its maximum value, 0.438, for the starting point in Figure 13. This
result not only establishes a focus, but also ensures that the diffraction limit has not been
achieved. However, a relevant aspect when analyzing the Strehl ratio is that one micromirror
cannot be considered as a point source in this imaging system. Consequently, what we interpret
as a PSF deviates from an ideal Airy disk, potentially influencing the Strehl ratio results.

Figure 13: PSF for different longitudinal distances of the camera. Images of 138µm × 138µm.

Although we have established the focus by considering the best Strehl ratio, the focalization
seems different when imaging larger patterns. As shown in Figure 14a, the edges of the bright
square of 20 micromirrors side are much sharper for the position of the PSF with a smaller
Strehl ratio than for the focus. This implies that the focus for imaging larger patterns would be
different than the focus for the PSF. One possible explanation would be that imaging a larger
portion of the DMD can benefit from spatial incoherence, which reduces phase-related artifacts
and improves image quality at a specific distance. This averaging effect resulting from the lack
of interference is influenced by the illumination of multiple micromirrors. In contrast, when
imaging a single micromirror, phase randomness can create irregular patterns that affect the
PSF width at that specific position. Supporting this hypothesis, the inverse pattern of the PSF
- i.e., where only one micromirror is not illuminated - shows a narrower width compared to the
direct pattern, as illustrated in Figure 14b.

(a) Sharpness of the edges of a bright square of 20 micromirrors for
two different longitudinal positions of the camera.

(b) Inverse pattern of the PSF. Images of
138µm × 138µm.

Figure 14: Analysis of the sharpness of the edges and the inverse pattern of the PSF.

The negative effect on the PSF seems more evident in the horizontal direction, maybe due
to the angle of incidence on the DMD. The incident-light path is forming 12◦ relative to the
micromirrors in the horizontal direction, which means that the optical path length across the
micromirror varies between the edges. This variation could be introducing even more randomness
in the phase, resolving to be worse horizontally than vertically.
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5.2 Depth of field and depth of focus
The depth of field is defined as the range of longitudinal distances (i.e. distances along the
propagation direction) within the object space where objects are imaged with acceptable quality,
whereas the depth of focus constitutes the range of longitudinal distances within the image space
where the camera can be moved while maintaining acceptable sharpness. Both provide useful
information about the performance of an imaging system. To measure these quantities, the size
of the PSF is represented as a function of the displacement from the focus in Figure 15.

(a) Depth of field. (b) Depth of focus

Figure 15: Size of the PSF as a function of the displacement from the optimum position (a) of the lens; (b) of
the camera.

The depth of field of an imaging system is given by

DoF = λ

(NA)2 , (14)

where NA is the numerical aperture of the objective [13]. In our case, the value is of the order
of hundreds of micrometers.

As a qualitative analysis, both plots exhibit asymmetric behavior between negative and
positive displacements, which typically indicates the presence of aberrations in the imaging
system. Furthermore, the curves for horizontal and vertical sizes are displaced relative to each
other, with their minimum values occurring at different positions. This is a clear indication of
astigmatism, which could be corrected with specialized optics in the future. These issues make
giving concrete experimental values a complicated task.

We define an experimental estimation of the DoF as the distance between the two points
where PSF size is 1.5 times its minimum value. By applying linear interpolation to the data, we
estimate the depth of field to be approximately 2.1 mm. Considering the same estimation for
the depth of focus, the distance is around 1.3 mm. Since this value is significantly larger than
lz = 161.1 nm of the harmonic trap, the main conclusion is that the atoms will not experience
noticeable defocusing.

5.3 Modulation Transfer Function
The Modulation Transfer Function (MTF) is a measurement of the ability of an imaging system
to transfer contrast from the object to the image. To study the MTF of the imaging system, a
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pattern of periodic lines with several spacings is sent to the DMD, vertically (see Figure 16a)
and horizontally. The contrast is computed as

C = Imax − Imin

Imax + Imin
, (15)

where Imax and Imin are the maximum and the minimum of intensity in the line pair (lp),
respectively.

In Figure 16b, the contrast obtained from the image of the pattern of periodic lines is
represented as a function of the frequency in line pairs per millimeter. For a diffraction-limited
system, the behavior should be almost linear. When there exists some defocus, the linear
dependence is lost. For spatially incoherent light, the expected cutoff frequency is estimated as

ξcutoff = 1
λ · F

= 2NA
λ

, (16)

where F = (2NA)−1 is the f-number of the limiting lens [14]. In our optical system, ξcutoff ≈
135lp/mm.

(a) Pattern for measuring the MTF. (b) Contrast as a function of the frequency. Upper figure [14]

This result confirms that the system is not diffraction limited, specially horizontally. However,
it is hard to come to conclusions when the number of points is too low - the amount of data is
limited by the DMD, since the smallest separation possible is a row of micromirrors.

6 Squared box potentials
In the generation of the final square box-shaped potentials, the plan is to use a high NA objective
to image the pattern onto the atomic plane. To conserve the etendue, the side length of the
square illumination - when the DMD reflects all incident light into the imaging path - must
satisfy

dpotential =
√
Afiber

NAfiber

NAobjective
(17)

Assuming that the numerical aperture of the objective is a value near 0.6, the illuminated area
has to be around 115µm × 115µm in the future experiment. This will determine the required
demagnification.
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Let us focus the following analysis on relevant characteristics of the square box potentials.
In particular, we will study the sharpness and the darkness.

Using blue-detuned light is an easy way to create a flat zone for the atoms. Since they are
attracted to the minima of intensity, they are trapped in the non-illuminated hole of the box.
Achieving homogeneous illumination in the optical system is important to ensure that the height
of the barriers remains approximately constant along the trap. However, in an optimal trap, the
atoms have to experience the same optical dipole potential, making it necessary to characterize
how dark the non-illuminated region is. Another relevant characteristic of the potential is the
sharpness of its edges. The smoother they are, the further the trap is from the boxed potential
considered in the theoretical model. The sharpness can be measured by fitting the intensity
profiles to a convolution of a step function and a gaussian, whose σ is related to this feature.

For these analyses, three squared boxes of sizes 10, 20 and 50 micromirrors were imaged.
The non-illuminated zones can be seen in Figure 17.

(a) 10 mirrors side. (b) 20 mirrors side. (c) 50 mirrors side.

Figure 17: Up: Images (5.8mm x 4.3mm) of the squared boxes. Down: Darkness of the holes.

We compute the standard deviation inside the hole relative to the bright region, giving (a)
2.58%, (b) 1.4%, and (c) 1.18%. As expected, the standard deviation decreases as the dark zone
enlarges. The sharpness of the barriers behaves differently. We calculate the mean value of the
fitted σ from the horizontal and vertical Gaussian fit, resulting in (a) 4.1 µm, (b) 3.9 µm, and
(c) 3.3 µm. This indicates that the walls are sharper for larger boxes. Thus, we conclude that
it is more convenient to use larger boxes in terms of darkness and sharpness of the potentials.
However, the risk of tunneling through the box walls should also be considered as the barriers
start to get thinner.

The σ obtained as the sharpness is related to the resolution of the imaging system by the
same expression R = 2.905σ considered in Section 5. Using the values of the σ discussed
before, the resolution is significantly smaller than the results from the PSF measurements. This
observation further supports the hypothesis that the optical system performs at a higher quality
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when imaging larger patterns.
Finally, we compare the sharpness obtained with incoherent illumination to that achieved

with coherent light during my internship. I measured a σ of approximately 22 µm using the
same fitting process described in this section [8]. Thus, the sharpness and resolution achieved
with incoherent light represent an improvement of 667% compared to the results obtained with
the coherent illumination setup.

7 Conclusions

In this master’s thesis project, I prepared a test setup for creating 2D box-shaped optical dipole
potentials using a Digital Micromirror Device illuminated with spatially incoherent light. I
characterized its performance and provided useful insights for the final setup that will be used
in the experiment.

First, I performed some realistic calculations for the final experiment, obtaining an estimation
of the chemical potential of the sample and the optical dipole trap. I also described the conversion
from temporal to spatial incoherence using a multimode diode laser and a multimode fiber. I
tested the light source and designed a power control stage for it. After shaping the beam, I
coupled it into the fiber. Based on the specifications of the multimode fiber, I calculated the
efficiency of the conversion from temporally to spatially incoherent light.

Characterizing the beam after the fiber is crucial for preparing the optimal beam that will be
incident onto the DMD surface. I imaged the fiber’s round core in the DMD plane, ensuring that
all the micromirrors were illuminated, though this resulted in some power losses. In the final
experiment, the core will be square to better match the rectangular chip of micromirrors. The
beam profile showed some speckles, leading us to conclude that the spectrum of the multimode
laser was not broad enough to completely eliminate phase-related artifacts when using this
multimode fiber. To mitigate this issue, I proposed using acousto-optic deflectors. While the
tests showed promising results, further analysis is needed to understand the low efficiency of the
first orders.

I designed an imaging system consisting of two lenses to image the DMD pattern onto a
camera. I demonstrated the advantage of using achromatic lenses over singlets by comparing the
resolution values across the DMD surface. I provided a detailed analysis of the PSF, explaining
its relationship with the resolution and the focus. Additionally, I measured the depth of field
and depth of focus, as well as the Modulation Transfer Function (MTF) of the optical system.
As a final analysis, I studied relevant characteristics of the box-shaped potentials, such as the
sharpness of the walls and the homogeneity of the darkness inside the trap.

In conclusion, using spatially incoherent light shows significant improvements over coherent
illumination in the quality of the potentials, particularly in terms of homogeneity and sharpness
of box-shaped traps. Combining this illumination with a Digital Micromirror Device enables the
creation of arbitrary potentials, which have a wide range of applications for ultracold quantum
gases experiments. As a follow-up to this work, the setup with the already ordered squared-core
fiber and the final objective needs to be prepared. Tests of the performance of two AODs designed
for the correct wavelength should also be conducted to determine their suitability for the final
setup. Another important task would be measuring the spectrum of the laser to confirm the
validity of the estimations made in this master’s thesis. Moreover, given the observed speckles in
the beam profile, a more temporally incoherent light source, such as a superluminescent diode,
could be considered for the experiment.
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A Derivation of the Gross-Pitaevski equation
This Appendix includes the derivation of the 2D Gross-Pitaevski equation starting from the 3D
case. Let us consider a 3D dilute gas of N ≫ 1 identical bosonic atoms, whose interactions can
be described by a contact potential

U(ri − rj) = g3Dδ(ri − rj), (18)

where g3D = 4πℏ2as/m is the coupling strength, which is set by as. This parameter can be tuned
with Feshbach resonances, although just to a certain point before leading to strong three-body
losses. The particles also experience a trapping potential V (r).

We apply a mean-field approximation by considering that the bosons are macroscopically
occupying the same single-particle state, i.e., the many-body quantum state |ΨN ⟩ can be written
as

⟨r1, ..., rN |ΨN |r1, ..., rN |ΨN ⟩ ∝ ψ(r1)...ψ(rN ), (19)

where ψ is normalized to N
(∫

|ψ(r)|2d3r = N
)
.

Under this assumption, the system can be described by the Gross-Pitaevski equation in 3D:(
− ℏ2

2m∇2 + V (r) + g3D|ψ|2
)
ψ = µψ, (20)

where µ ≡ ∂E
∂N is the chemical potential.

Experimentally, we take our system into a 2D geometry by implementing a tight confinement
along the vertical direction. Then, although the interactions preserve the 3D behavior, the
motion of the atoms along the z direction is not allowed. In our experiment, this confinement
is ensured by a harmonic potential, V (z) = mω2

zz
2/2. Assuming that the particles lie in the

ground state of the harmonic potential, and that the energy necessary to go to the first excited
state is larger than both the thermal energy and the interaction energy per particle, we can use
the ansatz

ψ(r) = ϕ(x, y)χ0(z); χ0(z) = (πl2z)−1/4e
−z2

2l2z . (21)

The condition of normalization now reads
∫

|ϕ(r)|2d2r = N ;
∫

|χ0(z)|2dz = 1, and the
in-plane density is n(r) = |ϕ(r)|2.

By defining g2D = g3D
∫

|χ0(z)|4dz, the Gross-Pitaevski equation can be rewritten as(
− ℏ2

2m∇2 + V (r) + g2D|ϕ|2
)
ϕ = µϕ, (22)

where now V (r) represents the box potential: constant and equal to zero over the size of the
sample and with sharp edges. Then, inside this box, the equation that describes the sample is(

− ℏ2

2m∇2 + g2D|ϕ|2
)
ϕ = µϕ. (23)

25



From the previous analysis, it has been found that the two-dimensional coupling strength
when lz ≫ as reads

g2D = ℏ2

m

√
8πas

lz
. (24)

Defining g ≡ mg2D/ℏ2, we get that the equation of motion can be rewritten as(
− ℏ2

2m∇2 + ℏ2

m
g|ϕ|2

)
ϕ = µϕ. (25)

Therefore, the coupling constant depends on the frequency in the quasi-2D regime as g ∝ √
ωz.

B Efficiency curves of the AOM and AODs
In this Appendix, we analyze the power losses associated with the performance of acousto-
optic deflector devices. Both AOMs and AODs have a central frequency at which the efficiency
of first-order diffraction is maximized. Additionally, the RF frequency directly influences the
diffraction angle. Therefore, as the operating frequency deviates from this central frequency,
both the optical power of the first-order diffraction and the coupling efficiency decrease. Figure
18 represents the first-order and fiber coupling efficiency as a function of the RF frequency sent
to the AOM.

(a) (b)

Figure 18: Efficciency of the first order and of the fiber coupling for different RF frequencies in the case of the
AOM.

The maximum efficiency is not achieved at the center frequency. Instead, the curve appears
to be shifted away from the center. This shift is due to the increase in acoustic power with
rising RF frequency. The VCO generates higher RF power at higher frequencies, which affects
the efficiency of the first-order diffraction. The efficiency of the first order, η, is given by

η = sin2
(
C

√
Pa

λ

)
, (26)
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where Pa is the acoustic power and C is a constant depending on the characteristics of the
AOM. It is measured with respect to the transmitted power, which, in this case, is 85.5% of
the incident power. The efficiency increases with Pa until it reaches a plateau, beyond which it
starts to decrease. In our case, the AOM is operating at its test frequency, which is below the
point where the plateau is reached. Thus, the impact on the first-order efficiency from using a
frequency slightly offset from the center is smaller than the effect of the increase in RF power.
This is not the case for fiber coupling. As the frequency moves further from the center, the
coupling efficiency decreases as expected due to changes in the diffraction angle.

For the AODs, the transmitted power was only 67% of the incident power. This is partly
because the AODs are designed for a wavelength of 1064 nm rather than 675nm. Since the
AODs could be absorbing part of the optical power coming out of the laser, it is necessary to be
cautious with the incident power levels to avoid damaging the AODs.

In this case, we measured the efficiency of the 1-1 order while varying the RF frequency in
different ways. In Figure 19, Vertical (or Horizontal) indicates that the RF frequency of the
vertical (or horizontal) AOD was adjusted while the other AOD’s frequency was held at the
center frequency. In the cases of Both, the RF frequencies of the two AODs were the same.

Figure 19: Efficiency of the 1-1 order of the 2D AODs.

As expected, the efficiency decreases more rapidly when varying the frequency of both AODs
simultaneously compared to when it is changed only for one AOD. This more pronounced reduc-
tion in efficiency occurs due to the compounded effects of frequency shifts on both devices.

This analysis provides a relevant insight for integrating these acousto-optic deflector devices
into the final experiment to homogenize the beam profile for the potentials. However, none of
the setups proved suitable under the test conditions due to the low power efficiency observed in
both cases.

C Analysis of the possible fitting functions
In this Appendix, we explore various fitting models for the PSF to determine which one most
accurately reproduces the original image. We focus on three 2D functions: an asymmetric
Gaussian, an asymmetric Airy disk, and the theoretical PSF of a square aperture. The latter is
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mathematically described by

PSF(x, y) = (sinc(αxx))2 (sinc(αyy))2 , (27)

where αx and αy correspond to the free parameters for the fit.
Since the size of a micromirror is comparable to the resolution of the imaging system, the

image of a micromirror may be present in the PSF. To account for this, we convolve each of
these functions with the image of a micromirror, modeled as a square rotated by 45◦ with a side
length sfit given by

sfit = smirror · d
p

, (28)

where smirror = 7.6µm is the side of the micromirror on the DMD, d is the demagnification, and
p = 3.45µm is the size of a pixel in the camera. Figure 20 displays these different fits for the
PSF with highest Strehl ratio.

(a) Original PSF. (b) Asymmetric Gaussian.

(c) Asymmetric Gaussian convoluted
with a rotated square.

(d) Asymmetric Airy disk convoluted
with a rotated square.

(e) Product of sinc functions convo-
luted with a rotated square.

Figure 20: Different fits.

Since sfit is approximately 1.7 pixels, the difference between the Gaussian and the convolved
Gaussian fits is not visually apparent. The sinc function fit partially captures some features of
the halo surrounding the main peak, while the Airy disk fit does not succeed in this regard. For
a more detailed analysis, the logarithmic scale of these images is shown in Figure 21.

28



(a) Original PSF. (b) Asymmetric Airy disk. (c) Product of sinc functions.

Figure 21: Logscale for different fits.

From these images, we conclude that neither the Airy disk nor the sinc function accurately
represent the shape of the PSF. This suggests that the halo surrounding the main peak is pri-
marily due to optical aberrations. Given that these models cannot reproduce the PSF accurately
and considering their complexity, we choose to use the 2D Gaussian model.

Finally, to assess the difference in resolution when fitting with a 2D Gaussian compared to
the convolved 2D Gaussian, we extract the fitted PSF width and calculate the resolution with
the relation R = 2.905σ. Using the periodic pattern of one micromirror used in Section 5, we
consider a larger dataset for comparison. The values for the resolution obtained with the two
fits are plotted as a function of the distance from the center of the pattern in Figure 22.

(a) Fit with a gaussian. (b) Fit with a gaussian convoluted with a rotated square.

Figure 22: Widths of the PSF obtained from the fitting process as a function of the distance to the center of
the pattern.

Although less successful fits are obtained with the convolution, the values of the resolution
are smaller than for the Gaussian. This indicates that incorporating the micromirror image
into the PSF results in a resolution closer to the expected value. Consequently, we use this
convolution as a fitting function.
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