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ABSTRACT

Context. Previous attempts to separate Small Magellanic Cloud (SMC) stars from the Milky Way (MW) foreground stars are based
only on the proper motions of the stars.
Aims. In this paper, we aim to we develop a statistical classification technique to effectively separate the SMC stars from the MW stars
using a wider set of Gaia data. We aim to reduce the possible contamination from MW stars compared to previous strategies.
Methods. The new strategy is based on a neural network classifier, applied to the bulk of the Gaia DR3 data. We produce three
samples of stars flagged as SMC members, with varying levels of completeness and purity, obtained by application of this classifier.
Using different test samples, we validated these classification results and compared them with the results of the selection technique
employed in the Gaia Collaboration papers, which was based solely on the proper motions.
Results. The contamination of the MW in each of the three SMC samples is estimated to be in the 10 − 40% range; the “best case” in
this range is obtained for bright stars (𝐺 > 16), which belong to the 𝑉𝑙𝑜𝑠 sub-samples, and the “worst case” for the full SMC sample
determined by using very stringent criteria based on StarHorse distances. A further check based on the comparison with a nearby area
with uniform sky density indicates that the global contamination in our samples is probably close to the low end of the range, around
10%.
Conclusions. We provide three selections of SMC star samples with different degrees of purity and completeness, for which we
estimate a low contamination level and which we have successfully validated using SMC RR Lyrae, SMC Cepheids, and SMC-MW
StarHorse samples.
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1. Introduction

This paper is a follow-up of Jiménez-Arranz et al. (2023) (here-
after, J22). In that paper, the authors analyzed the kinematics of
the Large Magellanic Cloud (LMC) using the Gaia DR3 data; the
analysis required a reliable separation of LMC and foreground
(Milky Way) stars in the dataset; for this purpose, a classification
method based on a neural network (NN) was developed, tested,
and applied. The result was a series of datasets providing a reli-
able selection of LMC objects, published through the Centre de
Données de Strasbourg for public use.

In this work, we extended the application of this methodology
to the Small Magellanic Cloud (SMC) in order to obtain similarly
reliable datasets for the study of this object. We made them public
for general use.

The paper is organized as follows. In Section 2, we describe
the Gaia base sample and the training sample. In Section 3, we
explain how we trained the classifier and applied it to the Gaia
base sample. We also compared the different datasets obtained.
In Section 4, we validate the datasets with external data such as
Cepheids (Ripepi et al. 2017), RRLyrae (Muraveva et al. 2018),

★ The SMC / MW classification probability of each object will be
made available in electronic form at the CDS via anonymous ftp to
cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/cgi-
bin/qcat?J/A+A/

and StarHorse (Anders et al. 2022). Finally, we give our conclu-
sions in Section 5.

2. Data selection

In this section, we introduce the samples used in this paper. First,
we characterize the Gaia DR3 base sample (Gaia Collaboration
et al. 2021a) with stars selected around the SMC center. The
contamination of foreground MW stars in this sample is non-
negligible. One may consider distinguishing the SMC and MW
through their distances; however, due to the large uncertainties in
the parallax-based distances at the SMC (Lindegren et al. 2021)
it is not possible and would only be effective when subtract-
ing bright MW stars. Second, we characterize the Gaia training
sample we used to train the machine learning classifier (NN) to
distinguish SMC stars from MW foreground stars. This training
sample intends to mimic the full dataset available in the Gaia
catalog.

2.1. Gaia base sample

The Gaia base sample was obtained using a selection from the
gaia_source table in Gaia DR3 with a 10◦ radius around the
SMC center defined as (𝛼, 𝛿) = (12.80◦, −73.15◦) (Cioni et al.
2000a) and a limiting 𝐺 magnitude of 20.5. We only kept the
stars with parallax and integrated photometry information, since
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they are used in the SMC/MW classification. This selection can
be reproduced using the following ADQL query in the Gaia
archive:

SELECT * FROM gaiadr3.gaia_source as g
WHERE 1=CONTAINS(POINT(’ICRS’,g.ra,g.dec),
CIRCLE(’ICRS’,12.80,-73.15,10))
AND g.parallax IS NOT NULL
AND g.phot_g_mean_mag IS NOT NULL
AND g.phot_bp_mean_mag IS NOT NULL
AND g.phot_rp_mean_mag IS NOT NULL
AND g.phot_g_mean_mag < 20.5

The resulting base sample contains a total of 4 047 225 ob-
jects.

2.2. Gaia training sample

As in J22, we used GOG (Luri et al. 2014) to produce a train-
ing dataset with similar characteristics to the base sample. We
selected particles within 10◦ of the SMC center. We made it com-
patible with recent estimations of the mean distance and systemic
motion obtained from EDR3 data: a distance of 62.8 kpc (Cioni
et al. 2000b) and a systemic motion of `𝛼∗ = 1.858 mas yr−1,
`𝛿 = 0.385 mas yr−1 as inferred in the linear fit (Table 4) to the
proper motions in Gaia Collaboration et al. (2021b) (hereafter
MC21).

The Gaia training sample is split into two labelled subsets,
one containing SMC stars and the other MW stars. The SMC
simulation includes 54 109 sources, a smaller number of stars in
comparison to what was expected for the data. That is because
the GOG simulator is based on a pre-defined catalog of OGLE
stars to provide real positions for the SMC stars (see details in
Luri et al. 2014). On the other hand, the MW simulation is based
on a realistic Galactic model that generates a number of stars that
matches the observations. Similarly to the strategy used in J22,
we compensated this unbalanced and unrealistic ratio between
SMC and MW stars by retaining a random 20% fraction of the
MW simulation, obtaining 285 258 sources. In Figure 1, both
SMC and MW training subsets are characterised.

Our training sample is the result of combining these two sim-
ulations, which we contrast with the Gaia base sample in Figure
2. These plots demonstrate that the Gaia training sample roughly
matches the major characteristics of the Gaia base sample, but
they also highlight some of its limitations. For example, the color-
magnitude diagram (CMD) for the SMC simulation is not fully
representative at the faintest magnitudes -with a lack of stars and
an artificial cut line- and the distribution of the SMC stars in the
sky forms a kind of square due to its origin based on an extrac-
tion from the OGLE catalog. We tested their effectiveness using a
number of validation samples to ensure that they are appropriate.

2.3. Proper motions-based classification

To establish a baseline comparison with previous methods, we
used the same selection based on the proper motions as in MC21.
In short, the MW foreground contamination is minimized by
computing the median proper motions of the SMC from a sample
constrained to its very center and cutting the magnitude and
parallax. We only kept stars whose proper motions obey the
constraint of 𝜒2 < 9.21, that is, an estimated 99% confidence

region (see details in Section 2.2 of MC21). The resulting sample
(hereafter PM selection) contains 1 720 856 objects1.

3. SMC/MW classification

In this section we define an improved, more efficient, and ad-
justable selection strategy to distinguish the SMC stars from
the MW foreground. Based on this classifier, we selected three
samples of candidate SMC stars with different degrees of com-
pleteness and purity.

3.1. Training the classifier

The sklearn Python package (Pedregosa et al. 2011) was used to
create a classifier. Using the Gaia data, this module includes a
number of classifiers that can be used to differentiate the MW
foreground objects from the SMC objects in our base sample
using the training sample mentioned in the preceding section.
We used the position (𝛼, 𝛿), parallax, and its uncertainty (𝜛,
𝜎𝜛), along with the proper motions and their uncertainties (`𝛼∗,
`𝛿 , 𝜎`𝛼∗ , 𝜎`𝛿

), and Gaia photometry (𝐺, 𝐺𝐵𝑃 , 𝐺𝑅𝑃).
As in J22, we select as classifier the NN. The NN has 11 input

neurons, corresponding to the 11 Gaia parameters listed above;
three-hidden-layers with six, three, and two nodes, respectively;
and a single output that gives the probability 𝑃 of being a SMC
star for each object (or, conversely, the probability of not being
a MW star). The object is very likely to belong to the SMC
(MW) if the 𝑃 value is close to 1 (0). The activation function
that we employed was the rectified linear unit (ReLU). With a
constant learning rate, stochastic gradient descent is used in our
model to optimize the log-loss function. The strength of the L2
regularization term is 1e-5.2

To train the algorithm, we used 60% of the training sam-
ple, and the remaining 40% was used for testing purposes. By
creating the receiver operating characteristic (ROC) curve and
computing the area under the curve (AUC), we assessed the clas-
sifier performance. One of the most crucial evaluation criteria for
determining the effectiveness of any classification model is the
ROC curve. Using various probability thresholds, it summarizes
the trade-off between the true positive rate and false positive rate.
Another useful tool for classifier evaluation is the AUC of the
ROC curve. The larger the AUC, the better the classifier works.
An excellent model has an AUC that is close to 1, indicating that
it has a high level of separability. Having an AUC equal to 0.5
indicates that the model is incapable of classifying the data.

We provide the ROC curve of our NN classifier in the left
panel of Figure 3. We achieve an AUC of 0.998, indicating that our
classifier accurately distinguishes between SMC and MW stars
in the test sample. We show the precision-recall curve in the right
panel of Figure 3. When the classes are severely unbalanced,
it is another helpful indicator to assess the output quality of
the classifier. Both evaluation criteria display a nearly flawless
classifier when applied to the training (simulated) data; however,
the same warnings regarding the classifier described in J22 apply
here.

1 We note that the difference in the number of sources with the ones in
MC21 comes from the different cut in radius, now being of 10◦ instead
of 11◦.
2 The corresponding author can be contacted if readers are interested
in using the NN developed in the paper.
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Fig. 1: Characteristics of GOG simulated samples in orange and blue: SMC and the MW training samples, respectively. Top left
and middle: Distribution of proper motions in right ascension and declination, respectively. Top right: Parallax distribution. Bottom
left: Magnitude 𝐺 distribution of the simulated samples. Bottom middle and right: Color-magnitude diagram of the SMC and MW,
respectively. Colors represent relative stellar density, with darker colors meaning higher densities.

Fig. 2: Gaia base and training samples comparison. Top from left to right: Density distribution in equatorial coordinates of the Gaia
base and Gaia training samples in logarithmic scale, parallax, and G-magnitude distributions. Bottom from left to right: Proper
motion distributions in right ascension and declination and color-magnitude diagrams for the Gaia base and training samples. In
the histograms, we show the Gaia base sample, while in dotted purple we show the Gaia training sample. In the color-magnitude
diagrams, colors represent relative stellar density with darker colors meaning higher densities.
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Fig. 3: Evaluation metrics for NN classifier performance. Left:
ROC curve. Black dot is in the “elbow” of the ROC curve and
shows the best balance between completeness and purity. The
purple star shows the completeness threshold. Right: Precision-
recall curve. In both cases, we compare our model (orange solid
curve) with a classifier that has no class separation capacity (blue
dashed curve).

Fig. 4: Gaia base sample’s probability distribution for the NN
classifier. A high likelihood of being an SMC (MW) star is indi-
cated by a probability value close to 1 (0).

3.2. Applying the classifier to the Gaia base data

After the NN has been trained, we use it to extract probabili-
ties for each object in the Gaia base sample3. Figure 4 displays
the resulting probability distribution. Two distinct peaks can be
seen, one with probability near 0 and the other with probability
near 1. These peaks match stars that the classifier can definitely
identify as being MW and SMC sources, respectively. There is
a flat tail with intermediate probability in between, which repre-
sents sources for which the NN has more difficulties classifying.
Only 537 137 stars have a probability 𝑃 between 0.01 and 0.9,
corresponding to 13% of the SMC base sample.

We must establish a probability threshold 𝑃𝑐𝑢𝑡 in order to
acquire a classification using the probabilities that the classifier
generated for each star. The star is thought to belong to the SMC if
𝑃 > 𝑃𝑐𝑢𝑡 and the MW if 𝑃 < 𝑃𝑐𝑢𝑡 (alternatively, we could deem
stars with intermediate probabilities as unclassified). Fixing a low
probability threshold allows us to ensure that no SMC objects are
missed, but at the cost of having more "mistaken" MW stars in the

3 By anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or by visiting
http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/, the CDS will make the
classification probability of each object available in electronic form.

SMC-classified sample. Conversely, by setting a high probability
threshold, we can reduce contamination in the resultant SMC-
classified sample, but at the cost of omitting some SMC stars and
producing a less complete sample.

As seen in J22, a choice regarding the purity-completeness
trade-off will determine the characteristics of the final sample
and may, therefore, have an impact on the results. To examine the
impact of this trade-off, we defined two different samples in this
work:

1. Complete sample (𝑃𝑐𝑢𝑡 = 0.01). In this case, a cut at low
probability prioritizes completeness at the cost of larger MW
contamination. We determined the cut value by looking at the
classification’s probability histogram (Figure 4) and selecting
the upper limit of the peak of small probability values.

2. Optimal sample (𝑃𝑐𝑢𝑡 = 0.31). The probability cut in this
instance was determined to be the best possible in terms
of classification; the value corresponds to the “elbow” of
the ROC curve (Figure 3), which is in principle the ideal
compromise between completeness and purity.

Additionally, and because MW stars exponentially rise at
fainter magnitudes whereas SMC stars rapidly decrease beyond
𝐺 ≃ 19.5 (see discussion in the next section), we introduced
the third case after carefully studying the results for the optimal
sample. We refer to it as the truncated-optimal sample (𝑃𝑐𝑢𝑡 =

0.31) with 𝐺 < 19.5 mag. As mentioned above, this cut avoids
a region in the faint end, where the SMC training sample is not
representative; by removing these stars, the MW contamination
can be reduced and the stars with larger uncertainties are also
discarded. Given the purity of the SMC diagrams in Figure 5, we
decided against making a second selection by excluding areas of
the CMD diagram where contamination is more likely.

Finally, we take into account two datasets for each of the four
samples: firstly, the full sample, where we assume that there is
no information on the line-of-sight velocities for any of the stars;
secondly, a subset of the first sample that only contains stars
with Gaia DR3 line-of-sight velocities is kept. These samples
are referred to as the corresponding 𝑉𝑙𝑜𝑠 samples. In Table 1, the
second and third columns show the number of stars for each data
set together with the mean astrometric information.

3.3. Comparison of classifications

Figure 6 displays the sky density distributions for the classified
SMC/MW members in our various samples. We provide the SMC
selection for each sample in the left column, and the sources
designated as MW are displayed in the right column. Proper-
motion selection is the first row, followed by the three NN-based
selection strategies, and each row corresponds to one selection
technique. As may be expected, the outcomes of the proper-
motion-based selection closely resemble those of MC21.

Since an anomalous classification in the SMC outskirts is not
seen in these figures, we notice that the restricted spatial distribu-
tion of the SMC training sample (square region in top left panel
of Figure 2) does not pose an issue for extrapolating the mem-
bership outside this region. Additionally, we observe that sources
identified as MW by all four samples exhibit an overdensity in
the SMC central part, the most populated region, indicating that
SMC stars were misidentified. Two globular clusters, Tuc 47 and
NGC362, were successfully removed from the SMC samples
(see the concentration of stars around (𝛼, 𝛿) ≃ (5◦,−72◦) and
(16◦,−71◦), respectively). Moreover, we observe that, in accor-
dance with the concept of the probability cut, fewer stars are
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Fig. 5: Astrometric and photometric characteristics of the SMC and MW samples. From left to right: PM sample, NN complete, NN
optimal, and NN truncated-optimal samples. In the first four rows, we show distributions of proper motion in right ascension and
declination, parallax, and G magnitude, respectively, of the SMC (orange) and MW (blue) samples. In the last two rows, we show
the color-magnitude diagram of the samples classified as SMC and MW, respectively. Color represents the relative stellar density,
with darker colors meaning higher densities.
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SMC sample N 𝑁𝑣𝑙𝑜𝑠 𝜛 𝜎𝜛 `𝛼∗ 𝜎`𝛼∗ `𝛿 𝜎`𝛿

Proper motion selection 1 720 856 4 014 -0.0029 0.323 0.731 0.370 -1.226 0.297
NN complete 2 172 427 4 195 -0.0013 0.417 0.706 0.580 -1.221 0.558
NN optimal 1 979 603 3 335 -0.0083 0.381 0.696 0.485 -1.218 0.463
NN truncated-optimal 1 265 824 3 335 -0.0018 0.254 0.700 0.383 -1.225 0.349

Table 1: Comparison of the SMC samples’ number of sources and mean astrometry between the proper motion selection (MC21)
and the NNs. Parallax is in mas and proper motions in mas yr−1.

categorized as belonging to the MW the more complete the SMC
sample is. In this regard, a cross-match between the complete
sample and the proper motion selection sample reveals that the
latter almost entirely contains the former: of the 1 720 856 stars in
the proper motion sample, 1 697 614 of them are included in the
complete sample, and the complete sample also contains nearly
400 000 additional stars. Regarding the MW samples, we can
estimate their SMC contamination by comparing its density with
the one of a uniform sky field observed nearby, but away from the
SMC center; the observed overdensity gives an estimation of the
"excess" of SMC stars. From this comparison, the percentage of
SMC stars in the MW sample is estimated to be around 5-10%,
the MW optimal sample being the less contaminated one.

We also notice that the astrometric parameter dispersion de-
creases from the NN complete to the NN truncated-optimal sam-
ples. This is to be expected given that the samples’ distance and
velocities are more similar due to the stricter sequence of selec-
tion criteria.

In Figure 5, we compare the astrometry and photometry dis-
tribution of the different SMC samples. In the proper motion
selection sample, the distribution of proper motion is observed to
be narrow around the bulk motion of the SMC due to the severe
cut in proper motion enforced; however, in the MW classification,
two minor peaks are evident after the SMC. The NN samples do
not reveal this misclassification. We observe a secondary peak
in the right ascension proper motion around 5.2 mas yr−1, which
corresponds to the systemic motion of Tuc47 (Gaia Collabora-
tion et al. 2018). The truncated-optimal sample has the narrowest
parallax distribution among the four LMC samples, which are
all quite similar to one another. The 𝐺− magnitude distributions
in the four SMC selections vary significantly from one another.
Both the PM and the NN samples have a 𝐺− magnitude peak
at 𝐺 ∼ 19 mag, which is related to the SMC stars, and a sec-
ondary peak at the limiting magnitude 𝐺 = 20.5 mag, which
corresponds to the MW contamination. Due to this, we define
the truncated-optimal sample by subtracting the secondary peak
from the optimal sample, as mentioned above. This secondary
peak is caused by the exponential distribution in 𝐺 of the MW
stars, arising from the logarithmic relation between the stellar
flux and the apparent magnitude combined with the magnitude
cut and the spatial distribution of the stars in the disk. The SMC
stars, on the other hand, exhibit a significant peak at𝐺 ≃ 19 mag,
slightly differing between samples depending on the amount of
MW misclassified sources.

All SMC samples have a fairly similar CMD. Only minor
variations are visible in the MW selection of the optimal and
truncated-optimal samples, which comprise, as expected, sources
of the red giant branch of the SMC that the NN classifier misiden-
tifies as MW.

4. External validation of the classification

In order to validate the results of our selection criteria we compare
each of the generated samples with external independent classifi-

cations. To do so, we cross-matched our samples with dedicated
catalogues of the SMC chosen to have a high degree of purity in
the visible band. For this reason, we exclude from this exercise
the VMC survey (Cioni et al. 2011) for being in the near-infrared
and the SMASH survey (Nidever et al. 2017) for not performing
any contamination study, and we use the following:

– SMC Cepheids (Ripepi et al. 2017): we used the 4 793
Cepheids from the paper’s sample as a set of highly reliable
SMC objects. Using a 0.3" search radius to find high confi-
dence matches and keeping 4 788 stars, we cross-matched the
positions supplied in the study with the Gaia DR3 catalogue
to obtain the Gaia DR3 data. To make a final selection of
4 765 SMC Cepheids, we introduced a cut with a 10◦ radius
around the SMC center (replicating our base sample).

– SMC RR-Lyrae (Muraveva et al. 2018): we employed the
2 997 RR-Lyrae sample from the paper as high-reliability
SMC objects in a manner similar to the foregoing. After the
sample is cross-matched with the Gaia DR3 catalog, it is
downsized to 2 982 stars, and then we cut a final sample of
2 922 SMC RR-Lyrae in a 10◦ radius around the SMC center.

– StarHorse (Anders et al. 2022): using a cut of 10◦ around
the SMC center, we cross-matched this catalog with the Gaia
DR3 data and obtained a sample of 1 000 066 stars. We dis-
tinguished MW and SMC stars using the StarHorse distances,
but with a cutoff of 𝑑 = 55 kpc, using criteria similar to those
put forward in Schmidt et al. (2020, 2022) for the LMC.
This choice is supported by the StarHorse sample’s distance
distribution, which is depicted in Figure 7. A very stringent
categorization is produced by a cut in 𝑑 = 55 kpc, reducing
the pollution of MW stars (see discussion below). As a result,
we are left with a StarHorse SMC sample of 193 402 stars
and a StarHorse MW sample of 806 660 stars. We note that
this sample only has stars up to 𝐺 = 18.5.

The Cepheids and RR-Lyrae datasets contain objects that are
highly reliably identified as SMC stars; therefore, they are used
to assess how complete our classification of SMC objects is (i.e.,
how many we lose). On the other hand, because the StarHorse
classification is imperfect, this sample can be used to estimate
the contamination brought on by incorrectly identified MW stars.
Furthermore, the estimated amount of MW contamination in
the classification will be a “worst case” scenario because of the
extremely strict criteria utilized in StarHorse for the separation
(cut in 𝑑 = 55 kpc).

Table 2 compares the outcomes of our four classification crite-
ria as they were applied to the stars in the three validation samples.
The results using the Cepheids, RR-Lyrae, and StarHorse SMC
validation samples reveal that the completeness of the resulting
SMC classifications is excellent, typically exceeding 95%. The
truncated-optimal sample is the exception, where the cut in faint
stars reduces the RR-Lyrae’s completeness.

On the other hand, the relative contamination by MW stars is
more challenging to evaluate in the samples. We rely on an exter-
nal comparison, the StarHorse distance-based classification, with
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Stars classified as SMC SMC Cepheids
(4 765)

SMC RR-Lyrae
(2 922)

SMC StarHorse
(193 402)

MW StarHorse
(806 664)

Proper motion selection 4 578 (96.1%) 2 447 (83.7%) 190 166 (98.3%) 114 354 (14.2%)
NN complete 4 688 (98.4%) 2 814 (96.3%) 191 692 (99.1%) 125 200 (15.5%)
NN optimal 4 599 (96.5%) 2 694 (92.2%) 186 063 (96.2%) 110 704 (13.7%)
NN truncated-optimal 4 598 (96.5%) 821 (28.1%) 186 063 (96.2%) 110 704 (13.7%)

Table 2: Matches of the classified SMC members in our four considered samples against the validation samples. The total number
of stars, which is listed beneath the sample name, is used to determine percentages.

Fig. 6: Sky density distribution in equatorial coordinates of both
the SMC (left) and MW (right) sample obtained from the differ-
ent classifiers. First row: proper motion selection classification.
Second row: Complete NN classification. Third row: Optimal NN
classification. Fourth row: Truncated-optimal NN classification.
We note that in the fourth row, we display a cut in magnitude
𝐺 > 19.5 for both the SMC and MW samples and, therefore, the
total number of stars is reduced.

Fig. 7: StarHorse validation sample distance distribution. In blue
(orange), the StarHorse stars classified as MW (SMC) according
to the 𝑑 = 55 kpc criteria.

the caveat that this classification also includes its own classifica-
tion errors. In order to do this, we recalculate the precision-recall
curve using the StarHorse classification as a reference this time;
the outcome is depicted in Figure 8. We can observe that the
precision essentially stays flat across the plot’s entire range, or
across the entire range of probability threshold values. This sug-
gests that the complete and optimal samples both have identical
relative contamination since the more restrictive we are, the more
MW stars we remove, but we also lose more SMC stars. Accord-
ing to the precision values in Figure 8, using the classification
based on StarHorse distances as a reference, the relative contam-
ination of our samples could be around 40%; this is a worst-case
scenario, because we used a very restrictive distance cut. These
statistics need to be interpreted carefully because the MW-SMC
separation based on StarHorse distances is not a perfect classi-
fication criterion and actually uses less data than our criterion.
Although many stars still have intermediate distances that fall
between the Magellanic Clouds and the MW as a result of the
multimodal posterior distance distributions, these populations are
plainly evident as overdensities in the maps as mentioned in the
StarHorse publication (Anders et al. 2022).

These findings indicate that there may be a few tens of per-
cent of MW stars in our samples, but we can further investigate
using the line-of-sight velocities in Gaia DR3, which are only
available for a (small) subset of the full sample. These line-of-
sight velocities have distinct mean values for the MW and SMC,
are not used by any of our classification criteria, and, therefore,
provide an independent check. The contamination of the SMC
sample is evident from the histograms of line-of-sight velocities
plotted separately for MW and SMC stars in Fig. 9. This contam-
ination is most likely far lower than the values mentioned above.
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Fig. 8: Evaluation metrics for NN classifier performance using
the StarHorse sample. Left: ROC curve. Black dot is in the “el-
bow” of the ROC curve and it shows the best balance between
completeness and purity. Right: Precision-recall curve. In both
cases, we compare our model (orange solid curve) with a classi-
fier that has no class separation capacity (blue dashed curve).

For instance, we estimate the MW contamination to be around
10% if we take into account the SMC NN complete sample and
(roughly) separate the MW stars with a cut at 𝑉𝑙𝑜𝑠 < 75 km s−1 .
Also, this check is not entirely representative since only stars at
the bright end of the sample (𝐺 ≲ 16) are included in the subset
of Gaia DR3 stars with observed line-of-sight velocities.

Finally, we made a new query to the Gaia archive similar
to the one described in Section 2.1. This time, we select all the
sources within a 10◦ radius in a nearby area with uniform sky
density from the Gaia DR3 database. By doing so, we may esti-
mate the number of MW stars that should be present in locations
that our Gaia base sample covers. We found 932 332 stars from
this new query, so we may anticipate a comparable number of
MW stars in the area we chose to surround the SMC. Given that
the Gaia base sample contains 4 047 225 objects and the number
of objects classified as SMC (Table 1) is around 1 - 2 million, the
number of stars classified as MW is around 3-2 million; therefore,
we can conclude that our NN SMC samples prioritise purity over
completeness since there are too many stars classified as MW
(an excess of 1 to 2 million). This is also clear from the right
panels of Figure 6, where the pattern of SMC contamination is
displayed in the distribution of stars classified as MW.

5. Conclusions

In this work, we present a new SMC/MW classification method
that is compared with previous selection strategies based on
the proper motion. It is based on NNs and trained using a
MW+SMC simulation created by GOG. We created two SMC
samples using various probability cuts, 𝑃𝑐𝑢𝑡 , the NN complete,
with 𝑃𝑐𝑢𝑡 = 0.01, and the NN optimal sample, with 𝑃𝑐𝑢𝑡 = 0.32,
which corresponds to the best value according to the ROC curve.
In order to remove any remaining contamination from incorrectly
categorised faint stars, we added an additional cut to this final
sample at the apparent 𝐺 magnitude of 𝐺 < 19.5 mag, cre-
ating the NN truncated-optimal sample. Moreover, we created
sub-samples that contain both proper motions and line-of-sight
velocities by using the recently released spectroscopic line-of-
sight velocities provided in Gaia DR3. Finally, we successfully
validated our classifier using external and independent classifica-
tions: SMC Cepheids, SMC RR Lyrae, and SMC/MW StarHorse
stars. In general, the estimated contamination of MW stars in
each of the SMC samples is about 10 − 40%, the “best case”
being for the bright stars (𝐺 > 16), which belong to the 𝑉𝑙𝑜𝑠

subsamples, and the “worst case” being for the full SMC sample
determined by the very stringent criteria used for the separation
in the StarHorse validation sample. A further check based on the
comparison with a nearby area with uniform sky density indi-
cates that the global contamination in our samples is probably
close to the low end of the range, around 10%.
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Fig. 9: Line-of-sight velocity distribution for stars classified as SMC (top) and MW (bottom). We show the three 𝑉𝑙𝑜𝑠 subsamples of
the PM selection (left), NN complete (middle), and NN optimal (right) samples.
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