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Abstract: Very light and weakly-coupled new-physics particles, like axion, may manifest them-
selves as long-range forces between ordinary matter, such as nucleons and electrons. Such new forces
can be searched for by means of a variety of experiments.

In this thesis, we revisit the computation of non-relativistic potentials generated by the axion,
a new light pseudo-scalar particle interacting with the Standard Model. We will use a general
lagrangian to parametrize the new interactions between axions and ordinary matter. Moreover,
we will improve previous results going beyond the leading order Born approximation. We amend
previous results and also identify new contact terms that appear in the non-relativistic expansion.

I. INTRODUCTION

After having built the celebrated unifying theory
known as Standard Model (SM), physicists are facing
several problems which cannot be addressed within the
scope of this theoretical construction. For instance,
there are some observations such as dark matter (DM),
neutrino masses and the cosmological matter-antimatter
asymmetry that remain unaccounted. Therefore, alter-
native theories have been suggested with the intention of
solving some of these issues. The example that is going
to be discussed in this project is the axion.

The axion, a, is a very light pseudo-scalar particle that
couples to the CP violating topological gluon density
(a/fa + θ)GG̃, where fa is the scale, θ is the CP vio-
lating term, G = Gµν is the gluon field strength tensor

and G̃µν its dual. Such extension is able to solve the
strong CP problem and, consequently, contribute to the
DM [1].

The exchange of new light particles by ordinary mat-
ter can generate an additional and potentially observable
“fifth” force between them, inversely proportional to the
mass of the new mediator. Searches for long-range forces
have a long history. In this work, we want to revise the
theoretical calculation of the long-range force mediated
by the axion.

In sec. II we will review the calculations of the tree-
level mediated potentials within a general Lagrangian,
encoding scalar and pseudo-scalar interactions. The first
results for the elastic scattering at leading order in the
non-relativistic expansion will be also presented stressing
discrepancies with former works. In sec. III experimental
constraints for long-range forces will be discussed. In
sec. IV the axion-mediated potential will be extended
beyond the leading order and the elastic limit. Finally,
in sec. V we will summarize the thesis with the key points.
An appendix is included at the end with formulae that
will be used to obtain the results throughout the work.

II. LONG-RANGE AXION-MEDIATED FORCES

Let us consider the most general Lagrangian
parametrizing the interactions of axions (i.e. pseudo-
scalar boson) with fermions

L =
1

2
∂µa∂

µa− 1

2
m2

aa
2 +

∑
i

ψ̄i(i/∂ −mi)ψi

−
∑
i

a
(
gSi ψ̄iψi + gPi ψ̄iiγ5ψi

) (1)

where i runs on fermions such as p, n and e, the macro-
scopic matter at large distances or at low energies.
Since the term ψ̄i(i/∂ −mi)ψi corresponds to a Dirac’s

lagrangian, one can consider the fields to be general so-
lutions of the Dirac equation, which read

ψ̂(x) =

∫
d3p⃗

(2π)3
1√
2E

∑
λ

[
e−ipxuλ(p⃗)âλ(p⃗)+e

ipxvλ(p⃗)b̂
†
λ(p⃗)

]
and taking into account that ˆ̄ψ = ψ̂†γ0

ˆ̄ψ(x) =

∫
d3p⃗

(2π)3
1√
2E

∑
λ

[
eipxūλ(p⃗)â

†
λ(p⃗)+e

−ipxv̄λ(p⃗)b̂λ(p⃗)
]

where λ labels the different spin polarizations; and

âλ(p⃗)(b̂
†
λ(p⃗)) are the (anti)particle creation (annihilation)

operators which fulfill anti-commutation relationships{
âλ(p⃗), â

†
λ′(p⃗′)

}
= (2π)3δ(3)(p⃗− p⃗′)δλλ′{

b̂λ(p⃗), b̂
†
λ′(p⃗′)

}
= (2π)3δ(3)(p⃗− p⃗′)δλλ′

and the remaining anti-commutators are zero.
In order to study the axion potential between two

fermions we have to consider the following process medi-
ated by the axion

ψ1(p1)ψ2(p2) → ψ1(p
′
1)ψ2(p

′
2) . (2)

with p
(′)
i the incoming (outgoing) external momenta.

Given the Lagrangian in Eq. (1), this process results in
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three possible amplitudes characterised by the two terms
mediating interactions between the scalar field a and the
fermionic fields ψi. Therefore, one obtains scalar×scalar
(gS1 − gS2 ), scalar×pseudo-scalar (gS1 − gP2 ) and pseudo-
scalar×pseudo-scalar (gP1 − gP2 ) interactions whose dia-
grams are presented in Fig. 1. The resultant amplitudes
read

M1 = −gS1 gS2
[ūλ′

1
(p⃗ ′

1)uλ1
(p⃗1)][ūλ′

2
(p⃗ ′

2)uλ2
(p⃗2)]

q2 −m2
a

M2 = −igP1 gS2
[ūλ′

1
(p⃗ ′

1)γ5uλ1
(p⃗1)][ūλ′

2
(p⃗ ′

2)uλ2
(p⃗2)]

q2 −m2
a

M3 = gP1 g
P
2

[ūλ′
1
(p⃗ ′

1)γ5uλ1
(p⃗1)][ūλ′

2
(p⃗ ′

2)γ5uλ2
(p⃗2)]

q2 −m2
a

(3)

where q = p′1 − p1 = p2 − p′2 is the momentum transfer.

p⃗1

p⃗2

p⃗ ′
1

q⃗

p⃗ ′
2

FIG. 1: Feynman diagrams of the interaction in Eq. (2).
Depending on the kind of interaction mentioned, the

vertices will be {gSi , iγ5gPi }

A. Axion-mediated potentials at leading order in
the relativistic limit

The first step of our treatment focuses on the calcula-
tion of the non-relativistic potentials for the elastic scat-
tering in the leading order (LO) in the non-relativistic ex-
pansion. In our calculation we confirm and amend some
results present in literature, as in [2, 3].

Now, in order to calculate the axion potential between
two fermions we have considered the Fourier transform of
the amplitudes in Eq.(3). In the elastic limit the following
kinematic conditions, consistent with the non-relativistic
expansion, apply

q0 = 0 → |p⃗i| = |p⃗ ′
i | and q2 = −|q⃗|2.

By using the non-relativistic expansion for the scalar
and pseudo-scalar fermionic bilinear in App. A, the non-
relativistic potentials in the different sectors at LO in
non-relativistic limit are listed below.
• Scalar×Scalar Interaction

Mel
1 =

gS1 g
S
2

|q⃗|2 +m2
a

→

V el
SS =

∫
d3q⃗

(2π)3
M1e

iq⃗·x⃗ = −g
S
1 g

S
1

4πr
e−mar

(4)

• Pseudo-scalar×Scalar Interaction

Mel
2 = −i gP1 g

S
2

|q⃗|2 +m2
a

q⃗ · σ⃗λ′
1λ1

2m1
→

V el
PS = − gP1 g

S
2

8πm1
r̂ · σ⃗λ′

1λ1

(
ma

r
+

1

r2

)
e−mar

(5)

where we have introduced the three-component vector

σ⃗λ′
iλi

= χ†
λ′
i
σ⃗χλi for each particle types (i = 1, 2) and

for each spinor polarizations, (λi, λ
′
i) = (1, 2). Moreover

σ⃗ = (σ1, σ2, σ3) is the vector containing the 2 × 2 Pauli
matrices.
• Pseudo-scalar×Pseudo-scalar Interaction

Mel
3 = − gP1 g

P
2

|q⃗|2 +m2
a

(−q⃗ · σ⃗λ′
1λ1

)(q · σ⃗λ′
2λ2

)

4m1m2
→

V el
PP =

gP1 g
P
2

4m1m2
σ⃗i
λ′
1λ1

σ⃗j
λ′
2λ2

∂i∂j
e−mar

4πr

which, using the results in App. B

V el
PP = − gP1 g

P
2

16πm1m2

[
(σ⃗λ′

1λ1
· σ⃗λ′

2λ2
)

(
ma

r2
+

1

r3
+

4π

3
δ3(r)

)
−(σ⃗λ′

1λ1
· r̂)(σ⃗λ′

2λ2
· r̂)
(
m2

a

r
+ 3

ma

r2
+

3

r3

)]
e−mar

(6)

Here we highlight a list of discrepancies with respect to
the previous literature about the calculation of the non-
relativistic potentials. The calculations were also checked
with little programs in Mathematica to avoid possible er-
rors given the length of the formulae.
• Scalar×Pseudo-scalar Potential (Eq. (5))
We find an overall minus sign with respect to the result
of Refs. [2, 3] arising from an inconsistency of the con-
ventions. As reported in App. C, the Feynman diagrams
used in the thesis are compatible with the positive expo-
nent of the Fourier transforms. Eq. (5) is derived from
a t-channel diagram in which the momentum q is trans-
ferred from the scalar to the pseudo-scalar current.
• Pseudo-scalar×Pseudo-scalar Potential (Eq. (6))
We find an overall minus sign with respect to the result
of Refs. [2, 3]. This probably originates from a miss-
ing sign in the derivation of the non-relativistic limit
of the pseudo-scalar bilinears. Recalling the expression
q = p′1 − p1 = p2 − p′2 (Fig. 1), the explicit expressions of
the fermion bilinears (App. A) differ by

ūλ′
1
(p⃗ ′

1)γ5uλ1
(p⃗1) = −

q · σ⃗λ′
1λ1

2m1

ūλ′
2
(p⃗ ′

2)γ5uλ2(p⃗2) = +
q · σ⃗λ′

2λ2

2m1

Moreover, note the contact interaction represented by
δ3(r) in Eq. (6). This contact arises from the singular
part of the second derivatives of 1/r and was missed in
previous studies. It belongs to the microscopic world and
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cannot be probed at classical scales. However, it is a new
effect that may cause shifts on the energies of quantum
systems.

III. EXPERIMENTAL PROSPECT

A possible way to detect light particles coupled with
ordinary matter, is to look for new macroscopic forces
mediated by the exchange of such light new particles.
The range of the force is related to Compton wavelength
λ = 1/ma of new particle. It can, therefore, be tested
in laboratory searches for ma below eV, as reported in
Fig. 2, where the best experimental constraints on their
parameter space are highlighted. Fig. 2 has been gener-
ated making use of the python code in [4].

As mentioned in the previous sections, the lagrangian
in Eq.(1) enables three possible interactions: monopole-
monopole (gSN,e−gSN,e), monopole-dipole (gSN,e−gPN,e) and

dipole-dipole (gPN,e−gPN,e). Monopole-monopole forces in

Eq. (4) at LO represent long-range spin-independent po-
tentials. Their detection can be carried out via precision
measurements of Newton’s law, searched for violations of
the equivalence principle with torsion balance techniques.
Bounds from the potential in Eq.(4) are shown on the left
plot of Fig. 2. The axion develops also spin-dependent
thanks to scalar and pseudo-scalar couplings to nucleons
and electron, namely monopole-dipole forces in Eq. (5).
The eperimental bounds are shown on the left plot of
Fig. 2. Finally, dipole-dipole forces mediated from axion
in Eq. (6) can also be searched for in laboratory experi-
ments, but their results are much less restrictive than the
corresponding astrophysical limits.

IV. AXION-MEDIATED POTENTIALS
BEYOND THE LEADING ORDER

Until now we have been concerned with reproducing
the calculation of the potentials, limiting ourselves to LO
contributions in the non-relativistic expansion and elastic
scattering. In this section we consider, instead, higher-
order non-relativistic corrections of the elastic process
and in the next we comment about relaxing as well
the hypothesis of elastic scattering. Using the non-
relativistic expansion at next LO in App. A we have for
each sector
• Scalar×Scalar corrections

Mel
1 =

gS1 g
S
2

|q⃗|2 +m2
a

(
1 +

|q⃗|2

8m2
1

+ i
(P⃗1 × q⃗) · σ⃗λ1λ1

4m2
1

)
(
1 +

|q⃗|2

8m2
2

− i
(P⃗2 × q⃗) · σ⃗λ2λ2

4m2
2

)

=
gS1 g

S
2

|q⃗|2 +m2
a

(
1 +

|q⃗|2

8µ2
+
i

4
K⃗ · q⃗

)
(7)

where

1

µ2
=
m2

1 +m2
2

m2
1m

2
2

, K⃗ =
σ⃗λ1λ1

× P⃗1

m2
1

− σ⃗λ2λ2
× P⃗2

m2
2

and the corresponding Fourier transform is

V el
SS = −g

S
1 g

S
2

16πr

[
1− 1

8µ2

(
m2

a − 4πrδ3(x)
)

− 1

4

(
ma +

1

r

)
K⃗ · r̂

]
e−mar

(8)

• Pseudo-scalar×Scalar corrections

Mel
2 = −i gP1 g

S
2

|q⃗|2 +m2
a

q⃗ · σ⃗λ′
1λ1

2m1

(
1 +

|q⃗|2

8m2
2

−i (P⃗2 × q⃗) · σ⃗λ2λ2

4m2
2

) (9)

Thus the potential reads as

V el
PS = − gP1 g

S
2

8πm1

[
r̂ · σ⃗λ′

1λ1

(
ma

r
+

1

r2

)
− 1

8m2
2

(
m3

a

r
+
m2

a

r2
− 4πmaδ

3(x)

)
− 1

4m2
2

(
ma

r2
+

1

r3
+ 4πδ3(x)

)
σ⃗λ1λ1 ·σ⃗λ2λ2 × P⃗2

]
e−mar

(10)

• Pseudo-scalar×Pseudo-Scalar corrections
Dealing with only pseudo-scalar vertices, the only

type of non-relativistic correction arises from the inelas-
tic case. The pseudo-scalar vertices have not got non-
relativistic corrections in the elastic limit see App. A.

A. Axion-mediated potentials beyond the elastic
limit

Going beyond the elastic scattering is actually required
in order to provide a consistent non-relativistic expansion
of the potentials, since the elastic condition is automati-
cally enforced at the LO in the non-relativistic expansion.
Being the complete calculation of the non-relativistic cor-
rections beyond the elastic list quite cumbersome, here,
we only mention the key points to include the inelastic
corrections to the potentials. These corrections will im-
ply new terms proportional to |p⃗i|/m2 coming from both
the spinor expansion and the axion propagator from am-
plitudes of Eq. (3).
It is worth to relax our hypothesis in order to study

scattering processes where the transferred energy slightly
differs from zero. Taking into account that in the inelastic
limit

(q0)2 ≃ (P⃗1 · q⃗)2

2m2
1
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FIG. 2: Using the python code in [4], we show the experimental bounds on the gSN nucleon-axion coupling, Eq. (4),
and on the gSNg

P
e electron- and nucleon-axion couplings, Eq. (5), on the left and the right plots, respectively. The

solid lines correspond to existing laboratory bounds, the dotted lines are the future projections while the dashed
lines represents the combination of laboratory and astrophysical bounds. The green band corresponds to the

astrophysical bound and the theoretical QCD axion band is shown in yellow. Constraints are represented in terms of
the axion mass ma, or its Compton wavelength λ.

the propagator in the amplitudes of Eq. (3) will be

i

q2 −m2
a

=
i

(P⃗1 · q⃗)2/2m2
1 − |q⃗|2 −m2

a

=
−i

|q⃗|2 +m2
a

(
1 +

(P⃗1 · q⃗)2

2m2
1

1

|q⃗|2 +M2

)

The factor in bracket in the above equation should enter
as a correction into all the scattering amplitudes such
as the ones in Eq. (7,8) and the pseudo-scalar×pseudo-
scalar one also, which results exactly in the elastic limit.

V. CONCLUSIONS

In this work we critically revisit the calculation of non-
relativistic potentials mediated by new light particles,

such as axions, coupled to SM fermions. We have re-
produced and improved some results present in the liter-
ature, going, for example, beyond the LO Born approx-
imation and finding a Dirac delta already missed at LO
for pseudo-scalar×pseudo-scalar and at the non-LO for
the other amplitudes.
Our next work will be to study the impact of contact
terms in the phenomenological analysis.
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Appendix A: Spinor notation and non-relatistic
expansion in the elastic limit

First, let us define the set of independent momenta
that will be useful for our work for any set of vertex,
where only one type of particle play a role.

q = p′ − p

P =
p′ + p

2

→
p = P − q

2
p′ = P +

q

2
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FIG. 3: Interaction vertex and convention for the
transfer momentum q = p ′ − p

For simplicity, with respect of sec. IIA, we have neglected
the label i = 1, 2 for each particle type. Now the Dirac
spinor is

uλ(p) =
1√

2m(Ep +m)

(
(Ep +m)χλ

p⃗ · σ⃗ χλ

)
vλ(p) =

1√
2m(Ep +m)

(
p⃗ · σ⃗ χλ

(Ep +m)χλ

)
which χλ = (1, 0) and (0, 1) for λ = 1 and 2, respec-
tively. In the spinor normalization the factor 1/2m is
included to simplify the expression of Feynman ampli-
tudes in sec. II A a factor 1/4m1m2 has to be inserted.
The last assumption that we have made is the elastic

limit of the scattering process, meaning that in the center
of mass frame

q0 = 0 → |p⃗ ′| = |p⃗|, P⃗ · q⃗ = 0.

The bilinear forms which we are interested in sec. II A
are in the elastic limit

ū(p′)λ′u(p)λ =
1

2m

[√
Ep′ +m

√
Ep +m δλ,λ′

−χT
λ′

(p⃗ ′ · σ⃗)(p⃗ · σ⃗)√
Ep′ +m

√
Ep +m

χλ′

]

≃
(
1+

|p⃗|2

4m2
− (p⃗ · p⃗ ′)

2m2

)
δλ′,λ

+ iχT
λ′
(p⃗× p⃗ ′) · σ⃗

4m2
χλ +O

(
|p⃗|2

m2

)
≃
(
1+

|q⃗|2

8m2

)
δλ′,λ + iχT

λ′
(P⃗ × q⃗) · σ⃗

4m2
χλ

and

ū(p′)λ′γ5u(p)λ =
1

2m
χT
λ′((p⃗ ′ − p⃗) · σ⃗)χλ = −χT

λ′
q⃗ · σ⃗
2m

χλ

where in our notation, q = p⃗ ′ − p⃗.

Appendix B: Derivatives of the Yukawa potential

It is useful to calculate the various derivatives of

e−Mr

r

emerging from the Fourier transform of all non-
relativistic potentials. First let us take

∂i∂j

(
e−Mr

r

)
The second derivative must be considered in two cases
where:
• r ̸= 0 :

∂j

(
e−Mr

r

)
= −xj

(
M

r2
+

1

r3

)
e−Mr,

∂i∂j

(
e−Mr

r

)
= −

[
δij
(
M

r2
+

1

r3

)
−M

xixj

r

(
M

r2
+

1

r3

)
− xixj

r

(
2M

r3
+

3

r4

)]
e−Mr;

• r = 0 :

∇2

(
1

r

)
= −4πδ3(x⃗) , ∂i∂j

(
1

r

)
= −4π

3
δijδ3(x⃗)

due to the distributional nature of the Coulomb law, we
must add this quantity within the term multiplying δij .
At the end:

∇⃗
(
e−Mr

r

)
= −

(
M

r
+

1

r2

)
r̂e−Mr,

∂i∂j

(
e−Mr

r

)
= −

[
δij
(
M

r2
+

1

r3
+

4π

3
δ3(x⃗)

)
−

r̂ir̂j
(
M2

r
+

3M

r2
+

3

r3

)]
∇2

(
e−Mr

r

)
=

(
M2

r
− 4πδ3(x⃗)

)
e−Mr

Appendix C: Convention on the Fourier transform

Considering the diagram in Fig. (3) our convention on
the Fourier transforms for the Feynman propagator is

i∆(x1 − x2) =

∫
d4q

(2π)4
i

q2 −m2 + iε
e−iq·(x1−x2)

The convention cannot be forgotten because it can lead
to a mismatch of signs in the literature. Physical observ-
ables are not sensitive to convention as long as they are
used consistently. The main Fourier transforms appear-
ing in the tree-level work are the following∫

d3q⃗

(2π)3
eiq⃗·x⃗

|q⃗|2 −M2
=

1

4π2ir

∫
dq

qeiqr

q2 −M2
=
e−Mr

4πr
,∫

d3q⃗

(2π)3
eiq⃗·x⃗

(|q⃗|2 −M2)2
=

1

4π2ir

∫
dq

qeiqr

(q2 −M2)2
=
e−Mr

8πM
.

where r ≡ |x⃗| and q = |q⃗|.
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