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Introduction

Historically, the study of musical form and harmony through mathematical
tools has heavily relied on the premises and assumptions from the music-theoretic
formalization for the context of the object of analysis. Many of the latter usually
involve some sort of mathematical construction, regardless of how explicit it might
be.

A more recent approach, applied mainly to the derivation of harmonic pro-
gressions, stems from the usage of context-free grammars and other more general
sorts of linguistic structures. We focus on some examples proposed to parse chord
sequences in the domain of early jazz standards ([Ro20], [Gr14]), although some
considerations are borrowed from those dedicated to occidental classical music
from the late nineteenth century ([MR21]).

Behind each of the visited models lie certain musical hypotheses that shape
the scope of the used objects, as well as the distinctive features of the rules which
they operate with. Thus, it is natural for some questions to arise: what do these
have in common? Can they be thought of as instances of a more general system?
How strong should the assumptions behind such a frame be?

We turn to modal logic to formalize such common grounds for several gram-
mars to be inspected. In particular, we use a fusion of lineal temporal logic (LTL)
and K modal logic endowed with the transitive closure of its modal operator. The
proposed models can evaluate any formula in the language and inherit the con-
sidered grammar through reflecting it the relation corresponding to the modal
operator of K.

Our goal is to provide a sound formalization of such structures and study
the behavior of well-known decision problems in the several restrictions and frag-
ments of the logic that appear naturally. Concurrently, we will base some of the
results on and interpret them in the key of actual musical grammars, while ob-
serving the categorization of overall classes of models.

Despite us not being aware of this construction being applied to musical anal-
ysis anywhere else at the moment of writing this, several of the methods used
are well-known and extended for other kinds of multimodal logics. We high-
light reducibility relations between decision problems ([Ho01]), canonical models
and filtrations ([Go87]) and other notions from computational complexity theory
([LP81]).

This thesis is structured as follows:

• Chapter 1 motivates and presents the basic machinery to handle our con-
structions from the harmonic and logical perspectives. While no previous
musical knowledge is required, the reader familiar with some basic theory



iii

might appreciate some intuitions behind the proposals.

• Following this, chapter 2 proposes the structures we will study henceforth
and underlines some of their main properties.

• Chapter 3 introduces and discusses model checking. Undecidability is rea-
soned in terms of reduction to the Post Correspondence Problem, and de-
cidable fragments are based on restrictions for the accessibility relation in
particular grammars.

• Another problem, decidability, is explored in two of its variants, subject to
whether we fix a grammar or not. Filtration and fragment analysis are note-
worthy aspects of chapter 4.

• Finally, chapter 5 deals with some concrete musical examples and summa-
rizes the obtained results.

I would like to acknowledge the determined patience and dedication of David
Fernández-Duque, my thesis advisor. Any positive aspect of this work can only
be seen as a result of his constant guidance and commitment to materialize a not
so typical proposal for a project.

I also want to express my appreciation for the comments and inputs from
colleague musicians and music theory researchers. Of course, I am forever grateful
to my friends and family for their unwavering support, without which it would
be hard to imagine having closed this stage of my life.



Abstract

Musical theory has often employed multiple grammars to formalize harmonic
languages. We reinterpret a particular model in terms of a fusion of temporal
and transitive modal logics. This work focuses on the analysis of typical decision
problems of the field, while exploring how might the results vary according to the
applied restrictions. In order to do so, we recur to well-known techniques and
methods from computability theory and the field of modal logic. Some examples
from the music-theoretic literature are presented and analyzed through the lenses
of the considered results and observations.

2020 Mathematics Subject Classification. 03B62, 03B45, 03D05.



Chapter 1

Preliminary notions

This preparatory chapter provides the elementary tools and techniques to un-
derstand and develop the structures upon which our logic will be based. Several
music-theoretic references are contrasted and summarized through the exposition
of grammars, and a particular rule set from [Ro20] is taken as a readily applica-
ble example. Most of the definitions of grammars and modal logics can be found
in widely available manuals, such as [LP81] and [Ch80]. Some basic knowledge
of general logic and complexity theory is required to comprehend the upcoming
chapters – however, this introductory chapter attempts to provide the bases to op-
erate with modal logics and grammars without the reader needing to have studied
them previously.

1.1 Motivation

After the formal segregation of ‘the arts’ in the quadrivium, the relationship
between harmony and mathematics has still been an object of study, albeit from
different standpoints. In general, the attempts by European musical academic
institutions to formalize certain aspects of classical music (theory) have only man-
ifested the inevitable tension between a series of proposed schemata and the es-
caping from rules by actual musical practice.

Undoubtedly, when it comes to relating form and micro-scale, harmony has
mostly been the predominant object of analysis in this musical tradition. Within
the styles where the functional relation between chords prevails, we can distin-
guish several ways to view harmonic phenomena: on the one hand, the scale at
which the conjunction of sounds that we come to understand as harmony is most
relevant, be it in a voice-leading sense or in a more structural viewpoint; on the
other hand, we might discuss how these entities interact with each other, to what
extent is an alleged macro-form representative or source of the local development

1



2 Preliminary notions

of chord sequences, when certain ways of composing and understanding music in
the Baroque are based in the juxtaposition of semioticly meaningful resources.1

In any case, the recent trend in data-based models such as [HR11] not only es-
tablishes a compromise between such complementary systems, but also requires
us to understand music as a lax, evolving conglomerate of languages whose con-
ception also stems from different understandings of form and sound.

In one respect, combinatorial theories of tonal/modal areas are preceded by
Guido de Arezzo’s hexachordal scales, often appearing in the context of Carey
and Clampitt’s seminal publications on well-formed scales ([CC89]). Through the
interaction with schemata theory, documented recently by [HR11], has given rise
to systems such as the ones presented by [DN18] and [DN19]. Another word-
theoretic formalization is explored by [CN11].

Besides those, but not completely unrelated, the sort of constructions we will
base our work on have their origins in the tradition of Chomsky generative gram-
mars and, in particular, in Lerdahl and Jackendoff’s Generative Theory of Tonal
Music ([JL83], also [HHT06]). Improving on existing attempts to formalize chord
sequences of given styles in tree-like derivations (such as [NR15]), several no-
tions from Neo-Riemannian theory and additional assumptions assist the author
in refining some of the previous milestones. Incidentally, similar arrangements
for melodic progressions can already be found in Schenker’s writings decades
before.2

From the mathematical standpoint, both sorts of systems may be thought of as
lacking due to issues with the completeness of the characterized material or the
representativity of the obtained models. In some sense, a possible cause for this is
apparent simplicity of the systems, which can be traced back to the minimal but
profound assumptions the authors make regarding the represented corpus, such
as fifth-based movement or right-heading harmony, respectively. Nonetheless, it
is this primitiveness which prevents the models from becoming completely satu-
rated and trivial, and which leaves room for a musical interpretation outside the
mathematical formalization.

Multiple grammars

Through the history of the development of generative models for a given mu-
sical quality, it has become evident that the choice of foundations for a certain
system has deep consequences in the outcome of the enterprise. It can often be ob-
served that models constructed with different mathematical machinery, but which

1See [Gj07] for a thorough presentation.
2For example, as seen by [Be19].



1.1 Motivation 3

are coherent or complementary in terms of its elementary assumptions, can give
rise to combinations which improve some of the weaknesses from the initial ones.

For instance, our initial aim was to view in terms of modal logic Rohrmeier’s
proposal of a grammar for classic jazz harmony, through a direct translation or
an equivalent formulation as of soundness and completeness. One of the core
principles is the identification of the tunes as all-encompassing harmonic units,
that is, chords large in temporal scale which can be decomposed in its derivations.
Such transformations are assumed to rely in the notion that each chord can either
be substituted, or prepared and extended to the left.

However, the outcome might leave unsatisfied the reader expecting to find
more complete information in an aseptic, formal environment. If they were to
refuse the belief that musical interpretation is indispensable, a possible solution
would be to consider context-dependent rules, such as those allowing for turnaro-
unds (see [HOR18]) or other structural connections. But there would still exist
problems of the same nature even by regarding modal harmony (see [MR21]) and
common-note modulation, or by trying to replicate some of the transformations
seen for octatonic symmetries and Euler’s Tonnetz space ([Ty12]).

One of the most prominent approaches for trying to circumvent these issues
comes as some variation of probabilistic models. In [HOR18], the authors manage
to address the double focus on global form and local endings, essentially thanks
to process information in a more detailed manner with tags. Some generaliza-
tion of context-free grammars (abstract CFGs and probabilistic ACFGs) is intro-
duced, along with the application of parsing and Bayesian inference techniques.
Even though they involve data sets, the derivations occur in a rather local scale,
although the doctoral dissertation [Ha20] presents a more thorough study with
generalizations.

Another direction is taken in [Ha12] and [HR09], where a measure of similarity
between musical segments is presented in order to establish a grammar which
assigns tags to chords and searches, given two sequences and their generation
trees, the largest commonly embedabble tree. Furthermore, [Gr14] supplements
this by considering Markov constructions. On a related note, other parsers can also
contemplate psychological or proper linguistic aspects, as seen in [KOOTU20] and
[AIMT97].

Finally, some efforts have been made to gather data for probabilistic models
of particular styles or composers, as it is the case of [BS13], [BS19] and [AW04].
For more akin statistical processing of corpora, [CR08] assigns probabilities to
certain transitions in Bach chorales (normalized or flattened in terms of musical
information), and [HMNR19] studies the proportion of certain transitions within
Beethoven string quartets, aiming to contextualize some progressions (in different
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levels of globality) and quantify tonal direction.

So even if our focus is not turning to probabilistic automata (despite already
committing classes larger than PP), we switch perspectives in hopes of providing
a more general framework to explore decision problems for grammars related
to harmony. Some aspects of operations on topological and metric spaces can be
interpreted in terms of dynamical systems, and [KM05] [KKWZ06] opt for a modal
logic as a tool to express and utilize this correspondence.

We will adopt a combination of temporal logic and an accessibility logic to
express in general the possible unrestricted musical grammars, hoping to system-
atize the study of sequence parsing and complexity of relevant problems. For
instance, one could propose a formula φ to summarize the notion of a harmonic
progression resolving in a certain tonal context:3 then, φ could be manipulated in
another expression with the purpose of checking if a resolution occurs in a given
sequence, or if some variation or reprise can take place in any grammar comply-
ing with given limitations. These two kinds of questions correspond to two central
decision problems, model checking and satisfiability, which will be analyzed in the
following chapters.

1.2 Musical machinery

A significant amount of suggested models for analyzing tonal harmonic se-
quences relies on the notion of grammar. In particular, given the nature of the
derivation rules and the ambiguity of some musical structures, some of the exist-
ing systems focus on context-free grammars, but we will use more general tools.
We provide the sufficient background to understand the constructions that moti-
vated this work and to reproduce their intricacies onto our logic and formalization.
Recall that:

Definition 1.1. A(n unrestricted) grammar is a 4-tuple G = ⟨V,Σ, P,S⟩, where V
is a set of variables, Σ is an alphabet of terminal symbols usually disjoint from V,
P ⊆ ((V ∪ Σ)∗ \ {ε})× (V ∪ Σ)∗ is a collection of production rules, and S ⊆ V is the
set of starting variables4.

We operate with words on V ∪ Σ in the following manner: we define the rela-
tion ⇒G, given words u,u′, as u⇒G u′ if there exist v,v′,w,w′,α, t ∈ (V ∪ Σ)∗ and
α ̸= ε such that u = vαw, u′ = v′tw′, and α⇝G t is a production rule, i.e. (α, t) ∈ P.

3Personal communication with Bryan Perilla.
4Usually, only a single starting variable is regarded. For the sake of meaning coherence of our

variables, we consider a set of initial variables, but a workaround would be to introduce an auxiliary
starting variable s0 and adding the rules s0→ s, for every s ∈ S.



1.2 Musical machinery 5

We write α⇝ t if there is no risk of ambiguity, but we reserve the non-subscripted
⇒ for a future modal relation. We do denote by ⇒∗G the (reflexive) transitive clo-
sure of ⇒G, and call the set L(G) = {u ∈ Σ∗ | ∃s ∈ S (s⇒∗G u)} the language of the
grammar G.

In musical terms, our field of study are harmonic sequences of classical tonal
jazz, so it is natural to question which representation of chords serves our pur-
pose best. From the musician standpoint, “surface-level” chords are enough for
their practice and understanding of a tune. However, provided that e.g. Gmin7

can either be a first degree of G minor, or a second degree of F major, it is nec-
essary to somehow include this information in the syntactical formalization. So
let D := {I, I I, . . . ,VII} be the set of degrees and K := {C,c,C#,c#, . . . ,B,b} the set
of keys/tonalities.5 We opt to express variables as pairs (d,k) of degree and key,
usually written as dk, so that the actual chord can be inferred (and actually ma-
terialized) by some unary production rule: for instance, ig and iiF correspond to
the aforementioned Gmin7 in the respective contexts. Note that, for the sake of
simplicity, we identify all extensions, inversions and modalities6 (maj/min) of any
given chord, since they are functionally equivalent in this context.

Having presented and refined the building blocks of our sequences, the goal
of a system should be to formalize the rule set that encapsulates the possible
sequences; that is, the rules for which the language of their grammar is precisely
the desired collection of sequences. We assume our set of initial variables to be
{Ik | k ∈ K}, the set of first degrees, based on the assumption that, in our corpus,
any chord beyond the final Ik is a da capo/preparation of the beginning of the
sequence.7

In [Ro20], first motivated by [Ro11], Rohrmeier distinguishes three types of
rules:

– unary rules: chord substitutions, whether they preserve tonal function (e.g.
tritone substitutions) or not (tonicizations).

– (binary) prolongational rules, which add another instance of the variable in
question (I⇝ I I).

– (binary) preparatory rules, which derive the harmony that leads to a partic-
ular chord (V⇝ V/V V).

In particular, only left-branching rules are considered among the latter (i.e. for

5Notice that, unlike keys, we do not split degrees in their major (uppercase) and minor (lower-
case) variants. This is because we generally assume they are unequivocally determined by the key
the chord is found in, thus –for our purposes– we can assume I = i, I I = ii,. . . , and employ each in
their context.

6Understood as the major, minor, diminished, augmented, sus, etc. variants.
7See [HOR18] for a discussion in the case of turnarounds.
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every X ∈ V in the left hand side of a rule, the rule is of the form X ⇝ YX,
for some Y): this materializes the assumption that functional harmony is right-
headed, in the sense that every chord can only be understood as the predecessor of
some other further along the tune. We outline the common-practice rule schemata,
followed by a description of their notation:

Diatonic fifth X⇝ ∆/X X Substitution X⇝ Sub/X
2ry dominant X⇝ V/X X
Leading tone X⇝ vii◦/X X Tonicization Xkey=Y⇝ Ikey=X/Y

Half cadence 1 V⇝ ♭VI V
Half cadence 2 V⇝ IV V Modulation Z/Xkey=Y⇝ Zkey=X/Y

Diminished 1 X⇝ X◦ X Tritone subs. V/Xkey=Y⇝ Vkey=♭V/X/Y

Diminished 2 X⇝ ♭ii◦/X X Backdoor V V/Xkey=Y⇝ Vkey=♭I I I/X/Y

Half-diminished X⇝ ii7♭5/X X Mode inversion Xkey=Y⇝ Xkey=inv(Y)

Plagal cadence I⇝ IV I Terminal rules X⇝ Chord(X)

Table 1.1: Summary of the possible rules for a generative syntactic model of har-
monic sequences, in the context of jazz standards. Instances of terminal rules
replace a variable by their corresponding chord as a symbol in Σ. By ∆ we refer
to the diatonic fifth, and inv switches major and minor modes.

The forward dash notation X/Y serves to refer to a particular chord which
occupies the position X in a scale over Y: for example, ∆/vi in D major is an
F minor chord, that is, (d,k) = (iii,D). Depending on the rule and its musical
context, we may choose to remain in the same key or modulate to one where the
alluded chord actually occurs, such as expressing ♭ii◦/ii in E♭ major (F♯ dimin-
ished) as (vii,g). Barring some exceptions (like tritone substitutions), every X/Y
just corresponds to shorthand for some chord, which allows us to handle them as
ordinary elements of the domain of our rules. Recall that we separate major and
minor keys as different objects, but not scale degrees, whose representation does
not affect the way we apply rules. Similarly, we use the superscripts 7, ∆7, −7, ◦

and +7 to denote (seventh) dominant, major, minor, diminished and augmented
chords, respectively.

When dealing with particular frames and grammars, we will choose equally
expressive subsets of this list, sometimes even simpler collections. It is important
to note that, unless specified, every rule schema is applicable to any degree and
key, even though some of the instances are not common (musical) practice. We will
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not make such distinctions, as they will not affect the expressive or computational
power of the examples we will present. The following is a possible interpretation
of the harmonic sequence of a tune:

Figure 1.1: Blue in green

Example 1.2. This analysis of Blue in green focuses on the right-headed drive of
the harmony, since the first instance of D−7 could have been thought of as an
independent branch overall. Thus, the “change” and the tritone substitution are
integrated within the general outline. Note that the key notation is dropped for a
neater result.

Such opposing interpretations of a same sequence are common, though this
capacity to recreate complex sequences leaves aside the frequency analysis of cer-
tain changes – there might not be any rule to explain certain transition (especially
by chromatic proximity), but it is precisely the gap in the tree (the disruption of
continuity) that highlights its relevance, as some of the people who worked on it
argue.
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Context-free grammars grant the systems of chord analysis the possibility to
reproduce a particular set of rules in virtually any layer within the harmonic archi-
tecture of the piece. By acknowledging chords or scale degrees as candidates for
both surface-level elements and modal regions in a larger structure, we are capable
of applying the same sort of “logic” universally. On the other hand, it is fairly more
common to see certain rules near the surface, like diminished passages and ap-
proximations, although those which appear in both levels of complexity have their
meaning differ (like a modulation as a whole tonal area or just as a coloration).
A case may be made for introducing restrictions which could differentiate cer-
tain structural levels, so as to reflect some notion of metric or not to allow certain
odd resolution of harmonic sequences – with our tools, an arrangement can be
proposed at the cost of perhaps sacrificing the aforementioned reproducibility to
some extent.

What should we retain from this section, when suggesting a modal logic frame-
work for harmonic material? Our subject of study will be chord sequences which
can be transformed into others: this motivates a possible accessibility relation for
our modal logic, besides the temporal one, which is already implicit in the fact
that sequences live in a particular timeline. In terms of the building blocks to be
considered, we can either view elements of the sequences as “generators” chords
+ (degree in scale), or scale + (degree of chord). For the sake of efficiency, we will
not be regarding inversions, major/minor variants and other information beyond
structural harmony.

1.3 Modal logic

We can view modal logic as extension of classical logic which lets us express,
depending on the context, a certain modality:8 in our case, we are interested in the
notion of reachability. Syntactically, the recursive definition for the construction
of formulas can now allow for a new unary connective □ and its dual ♢ := ¬□¬.
Semantically, they let us argue about the worlds where a formula holds – in par-
ticular, whenever a formula holds in all (necessarily) or some (possibly) worlds
connected to the one we are evaluating the formula in.

Definition 1.3. We consider structures (models) of the form M = ⟨W, R,V⟩, where W
is a set of worlds/states, R a binary relation between worlds (responding to the ac-
cessibility between them) and V : W→ Prop a mapping which assigns to every world the
propositional variables satisfied in it, called valuation. We writeM, s ⊨□φ when φ holds
in every state t accessible from s (sRt).

8See [BB10] for more developed interpretations.
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It is also plausible to consider several relations in one model, and label the
modal operators in accordance to the relation they reference. From a theoretical
perspective, we are interested in studying the decidability and complexity of some
problems related to given formulas:

– Model checking (MC): given a formula φ, a modelM= ⟨W, R,V⟩ and a state
s ∈W, output whetherM, s ⊨ φ or not.

– Satisfiability: given a formula φ, output whether there exists a modelM and
a state s for whichM, s ⊨ φ. We distinguish:

– Satisfiability without a fixed grammar (SAT): there exist no restrictions
on the grammar underlying the models.

– Satisfiability for a given grammar (SATG)9: given a formula φ and a
grammar G, output whether there exists a modelM based on G and a
state s for whichM, s ⊨ φ.

– Validity (VAL): the dual of Satisfiability10 – given a formula φ, output whether
M, s ⊨ φ for every modelM and every state s. We replicate the previous dis-
tinction here as well.

Given a logic, the interest of studying each of these decision problems relies
on finding out if there exists a procedure (an algorithm, a Turing machine, etc.)
which can correctly answer the query for every possible given input. Moreover,
if so, one can discuss the complexity of the suggested algorithm. Accounting for
a single modal operator, model checking for basic modal logic is decidable and
runs in polynomial time: this uses the notion of the characteristic formula of a state
(of degree n), which identifies its state by the formulas that hold in it up to modal
depth n, and is defined recursively as

χ0
M,s =

∧
p∈V(s)

p ∧
∧

p/∈V(s)

¬p, and χn+1
M,s = χ0

M,s ∧ (
∧

t|sRt

♢χn
M,t) ∧ (□

∨
t|sRt

χn
M,t).

Notice as well how, in case that satisfiability of the logic is decidable, model
checking may be reducible to it: within a model M and a state s, it is precisely
the substructure determined by s (M restricted to the set of states reachable from
s by some Rn) that determines the truth value of some formula evaluated inM, s,
□ is the only modality. For logics like BML, it is possible to encapsulate such
information in a formula by using characteristic χn

M,s, although this is not ensured
for other combinations of logics.

These are well studied properties ([Ng05]). Satisfiability of basic modal logic is
also decidable, as granted by the filtration method. Given a set of modal formulas

9Note the non-italic ‘G’ is not meant to correspond to a grammar.
10In extensions of classical logic.
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Γ and a model M, we can identify states which satisfy the same formulas in Γ
through an equivalence relation R̃Γ. Letting a structure M̃ whose states are the
equivalence classes of R̃Γ and its valuation the valuation ofM over any represen-
tative of the class, we call M̃ a filtration ofM with respect to Γ if, for every state s
inM and any formula φ,M, s ⊨ φ iff M̃, [s]Γ ⊨ φ. It is enough to require that sRt
implies [s]ΓR̃Γ[t]Γ to obtain a minimal filtration. The decidability of the satisfiabil-
ity problem for some φ can then be reduced to checking the satisfiability of φ in
the possible filtrations of our structures: since we are interested in a formula with
a certain (finite) modal depth, the size of such filtrations will be bounded, and it
will be enough to perform model checking in each of them. Note, though, that the
complexity of this method will be at least exponential in general.

Similarly to how we have regarded states as the objects which formulas make
reference to, one can also follow [DGL16] in introducing a syntax for states and
paths altogether. Later on, at the cost of formally referring to states as initial
positions of some path, we will interpret formulas for states as formulas referring
to paths, thus arguments and proofs will be greatly simplified.

Definition 1.4. Recall that a path π is a sequence of states π(0) = s0,π(1) = s1,π(2) =
s2, . . . for which (si, si+1) ∈ R. We define state formulas φ and path formulas ϑ by
simultaneous recursion as:

φ := p ∈ Prop | ¬φ | φ ∧ φ | Aϑ | Eϑ

ϑ := φ | ¬ϑ | ϑ ∧ ϑ | Xϑ | ϑUϑ

Since A (and its dual, E) stand for the basic modal operators, we will interpret
A asM, s ⊨ Aϑ iff every path π starting on s (π(0) = s) satisfies ϑ. State formulas
are evaluated on paths by checking their truth value on π(0). On the other hand,
Xϑ is satisfied by some path π iff ϑ is satisfied by π[1,+∞). Finally, ϑUϑ′ holds in
π iff there exists some natural n for whichM,π[n,+∞) ⊨ ϑ′ and ϑ holds for every
π[i,+∞), i < n. It can be illustrative to observe that the names for the operators
are short for all (paths), every (paths), next (state) and until (state).

The previous construction is usually named the Full Computation Tree Logic
(CTL*). Theories in CTL* are capable of modeling structures which represent
branching-time, understanding paths as possible linear sequences of time flows.
Thus, this kind of temporal logic is a generalization of LTL (linear temporal logic)
and CTL, which subsumes reachability logic (TLR) and, clearly, basic modal logic.
The fact that we can view state formulas as path formulas will allow us to work
exclusively with path formulas, as M,π will satisfy some p ∈ Prop iff p ∈ π(0),
and Aϑ iff every path which shares the first state with π satisfies ϑ.
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Remark 1.5. CTL* has nice properties with respect to linear temporal logic. First,
due to bisimilarity, any CTL* state formula which is satisfiable is so too in a
tree model. Every valid formula in LTL is also valid in CTL* (otherwise, there
would exist a path not satisfying it, a counterexample in LTL). In addition, model-
checking for CTL* can be reduced to that of LTL, and due to the fact that the latter
is PSPACE and so is the reduction, MC(CTL*) is PSPACE too. However, despite
being decidable, satisfiability is more complex (2EXPTIME), and model-checking
(in fact, global too) in CTL can be done in polynomial time.

We are interested in studying the attributes of several systems, and for that it
will be common that we consider fragments of our logic, not only derived from the
restriction of rule sets, but also of the modal operators used – this will allow us
to have stronger, more specific results. On the other hand, we may also consider
strengthened versions of modal operators; for instance, in Section 2.1, we will
present ♢1 to declare accessibility from one path onto another by the application
a single rule, but we will also write ♢ for the transitive closure of ♢1: adding this
operator to a linear temporal logic effectively integrates an “orthogonal” modality,
which could be viewed as some reduct of CTL*, since ♢ψ functions as ⊤U′ψ for
some until operator U′.

Once we have chosen our particular logic and context, our next step will be
to formulate the conditions for the models that validate certain conditions to be
musically relevant. We can either opt to propose a general axiomatic for which
any model of the theory is a desired sequence, or pinpoint the existence of cer-
tain paths inside the model which make sense as acceptable harmonic sequences.
Nevertheless, it will be wise to introduce some metalanguage conditions (such as
finitude of models, etc.), besides any particular requirement that we are able to
express through our logics.



Chapter 2

Theoretical construction

Throughout the development of modal logic, several situations to be modelled
have given rise to a multitude of systems and refinements of the basic formulations
in Section 1.3. These include logics whose frames and operators satisfy additional
properties, and combinations of logics in the form of products, fusions, etc. In
this chapter, we set out to justify our choice of models for a suitable reinterpreta-
tion of grammars for musical sequences. We also present some results related to
derivability and complexity.

2.1 Our model

A first naive translation of the workings of the introduced grammars in terms
of modal logic could be the following: given a fixed set of derivation rules, we can
interpret as a modal operator the relation which associates chord sequences and
any of their transformations upon a single rule application. Thus, the language of
our grammar could be seen as the set of all leaves from the trees which are models
of the logic and are rooted in a state with degree I.

We will first consider schemata of arbitrary rules and progressively focus on
those which satisfy certain properties: for instance, that they apply to a single
chord, do not remove chords, and are at most binary and left-branching (any
added chord appears on the left of the one the rule was applied to). So, eventually,
our rules may be of the form vxu→ v(yx)u, but for now let us suppose they are
just relations between chord sequences.

An attempt

It is also possible to approach the reinterpretation of our grammar as a direct,
shoehorned translation into some expansion of CTL*. However, this results in a

12



2.1 Our model 13

burdensome endeavor which uses elements much more “technical” than natural
in the context of modal logic. Let the set of propositional variables represent scale
degrees (Deg) together with some reserved characters, and consider a collection of
modality relations labeled by keys (in the set Key). In the context of Full CTL, we
may seek to construct a theory satisfied only by models whose paths are associated
with valid chord sequences in the grammar – that is, for example, we can allow
infinite branches of states with empty valuations.

Example 2.1. Let ε :=
∧

d∈Deg¬d. Given some key k, the operator AXk is semanti-
cally interpreted as “for every immediate successor in the modality k”, while EXk

is its existential dual. Some desirable axioms of our theory would be (1) that every
state has at least a chord or is a stopping state (an empty state, hence it does not
have any non-empty successor); and (2) that every immediate predecessor of a
stopping state is a first degree, i.e. that every non-empty state π(0) connected to
a stopping state via a key k must have V(π(0)) = {I} and not have any successor
in the context of another key.

(1) ∀πM,π ⊨ ε→
∧

k∈Key

AXkε

(2) ∀k∀πM,π ⊨
∨

d∈Deg

d ∧ EXkε→ I ∧
∧
d ̸=I

¬d ∧
∧

k′ ̸=k

AXk′⊥

It is conceivable that this rudimentary formalization makes things difficult in-
somuch as it relegates the translation of rule applications to the axiomatic of the
theory instead of to a modal relation. This is especially true for the (attempted) re-
maining axioms, which either subsume the existence of special “transition states”
which prevent unary rules from duplicating chords, or introduce a variant of the
until operator in order to express that, if a chord appears, it is because a binary
rule has already been applied somewhere ahead.

The actual logic

We ultimately forfeit our objective to translate the grammar in terms of an “el-
ementary” modal logic, having our focus shifted from states to paths and relying
on a formulation which involves two accessibility relations. For this purpose, ev-
ery time we address a concrete problem or an example, we will consider a fixed
set of derivation rules (which determine the newer relation) and specify, within
the corresponding logic, which sort of models offer a meaningful answer to our
inquiry (e.g. we could restrict our search to structures which consist exclusively
of paths derived from a certain initial state).
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In that sense, hoping to provide a more natural interpretation of the logic
which makes it easier to work with, we dismiss having any (meta)condition force
all of our models to contain every valid sequence of the grammar, or even to
contain only valid sequences. However, it is legitimate (and feasible) to question
whether a model is complete with respect to the grammar, and under which con-
ditions that happens. Notice that, in any case, our following definition for the
relations will already reflect in the models some of the properties of the derivation
rules and of the underlying mechanisms.

The flavor of our logics will resemble that of products, and they will be re-
ducible to a certain extent. In order present our formulas, let us first introduce the
structures which will model our logic.

Definition 2.2. Let R a fixed set of derivation rules of a grammar G. Our models are
4-ples M = ⟨W,→,⇒,V⟩, where W is the set of states, →⊆W ×W acts as the (im-
mediate) successor relation of paths corresponding to harmonic sequences, and V : W→
Deg× Key is a valuation. Let Π be the set of→-paths inM; then we define⇒⊆Π×Π
as the collection of pairs (π,π′) for which (V(π(i)))0≤i<|π| ⇒G (V(π′(j)))0≤j<|π′| for
some rule in R.1

Note that, so far, valuations assign no more than a chord to each state. We
might refer as valuation of a path to the sequence of valuations of its states. Our
formulas will refer to paths in the structures we handle. The syntax of our (path-
)formulas is summarized by the following recursive definition:

φ ::= p ∈ Prop | ¬φ | φ ∧ φ | Xφ | φUφ | ♢1φ | ♢φ

To introduce the semantics for each of the operators, recall that the next and
until operators are inherited from LTL, and that ♢ expands through transitivity an
otherwise basic logic related to ♢1. LetM = (W,→,⇒,V) and π ∈Π. We write:

– M,π ⊨ p (for p ∈ Prop) iff p ∈ V(π(0)).
– M,π ⊨ ¬φ iffM,π ⊭ φ.
– M,π ⊨ φ ∧ ψ iffM,π ⊨ φ andM,π ⊨ ψ.
– M,π ⊨ Xφ iffM,π[1,+∞) ⊨ φ.
– M,π ⊨ φUψ iff there exists some n ≥ 0 such that M,π[n,+∞) ⊨ ψ and, for

every i < n, π[i,+∞) ⊨ φ.
– M,π ⊨ ♢1φ iff there exists some π′ ∈Π such that π⇒ π′ andM,π′ ⊨ φ.
– M,π ⊨ ♢φ iff there exist r ≥ 0, π0 = π,π1, . . . ,πr ∈ Π such that πj ⇒ πj+1

andM,πr ⊨ φ.

1Notice⇒G instead of its transitive closure⇒∗G in the definition.
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Note that the ♢ operator acts as the (reflexive) transitive closure of ♢1, and that
it is not enough that the goal path is in the model, but also every intermediate one.
We denote our full logic by LU, and the fragment without formulas containing the
U operator by LX. Let us discuss a brief example:

Example 2.3. Let W = (w1
1,w1

2,w2
2,w1

3,w2
3,w3

3),→= {(w1
2,w2

2), (w
1
3,w2

3), (w
2
3,w3

3)} and
V = {(w1

1, IC), (w1
2, IVC), (w2

2, IC), (w1
3, IVC), (w2

3,VC), (w3
3, IC)}. Thus, the set of paths

is Π = {(w1
1), (w

1
2), (w

2
2), (w

1
3), (w

2
3), (w

3
3), (w

1
2,w2

2), (w
1
3,w2

3), (w
2
3,w3

3), (w
1
3,w2

3,w3
3)}.

Suppose R consists of the plagal cadence rule (I⇝ IV I) and the schema of dia-
tonic fifths (X⇝ ∆/X X): then,⇒ has the pairs:

– (w1
1)⇒ (w1

2,w2
2), granted by I⇝ IV I.

– (w2
2)⇒ (w2

3,w3
3), given by I⇝ V I.

– (w1
2,w2

2)⇒ (w1
3,w2

3,w3
3), as witnessed by the inclusions of the paths above in

the current ones.
– (w1

1)⇒ (w2
3,w3

3), again by I⇝ V I.

In ⟨W,→,⇒,V⟩, the formula ♢ψ := ♢(IVC ∧ X(VC ∧ XIC)) holds in the paths (w1
1)

and (w1
2,w2

2), while ♢1ψ only holds in (w1
2,w2

2). However, ♢IC is unsatisfiable in
this structure.

Figure 2.1: Paths and ♢1 accessibility relation from the previous example.

Observe the particularity of this model: it allows us to visualize the actual
transformations between paths, which is useful to comprehend how chord se-
quences are derived in the original grammar. Nevertheless, the translation be-
tween parsing trees and modal structures is seldom literal, as (w1

1) ⇒ (w2
3,w3

3)

does not take place in the grammatical derivation of (IVC,VC, IC). In general, de-
spite this kind of models being useful for our theoretical purposes and for their
applications, we must account for the existence of much more convoluted struc-
tures.

Remark 2.4. Given a grammar G with its fixed rule set (and initial variables cor-
responding to first degrees), its language L(G) corresponds to the collection of
valuations of the paths accessible from (w) in some model where V(w) = Ik, for
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any k ∈ Key. That is, the valuations of goal paths which witness that, in some
structure, the formula Ik ∧ X⊥∧♢ψ, for some k ∈ Key and some ψ.2

Thus, while our grammar might not express every sequence, it is possible that
they are included in a model of LU or LX. But this motivates some decision prob-
lems, such as ask examining if a given sequence can be transformed into another.
In a general context, this belongs to an instance of the satisfiability problem (for a
fixed grammar): given an initial sequence S = (d1k1

, . . . ,dnkn) and a goal sequence
S′ = (d′1k′1

, . . . ,d′mk′m
), it is enough to check if there exists some model in which the

the following formula is satisfied (let us use χS⇒∗S′ := χS ∧♢χS′ as shorthands):

d1k1
∧ X(d2k2 ∧ X(. . . ∧ Xdnkn)) ∧♢(d

′
1k′1
∧ X(d′2k′2

∧ X(. . . ∧ Xd′mk′m
))).

We now introduce a basic model which has exactly a representative for all pos-
sible diatonic chords – in other words, where every possible valuation appears in
one and only one state. It lacks the illustrative traits of the previous structure, in
which the repeated valuations in distinct states allowed for a clearer interpreta-
tion of the notion of derivability. Nevertheless, being a finite model which is as
connected as it can be, it is an optimal structure in which we can enquire general
questions about valid sequences.

Definition 2.5. Let G be a grammar. Consider W = {wdk | d ∈ Deg, k ∈ Key}, →=

W×W and V : wdk 7→ (d,k),3 with⇒ defined accordingly. We callM0 = ⟨W,→,⇒,V⟩
the basic product model.

Proposition 2.6. Let G a fixed grammar,M0 its basic product model. The set of accessible
paths from some (wIk) is complete with respect to L(G), in the sense that for every finite
chord sequence S, S is in the language of G if and only if S witnesses that M0, (wIk) ⊨
χ(Ik)⇒∗S for some k ∈ Key.

Proof. On the one hand, if S belongs to L(G), then there are some r≥ 0, k∈Key and
S0 = (Ik),S1, . . . ,Sr = S, such that Si⇒G Si+1. Since (W,→) is a complete digraph,
every finite sequence of states of M0 exists as a path in the model, so we can
find π0, . . . ,πr whose valuations are S0, . . . ,Sr. Note that the definition of⇒ entails
that πi ⇒ πi+1, since the valuation of πi+1 is derivable in G from the valuation
of πi. Hence, M0, (wIk) ⊨ ♢χS. For the converse direction, if (wIk),π1, . . . ,πr = S
witness that χ(Ik)⇒∗S holds, simply observe that (Ik), V(π1),. . . , V(πr) is precisely
the derivation of S in G.

2Here we interpret X⊥ as π(1) being empty, i.e., our path π not having a second state in which
any chord exists.

3Although we will often identify states with their valuations.
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Normally, LX will serve for most purposes in grammatical common practice,
such as parsing of sequences and interderivability. In some of these cases, there
will be general algorithms which operate in PSPACE – but we will favor LX over
LU when possible due to its better decidability conditions. Moreover, since some
cases of model checking may be reduced to satisfiability, it will be convenient to
work on fixed models such asM0.

2.2 Properties

We exhibit some results and descriptions which will help us contextualize part
of the sections in the main chapters of this thesis. While they are not strictly
applied in any of the presented proofs, they can be thought of as a first exploration
of some of the techniques used, be it on how to decide the satisfaction of a formula
in a given context, or on the refinement of some approaches to adjust them to a
certain category of grammar, structure, etc.

Checking properties in certain models

It is often convenient to study the satisfiability of a formula in a certain class
of models, so that more optimal methods can be applied. One of these is the finite
model property, which asserts that any formula that is not a theorem of a logic is
actually not valid in some finite model (mentioned in several contexts, such as
[Ga06]). Given that our definition the logic was made in semantic terms, we can
think of similar properties which imply every satisfiable formula being satisfied
in a structure finite in some way.4

Usually, it is not enough to ensure that some logic has the FMP in order to
show that the satisfiability problem is decidable ([CGP01]), as it is the case of the
following result. Instead, we often need some bound on the size of the obtained
models, which depends on the given formula, so that we may generate and test
every one of them.

Definition 2.7. Let φ ∈ LX and Sub′(φ) = {(0, φ), . . .} an indexation of its subformulas.
For every (k,ϕ) ∈ Sub′(φ) (abridged as ϕk), denote:

– If ϕ = p ∈ Prop, let Π+(ϕk) = {({p})} and Π−(ϕk) = {({p})}.
– If ϕ = ¬ψ ̸= ¬♢ψ′ with index i, let Π+(ϕk) = Π−(ψi) and Π−(ϕk) = Π+(ψi).

4In Chapter 3, we will come across models which are presented in a finite manner, but can hide
infinite relations with finite schemata or infinite relations which cannot be represented without some
unbounded operator.
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– If ϕ = ψ∧ χ with indices i and j, let Π′ = Π+(ψi)∪Π−(ψi)∪Π+(χj)∪Π−(χj),
m = max{|s| | s ∈Π′} and V = P(Var(Π′) ∪Var(Π′)). Define Π+(ϕk) =

{s ∈ Vm | ∃s0 ∈Π+(ψi) ∃s1 ∈Π+(χj) ∀n

(s(n) = s0(n) ∪ s1(n) ∧ ∀p ∈ Prop¬(p, p ∈ s0(n) ∪ s1(n)))}

and Π−(ϕk) =

{s ∈ Vm | ∀n∀p ∈ Prop¬(p, p ∈ s(n))} \Π+(ϕk).

– If ϕ = Xψ with index i, let Π′ = Π+(ψi) ∪Π−(ψi) and V = {v ∈ P(Var(Π′) ∪
Var(Π′)) | ∀p ∈ Prop ¬(p, p ∈ v)}. Define Π+(ϕk) = {(v)⌢s′ | v ∈ V ∧ s′ ∈
Π+(ψi)} and Π−(ϕk) = {(v)⌢s′ | v ∈ V ∧ s′ ∈Π−(ψi)}.

– If ϕ = ♢ψ with index i, such that ϕk is not the subformula of some ϕ′j = ¬♢ψi,
introduce a variable pi and let Π+(ϕk) = {({pi})} and Π−(ϕk) = {({pi})}.

– If ϕ = ¬♢ψ with index i, let Π+(ϕk) = {({pj}) | ψj ∈ Sub′(φ)} and Π−(ϕk) =

{({pj}) | ψj ∈ Sub′(φ)}.

Each Π+5 (respectively, Π−) contains the set of representation of paths which
satisfy (resp. do not satisfy) a formula. In the case of ♢, it suffices to note if a
path can be accessed, so we can just introduce a fresh variable representing every
instance ψi of a ψ. We have left out the case ♢1, because the purpose of this
definition is to illustrate the inductive nature of some of the arguments below.
The next proposition ensures that we can check the satisfiability of a formula for
a fixed grammar within a finite set of well-behaved models.6

Proposition 2.8. Given a grammar G with rule set7 R and a formula φ for LX, there
exist mφ ∈N and {Mφ,i | i ≤ mφ} such that φ is satisfiable if and only if it holds in a
path of someMφi .

Proof. We prove by induction on d♢(φ) that there is some l(φ) ∈ N for which
there exist some M,π0 having M,π0 ⊨ φ if and only if there exist M,π0, with
M,π0 ⊨ φ, for which every path in ΠM has length at most l(φ). Given that it
is actually the valuations of paths what determine the satisfaction of formulas,
for each formula φ there will exist k = ∑

l(φ)
i=0 |Prop|i and π1, . . . ,πk such that the

structures we consider only contain such paths; that is, there are up to 2k possible
models to be checked.

We start with the case d♢(φ) = 0, and show the claim by (secondary) induction
on d♢1(φ):

5Not to be confused with the irreflexive transitive closure of a relation, R+.
6In the sense that no infinite paths are allowed (even those presented as a circular graph), so

model checking can be performed, as seen in the upcoming chapter.
7Recall that we only regarded grammars with finite rule schemata.
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• For d♢1(φ) = 0, the only possible modal operator in φ is X, whence the prob-
lem is reducible to SAT(LTL), which is PSPACE and involves exactly the first
dX(φ) positions of any path to check.

• Assume the claim has been shown for every 0 ≤ d < d♢1(φ), and let φ =

θ(♢1ψ1, . . . ,♢1ψk) for some θ(x1, . . . , xk) with null ♢1-depth. By IH2, for each
of the ψi, it is enough to test models with paths up to length l(ψi). Observe
the following commutativity properties for formulas ψ,ψ′:

X(ψ ∧ ψ′) ≡ Xψ ∧ Xψ′, X¬ψ ≡ ¬Xψ.

Hence, there exists a disjunctive formula θ′ :=
∨

a∈A

∧
b∈Ba

Xx(a,b)θa,b equivalent to

θ, such that θa,b is either p ∈ Prop, ¬p, xi or ¬xi. So φ ≡ θ′[xi← ♢1ψi] and it
suffices to verify if any of the

∧
b∈BA

Xx(a,b)θa,b[xi← ♢1ψi] is satisfiable.

Fix some a ∈ A. We work under the premise8 that rule sets R are finite in the
sense that, for some finite R0 ⊆ R, every (s, s′) ∈ R is of the form uvw⇝ uv′w,
for some (v,v′) ∈ R0. Then, whenever we apply some rule V(π) = uvw⇝
uv′w = V(π′) with |u| ≥max{x(a,b) | b ∈ Ba}+max{l(ψi) | i≤ k}, we obtain
that Xx(a,b)θa,b[xi ← ♢1ψi] holds in π exactly when it holds in π′. Therefore,
our result holds for paths of length l(φ) = max{la | a ∈ A}, where

la := max{x(a,b) | b ∈ Ba}+max{l(ψi) | i≤ k}+max{|v| | ∃v′ ((v,v′) ∈ R0)}.

Assume that the initial claim holds for every formula of ♢-depth less than
d♢(φ) > 0, and suppose again that φ = θ(♢ψ1, . . . ,♢ψk) for some d♢(θ) = 0. Let
l(ψi) the maximum path length allowed for each ψi, and θ be equivalent to some
disjunctive θ′ =

∨
a∈A

∧
b∈Ba

Xx(a,b)θa,b, where φ ≡ θ′[xi ← ♢ψi] and each θa,b /∈ {xi | i ≤

k}∪ {¬xi | i≤ k} is of null ♢-depth. We proceed by secondary induction on d♢1(θ
′),

and focus on the base case, since the induction step is analogous to the previous
one.

So let d♢1(θ) = d♢1(θ
′) = d♢1(θa,b) = 0. Our goal is to show the simultaneous

accessibility or non-accessibility of the paths determined by some given formulas
ψ′α, ψ′′β . That is, letting ψ :=

∧
α
♢ψ′α ∧

∧
β
¬♢ψ′′β , we want to prove the existence of

some p ∈N for which there areM,π0 ⊨ ψ iff there areM,π0 ⊨ ψ such that |π| ≤ p
for all π ∈ΠM.

Recall the notation χu for characteristic formulas of sequences and consider

8Discussed in detail at the beginning of the next chapter.
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the set of tuples of paths

Ll,m;l′,m′(G,π0, p) := {(υ1, . . . ,υm;υ′1, . . . ,υ′m′) := (u1 ↾ [0, l1), . . . ,um ↾ [0, lm);

u′1 ↾ [0, l′1), . . . ,um′ ↾ [0, l′m′)) | (∀j lj ≤ l ∧ ∀j′ l′j′ ≤ l′)∧

∃M (π0 ∈ΠM ∧ ∀π ∈ΠM |π| ≤ p ∧M,π0 ⊨
∧

j≤m

♢χυj ∧
∧

j′≤m′
♢χυ′j′

)}.

Because there only exist finitely many combinations of m (resp. m′) sequences of
length less than l (l′), the set

⋃
|π0|≤p0

⋃
p≤p0

Ll,m,l′,m′(G,π0, p) stabilizes for some
natural p0. Thus, for

∧
b∈Ba

Xx(a,b)θa,b[xi ← ♢ψi], our property holds at la := p0(a) +

max{x(a,b) | b ∈ Ba}, for some p0(a) determined by l = l′ = max{l(ψi) | i≤ k} and
m + m′ = |Ba|. Therefore, l(φ) = max{la | a ∈ A}.

Observe that the fact that a sequence of set stabilizes does not provide infor-
mation on when it does so, so this result is not immediately useful in terms of
computation, i.e. this proposition does not grant a proof of satisfiability. However,
some of the procedures appear in the next chapters (in particular, model checking
for a particular segment of LX, which does feature some more initial information
to work on).

Classifications

It is of our interest to narrow down where some given decision problems be-
long to a certain complexity, or are decidable at all. Several restrictions on the
grammars and structures used will affect this performance. Commonly, the more
general a considered collection is, the harder the problems become in terms of
complexity, although it is possible that enforcing less conditions to a decision
problem makes it computable.

For instance, although we mentioned that some of the most influential gram-
mars for harmonic sequences are context-free, we will describe other classes which
yield varied results ([Hu20]).

Definition 2.9. Let G = ⟨V,Σ, P,S⟩ be a grammar. The following descending classifica-
tion in terms of the nature of the rule schemata is often know as Chomsky hierarchy:

– G is unrestricted if every rule is of the form α⇝ β, where α, β ∈ (V ∪ Σ)∗ and
α ̸= ε.

– G is context-sensitive if every rule is of the form αAα′⇝ αβα, where A ∈ V and
α,α′, β ∈ (V ∪ Σ)∗ \ {ε}.

– G is context-free if every rule is of the form A⇝ β, where A ∈ V and β ∈ (V ∪
Σ)∗ \ {ε}.
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– G is left-regular (resp. right-regular) if every rule is of the form A⇝ Ba (resp.
A⇝ aB), where A, B ∈ V and a ∈ Σ.

In some references, the rule S⇝ ε is accepted in every type.

Unrestricted grammars correspond to computable languages, that is, those
which are recognized as the set of solutions of a decision problem coded by a
Turing machine or any equivalent computation model ([CPP14]). This is not to
say that we cannot use an unrestricted grammar as a means to represent undecid-
able problems, as we will usually describe them as a membership problem (often
undecidable) of a certain sequence for a given grammar.

Some of the reductions to undecidable problems will employ context-sensitive
grammars, although not every one of them: the rules of the form α′αα′′⇝ α′εα′′ are
not in the grammar when α ̸= S. However, since the sensitivity to context implies
that the derivation of a variable depends on its surroundings, the swapping of
contiguous letters is allowed ([Si12]). The rule “AB⇝ BA” can be obtained with
the set of production rules

AB⇝ AX, AX⇝ YX, YX⇝ YA, YA⇝ BA,

where the bold variables represent the one to which a rule is applied, and the
derivation is the following:

AB⇒G AX⇒G YX⇒G YA⇒G BA

Context-sensitivity also applies to the situation of substituted words, and in
fact, rules defined as the substitution α⇝ β of a word by another can sill belong
to context-sensitive grammars as long as 0 < |α| ≤ |β|. In general, both strict order
inversions and overall substitutions of words cannot take place in context-free
grammars ([MP71]).

Another possible set of restrictions arises from the fact that the accessibility
operator ♢ can become difficult to handle in the context of complexity. Given
that the sequences generated through a grammar G from a given word may be
arbitrarily large, we might restrict our problems to classes of grammars where
the manipulation of ♢ does not blow up the amount of information needed for a
checking.

We can also restrict the operators used in formulas for a particular decision
problem. From the musical standpoint, it usually is convenient to consider a class
of formulas of a given form, such as p ∧ ♢ψ with ψ ∈ LTL ↾ X, which refers to the
problem of deciding if a certain sequence described by a formula ψ is derivable
from another which starts with p.
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The latter works well in conjunction with particular fragments of a logic which
satisfies a certain property. For example, suppose that an operator ∗ commutes
well with ♢1 (♢1 ∗ ϕ↔ ∗♢1ϕ), ♢ and ¬, and it also distributes with respect to ∧
(∗(ϕ ∧ ψ)↔ ∗ϕ ∧ ∗ψ). Then, it seems natural to enquire if the satisfiability of the
fragment can be reduced to that of the case without ∗, given that the branches of
the derivation tree of any given formula will always end in some sequence of the
form (Xi p, . . . Xi p, p).

At any rate, most of the properties described are not general enough, as in
the case of the Church-Rosser property for multi-modal logics ([GKWZ03]) does not
hold for structures based on certain grammars. Consider G = ⟨V,Σ, P, I⟩, with

V = {I, ii, . . . ,vii}, Σ = {C,d,e,F,G,a,b}, P = {X⇝ X ∆/X}.

This “reverse” representation of a traditionally left-branching grammar is relevant
in some reductions from undecidable problems, as seen in the next chapter. With
our modal operators, the property reads X¬♢1¬p→ ¬♢1¬Xp. Notice that, for a
given sequence FC,

FA ⊨ X¬♢1¬A, as A ⊭ ♢1¬A,

because any rule applied to a character preserves it in the same position. On the
other hand, by applying the only possible rule to F, we obtain

FA⇒G FCA, hence FA ⊨ ♢1¬XA.

This example occurs because we chose to involve a sequence which does not be-
long to the language of G, but paths having such valuations can take place in the
context of the models of our logic. The validity of these properties determines if
the logics we consider can be viewed as some specific construction of more basic
logics, such as a product or a fusion.



Chapter 3

Decision problems: model
checking

When approaching practical questions, fixing sets of derivation rules and op-
erating within them makes any investigation more accessible. However, we may
inquire if it is reasonable to expect an efficient (or even decidable) outcome. In the
current chapters, we will inspect two recurrent decision problems in the field of
modal logic: model checking (given M,π, φ, is M,π ⊨ φ true?) and satisfiability
(given φ, does it hold in some path of a model?). We will employ general rule sets
whenever it is feasible, and narrow down commonplace features otherwise. Some
of the arguments have their roots in classical notions in computability theory, such
as the PCP or Savitch’s theorem.

3.1 Model Checking of LX

Let us start with, arguably, the most essential result. Whenever the problems
we lay out throughout this section are decidable and we can avoid deducing them
as reductions from decision problems on other logics, our proofs will mostly be
based on induction on the construction of the formulas to be checked. Some of
the ideas stem from the well-known labelling algorithm ([BB06]), which demands we
assign to each considerable state the subformulas which hold – in practice, we will
devise recursive algorithms that carry implicitly this bottom-up implementation.

Dealing with the transitive closure ♢ magnifies the complexity with respect
to the fragment of ♢1 and its akin BML, whose model checking and satisfiability
problems belong to the classes PTIME and PSPACE, respectively. This is because
it usually involves monitoring an amount of derivations which cannot be bound
as efficiently. We mostly turn to algorithms which keep track of how many rules

23
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we have applied or how many different propositional values each state has taken,
thus the relevance of space complexity classes.

It is precisely by minding the former that we will show that model checking
is decidable for some fragments of LX. Forthcoming descriptions will clarify the
peculiarities of certain rules and why it is not effective to delimit space by su-
pervising states in the context of general rule sets. As will be customary for the
remainder of the chapter, any discussion regarding complexity will be preceded
by that of decidability. We begin by introducing a metric for formulas which will
condition the complexity of our results.

Definition 3.1. Let φ be a formula for LX or LU and ∗ ∈ {X,U,♢1,♢} a modal operator.
Given the derivation tree of φ, we define d∗(φ), the modal ∗-depth of φ, as the largest
number of instances of ∗ in a single branch. If there is no risk of confusion, let d(φ)

represent the (total) modal depth, i.e. the largest number of instances of any combined ∗
in a single branch.

Observation 3.2. In most general terms, we define/frame rule sets as binary relations
between harmonic sequences, i.e. between paths of some collection of (arbitrarily large)
structures. Thus, they can be infinite. However, insomuch as the underlying transforma-
tions are bound to a finite schema, we assert a rule set R is finite when there exists some
finite R0 ⊆ R for which any (u,u′) ∈ R is of the form v1wv2⇝ v′1w′v2, with (w,w′) ∈ R0.
By finite enumerations of R, we refer to an enumeration of any such R0.

From now on, let us assume that rule sets are finite in the sense of the observa-
tion; in the case that seemingly finite representations are infinite, we will discuss
an alternative proposal if necessary.1

General case

In order to scrutinize MC(LX), one could fix some rule set R of a grammar
G and an initial sequence S, and set out to delimit some n(R,S, l) such that ev-
ery initial segment of length l from some S′ obtained as S⇒∗G S′ is already in
Ln(R,S,l)

l (G,S), where Ln
l (G,S) := {u ↾ [0, l) | ∃k < n (S⇒k

G u)}, for any natural n.
Nevertheless, despite the fact that there are only finitely many different sequences
of length l and the union

⋃n
i Li

l(G, s) stabilizes at some n, such an n(R,S, l) will
turn out to be not computable:2 as the next example shows, chord sequences of
arbitrary length may need to be explored to determine whether a shorter string is
accessible.

1Moreover, in the current setting, it only makes sense to assume the finitude of inputted models
and paths in algorithms of which we discuss complexity.

2This is actually due to the undecidability of MC(LX) shown later, but the example illustrates it
for now.
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Example 3.3. Let Gn be a grammar with ruleset Rn = {(C2↑↑i,C2↑↑(i+1)) | i < n} ∪
{(C2↑↑n, G)}, where ↑↑ represents Knuth’s up-arrow notation for iterated expo-
nentiation. The chord sequence (G) can be derived through linearly-many rule
applications with respect to n, but not in exponential space.

Having an upper bound for the derivation of sequences of a certain length
would establish an upper bound on the amount of rule applications to be checked
in any instance of ♢: we would show via a recursive argument that this quantity
depends on the length of the considered paths, hence of the modal depth of our
formula too. We will soon arrive to the conclusion that MC(LX) is not decid-
able, but we shall bear in mind the functioning of the labelling algorithm and, in
particular, the ♢ step:

Algorithm 1 Case ♢ from a hypothetical algorithm MC(LX)(M,π,ϕ)
1: . . .
2: case ♢ψ:
3: let m := m(M,π,ψ) ▷ Non-computable bound
4: for r = (0, (m). . . ,0); r ≤ (k, (m). . . ,k); r++lexicographically do
5: for j = 0; j < m; j++ do
6: if MC(LX)(M,π,ψ) then
7: return true
8: end if
9: if Rr(j) = (π,π′) for some π′ then

10: π← π′

11: else
12: break ▷ Only the j-loop
13: end if
14: end for ▷ Reset value of π

15: end for
16: return false
17: . . .

As mentioned in section 1.3, another possibility would consist in reducing
model checking to satisfiability. However, unlike in BML, given a path π in some
M, it is generally not possible to reconstruct by means of characteristic formulas of
π the substructure ofM on which the truth value of a formula depends. In other
words: for LX, satisfiability is not stronger than model checking. Certainly, we can
claim that these methods fail because there exists a proof of the undecidability of
MC(LX).

Definition 3.4. The Post Correspondence Problem (PCP) is the decision problem given
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by the following:

• Input: an alphabet Σ containing at least two characters, and two m-tuples of words
on Σ, U = (ui)i≤m and V = (vi)i≤m.

• Output: is there a sequence of indices (i1, . . . , ir), with 1 ≤ ij ≤ m, for which
ui1 . . . uir = vi1 . . . vir ?

The PCP was shown to be undecidable by [Po46], so it suffices to reduce it to
MC(LX) to establish the undecidability of the latter. We proceed by defining a
grammar which recreates the process of juxtaposing pairs of words, from which
we can construct a model of LX whose reachability relation⇒ corresponds to the
rule set.

Proposition 3.5. PCP is reducible to MC(LX).

Proof. Let Σ, U and V be the input for an instance of the PCP. For any pair of words
(w,w′), wlog n = |w| ≤ |w′| = m, let [w,w′] = ((w(i),w′(i)))i≤q

⌢((λ,w′(i)))n<i≤m,
where λ is a character used to represent an empty space (different from the empty
word ε). That is, the actual words and paths consist of pairs in Σ ∪ {λ,S0,S}.
Define the grammar G as ⟨{(S0,S0), (S,S)} ∪ (Σ ∪ {λ})× (Σ ∪ {λ}),∅, P, [S0,S0]⟩,
where S0 and S are auxiliary variables and (given words w,w′ on the set of vari-
ables) P consists of the rules:

– [S0,S0]⇝ [uiS,viS], for 1≤ i≤m: to iniciate the derivation by choosing some
initial pair of elements of U ×V.3

– [wS,w′S]⇝ [wuiS,w′viS], for 1≤ i ≤ m: to expand the current pair of words.
– [xw, xw′]⇝ [w,w′], where x ∈ Σ: to delete coinciding characters in the start-

ing position.
– [wS,w′S]⇝ [w,w′]: to terminate the derivation, with w,w′ ∈ Var∗. [Alterna-

tively, let [wS,w′S]⇝ [wλ,w′λ]].

Despite the discrepancy between the meaning of the elements of this grammar
and our first approach to LX, they operate identically on the basis of syntax, as
they still refer to strings of pairs. Notice that it only makes sense to apply the last
rule if our current word is precisely [wS′,w′S′] for w = w′, but at some previous
point of the derivation the lengths of w and w′ may differ.

It is clear that (Σ,U,V) is a valid instance of the PCP if and only if L(G) =

{ε} ̸= ∅:4 for any witness ui1 . . . uir = vi1 . . . vir =: w, the pair [ui1 . . . uir S,vi1 . . . vir S]
3Notice how, in the following rules, the empty characters in the possible pairs (λ, x) and (x,λ)

are not respected: any newly attached word will take the place of the lopsided half. This issue will
be explored after the first attempt at proposing a reduction.

4Or ε ∈ L(G), if we define the language to contain every derived word (even with variables)
or introduce terminal rules Ax ⇝ x which assigns to each variable the chord character to which it
corresponds.
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can be derived from [S0,S0], and we can proceed as [wS,wS]⇝ [w ↾ [1, |w|)S,w ↾
[1, |w|)S]⇝ . . .⇝ [S,S]⇝ ε.

Now, we can build a modal structure in which a formula can capture the notion
that the initial word [S0,S0] can reach an empty path, i.e. that a path with an empty
valuation is accessible. We take a variation of the basic product model, M =

(W,→,⇒, I), where W = {(S0,S0)} ∪ (Σ ∪ {S,λ}) × (Σ ∪ {S,λ}), →= W ×W,5

⇒= {(π,π′) | I(π)⇒G I(π′)}, and I is the identity on W barring (λ,λ), that is,
I = {((λ,λ),∅)} ∪ {(s, s) | s ∈W \ {(λ,λ)}}.6

We show that (Σ,U,V) is a valid instance of the PCP if and only if the following
holds.

M, [S0,S0] ⊨ ♢
∧

s∈W\{(λ,λ)}
¬s (=: ϑ)

[Alternatively, we can introduce (λ,λ) as variables which can be evaluated in the
model, and enquire whetherM, [S0λ,S0λ] ⊨ ♢(λ,λ)].

It suffices to check that L(G) ̸= ∅ is equivalent to the condition above, but this
is just Proposition 2.6: ε ∈ L(G) happens in the case that there exist w1, . . . ,wn such
that [S0,S0]⇒G w1 ⇒G . . .⇒G wn = ε. This is equivalent to stating the existence
of a collection of paths w1, . . . ,wn inM witnessing [S0,S0]⇒∗ ε – that is, knowing
that I((λ,λ)) = ∅,M, [S0,S0] ⊨ ϑ.

The proof can be adjusted to let “empty paths” refer to those of length zero, or
those which only consist of the state (λ,λ). In contrast with the aforementioned
harmonic grammars, rules in this context do substitute sequences of characters. The
main difference between this construction and the traditional PCP is the additional
capability to delete coinciding pairs: it is essential for the reduction to work in
MC(LX), as we can not express the matching condition a priori without knowing
an (actually uncomputable) upper bound of the length required to solve each
particular instance. This circumstance will play a critical role in the decidability
of model checking in other logics and reducts.

Observation 3.6. The introduced rules of the form [wS,w′S]⇝ [wuiS,w′viS] may in-
volve arbitrarily large words: for instance, if (ui,vi) = (00,0) is a pair of the PCP instance,
any [1S,10nS] can have [1(02n),1(02n)] as a derivation, hence ε. This representation of
the reduction is technically not adjusted to our requirement that rule sets must be finite.

It is possible to refine the grammar to bypass this aspect, even though an-
other sort of “until”-complexity will still be involved (the deletion rule [xw, xw′]⇝

5For a more faithful representation, it can be assumed that no s ∈W satisfies (λ,λ)→ s.
6That is, we identify states and valuations. Note that s to a pair of characters. Here, we take (λ,λ)

not as a possible combination of characters, but as a placeholder for a cell that has no characters, so
that paths can be defined indefinitely: i.e., we can interpret [w,w′] as [wλn,λn], for any n ≥ 0. This
representation will change for LU.
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[w,w′]). We will introduce a Tetris-like rule, so that we can stack pairs of words
represented wlog as (u1

i . . . uni
i λ . . . λ,v1

i . . . vni
i . . . vmi

i ) and slide non-empty charac-
ters to the left-hand side. In other words, we always introduce new pairs of words
at the same position and push λ characters to the end. For example:

S0⇒
1
1

λ

0
λ

0
S⇒ 1

1
λ

0
λ

0
0
0

0
λ

0
λ

S⇒ 1
1

λ

0
0
0

λ

0
0
λ

0
λ

S⇒ 1
1

λ

0
0
0

0
0

λ

λ

0
λ

S⇒ 1
1

λ

0
0
0

0
0

0
λ

λ

λ
S⇒ . . .

⇒ 1
1

0
0

0
0

0
0

λ

λ

λ

λ
S⇒ 0

0
0
0

0
0

λ

λ

λ

λ
S⇒ 0

0
0
0

λ

λ

λ

λ
S⇒ 0

0
λ

λ

λ

λ
S⇒ λ

λ

λ

λ
S⇒ λ

λ
S⇒ S⇒ λϵ

We have repurposed variables S0 and S to appear individually, since word
heads are always at the same position. Also, λϵ is added to distinguish an end
of string. So, the new set of variables will be {S0,S,λϵ} ∪ (Σ ∪ {λ})2. Then, for a
similar modelM, the condition to check isM,S0 ⊨ ♢λε and the new rule set is:

– S0 | S⇝
(

u1
i

v1
i

. . . u
ni
i

v
ni
i

λ

v
ni+1
i

. . . λ
v

mi
i

)
S, for 1≤ i ≤ m (and similarly for ni ≥ mi).

–
(

λ
a

c
b

)
⇝
(

c
a

λ
b

)
,
(

a
λ

b
c

)
⇝
(

a
c

b
λ

)
, for c ∈ Σ and a,b ∈ Σ ∪ {λ}.

–
( a

a

)
x⇝ x, for a ∈ Σ ∪ {λ} and x ∈ (Σ ∪ {λ})2 ∪ {S,λϵ}.

– S⇝ λϵ.

Corollary 3.7. Model checking is undecidable for LX.

The current result also entails that the fragment {♢ψ | ψ ∈ LTL ↾ X} is not
decidable. In particular, so is the fragment obtained by considering the closure of
sets of formulas which admit the rule ♢Xψ↔ X♢ψ, since any given formula can
thus be viewed as some ♢ψ′.

Decidability in fragments

Considering that the core of a proof of decidability does not reside only on
finitude, but rather on mechanizing certain computations, we shall inspect which
fragments of our logic are prone to find an attainable constraint to deal with the ♢
operator. Due to Example 3.3, even if we make no distinction between states with
the same valuation, it is desirable that the length of candidate paths is somehow
determined by the input formula. Among the commonly attributed traits of har-
monic grammars, a consequence of the fact that rules are only applied to single
variables is that only the initial segment of a sequence is needed to deduce any of
its transformations:
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Definition 3.8. Let R be the rule set from a grammar G. We say that R is prefix-
continuous7 if there exists some f : N→N such that, for every natural n, whenever
u⇒∗G v and u ↾ [0, f (n)) = u′ ↾ [0, f (n)), there exists some v′ such that u′ ⇒∗G v′ and
v ↾ [0,n) = v′ ↾ [0,n) holds.8 That is, if u ↾ [0, f (n)) = u′ ↾ [0, f (n)), then {v ↾ [0,n) |
u⇒∗G v} = {v′ ↾ [0,n) | u′⇒∗G v′}.

Figure 3.1: Condition of prefix continuity seen through a commutative diagram.

Equivalently, for u to access a path whose foremost n positions are different
from those of any path accessible from u′, u and u′ must differ in some of their
first f (n) values. Given that, even with lineal functions of the form f (n) = kn
(k > 1), imposing such a restraint to Algorithm 1 still leads to exponential space,
let us assume that our rule sets are prefix-continuous for some f (n) = n + k. This
constitutes a proper fragment of LX. The following is a lemma which will secure
that our model checking procedures remain in PSPACE.

Lemma 3.9. Let (M,π, φ) be the input for a MC(LX) problem, where M is associated
with a rule set prefix-continuous for some f (n) = n + k. Then, for every n ≥ dk(φ) :=
dX(φ) + k(d♢(φ) + d♢1(φ)),M,π ⊨ φ if and only ifM,π[0,n) ⊨ φ.

Proof. By induction on the construction of φ (taking the proof for every n each
time). The cases of propositional variables and negation are clear.

– For φ = Xψ, pick n ≥ dk(φ) = dk(ψ) + 1. So M,π ⊨ Xψ iff M,π[1,+∞) ⊨ ψ.
Given that n− 1≥ dk(ψ), by induction hypothesis, this occurs exactly when
M,π[1,n− 1) ⊨ ψ, hence iffM,π[0,n) ⊨ Xψ.

– For ♢ψ (and, analogously, ♢1ψ), take n≥ dk(φ) = dk(ψ) + k, soM,π ⊨ ♢ψ iff
there exists some π⇒∗ π′ such that M,π′ ⊨ ψ. By IH, this is if and only if
M,π′[0,n− k) ⊨ ψ and, by our assumption that rules are prefix-continuous,
M,π[0,n) ⊨ ♢ψ.

7Since this notion can be traced back to k-local properties, we opt for a variation of its name.
8Note the transitive closure instead of single rules, which always holds under our assumption

that rule sets are finite. Analogously, the accessibility relation ⇒⊆ W∗ ×W∗ associated with a
grammar is prefix-continuous if, for every (π,π′) ∈⇒∗, any ρ with π[0, f (n)) = ρ[0, f (n)) can access
some ρ′ that satisfies π′[0,n) = ρ′[0,n).
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– For φ=ψ∧χ, let n≥ dk(φ) =max{dk(ψ),dk(χ)}
wlog
= dk(ψ)≥ dk(χ), soM,π ⊨

ψ ∧ χ iff, by IH,M,π[0,n) ⊨ ψ andM,π[0,n) ⊨ χ, that is,M,π[0,n) ⊨ φ.

This result applies to the grammar we considered in Section 1.2, since ev-
ery rule prepends a chord to an existing one, or simply transforms one, so it is
enough to know the first n chords of a sequence to reason about the initial seg-
ment of length n of every accessible sequence. In terms of complexity, this allows
us to reassess our strategies for delimiting the amount of visited sequences when
checking if ♢ψ holds in some path π: revisiting Example 3.3, the key of the proce-
dure may be visualized as attempting to set a polynomial bound to the height of
a grid which displays the initial dk(ψ) positions of the possible transformations of
π.

Figure 3.2: The decision of accessibility of a path is a bounded procedure for
prefix-continuous rules.

It would also suffice to reuse Algorithm 1, but there exist more optimal strate-
gies. We will recover some of the intuitions behind Savitch’s Theorem (PSPACE=

NSPACE) in [Ho01] to propose a proof for the central result of this subsection.

Theorem 3.10. Under the forenamed prefix-continuous rule sets, model checking for LX

is PSPACE.

Proof. Fix a grammar G with rule set R = {r0, . . . ,rs} and compute the k ∈N for
which it is prefix-continuous. Following [DGL16] and [Le14], we construct an
algorithm which decides if a formula holds in a given path of a model.9

So, given M = ⟨W,→,⇒,V⟩, π and ψ, our goal for the ♢ψ case is to examine
if there exists a sequence of paths from π to some π⇒∗ π′ such that M,π′ ⊨ ψ.

9Technically, as seen in the proof of undecidability, the given grammar also works as an input of
the problem, but –for the sake of convenience– we remove from the algorithm the calculation of k
because it is mechanizable.
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By the previous lemma, we can focus on their initial d := dk(ψ) ≤ k|ψ| states: if
there exists such a sequence of paths, we can assume it is optimal in the sense that
it does not contain repeated copies, so we can assume it to be of length less than
|W|d · |W|+1

|W| . The factor |W|+1
|W| accounts for possible shorter starting paths, but we

can omit it without loss of generality.

Our subprocedure must 1) find a path π′ satisfying ψ, and 2) check whether
such π′ is reachable from π. So its general structure will be a for-loop along the
possible goal paths (by means of an enumeration 0 ≤ i < |W| of states10 which
will allow us to avoid non-determinism using little space), each of which will be
run in an instance of MC′(LX) and, if successful, checked for accessibility from
π. It is by compartmentalizing the inner paths and minimizing the number of
open procedures that the problem will remain in PSPACE, in contrast to the ex-
pected EXPTIME in Algorithm 1 caused by cycling over the possible combinations
of m(M,π,ψ)-many rules. So, to some extent, the algorithm for 2) will act inde-
pendently from 1).

Algorithm 2 Model checking in the fragment of LX with prefix-continuous rules
1: givenM,π, φ

2: run MC′(LX)(M,π, φ) ▷ And output its resulta

3: procedure MC′(LX)(M,π,ϕ)
4: switch ϕ

5: case p ∈ Prop: return p ∈ V(π(0))
6: case ¬ψ: return (not MC(LX)(M,π,ψ))
7: case ψ ∧ χ: return (MC(LX)(M,π,ψ) and MC(LX)(M,π,χ))
8: case Xψ: return MC(LX)(M,π[1,+∞),ψ)
9: case ♢1ψ:

10: for i = 0; i ≤ s; i++ do
11: if Ri = (π,π′) for some π′ then
12: if MC(LX)(M,π′,ψ) then
13: return true
14: end if
15: end if
16: end for
17: return false

aFor the sake of convenience, let us assume that any algorithm ending with a run command
accepts if it the procedure returns true, and rejects otherwise.

10With no gain in terms of complexity, it is also possible to consider just their valuations instead
by picking an equivalent model.
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Algorithm 2 (continued)
18: case ♢ψ:
19: for π′ = (0, (d). . .,0); π′ ≤ (|W| − 1, (d). . ., |W| − 1); π′++lexicographically do
20: if π′ ∈ΠM and MC′(LX)(M,π′,ψ) then
21: if Split(π[0,d),π′[0,d),d) then ▷ As |W|d + 1≥ |W|d
22: return true
23: end if
24: end if
25: end for
26: return false
27: end switch
28: end procedure
29: procedure Split(ρ,ρ′, i)
30: if i = 0 then
31: if ρ = ρ′ or ρ⇒ ρ′ then
32: return true
33: end if
34: end if
35: if i > 0 then

36: for σ :=

(
σ1...

σ|W|−1

)
=

( 0 ... 0...
...

0 ... 0

)
; σ ≤

( |W|−1 ... |W|−1
...

...
|W|−1 ... |W|−1

)
; σ++lexicographically do

37: let b := 1
38: let b′ := (σ1 ∈ΠM) ∧ (σ2 ∈ΠM) ▷ If |W| − 1≥ 2
39: for j = 1; j < |W| − 1 and b ∧ b′; j++ do
40: b← b ∧ Split(σj,σj+1, i− 1)
41: b′← b′ ∧ (σj+2 ∈ΠM) ▷ For j < |W| − 2
42: end for
43: if b ∧ Split(ρ,σ1, i− 1) ∧ Split(σ|W|−1,ρ′, i− 1) then
44: return true
45: end if
46: end for
47: end if
48: return false
49: end procedure

So Algorithm 2 accepts if and only if the given formula holds in the path: cases
p, ¬, ∧ and X are trivial. For ♢1ψ, it checks if any of the rules can be applied to
the path and returns true exactly when there is one which accesses a path where
ψ holds. In the case ♢ψ, tests every goal path π′ and attempts to bridge the gap
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between π and π′ by completing the optimal sequence of paths. Procedure Split
applied to (ρ,ρ′, i) assumes that the sequence between ρ and ρ′ has length less
than |W|i + 1 and divides it into |W|-many intervals. It guesses (or rather, tests
every possible candidate) the paths which delimit these sectors and runs another
instance for every interval, now taking into consideration that their sequence will
not be longer than |W|i−1.

Finally, Split is validated either when, at i = 0, the paths are equal or accessible
by ⇒, or when i > 0 and every subinstance has been resolved positively. Hence,
Split(π,π′,d) returns true if there is some sequence of paths between π and π′

(including that where π = π1 = . . . = π′), and false otherwise. Notice that the wit-
nessing sequences can be shorter than |W|d + 1 as long as there exists an instance
of Split which accepts with some σj = σj+1.

Our algorithm is deterministic and always ends, since each call to Split is done
by reducing the index i in one unit. It runs in polynomial space: at any given
moment, it is only storing position indices and |W| paths from every active in-
stance, thus a polynomial maximum of d|W|+ 1 paths; moreover, every step can
be carried out in PSPACE.

Figure 3.3: Procedure Split for |W| = 2.

Observe that the grammars discussed in the proof of undecidability of MC(LX)

are not prefix-continuous due to the deletion rule: letting there only be [S,S]⇝
[0S′,0S′], [wS′,wS′]⇝ [w0S′,w0S′], [xw, xw′]⇝ [w,w′] and [wS′,w′S′]⇝ [w,w′], no
matter how broad f (n) may be, [0 f (1)1,0 f (1)1]⇒∗G [1,1] but [0 f (1)0,0 f (1)0] ̸⇒∗G [1,1].
This, however, will vary in the case of LU. But, thus far, we have already invoked
an implicit ’until’ operator to some extent:

Observation 3.11. Let G be a grammar with rule set R. For modelsM= ⟨W,→,⇒,V⟩
where the graph of ⟨W,→⟩ contains some loop having a subpath whose sequence belongs
to the domain of⇒, the relation⇒ is not finite. We can either present it as:
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– a list of pairs of subsequences R0 = ((w0,w′0), . . . , (ws,w′s)) which can eventually
appear and be substituted in a considered path (i.e. finite rule schemata in the sense
of Observation 3.2).

– an LTL-formula φR with two path variables that is satisfied, in our current model,
by paths which differ exactly in some of such (wi,w′i). If it exists, we can also denote
by φ∗R some formula which defines the transitive closure of⇒.

Both presentations refer to some string that may appear at a given point in a path: in
particular, to reflect these occurrences, it is enough to use the eventuality operator Fφ :=
⊤Uφ. In the case of prefix-continuous rule sets for f (n) = n + k, the appearence of such
sequences can be checked just with Xk, both for⇒ and its transitive closure.

It is well known that model checking and satisfiability for LTL are PSPACE-
complete [Ve01]. Since the size of our presentations of ⇒ is independent of the
models and formulas that our logic addresses, they signify no gain in complexity
– still, unfolding the presentation into a practicable relation already entails some
computation in PSPACE. Thus, we will take this complexity class as a reference
for lower bounds. This allows us to summarize the results of the section as:

Proposition 3.12. Model checking is decidable in PSPACE for any fragment of LX whose
models are presented by some φ∗R ∈ LTL ↾ X. It is undecidable otherwise, that is, whenever
the fragment contains a model whose accessibility relations can only be presented by φ∗R
featuring F or U.

In the next chapter, we will introduce a simplified procedure which relies in
non-determinism and still works for the satisfiability problem, albeit restricted to
a particular fragment of the logic.

3.2 Model checking of LU

We remain in the same decision problem, but take as a domain the logic LU,
which involves the ‘until’ operator. Having proposed a semantic definition for our
logics, since we still consider the same class of structures but expand the set of
formulas to be discussed, anything that could be said in LX is expressible too in
LU. Thinking of LX as a fragment of LU, it becomes clear that the undecidable
problems in the latter are at least the ones in the former. Hence,

Corollary 3.13. Model checking is undecidable for LU.
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For decidable fragments, introducing an additional temporal operator that may
evaluate an underlying formula at any point of a given path, possibly requires
more demanding lower bounds for its complexity. In particular, results such as
Lemma 3.9 may not provide restrictions as efficient as in LX, if any at all. By
itself, nesting of U along with X and ♢1 does not blow up the length of paths to
be checked. However, it is the combination of ♢ and U that gives rise to situations
like the following:

Example 3.14. Let G the grammar over 12 major keys and 7 degrees, with rule
set R = {X⇝ ∆/X X}. Consider ψ(ϕ) := ♢(F ∧ (ϕUC)), ψ1 := ψ(⊤) and ψn+1 :=
ψ(ψn). For the basic product modelM0 (from Definition 2.5) and the path V(π) =

(C),11 any path that witnessesM0,π ⊨ ψn has length greater or equal than 7n.

Figure 3.4: Derivation tree for the witness path for ψn.

While it is possible to study this case in PSPACE by opening and closing in-
stances of a model checking procedure for ♢, it appears unclear that we can trans-
late Lemma 2.9 to this context without handling memory allocation to avoid non-
polynomial space. One might attempt to adopt a related approach and start by
denoting, for any natural l, Πl

M(φ) ⊆ ΠM as the set of paths of length l which
satisfy φ inM, and

Π≤l0
M (φ) =

⋃
l≤l0

Πl
M(φ).

Based on the possible combinations of strings of a certain length, it is possible to
establish an upper bound l for the sequences which are enough to check in order
to assess the satisfaction of a formula ψUχ. From this, given M,π,♢ψ, one can
demonstrate the existence of an upper bound of m(M,π,♢ψ) such that any path
which witnessesM,π ⊨♢ψ is π⇒π1→ . . .→πm, for m≤m(M,π,♢ψ). However,
such a bound is not computable in general, not even with prefix-continuous rules.

11For the sake of clarity, given that R cannot derive chords from different keys, let us express the
state (d,C) as the chord that d takes in the key of C (e.g. (V,C) as G).
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Thus, it is not possible to determine a value of l which would have sufficed for
any ψUχ within the input formula, and hence to suggest an algorithm to construct
the Π≤l0

M (ψ) from the bottom up.

Reductions

We have already established that the PCP shows the undecidability of MC(LU).
Although the result for LX only held when considering the full language, having
access to the until operator allows us to narrow down the hypotheses to prefix-
continuous rules.

Given an instance of the PCP, it will no longer be necessary to apply the dele-
tion rule to see if an associated grammar can transform the initial variable into a
string of identity pairs and, then, into an empty string. Instead, we can impose
that the sequence found has both components of each of its characters coincide
among the involved variables. More precisely, imposing that the sequence is not
[S0,S0] (and thus, that some rule has been applied),12

(M, (S0) ⊨)♢

¬(S0 ∨ S) ∧

 ∨
a∈Σ∪{λ}

(a, a)

Uλε

 .

That is one unrestricted rule handled. The rules which switch a character with an
empty space,

(
λ
a

c
b

)
⇝
(

c
a

λ
b

)
, appear to be prefix-continuous in that, given initial x

cells, the possible reachable combinations are given by the length of the rules and
the current blank characters. But it easy to see otherwise in the general setting, for
instance, with S0⇝ S0[0,λ] applied to a word [λ,0n].

The main issue is that, given a sequence [u,u′] some of whose first n positions
contain the λ character, it is possible that some [v,v′]⇒ [u,u′] features a character
v(m) = a ̸= λ or v′(m) = a ̸= λ being present in some u(m′) or u′(m′), for m < n≤
m′. This can be circumvented by reversing the representation of the PCP-words
in grammar from the reduction: in that case, only characters equal to λ will be
pushed to the beginning to the word. For example:

S0⇒ S
λ

0
λ

0
1
1

λε⇒ S
0
λ

0
λ

0
0

λ

0
λ

0
1
1

λε⇒
0
λ

0
λ

0
0

λ

0
λ

0
1
1

λε⇒ . . .⇒ λ

λ

λ

λ

0
0

0
0

0
0

1
1

λε

Nonetheless, notice that in the case of the top sub-word 000, it is necessary to
discern how many λ are present in the remainder of the word in order to describe
the possibly accessible words in the current position of 000. Seeing that the swap
rule can shift said λ to any position, we can avoid the issue by adding an additional
rule

( a
b

)
⇝
(

a
b

λ
λ

)
, which just lets us append arbitrarily many λ. Therefore, any

12Otherwise, remove ¬(S0,S0) and add ♢1 before ♢.
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combination arisen from adding λ into 000 is reachable. The current rule set
becomes13:

– S0⇝ S
(

λ
v

mi
i

. . . λ

v
ni+1
i

u
ni
i

v
ni
i

. . . u1
i

v1
i

)
λε, for 1≤ i ≤ m (and similarly for ni ≥ mi).

– S⇝ S
(

λ
v

mi
i

. . . λ

v
ni+1
i

u
ni
i

v
ni
i

. . . u1
i

v1
i

)
, for 1≤ i ≤ m (likewise for ni ≥ mi).

–
(

c
a

λ
b

)
⇝
(

λ
a

c
b

)
,
(

a
c

b
λ

)
⇝
(

a
λ

b
c

)
, for c ∈ Σ and a,b ∈ Σ ∪ {λ}.

– x⇝ x
(

λ
λ

)
, for x ∈ (Σ ∪ {λ})2.

– S⇝ ε.

Any segment of a word accessed through the first two rules is determined by
the same positions, a word of the same length; the same applies for the following
two rules, since the accessed segments and the original ones only differ by some
λ; finally, any [w,w′] ↾ [0,n)⇐ S[w,w′] ↾ [0,m) is derived from the first m = n + 1
positions. In other words, the rule set of the grammar is prefix-continuous for
f (x) = x + 1. Therefore, we have ratified:

Proposition 3.15. Let L′U be a fragment of LU which encompasses every grammar whose
rule set is prefix-continuous for the function f (x) = x + 1. Then, model checking is
undecidable for L′U.

In any case, one could challenge the notion of prefix-continuous rule sets as
being representative of the simplicity of a grammar, given that such a property is
not closed under subsets of grammars. On the other hand, it appears as a measure
of some regularity14 of a rule set, which proves useful for the design of some
algorithms. Up to this point, either the usage of infinite or non-prefix-continuous
rule sets had been used to reach undecidability. However, it could be argued that
contrasting a left-branching grammar with a logic and a property both defined
in a right-heading direction, is enough to grant our problems such computation
complexities. Although for any further attempts it could be proposed to employ
more general conditions such as k-local properties15, this is an observation to keep
in mind in order to study particular classes of grammars in the musical practise,
such as the ones proposed by [Ro21].

13Technically, the models to which the PCP instance can be reduced must be constructed on a
grammar whose alphabet contains the variables of the form (a, a) ∈ (Σ ∪ {λ}) × (Σ ∪ {λ}). That
way, the characterization PCP ⇔ Grammar ⇔ MC(LU) can be reproduced, with the language of
our grammar not being the singleton of the empty word anymore, but some set of words of the
form [λnw,λnw′]λε, with w,w′ ∈ Σ∗.

14Not in the strict sense of regular grammars.
15See [Ma97].
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Finally, being capable of constructing formulas with X, it could be proposed
to characterize some models (or generated substructures of those) through the
new operator. Even more, one could attempt to reduce the problem of model
checking LU (or LX) to SAT(LU), by means of including information of the model
in the given formula. Still, even though this problem remains as future work,
we could expect that it is not possible on the grounds of not having access to
the alternative formalization of ‘until’ that can analyze the satisfaction on infinite
paths. In particular,

M,π ⊨ ψX⊥ iff M,π[i,+∞) ⊨ ψ for every i until ⊥ holds

(i.e. M,π[i,+∞) ⊨ ψ is always the case).

Fragments

In general, in the situations that we can set a bound to the number of paths to
be explored, we can think of (and implement) the problem of model checking of
an ’until’ formula as

MC(M,π,ψUχ) ≡
∨

j<|π|

MC(M,π[j,+∞),χ),
∧
i<j

MC(M,π[i,+∞),ψ)

 .

So one can substitute the corresponding clause for the case ♢ in Algorithm 2
in order to obtain a method to decide instances of model checking without the
operator ♢. The complexity is preserved, because the longest the paths might
become is |π|+ |φ| ·max{|v| − 1 | (u,v) ∈ G}, given an instance M,π ⊨ φ from a
grammar G.

Proposition 3.16. Model checking for the fragment of LU without ♢ is decidable in
PSPACE.

Another relevant type of construction is that of the formulas ⊤Uφ, which are
satisfied if φ eventually happens in a path.16 The problem of whether we can
access a path where this formula holds is not decidable in general:

Let G be an unrestricted grammar and φ a formula whose satisfaction can be
determined by finitely (and computably) many sequences up to final segments.
For instance, (p ∨ q) ∧ Xr can hold for (p,r)⌢w and (q,r)⌢w. Calling u0, . . . ,ur

16We mentioned before that the version of U that checked infinite paths was not at our disposal.
This still holds for our case, as ♢¬(⊤Uφ) assesses if any reached (finite) path satisfies φ nowhere.
The computability of such a problem in grammars that are broad enough is beyond the scope of
this thesis, but the complementary problem will be addressed in the following pages for a musically
relevant rule set.
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those sequences, we construct a grammar G′ (and the corresponding model) which
now includes deletion rules wxuiw′⇝ wuiw′ and wuixw′⇝ wuiw′ for every i ≤ r,
x ∈ Σ ∪V and (Σ ∪V)∗. So, essentially, G′ contains some of the (finitely many) ui

if and only if G generates some string containing one of these words. The former
is known as the membership problem for G′ and it is known to be reducible to the
halting problem ([Ho09]), which is undecidable.

Therefore, we need to narrow down our rule sets in order to possibly obtain
decidability. A possible way to settle the decidability when dealing with context-
sensitive grammars could result from making use of the capability of shifting
substrings: recall that, given x,y ∈ V, the derivation xy ⇒G yx can arise from
adding some rules so that

xy⇒G xz⇒G z′z⇒G z′x⇒G yx.

is made possible. Then, by considering the words u0, . . . ur′ and similar exchange
rules xuj

i ⇝ uj
i x, we can bring any ui appearing in a derivation to the front.

Nevertheless, let us focus some context-free grammars that represent harmonic
models such as [Ro20] or [St99]. For A, B variables and a a terminal character, let
us consider any grammar G = ⟨V,Σ, P,S⟩ all whose rules are of the form:17

A⇝ AB A⇝ B A⇝ a

We claim that it is possible to decide whether there exists a derivation of the initial
variable S which contains a certain word u = u1 . . . un as a substring. Without loss
of generality, given that the cited grammars usually allow for a “translation” of
variables into their corresponding character via a terminal rule, let us assume that
the uj are variable symbols.

By an inductive argument on the length of u, let us first show how to find out
if u = u1 is reachable.18 Consider the sets of words W0 = {S},

Wi+1 = {wxy | ∃z (wz ∈Wi and z⇝ xy)} ∪ {wx | ∃z (wz ∈Wi and z⇝ x)},

that is, each Wi+1 is obtained from Wi by applying a rule to the last digit of any of
the words that admits it. Since every variable thus far can appear as a derivation
from the last symbol of a previous word, whenever no new variable is added for
some i1, no new one will appear for any i ≥ i1. This ensures that, after at most |V|
many iterations, the set {x | ∃w∃i ≤ i1 ≤ |V| (wx ∈Wi)} will stabilize.

In other words, it is decidable in time O(|P||V|) to check if u1 appears as a
substring of some word in L(G).

17Perhaps also featuring S⇝ ε, for S the starting variable.
18See [Si12] for a derivation similar to right-regular grammars, which ours closely resembles.
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Figure 3.5: Determining the accessibility of u1 and its predecessors.

Now, for n ≥ 2, let us assume that we can decide whether some wu2 . . . unw′

is derivable. Without loss of generality, since the rules are right-branching, it
is enough to assume that for wu2 . . . un (and show it for some w′′u). Since we
developed an exhaustive proof (resume and adapt the notation in−1,W0,W1, . . .),
consider the set

D = {x ∈ V | ∃w∃i ≤ in−1 (wxu2(. . . un) ∈Wi)}.

Seeing that ww′u∈ L(G) if and only if there exists some x ∈D such that x⇒∗G w′u1,
it is enough to determine if u1 appears in any word derived from some x ∈ D in
order to decide if u appears as a substring of some element of L(G).

Now, considering the same class of grammars, it is just a matter of evaluating
ψ in a given path in order to decide model checking of ♢(ψUχ). In fact, this result
holds for any ψ,χ ∈ LX, given that our grammar is prefix-continuous and we can
establish the maximum needed length of the witnessing sequences u1, . . . ,ur. The
prefix continuity is provided by the fact that wxw′ ⇒G α implies that α = wyw′′

for some y,w′′, hence whenever v is derived from u which coincides in the first
n + 1 positions with some u′, there will exist some v′ derived from u′ such that
v ↾ [0,n) = v′ ↾ [0,n).

Proposition 3.17. The decision problem of determining whether a given word appears
as a substring of some element from the language of a fixed grammar G, is undecidable
for unrestricted G and decidable for G with production rules among the following {A⇝
AB, A⇝ B, A⇝ a}.

Corollary 3.18. Model checking on the fragment {♢(⊤Uφ) | φ ∈ LTL ↾ X} is, in gen-
eral, undecidable for the class of unrestricted grammars, and decidable for context-free
grammars with rules among {A⇝ AB, A⇝ B, A⇝ a}.
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Indeed, the decidable portion of the result applies to the models in [Ro21]
and [Fi20], it is enough to reverse the representation of the rules (X ⇝ V/X X
becomes X ⇝ X V/X, etc.). In fact, the proof strategy works because we can
generate sequences sequentially, in a way that we do not retrace visited parts of
any intermediate word generated in the process, and due to the fact that no rule
depends on two variables.

Of course, the fragment we considered is far from representative of all the
musical notions we would hope to encapsulate with modal formulas. For example,
take ψ describing some desired condition for a harmonic sequence, and χ1,χ2 of
the form p0 ∧ Xp1 ∧ . . . ∧ Xm pm. Then, the following

ψ ∧ I ∧ ¬♢(⊤U(χ1 ∧ ¬(⊤Uχ2)))

expresses that a path based on the first degree and satisfying ψ cannot access an-
other path that eventually reaches χ1 but not χ2 anytime afterwards. Nonetheless,
this is an expedient requirement to have when wanting a “question-answer” struc-
ture (in which an interrogative motif χ1 is bound to be replied by some χ2) or a
reexpositive form (in which a χ2 similar to an already presented χ1 is expected
after a trio or a development).



Chapter 4

Decision problems: satisfiability

At first glance, deciding whether a formula is satisfiable in some model at
all seems like more of a complex problem than checking its truth value within a
model, as some finite model property and others might have to be proven. Despite
this, we can find more general decision problems which respond to the specifics
of working without a fixed structure.

We also study the complexity of some fragments of LX and LU, related to
the restriction of certain formulas or operators, and to the selection of particular
classes of grammars. Our results are largely based on the filtrations found in
[Go87] and well-known methods featured in [DGL16].

4.1 Satisfiability without fixed grammars

In this section, we cannot make use of direct reductions from grammars or
results to recursively set bounds to algorithms. Rather, we find more benefits in
considering syntactical approaches.

Case LX: full language

Having proved the earlier properties of model checking for LX, determining
if we can decide the satisfiability of some MC-decidable fragment L′X of our logic
becomes slightly more accessible. By some procedure analogous to filtration, if
there exists an algorithm to generate every model where a given formula can
hold, it will suffice to apply MC(L′X) to each of them. However, given that there
is no available algorithm for model checking in the full logic LX, we must resort
to another approach for the general case.

The following does not presume a fixed grammar – however, showing that it
is decidable to check if a formula is satisfiable in some grammar is still a broader

42
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result than that of the fixed prefix-continuous case (which we will still detail).
Given any formula φ, we will provide the definition of a structureMφ consisting
of sets of its subformulas consistent in some fashion, similar to how filtration with
canonical models works. We will show it to possess the property that each formula
holds in a state1 if and only if it is one of its labels. Hence, φ will be satisfiable if
it belongs to some such state.

The peculiarity of these models lies in its division into collections of states
according to the modal (X) depth of its subformulas, so that model checking by-
passes any looping which hinders decidability. Nonetheless, the consistency of
formulas (let alone sets of) is unknown beforehand: despite it being enough for
our purposes to prove some FMP-like condition, it is either through exhausting
the combinations or through the description of our structures that we actually will
construct them from the bottom up.

Consider an LX-formula φ and Pφ the set of its propositional variables. Given
that X commutes with negation and conjunction, i.e.

X¬ψ ≡ ¬Xψ and X(ψ ∧ χ) ≡ Xψ ∧ Xχ,

we express φ as an equivalent formula in which X can only precede atoms, that is,
some p ∈ P, ♢1, ♢ or another X, done in linear time. In particular, φ = θ(ψ1, . . . ,ψn)

for some atoms ψi and a propositional θ(x1, . . . , xn) on ⟨{xi}i≤n,¬,∧⟩.

Definition 4.1. Let Γ be a set of literals (atoms and their negations) in LX or, more
generally, a collection of formulas. A set s of LX-formulas is consistent if s ⊬LX

⊥.
We say that s is maximal consistent if it is consistent and, for every ψ /∈ s, s ∪ {ψ}
is inconsistent. We call Γ-maximal consistent sets (MCSΓ(s)) the equivalence classes of
maximal consistent sets which coincide in Γ.2

Without loss of generality, we can ignore the members of Γ-maximal consistent
sets and drop “Γ” whenever there is not risk of confusion. Thus, we can view
such classes as sets of formulas common to all their elements. Observe that this
intersection is general not a subset of Γ, given that any set containing {¬♢p,♢1q}
is always consistent with {¬♢1 p,♢⊤}, but not always with some {r}. It is also
possible to actually restrict the classes to Γ, although –in that case– some of the
consistent formulas must be taken into consideration for filtrations.

In order to describe Mφ, we work towards a collection of maximal consistent
sets3 of subformulas of φ marked with their relative X-depth. Every filtration will

1In the context of this chapter, meaning that it holds in some (the unique) path which starts at
the current state.

2We can opt for the analogous maximal satisfiable sets, if the approach does not involve the an
axiomatization and the truth values of formulas must be evaluated semantically.

3As elements of a structure, we also refer to them as states.
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involve some set embeddable into Σ, the set of positive subformulas of φ. Even
if it would have sufficed to maintain just the atoms (since every subformula ψ of
φ arises as some boolean combination, and so does their consistency), we choose
to contemplate such a Σ to achieve a more natural articulation of the truth lemma
central to this section.

First define dφ
X(ψ), the depth of ψ ∈ Σ in φ, as the X-depth at which ψ appears

in the derivation tree of φ, i.e.

dφ
X(ψ) = min{dX(θ(x)) | θ ∈ LX ∧ φ = θ[x/ψ]}.

For each i ≤ dX(φ), let Σ′i be the set of subformulas of φ which appear at depth i,
along with their negations. More precisely, let

Σ′i =
{

ψ | (ψ ∈ Σ ∨ ∼ ψ ∈ Σ) ∧ dφ
X(ψ) = i

}
,

and define recursively

Σi =

{
Σ′i, i = dX(φ)

Σ′i ∪ {Xψ,¬Xψ | ψ ∈ Σi+1 ∧ ψ positive}, i < dX(φ).

These will differentiate several levels in our structure, within which the satisfaction
of the path accessibility operators will be analyzed. Note that ΣdX(φ)+1 should be
empty, that ΣdX(φ) contains no X, that there exists a natural injective mapping
Σi+1 → Σi, and that Σ0 captures the depth in φ of each of its subformulas. It is
possible to remove the hereditary aspect from the definition of the Σi and be left
with a smaller model, but the current formulation ensures that the relation which
corresponds to X is actually a function, that is, every state will already contain all
the information about the single path it represents.

Letting Σ∗ =
⋃

i≤dX(φ) Σi, the aforementioned states will be precisely maximal
consistent sets from {s ⊆ Σ∗ |MCS(s)}. Our goal is to create a canonical model
for L♢1♢, where the relations for temporal operators are ignored, so that we can
implement multiple filtrations to obtain structures representing the depth levels
of φ. Hence, we will be able to evaluate φ in the reunion of such structures: this
is opportune as, even if we ignore MCS’s, the construction provides an upper
bound for the size of the validating models, i.e. if φ is satisfiable for some (any)
grammar, it will be so in a model below a maximum size. Conversely, if having
checked all such structures up to that cardinality, none of them validates φ, then
it is unsatisfiable.

Observation 4.2. The logic L♢1♢ is normal, since (1) it contains every propositional
tautology and the distribution axiom4 □1(ϕ→ ψ)→ (□1ϕ→ □1ψ) (ψ holds in every

4We usually express axioms with the dual necessity operators.
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accessed state which satisfies ϕ→ ψ and ϕ); and (2) the rules Modus Ponens and Neces-
sitation hold (if ψ is satisfied in every state, it is clearly satisfied in every accessed state).

In some contexts, LX is called a fusion of two logics5: the fragment LTL ↾ X,
containing no U, and the smallest extension of the logic K (with operator ♢1)
containing its transitive closure ♢. A fusion can be seen as a general combination
of the logics where the interaction between different modalities is not expected to
comply with any property. As a consequence, LX is axiomatizable by the reunion
of the axioms and rules from its components, that is, those of LTL ↾ X, those of K,
an axiom to ensure the transitive behavior of ♢,

□ϕ→□1(ϕ ∧□ϕ) (♢1(ϕ ∨♢ϕ)→ ♢ϕ),

the rule of induction,
ϕ→□1ϕ

ϕ→□ϕ

(
♢1ϕ→ ϕ

♢ϕ→ ϕ

)
,

and some auxiliary axioms to define the semantically valid duality of our accessi-
bility and necessity operators,

♢1ϕ↔¬□1¬ϕ and ♢ϕ↔¬□¬ϕ.

These two facts are sufficient to construct the following model, which we will
later base our filtrations on:

Definition 4.3. The structureMc = ⟨Wc, R1
c , R♢c ,Vc⟩6 is called the canonical model for

Σ∗, where Wc = {s |MCSΣ∗(s)}, Vc(s) = p ∩ s and, for given s, t ∈Wc,

sR1
c t iff ¬♢1ψ ∈ s⇒¬ψ ∈ t, 7 and sR♢c t iff ¬♢ψ ∈ s⇒¬ψ,¬♢ψ ∈ t.

Having the transitive closure ♢1 alters somewhat the usual definitions. Ob-
serve that, apparently, defining R♢c analogously to R1

c might lead to believe that
♢1ψ ∈ s⇔ ♢ψ ∈ s holds in every s ∈Wc: that is generally not the case, since the
construction of Wc might have already ruled out the consistency of some formulas.
For example,

MSSLX
(s ⊇ {♢p,¬♢1 p}), while {♢p,¬♢p} is inconsistent.

For now, as R1
c and R♢c refer to their same level, we can rest assured that inter-

actions are well-behaved to some extent. The next example illustrates how these
relations (let sRt) are better understood in terms of t respecting the forbidden
formulas from s, and not t witnessing possible formulas in s.89

5See [ca07].
6We abridge R♢1

c as R1
c .

7That is, {¬ψ | ¬♢1ψ ∈ s} ⊆ t.
8In some diagrams, for the sake of readability, let the absence of ψ implicitly represent ¬ψ.
9If we assume that ♢⊤ is a theorem of our logic (which we will soon argue to be the case), the
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Figure 4.1: The structureMc = ⟨Wc, R1
c = ∅, R♢c ,Vc⟩ models φ = (♢p)∧ (♢¬p), but

no state s′ with sR♢c s′ witnesses both s ⊨ ♢p and s ⊨ ♢¬p. We have represented the
R♢c with single-shafted arrows to favor readability – similarly, the ∗ in some states
denotes that they are connected with every world in the model.

We chose to exclude RX for the moment because it does not affect the upcoming
process, as it is the case for other equally effective definitions of R1

· . We will deal
with it after proving that this sort of construction operates correctly. On the one
hand, the current result is well-known (see, for example, [BB06]):

Proposition 4.4. Assume, givenMc, that JXϕK = {s ∈Wc | Xϕ ∈ s} for every Xϕ ∈ Σ∗.
Let s ∈Wc and ψ ∈ Σ∗. Then,

Mc, s ⊨ ψ⇔ ψ ∈ s.

The main lemma of this section will be of this form, hence the temporary
assumption for X. Lindenbaum’s Lemma was used for the proof, which also
benefited from us regarding maximal consistent sets as closed under consequence:
at some stage of the argument,10 the validity of some formula in the calculus
allows us to assert that some (□1ψ1 ∧ . . . ∧□1ψr)→ □1ϕ belongs to a given state
s, but usually this is not a formula from Σ∗.

Having defined R♢c , we ought to prove that it works identically to (R1
c)
∗, the

(reflexive) transitive closure of R1
c . This is sometimes referred to ([Fe24]) as an

ancestral lemma (an ancestral of R, its “set of ancestors”, being the relation R∗),
and responds to the fact that ♢ is the transitive closure of ♢1 in our calculus.
Our devised proof differs from the one found in [Go87] in the type of relations
involved, and that the domains for (R1

c)
∗ and R♢c coincide.

two rightmost states are inconsistent. For now, let us display them for the sake of illustrating the
construction.

10See [Se08].
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Lemma 4.5. For every s, t ∈Wc, the relation R = (R1
c)
∗ satisfies the following:

(1) sR♢c t implies sRt.

(2) sRt implies that, for all ¬♢ψ ∈ s, ψ /∈ t.

Proof. For (1), for any s ∈Wc, define the characteristic formula in Σ∗ for s, χ(s) :=∧
(s ∩ Σ∗) ∧ ¬∨(Σ∗ \ s). Following 9.7 in [Go87], As :=

∨{χ(s′) | sRs′} defines the
set of states related with s through the closure of R1

c , that is,

sRs′⇔ As ∈ s′.

Given s, t ∈Wc such that sR♢c t, suppose that sRt did not hold. First, by complete-
ness of Mc, notice that ⊢L♢1♢

As → □1As: any u ∈Wc with As ∈ u satisfies sRu,
so there exist sR1

c s1R1
c . . . R1

c srR1
c u; then, if uR1

c v for some v ∈Wc, we have sRv and
As ∈ v, whence □1As ∈ u.

By the induction rule, ⊢L♢1♢
As→□As. Knowing that χ(t) never concurs with

As (since sRt is false), we can assert ⊢L♢1♢
As→¬χ(t). Substituting As in the previ-

ous formula, we obtain ⊢L♢1♢
As→□¬χ(t). Finally, ⊢L♢1♢

χ(s)→□¬χ(t) follows
by MP, as ⊢L♢1♢

χ(s)→ As holds by the reflexivity of R: but the fact that sR♢c t,
along with χ(s) ∈ s, implies that χ(t) /∈ t, which never holds as χ(t) characterizes
t. Therefore, sRt.

For (2), sRt implies the existence of some corresponding s0 = s, s1, . . . , sr. For
every j ≤ r, every ¬♢ψ ∈ sj entails ¬♢i♢ψ ∈ sj, so ¬♢ψ ∈ sj+1 and we deduce they
are in sr too. Furthermore, this implies ¬♢1ψ ∈ sr, thus ¬ψ ∈ t and, ultimately, for
every ¬♢ψ ∈ s, ¬ψ ∈ t.

The reasoning as it is relies on ♢ being associated to a reflexive relation, which
is in consonance both with the rule X⇝ X being part in most musical systems
and with the common use of reflexivity when defining derivations in unrestricted
grammars. A similar result can also be developed when assuming that R♢c is not
reflexive: then one has to enforce that some formulas of the sort ¬♢1 . . .♢1♢ψ being
in sR♢1 t imply that ¬ψ ∈ t. As shown in the next example (Figure 4.2), this conveys
that also “eventually” inaccessible formulas cannot be accessed through R♢c . At
any rate, we always have available the option of switching between assumptions:
adding or restricting the possibility that a subformula ψ may hold for the same
path where ♢ψ is evaluated, we obtain the opposed version of ♢. In other words,

♢∗1ψ↔ ψ ∨♢+1 ψ and ♢+1 ψ←¬ψ ∧♢∗1ψ.

Note, however, that this increases the length of the initial formulas quadratically,
even if we do not specify the complexity of our algorithms beyond the classes
PSPACE, EXPTIME, NEXPTIME, etc.
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Figure 4.2: For a non-reflexive ♢, s0 witnesses the satisfiability of s, but sR♢s♢ is
not corresponded with s(R1)∗s♢, as any accessible sR1t is of the form s1 ⊆ t, and s1

cannot reach s♢ through the closure of this example R1. However, with a reflexive
♢, the formulas in red are not consistent with the remaining ones in their state.

In line with the implication□ψ→ ψ (ψ→♢ψ), the proof of the ancestral lemma
relies on our maximal sets containing more (all) consequences outside of Σ∗. On
the one hand, the fact that every harmonic sequence is in the domain of the gram-
mar implies that ♢1⊤, i.e. ¬♢1ψ and ¬♢1¬ψ cannot occur simultaneously. Like-
wise, the equivalence ¬♢1♢ψ∧¬♢1ψ↔¬♢ψ (i.e. ♢1♢ψ∨♢1ψ↔♢ψ) encapsulates
the transitive nature of ♢, as the following diagram depicts.

Figure 4.3: In case we only regarded formulas in
⋃

i Σi, the canonical model of
♢p would not satisfy the ancestral lemma, given that ¬♢p ∈ s2 would not imply
¬♢1 p ∈ s2, hence s2R1

c s1 but not s2R♢c s1. [For the sake of clarity, we only represent
the relevant edges].

At this point, it appears to be the moment to mention that there exists another
possible natural method to construct a model to analyze the satisfiability of a
formula. Supposing that φ is satisfied in some M,w, we may consider the set
Σ of subformulas of φ and check that M/Σ has some state in which φ holds.
Since M/Σ is also finite, we can conclude that the logic has the finite model
property. Although the formalization is semantic, some of the previous proofs are
simplified.
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Case LX: layering the model

We can now move on, so in order to address the evaluation of formulas with
X, define, for any given Γ,

Θ+Γ = {ψ | Xϕ ∈ Γ} and Θ−Γ = {¬ψ | ¬Xψ ∈ Γ}.

They might be abbreviated as ΘΓ := Θ+Γ∪Θ−Γ, with hopes of relating some sort
of states s and t whenever Θs ⊆ t.

Now, let us organize a new model in accordance to depth layers. For ev-
ery i ≤ dX(φ), we introduce Mi =Mc/Σi, following a maximal filtration-like
arrangement for each i ≤ n. Start by defining an equivalence relation ∼i on Wc

as s ∼i t if and only if s ∩ Σi = t ∩ Σi. Then, let [s]i = {t ∈Wc | s ∼i t}, and put
Wi = {[s]i | s ∈Wc} as a new set of states. Again, in practice, we may regard [s]i
as the set of formulas

⋂{s′ | s ∼i s′} ∩ Σi = s ∩ Σi and only discuss states in the
definition of the relations.

The relation R1
i has [s]iR1

i [t]i if and only if there exist s′ ∼i s and t′ ∼i t such that
sR1

c t. Then, for every ¬♢1ψ ∈ Σi, whenever ¬♢1ψ ∈ s we have ¬ψ ∈ t, given that
any s ∼i s′ coincide in their formulas at depth i (as well as t ∼i t′). In particular,
R1

i meets the criteria11 to be a filtration relation of R1
c (modulo Σi), namely

sR1
c t⇒ [s]iR1

i [t]i and [s]iR1
i [t]i⇒ {ψ | ¬♢1ψ ∈ s} ∩ t ∩ Σi = ∅.

We interpret R♢i in an analogous way, which causes it to have the same prop-
erties as R♢c , that is, [s]iR♢i [t]i if and only if ¬♢ψ ∈ [s]i implies ¬ψ,¬♢ψ ∈ [t]i.12

Moreover, the ancestral lemma also holds for our new pairs of relations, so (R1
i )
∗

behaves as R♢i .
In order to interpret LX-formulas, we introduce a function f to handle the X

operator. It assigns to each state in Wi the unique state in Wi+1 which can be its
immediate X-successor, i.e., it retrieves the formulas a level below (at depth i + 1)
and “forgets” the information from the position of the path it represents. Formally,
for every i < dX(φ) and [s]i ∈Wi, [t]i+1 ∈Wi+1,

f ([s]i) = [t]i+1 iff Θ[s]i ⊆ [t]i+1.

The function is well-defined, because (1) if [s]i is consistent, so will be Θ[s]i, hence
there exists some maximal set t ⊇ Θ[s]i and ([s]i, [t]i+1) ∈ f ; and (2), whenever
f ([s]i) = [t]i+1 = [t′]i+1, every ψ ∈ Σi+1 ∩ t has Xψ ∈ Σi ∩ s (by maximality of s with
respect to Σi), hence ψ ∈ t′ and t ∼i+1 t′.

11See, for instance, [OLP21].
12In other words, for every ¬♢ψ ∈ Σi, if ¬♢ψ ∈ s then ¬ψ,¬♢ψ ∈ t.
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Thus far, we have constructed Mi = ⟨Wi, R1
i , R♢i ,Vi⟩ along f , where Vi([s]i) =

s∩Σi ∩ Pφ = {p∈ Pφ | p∈ s∩Σi}. Observe how the resulting model is well-behaved
in terms of complexity in that no level can be accessed from a deeper one by means
of any of the relations we have presented (i.e. no looping due to arbitrarily long
paths):

Definition 4.6. The structureMφ = ⟨Wφ, f , R1
φ, R♢φ ,Vφ⟩ is given by Wφ =

⋃
i≤dX(φ)Wi,

R1
φ =

⋃
i≤dX(φ) R1

i , R♢φ =
⋃

i≤dX(φ) R♢i and Vφ =
⋃

i≤dX(φ) Vi.

As mentioned previously, another means of constructing such models would
have arisen from doing without the Xiψ inherited from lower levels: we would
have obtained a more concise structure, but its information would not have suf-
ficed to make f a function, even if though it was always possible to choose some
function within the resulting relation. For instance:

Figure 4.4: For φ = X♢p, suppose that our construction lets Σi not contain the
formulas from Xjψ with ψ ∈ Σi+j. Identify the states from Wi coinciding in the
formulas from level Σi. Then, the relation f is not a function. For the sake of
conciseness, let us neglect R1

i and R♢i in the drawing.

Returning to Mφ, semantically, LX-formulas in Mφ are evaluated as usual,
with the exception of the now more general X,

Mφ, [s]i ⊨ Xψ iff i < dX(φ) and Mφ, f ([s]i) ⊨ ψ,

so we have defined a structure whose relations are tied to the labelling of their
states. In particular, our current goal consists in verifying the a truth lemma,
that characterizes the formulas satisfied in a state through the formulas in its
equivalence class.

Lemma 4.7. For every i ≤ dX(φ), ψ ∈ Σi, [s]i ∈Wi,

Mφ, [s]i ⊨ ψ if and only if ψ ∈ s (∩Σi) .
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Proof. By induction on dX(φ)− i, we show that, for every formula ψ ∈ Σi, we have
JψK ∩Wi = {[s]i ∈ Wi | ψ ∈ s ∩ Σi}. In the base case i = dX(φ), there are no X

operators, and we prove the claim by induction on the construction of ψ:

– ψ = p ∈ Pφ: ψ ∈ s ∩ Σi iff p ∈ Vi([s]i) iffMφ, [s]i ⊨ p.
– ψ = ¬χ follows by induction hypothesis (IH2), noting that ¬χ ∈ s ∩ Σi ⇐⇒

χ /∈ s ∩ Σi.
– ψ = χ∧χ′ may appear in s∩Σi not as a conjunction, but as both subformulas

χ,χ′ simultaneously. This is equivalent toMφ, [s]i ⊨ χ,χ′.
– ψ = ♢1χ ∈ s ∩ Σi iff there exists some t ∈Wc such that χ ∈ t ∩ Σi and, for all
¬♢1χ′ ∈ s, we have ¬χ′ ∈ t. Such a t satisfies [s]iR1

i [t]i and Mφ, [t]i ⊨ χ, i.e.
Mφ, [s]i ⊨ ♢1χ.

– ψ = ♢χ ∈ s ∩ Σi iff there exists some t ∈Wc such that χ ∈ t ∩ Σi and sR♢t. By
Lemma 4.5, this is equivalent to state the existence of a t ∈Wc withMφ, [t]i ⊨
χ and [s]i(R1

i )
∗[t]i, soMφ, [s]i ⊨ ♢χ.

The inductive step follows an analogous nested induction argument, but it
now features the X operator. For ψ = Xχ, Xχ ∈ s ∩ Σi if and only if χ ∈ f ([s]i). By
the first inductive hypothesis,Mφ, f ([s]i) ⊨ χ, but that is equivalent to the desired
Mφ, [s]i ⊨ Xχ.

Observation 4.8. Given thatMφ contains every Σ∗-maximal consistent set, any ψ ∈ Σi

is satisfiable iff it is contained in some Σ∗-maximal consistent set s ∈ [s]i ∈Wi.

Proposition 4.9. Satisfiability without a fixed grammar is decidable in NEXPTIME.

Proof. Since every formula φ yields |φ| =: n subformulas, and each (¬)ψ ∈ Σ∗

refers either to such subformulas or some fixed variation, Mφ features at most
n2n states, with finite relations. So it is enough to guess a model not larger than
that and run a model-checking algorithm.

The fact that every path only has dX(φ) relevant cells13 ensures that model
checking is decidable in PSPACE, due to 3.12. Observe that the relation ♢1 we can
deduce from⇒ indeed corresponds to a grammar, since every state [s]i where we
have establish R1

i defines a single path as ([s]i, f (1)[s]i, f (2)[s]i, . . .). However, note
that rules which we might try to describe as u⇝ v might be defined as ux f ⇝ vx f

instead, where x f is a symbol that denotes the end of a sequence, so that the
(context-sensitive) rules can only be applied to the words they are meant to.14

13Read comment before Theorem 4.11.
14I.e. so that we cannot apply rules defined on smaller words to larger ones.
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[The following is not necessary, given that we already have established our
sought result and we can search models by brute force:] Nevertheless, we still do
not know such MCS’s, let alone Mφ. But the same proof of Lemma 4.7 hints at
how we can construct them and check which subformulas are satisfiable. Essen-
tially, we check the satisfiability15 of every maximal s ⊆ Σi, starting at i = dX(φ)

and working our way up: having completed each level, we can forget the previ-
ous one and only preserve the information we need – the satisfiability of a set of
formulas some state is reaching to. The following result16 to decide whether sets
with ♢(1) are consistent will be convenient to complete the algorithm.

Theorem 4.10. K modal logic with some operator ♢ and its transitive closure ♢∗ is
EXPTIME-complete. Let SAT♢∗(Γ) be an algorithm of such a complexity which decides
the satisfiability of any Γ.

To be more precise, our algorithm17 starts at the lowest level, taking every
maximal subset of P(ΣdX(φ)) without complementary literals, and applying SAT♢∗
in order to select the consistent ones. Then, it connects the states where the def-
initions of R(1)

i apply. For the upper levels Wi, it first chooses the maximal sets
s whose Θs appears in Wi+1 (otherwise, they are unsatisfiable) and it connects
them via f . At this point, it can repeat the verification with SAT♢∗ by disguising
X-literals with fresh variables.

Observe that, at every Wi, every state [s]i contains the formulas supposed to
be satisfied at that level, and not the (¬)ψ common to every s′ ∈ [s]i. For the sake
of convenience, we will simply write s instead of their class notation [s]i, since the
original s ∈Wc are never used.

15And, thus, the consistency.
16Derived from [BHT13] and viewing the modal fragment of our logic as PDL.
17It is based in a previous method to derive a pseudo-canonical model on which the truth lemma

also held.
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Algorithm 3 Generation of a pseudo-model
1: given φ

2: compute d = dX(φ)

3: compute Σ and Σd, . . . ,Σ0

4: letMφ := (Wφ, f , R1
φ, R♢φ ,Vφ), Wd, . . . ,W0 be empty

5: let Cd := {s ∈ P(Σd) | ∀ψ ∈ Σd (ψ /∈ s↔∼ ψ ∈ s)}
6: for s ∈ Cd do
7: if SAT♢∗(s) then
8: add s ∈Wd,W and let Vφ(s) = s ∩ Pφ ▷ Otherwise, do not copy
9: end if

10: end for
11: for s, s′ ∈Wd do
12: add (s, s′) ∈ R1

φ (resp. R♢φ) if the definition of sR1
ds′ (sR♢d s′) holds

13: end for
14: for i = d− 1; i ≥ 0; i-- do
15: let Ci := {s ∈ P(Σi) | ∀ψ ∈ Σi (ψ /∈ s↔∼ ψ ∈ s)}
16: for s ∈ Ci do
17: if Θs ⊆ t for some t ∈Wi+1 then
18: for all (¬)ψ ∈ Θ+/−s, replace every instance of Xψ by a fresh pψ

19: if SAT♢∗(s) then
20: reverse the change [Xψ/pψ], add s ∈Wi,W and let Vφ(s) = s∩ Pφ

21: end if
22: end if
23: end for
24: for s, s′ ∈Wi, t ∈Wi+1 do
25: add (s, s′) ∈ R1

φ (resp. R♢φ) and (s, t) ∈ f if applicable
26: end for
27: end for
28: if φ ∈ s for some s ∈W0 then
29: accept
30: end if
31: reject

Note that we can incorporate pairs of states into the relations at any point after
their level has been constructed, and f (s) = t can even be defined the moment s
is attested to be satisfiable. Nevertheless, we opted to combine all of the additions
in a single loop on grounds of better readability.

This algorithm provides models for every satisfiable subformula, and it does so
in a complexity not lower than EXPTIME (because of SAT♢∗ and the creation of the
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Σi). As a matter of fact, though, it is necessary to append an empty level WdX(φ)+1,
since formulas are supposed to be objects of evaluation even if they contain more
than dX(φ)-many X. So, create some [sε] with no positive propositional variables
such that, for every [s]dX(φ) in WdX(φ), f ([s]dX(φ)) = [sε].

Theorem 4.11. The problem of determining if the existence of a grammar for which a
model satisfies a given LX-formula φ is decidable in some complexity class C such that
EXPTIME⊆ C ⊆ NEXPTIME.

The lower bound is obtained by considering the collection of formulas {φ ∈
LX | dX(φ) = 0}, which reflects a fragment of LX that results EXPTIME-complete
due to Theorem 4.10.

In the next section, we will make use of this construction to discuss the decid-
ability of some fragments of LX.

A note on LU

The problem of deciding if any grammar can provide a model in which a given
formula holds in the logic LU is probably, so to say, the most general question we
have come across in this thesis. As such, we might find better results by reducing
it to existing knowledge in the literature.

We have previously stated that LU does not possess the Church-Rosser prop-
erty, hence [GKWZ03] affirms that it cannot be a product. However, analogously
to LX, it can be seen as a fusion of two logics: LTL and a version of K with an
operator for the reflexive transitive closure of its modal operator. The latter can be
reduced to propositional dynamic logic, PDL ([Tr07]). Let us present the following
result from [KW91]:

Theorem 4.12. Let L,L′ be two consistent, complete logics. Then, the fusion of L and L′
is decidable if both L and L are decidable.

By [CGP01] and [HKT00], LTL and PDL are decidable and complete with re-
spect to their calculus. So LU can be reduced to their fusion and be decided as
well. Additionally, it is axiomatized through the reunion of their axioms (and
rules from the calculus).
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4.2 Satisfiability in fragments and fixed grammars

In the first place, it is possible to find a reduction from the Post Correspon-
dence Problem to SATG(LX), as in the case of MC(LX). Given (Σ,U,V) an in-
stance of the PCP, consider the grammar G from Proposition 3.5 and φ = S0 ∧
♢
(
¬S0 ∧

∧
s∈(Σ∪{λ})2 ¬s

)
.18 On the one hand, whenever there exists a solution for

(Σ,U,V), the basic model M described in Proposition 2.5 will satisfy φ in (S0).
But, if no such solution exists, by completeness of the basic product model, φ will
be unsatisfiable for G: in other words, sinceM contains every possible path con-
nected in accordance to the grammar’s rule set, no path starting with S0 (so, in
particular, (S0)) can reach the pertinent empty path in any model, because such
path then would be reachable inM.

At any rate, we are still able to provide positive results when considering
specific conditions.

Fragments of LX

First of all, recall that our proof of general satisfiability allows us to provide
prefix-continuous grammars (for f (x) = x + 1) for formulas which are satisfiable
in some model, through the construction of some witness model. Given some
formula φ and a grammar G, it is possible to run our previous algorithm to find
every possible relevant “grammarless” model where φ is satisfied: while there is
an option to check the admissibility of G in such models, it is not sure that we can
rule out that such admissibility (or lack of thereof) is preserved in larger models.

Nevertheless, if G is a prefix-continuous grammar for some f (x), note that for
every path π where some subformula of φ may be interpreted, the valuation of
its positions beyond π[0,dX(φ)) is only relevant to assess the accessibility between
paths, but not to check whether some propositional variable is satisfied. Thus, we
can modify our construction ofMφ in order for it to represent the reach between
paths as defined by G.

Start by finding dk(φ),19 the bound on the number of cells needed to consider
to perform model checking, as stated in Lemma 3.9. Then, compute the l(φ) cor-
responding to the longest possible visited path during any such model checking.
Consider m the maximum length of the right hand sides of the rules of G.

Now, for every i ≤ l(φ) + m, define recursively the sets of propositional vari-

18Since the model with S0 as a state is not available, we cannot quantify the conjunction over S0,
hence the added clause.

19Even though the notation finds its roots in prefix-continuous rule sets for f (x) = x + k, the
procedure is analogous for any other kind of function.
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ables ∆i as
∆l(φ)+m = ∆ := {s ∪ {¬p | p ∈ Pφ \ s} | s ⊆ Pφ},

the possible combinations of variables, and –for smaller i’s–

∆i = {s0 ∪ {Xψ | ψ ∈ s1 positive} ∪ {¬Xψ | ¬ψ ∈ s1} | s0 ∈ ∆ ∧ s1 ∈ ∆i+1}.

This defines all possible paths of length l(φ) + m. Appending trivial empty states
sdX(φ)+1 ∈WdX(φ)+1, . . . , sl(φ)+m ∈Wl(φ)+m, consider the universe W obtained from
the level-wise product of the Wi and the ∆i, by only keeping the consistent sets. It
can be assimilated if some (s, s′) contain formulas in common.

Then, at each state s, include the formulas which encode the functioning of
the grammar: on the one hand, given a rule u := u0 . . . un⇝ v0 . . . vr =: v, for every
i ≤ l(φ), the accessibility condition

Xiχu→ ♢1X
iχv,

where χu :=
∧

j≤nX
juj is the characteristic formula of the word u, and χv is sim-

ilarly defined. On the other hand, we include ¬ϕ for every possible χ which
describes a path inaccessible by a single rule application from the one which s
defines through (s ∩ Pφ,Θ1 ∩ Pφ,Θ2 ∩ Pφ, . . .).

Finally, define relations for ♢1, ♢ and X in the same way as the construction
of Mφ.20 The resulting structure not only preserves the truth lemma, but also
incorporates the rule set of G in its relations.

Proposition 4.13. Satisfiability for any fixed grammar of the fragment of LX with rule
sets prefix-continuous for some f (x) = x + k is decidable.

Now we may discern particular cases of grammars, formulas and languages,
starting with formulas without ♢.

[Sh03] showed the PSPACE-completeness of certain modal logics. Since the
lowest complexity we could establish for MC(LX) is PSPACE, we may work under
the assumption that SATG(LX) will share this lower bound (otherwise, we could
reduce model checking to this satisfiability). In the context of rule sets with specific
attributes, this indicates that we may contemplate Algorithm 2 with no additional
cost. But, for now, let us remain in rule sets with full generality and provide a
result for a particular fragment.

Proposition 4.14. Satisfiability (for fixed grammars) of LX ↾ ♢1, the fragment of LX

which omits ♢, is decidable in PSPACE.
20Another method of proceeding would have been to directly add such accessibility restrictions

to the definition of the relations as such.
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Proof. We start by showing the following:

Claim: Let φ for LX ↾ ♢1. Then, φ is satisfiable if and only if there exist N ≤ |φ|♢1

and some M,π ⊨ φ such that, for some (possibly equal) finite π0, . . . ,πN , the set
of paths of M is ΠM = {πi[ji, j′i) | i ≤ N,0 ≤ ji < j′i ≤ |πi|}. That is, φ holds in
a model all whose paths are subsequences of some element among a fixed, finite
collection of finite paths.

Proof: We show the direct implication by induction on the ♢1-depth of φ. If
d♢1(φ) = 0, φ is and LTL↾ X-formula, so any satisfyingM,π ⊨ φ only involves the
sequence π[0,dX(φ)]. Hence, φ holds in the structure M′ = {π(0), . . . ,π(dX(φ))}
whose paths are subpaths of π.

For d♢1(φ) > 0, express φ as θ(♢1ψ1, . . . ,♢1ψk), for some θ(x1, . . . , xk) with
d♢1(θ) = 0 and ψi for lesser ♢1-depth. Now, find some θ′ ≡ θ positive Boolean com-
bination21 of Xx(a)θa, where θa is either a literal, xi or ¬xi, so that φ≡ θ′[xi←♢1ψi].
Notice that |θ|xi = |θ′|xi , i.e., we are not adding any new instance of ♢1ψi, as
¬(ψ ∧ χ) ≡ ¬ψ ∨ ¬χ and ¬Xψ ≡ X¬ψ. Hence, if there exist some M,π0 ⊨ φ,
there is also some model M containing as paths only π0 and the paths that
Xx(a)θa[xi← ♢1ψi] reference.

Then, π0 ⊨ Xx(a)θa[xi← ♢1ψi] iff π0[x(a),+∞) ⊨ θa[xi← ♢1ψi] iff

– (for θa = p ∈ Prop) p ∈ V(π(x(a))).
– (for θa = ¬p, p ∈ Prop) p /∈ V(π(x(a))).
– (for θa = xi) there is some π⇒ π′ where ψi holds.
– (for θa = ¬xi) there is no π⇒ π′ where ψi holds.

Given that only case 3 entails the existence of other satisfying paths, φ holds in
π0 for someM having π0 and the paths which, by induction hypothesis, validate
the positive ♢1πi. This concludes the inductive argument: for every ♢1 in φ, we
consider no more than a new path. ■

To check the satisfiability of φ, formulate an algorithm which allots |φ|♢1 < |φ|
slots for the possible maximal paths which define any possible modelM. As dis-
played in the first secondary induction step of Proposition 2.8, we can bound the
length of these paths by dX(φ) and the size of the left hand side of our derivation
rules. This takes cubic space with respect to the length of the input formula, so
applying MC′(LX) to the resulting models is still PSPACE.

Note that this argument does not find a direct translation for the general (con-
tinuous) case, as there would not only be computably many paths to check. If we
turn to rules prefix-continuous for some f (x) = x + k, we can return to LX and lay

21This does not affect our complexity.
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out an analogous argument to that of Theorem 3.10: checking the accessibility of
a certain path can be simulated by generating all possible intermediate sequences.

Proposition 4.15. Satisfiability (for fixed grammars) of the fragment {♢φ | d♢1(φ) =

d♢(φ) = 0} of LX, with rules prefix-continuous for f (x) = x + k, is PSPACE.

Proof. The current fragment only contains formulas of the type ♢φ, where φ is
an LTL↾ X-formula. Given the space restrictions of rules and the fact that the
truth value of such a φ is determined by the dX(φ) first positions of the path it is
evaluated in, it is enough to consider l := dX(φ) + k positions to study ♢φ. This
implies that any derivation sequence of paths between some surmised π ⊨♢φ and
π′ ⊨ φ which is longer than |Pφ|l contains some visited path and is redundant.

Therefore, our algorithm will accept ♢φ exactly if there exists some verifier
|π| ≤ l which can access some π′ ⊨ in no more than |Pφ|l rule applications. It will
do so by checking arbitrary derivations until a counter to |Pφ|l is exhausted:

Algorithm 4 Satisfiability of the positive fragment of LX

1: given (♢)φ

2: guess π of length l
3: let c := 0
4: while c < |Pφ|l and π ⊭ φ do
5: guess π⇒ π′

6: π← π′

7: c++
8: end while

Since log(|Pφ|l) ∈ O(|φ|), our non-deterministic algorithm witnesses that the
problem is NSPACE = PSPACE: it accepts a formula φ if and only if there exists
a path satisfying it which is reachable from another. There is no need to discern
whether any path should be in the model, as φ contains no instance of ¬♢.

Note that this proof cannot be reproduced for formulas beyond ♢φ, at least in
NSPACE: let us inspect what would occur if, for a given ♢φ ∧ ¬♢φ′, both ♢φ and
¬♢φ′ were satisfiable. Our algorithm would have to find a verifier the conjunction
holds, and any witness for ♢φ would certainly certify that the first clause holds.
But, since the only way to assert that ♢φ′ cannot be satisfied is by letting out non-
deterministic algorithm fail for every choice of a verifier. In other words, despite
us being able to check in exponential time whether there is a path satisfying ♢φ

and no path satisfying ♢φ′, no NSPACE algorithm of this sort can address the
problem because no sole witness can check ¬♢φ′.
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The procedure of the proof was also insubstantial for Theorem 3.10 to remain
in PSPACE, because we would have expected it to work for negative formulas: for
that, a deterministic version of the algorithm is needed – however, this implies
storing every applied rule and requires exponential time (which was bypassed in
Algorithm [2] by erasing data from closed instances). Conversely, it would not
have been possible to use Savitch’s trick for a proof of the full fragment of LX,
since we would still have had to consider exponentially-many potential models.

Now recall Theorem 4.17, which indicates a possible lower bound for the com-
plexity of LX, and denote by L♢∗ the logic it alludes. Viewing LX as a logic whose
main modal operator is ♢1 (and ♢), this fact can be translated to LX in so far as
X can be assimilated in some way. One possibility would arise from having our
formulas possess the properties below.

∀φ; ∀M∀π (X♢1φ↔ ♢1Xφ) ∧ (X♢φ↔ ♢Xφ)

In general, this is not the case for general rules, or even prefix-continuous ones:

Example 4.16. Let G be a grammar with R = {C⇝ GC}. Consider the model
M with universe {G,C,F},22 →= Id ∪ {(G,C), (C,F)}, and the corresponding ⇒
relation. For π = (C,F), we have

∃π⇒π′= (G,C,F) (V(π′(1)) =C), thus ∃π⇒π′ (M,π′ ⊨XC), i.e. M,π ⊨♢1XC,

but the sought equivalence is not fulfilled:

∄(F)⇒ π′ (V(π′(0)) = C), soM, (F) ⊨ ¬♢1C andM,π ⊭ X♢1C.

Even for grammars whose rules are defined in a similar basis for every chord,
it is possible that the property does not hold. This is the case of the fragment
{X⇝ X X, X⇝ ∆/X X, X⇝V/X X} from [Ro20]’s full grammar rule set, which
fails to satisfy A♭C ⊭ ♢1XA♭↔ X♢1A♭. This happens despite such an interchange
equivalence (commonly expressed as some commutativity principle in the context
of product logics, [GKWZ03]) being coherent for models which are complete with
respect to the set of derivable sequences of its associated grammar.

Theorem 4.17. Satisfiability (with or without fixed grammars)23 of LX, under prefix-
continuous rules, belongs to no proper subclass of EXPTIME. There exists some fragment
with that precise complexity.

22Identifying the notation for states and their valuations.
23The proof actually works without fixed grammars, but this problem can be reduced to fixed

grammars.
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Figure 4.5: Non-commutativity of the operators ♢1 and X.

Proof. Let L′X be the fragment where ∀φ∀M∀π (X ⋆ φ ↔ ⋆Xφ) holds for ⋆ ∈
{♢1,♢}. Every formula φ for L′X is equivalent to some ϕ = ϕ′[xi← Xni pi], for some
pi ∈ Prop and ϕ′ with null X-depth. Hence, taking Prop′ := {Xn p | n ∈N ∧ p ∈
Prop}, we can view formulas in the fragment as unimodal in ♢1 and its transitive
closure ♢.24 Therefore, decidability of L′X reduces to SAT(L♢∗), which belongs to
EXPTIME.

Now, supposing there was an algorithm to decide L′X more optimally than
EXPTIME, given a modal relation R in some modelM ⊨ L♢∗ we can always inter-
pret the formula in some model of L′X. This is due to L′X being a normal modal
logic, as it satisfies

□1(ϕ→ ψ)→ (□1ϕ→□1ψ) ≡ (¬♢1¬ϕ ∧♢1¬ψ)→ ♢1(ϕ ∧ ¬ψ),

and the latter is valid, because the existence of an accessible path π where ψ does
not hold –along with the fact that no path where ϕ fails is accessible– implies that
π satisfies ϕ but not ψ. But that would imply that L♢∗ reduces to L′X and is not
EXPTIME-complete, a contradiction.

Some relevant rule sets for which the aforementioned exchange property holds
are those based on substitution principles, such as tritone or backdoor dominants,
which are quite limited. However, the fragment {♢φ | d♢1(φ) = d♢(φ) = 0} is al-
ready versatile enough to contemplate many musically motivated problems. Fur-
thermore, the proof of Proposition 4.15 can be reproduced for formulas ♢φ where
φ may contain ♢1 besides X, by just adding d♢1(φ) ·max{|u| − |v| | u⇝ v} to l.

At any rate, the discussion of such principles can often be overlooked due
to the expressive power of the most widespread grammars. For instance, our
previous case A♭C ⊭♢1XA♭↔ X♢1A♭ does hold when replacing ♢1 with ♢: on the
one hand, A♭C yields A♭A♭C, which satisfies XA♭. On the other, C ⊨ ♢A♭ through
C⇒G GC⇒G DGC⇒G A♭GC. Even A♭C can be derived from C as

C⇒G . . .⇒G A♭GC⇒G A♭DGC⇒G . . .⇒G A♭CFBEADGC.
24This effectively makes the model disregard states completely and treat (whole) paths as the only

elements formulas refer to.
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About LU

Analogous to LX, we can use the reduction for PCP to the model checking
problem in LU in order to show that satisfiability for fixed grammars is unde-
cidable. Employing the formula S0 ∧ ♢

(
¬S0 ∧

(∨
a∈Σ∪{λ}(a, a)

)
Uλε

)
and the last

version of the grammar, we conclude that fixed-grammar satisfiability is undecid-
able for the class of prefix-continuous rule sets for f (x) = x + 1.

In order to select certain fragments to study, one could inspect the interaction
between operators and the musical motivation behind some formulas, in hopes of
demarcating the most relevant options. In the first place, out of the combinations
between U and ¬ or ∧, only the first component of U is interchangeable, as

(¬ψ)Uχ ≡ ¬(ψUχ) and (ψ ∧ ψ′)Uχ ≡ (ψUχ) ∧ (ψ′Uχ).

Generally, the second component does not possess such a behavior, as it is exem-
plified by,

(D,G,C) ⊨ (⊤UG) ∧ (⊤UC), but (D,G,C) ⊭⊤U(G∧C)

in the case of ∧, and for ¬,

(D,A) ⊨DU(¬A), but (D,A) ⊭ ¬(DUA).

The remaining modalities (X, ♢1, ♢) do not commute with U in the most gen-
eral settings, so we may turn to musical incentives to consider or not certain
frameworks. For instance, we may demand a harmonic sequence representing
the macro-scale of a piece that, until the B section, it is always possible to move
towards a turnaround: letting χ entail a cadence and ψ represent a marker of the
B section, we can write

(♢χ)Uψ.

However, one could argue that it suffices to look for a sequence which can indeed
access a timeline where turnarounds occur periodically until the B section takes
place, i.e.

♢((χ ∨ Xχ ∨ . . . ∨ Xrχ)Uψ).

Otherwise, another condition that could imply the current request is the eventual
existence of a ψ and always (never no) being ready to access a turnaround or in a
B section:

(⊤Uψ) ∧ ¬(⊤U(¬♢χ ∧ ¬ψ)).

Ultimately, these alternatives seem quite more powerful than their original inten-
tion, but give the impression that the second component of ‘until’ is more suitable
for our purposes.
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Another example of the flexibility of the operator ⊤U · is related to the differ-
ence in structural levels in a harmonic skeleton of a piece. The formula

V ∧♢(⊤UV/♭V)

expects a dominant sequence to be able to derive its tritone substitution, whereas
the expression

V ∧ (⊤U(♢V/♭V))

holds whenever a dominant chord precedes some eventual dominant substitution.
In the former, the bond between V/♭V and V is far stronger, as the substitute
might be viewed as stemming of, being derived from the initial dominant. How-
ever, the second formula just states that, at some point, V/♭V will be accessible
from some subsequence of the current progression, which (in most context) could
more likely be interpreted as a reexposition or a callback, than a direct conse-
quence.

In any case, we highlight two fragments coherent with these views, which
incidentally can be addressed through the EXPTIME-completeness of PDL: in the
first,

{θ(ψ1, . . . ,ψr) | dX(θ(x1, . . . , xr)) + dU(θ(x1, . . . , xr)) = 0∧ ∀i ≤ r(ψi ∈ LTL)},

temporal formulas are pushed to the atoms of a ♢1,♢-formula, which is expected
to be decidable with a complexity no smaller than EXPTIME. The second frag-
ment,

{φ ∈ LU | (χUψ) ∈ Sub(φ)⇒ χ ∈ LTL},

assigns more importance to the second component of every occurrence of until,
but it is undecidable in general (as seen with a reduction of the usual style).



Chapter 5

Overview

We review some of the notions and results obtained thus far, from the per-
spective of certain particular grammars. After that, we summarize and discuss the
contents of our work.

5.1 Applications

Recall the model for jazz standards presented by Rohrmeier, as expressed in
Table 1.1. Formally, it is a context-free grammar G, as every rule depends on a
single variable and it is not compressive: for this reason, it is prefix-continuous for
f (x) = x, hence its model checking and satisfiabilities are decidable. Furthermore,
due to Proposition 3.17, the fragment of formulas ♢(⊤Xφ) is decidable. Such a
complexity can be narrowed down to a class within exponential time by handling
positions available for string replacement (possibly by introducing new variables)
and allowing not more than d(φ) many.

Otherwise, we can opt to work with a more concise grammar G′ presented
by [Fi20]. Chords (enharmonically) at a distance of a minor third are identified,
and the only two generation rules are substitution (within the equivalence class)
and the preparation by fifths. Thus, given the commutativity1 of the rules in the
fragment, it will suffice to keep track of where the preparation rules are applied.

In any case, as a corollary of the main results, parsing of sequences is PSPACE

with any rule set (take I ∧♢(c1 ∧ X(c2 ∧ X(...))) and apply SAT).
Observe the following:

Remark 5.1. The expressiveness of the current grammar G is considered to be
enough to attain all possible harmonies in the studied corpus. In fact, all dia-

1In the sense that it is always possible to apply the substitution rules at the end, after the tree
structure is deriven.
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tonic chords can be derived from any starting degree: secondary dominant rule
applications and major/minor tonicization derive all 24 keys, while diatonic rule
instances allow us to cycle through the degrees of every fixed key. Notice that
this also implies that any pair of chords can occur juxtaposed in a valid sequence
(given any X, knowing that X ⇒∗G Yw for every Y and some w, we can apply
X⇒ XX⇒∗G XYw to obtain XY). Hence, every harmonic sequence comprised of
diatonic chords can be generated at some point of the string.

As in the case of G′, it is natural to question if any subgrammar of G is equally
as expressive, even if it is through more rule applications. Recall that we can
also consider the fragment ♢(⊤Uφ), so that we can actually capture substrings
of the elements from the language. For instance, the tritone substitution rule can
be expressed as the concatenation of a modulation rule and a primary tritone
modulation rule:

V/Xkey=Y⇝ Vkey=♭V/X/Y as V/Xkey=Y⇝ Vkey=X/Y⇝ Vkey=♭V/X/Y

In general, the same holds for other sorts of complex modulation transformations,
such as the backdoor dominant rule:

V/Xkey=Y⇝ Vkey=♭I I I/X/Y as V/Xkey=Y⇝ Vkey=X/Y⇝ Vkey=♭I I I/X/Y

In any case, it is legitimate to ask if such simplifications (which do not affect the
outcome in terms of expressiveness) work against the musical understanding of
derivations. Despite the fact that every harmonic progression can be generated as
a subsequence of an element of the language, part of the convenience of this kind
of systems arises from the interpretation of certain disconnects or peculiarities of
the derivation tree of a sequence.2

Based on the limitations of the grammars, we can propose two modifications
to our current ones, so that either they are more representative or that their com-
plexity is more optimal.

On the one hand, we may construct a grammar with distinctive (technical)
features for each of the harmonic layers: having analyzed in a set of tunes what
kind of transitions occur at a higher level of harmony (and which at a structural
macro-scale), we could propose different rules for each of them. In the case that
we only distinguish a surface level (L1) and a structural level (L0), it suffices to set
an upper bound for the length of surface-level sequences which are considered to
be a development of a single chord on the structural timeline. Then, the grammar
for L0 can be constructed as usual, and L1 can be established through rules of
the form X⇝ x1 . . . xr, where X represents an L0 chord and xi surface ones. This

2Personal communication with C. Finkensiep.
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system can be refined by introducing “terminal variables” for the structural level,
that is, tagged chords which specify what kind of sequence can they be replaced
for (I can stand for either a call or a response, modulating or not, etc.).

Additionally, with the cost of having longer sequences, one can transform un-
restricted grammars3 into context-sensitive ones: we can introduce a ‘blank’ vari-
able such that it cannot be replaced, and that it completes the right hand side of
every compressive rule. More precisely,

every u1 . . . ur⇝ v1 . . . vs, for s < r, is replaced by u1 . . . ur⇝ v1 . . . vsλ
r−s.

In order for the ends of rules substituted in to be operable as intended, we intro-
duce the rule xλ⇝ λx, so that the language of the original grammar coincides
with the set of final segments of the words from the new grammar.4

Lastly, a brief note regarding the interpretation of derivation trees for se-
quences in a harmonic grammar. It has been argued that some of the models
in the literature have suboptimal implementations due to the fact that states might
not preserve information about original tonalities from which the current passage
modulated. Knowing a priori the maximal “depth” of embedded modulations,
one could introduce additional propositional variables to reflect the route of keys
that a chord has been derived from – granted, new rules will have to be considered
(allowing for the coexistence of multiple variables in any position of a path) and
the overall complexity will be higher.

5.2 Discussion

Throughout this thesis, we have presented a logic and its models, and worked
on their relationship to harmonic grammars. In the theoretical aspect, we sum-
marize the conditions for satisfiability (or unsatisfiability) of the most common
decision problems:

• Model checking for LX: the problem is undecidable for any class of gram-
mars all whose representations through formulas depend on some ‘until’,
hence it is undecidable for context-sensitive5 (and unrestricted) grammars in
general. Decidability is achieved by assuming rule-sets are prefix-continuous,
thus also context-free grammars. In terms of complexity, prefix-continuous
rule sets for some f (x) = x + k yield PSPACE, but lower bounds within
PSPACE are achieved with regular grammars.

3They still only regard finite rule sets, in the sense of 3.2.
4As in the case of PCP-reductions, we can still introduce the rule x⇝ xλ, so that the resulting

grammar is prefix-continuous if certain conditions are met.
5Recall that swap rules can bring characters to the front.
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• Model checking for LU: again, it is undecidable in general, but for prefix-
continuous grammars for f (x) = x + 1 too. To reach decidability, we can
either remain in the fragment where ♢ is not available or consider formulas
of the form ♢(⊤Uφ) (φ ∈ LTL ↾ X), with some sorts of context-free gram-
mars.6

• Satisfiability (without fixed grammars): in general, the problem is decidable.
For LX, some filtration-like construction can be employed to prove the result;
by considering a particular fragment, we show that the complexity is no less
than EXPTIME.

• Satisfiability (fixing a grammar): it shares undecidability conditions with model
checking. To remain in PSPACE, the formulas considered must often be re-
stricted to the form ♢φ or not having ♢.

Mainly, the first reason why undecidability is recurrent is the persistence of
grammars which can be replicated in the models. Generally, there are no exchange
properties for operators (commutativity, distributivity, etc.) which may reduce the
problems to decidable ones: this stems from the fact that most grammars are not
compatible with them, although other constructions where that occurs could be
studied (like products, etc.).

Related, this particularity can be observed in the gap between model checking
and fixed-model satisfiability. It is precisely the relationship between these prob-
lems what we initially expected, given that SAT with no given grammar turned
out to be more attainable than MC. Indeed, the lack of the structure of a given
grammar allows us to view ♢ in the most general way possible, so no condition
beyond existence must be considered when relating two paths.

On the other hand, one of the principal difficulties when trying to reenact
proofs from LX in LU is the appearance of the eventuality operator Fφ := ⊤Uφ.
The analysis of fragments where a single instance of this operator is allowed suf-
fices to illustrate how it is not possible anymore to enforce bounds for checking
paths. Instead, more general methods (such as canonical constructions) could be-
come more useful.

As much as reductions can be considered in order to “propagate” undecid-
ability results to less extensive classes, the opposed can be said about some kinds
of grammars. Even though some of the proofs have been established for con-
cisely described grammars, we may actually reproduce some of the strategies to
slightly more complex classes (by extending them through combinations of rules),

6Even though the obtained result only holds for rules in the form A⇝ AB|B|a, we can extend
this proof to more general grammars by decomposing more complex rules.
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or simplify the formalization of apparently complex grammars from the musical
literature.

Overall, the focus of our work has shifted towards theoretical endeavors. Even
if the initial purpose was motivated by the possible computational and music-
theoretic advantages of modal logic, the research experience has proven more
substantial as an opportunity to learn about widespread methods in the field. It
would be advisable to work towards the direction of concrete, less general results,
for the musical reasoning to gain ground on general grammar properties.

As possible future work, we argue that some measure of similarity or well-
behavior for rule sets could be proposed in order to refine some of the results
and make them more musically coherent: recall that some of the reductions were
given by seemingly arbitrary reductions, given by the fact that temporal operators
and the definition of prefix continuity are oriented towards right-directedness.
Another possible path to explore is the discussion on whether the representation
of some sorts of models (or generated submodels) can be achieved through the use
of the ‘until’ operator. This would effectively grant a proof for the undecidability
of satisfiability with fixed grammars from some class, as the problem would be
reduced of an undecidable model checking.
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