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Large Language Models and Causal Analysis: Zero-Shot Counterfactuals in Hate
Speech Perception

by Sergio HERNÁNDEZ

Detecting hate speech is crucial for maintaining the integrity of social media plat-
forms, as it involves identifying content that denigrates individuals or groups based
on their characteristics. However, the expression of hate can be different across dif-
ferent demographics and platforms, making its detection a complex task.

A significant factor in hate speech is the presence of offense, which alters the
perception of hate without altering the core meaning of the text. This study aims to
examine how offense affects the perception of hate speech in social media comments.

To achieve this, we employ two distinct causal inference methods to measure
the impact of offensive language on the detection of hate speech. The first method
utilizes the traditional backdoor criterion, which allows us to model the nodes of the
causal graph as features in a machine learning model that predicts hate. This method
is demanding from a modeling point of view, as it requires training a specific model
for each node in the causal graph.

The second method leverages the capabilities of Large Language Models (LLMs)
to generate textual counterfactuals in a zero-shot manner, i.e., without requiring
any training or fine-tuning. These textual counterfactuals are then used to estimate
causal effects.

Our findings reveal that the causal effect of offense on hate is higher with the
LLM generated counterfactuals than with the methodology that follows the back-
door criterion. Additionally, we train a machine learning model to directly predict
the causal effect from a comment.

HTTP://WWW.UB.EDU
http://mat.ub.edu
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Chapter 1

Introduction

1.1 Research objective

Social media sites have become global platforms where users can express and share
their opinions freely. Unfortunately, some individuals exploit these spaces to share
hateful content targeted toward individuals or groups based on attributes such as
religion, gender or other characteristics, leading to the propagation of hate speech.
Consequently, developing models to detect hate speech has become necessary to
maintain the integrity of online platforms.

However, the hate-speech can differ a lot across demographics and platforms.
Age, culture, and socio-economic factors can influence how hate is expressed, as
well as the diverse forms of communication that each platform can have. All this
makes hate detection a complex task.

A key aspect of hate speech is the presence of offense in the text. The offense of
a sentence is what directly inflicts harm and promotes hostility towards specific in-
dividuals or groups. It is able of changing how hate is perceived in content without
altering its core meaning.

This study aims to address the hate detection problem through a causal ap-
proach. Our objective is to investigate the impact of offensive language on the per-
ception of hate speech in social media comments. To achieve this, we use different
causal inference methods to quantify the effect of offensive language on the percep-
tion of hate speech.

We will limit ourselves to using machine learning models to estimate the proba-
bilities of hate speech and of their underlying causes (which we identify in a causal
graph). Specifically, we utilize deep learning models based on transformers (Islam
et al., 2023).

Regarding the causal inference methods, we first use a traditional approach fol-
lowing the backdoor criterion (Pearl, 2009). It allows us to model the nodes of the
causal graph as features in a machine learning model that predicts hate.

Moving forward, we will test a more contemporary approach that leverages the
capabilities of Large Language Models (LLMs) (Bommasani et al., 2021) to generate
textual counterfactuals (Lewis, 2013). These textual counterfactuals are then used to
quantify causal effects.
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1.2 Related work

There exist recent studies that combine the use of machine learning models or LLMs
with causality.

In (Sheth et al., 2023), Sheth et al. propose a causality-guided framework for
hate speech detection in order to adress the fact that hate-speech can differ a lot
across distinct demographics and platforms. They took advantage of inherent causal
cues, which can be leveraged to learn generalizable representations for detecting
hate speech across different distribution shifts.

They employ roBERTa models (Liu et al., 2019) capable to predict these causal
cues in order to integrate them into another roBERTa model for hate detection. To
identify the causal cues, they utilize the ones verified by various studies in social sci-
ences and psychology that can aid in detecting hate (Bauwelinck and Lefever, 2019;
Craig, 2002; Krahé, 2020; Sengupta et al., 2022; Zhou et al., 2021). Some of these cues
are the hater’s prior history, the conversational thread, the overall sentiment and the
offense in the text.

However, they only have access to the sentiment and the offense. In our study,
we construct the causal graph of our problem in function of these causal cues (see
Section 2.1.1). Furthermore, we utilize a simplified version of PEACE model, by
adapting it to causal analysis (see Section 2.2.1).

Concerning large language models, in their study (Kıcıman et al., 2023), Kıcıman
et al. analyze the causal capabilities of LLMs across different causal tasks. They
find that LLMs are useful in capturing common sense and domain knowledge about
causal mechanisms, as well to facilitate the translation between natural language
and formal methods.

Similar to our approach, Gat et al.(Gat et al., 2023) generate textual counterfac-
tuals with an LLM to estimate causal effects, achieving a good performance. The
counterfactuals are created to change the value of a concept from a textual restau-
rant review, while maintaining the value of the other concepts (the concepts are food,
service, ambiance and noise).

In (Li et al., 2023), Li et al. utilize an LLM (GPT-3.5 (OpenAI, 2023a)) to gen-
erate counterfactuals in order to perform data augmentation in different Natural
Language Understanding (NLU) tasks (Chowdhary and Chowdhary, 2020). Their
evaluation covers several factors to determine LLMs capability of generating coun-
terfactuals, including prompt design and intrinsic properties of LLMs such as the
model size. Their findings indicate that LLMs can produce satisfactory counterfac-
tuals in most cases, though they also have found LLMs weaknesses when dealing
with complex tasks like Relation Extraction (RE) (Nasar, Jaffry, and Malik, 2021).
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Chapter 2

Methodology

2.1 Problem definition

2.1.1 Causal Graph

First of all, we use a causal graph (Pearl et al., 2000) to identify our accessible causal
relationships that influence hate in comments. As shown in Figure 2.1, we consider
that the hate depends on the offense, the sentiment and the meaning of the comment.
The offense and the sentiment also depends on the meaning.

We need to keep in mind that there are inaccessible factors (such as the hater’s
prior history and the conversational thread) that can affect the hate as well.

FIGURE 2.1: Causal Graph to identify causes of Hate.

Table 2.1 provides information about the variables in the causal graph nodes. In
our causal inference approaches, we will obtain the offense, sentiment and meaning
as embeddings produced by processing the texts with deep learning models. How-
ever, when necessary, offense and sentiment can be expressed on a discrete scale
through classification, unlike the meaning.

TABLE 2.1: Variables of the Causal Graph

Variable Type Values Causal role
Sentiment Ordinal Negative, Neutral, Positive Covariate
Meaning Embeddings N/A Covariate
Offense Binary Non-Offensive, Offensive Treatment

Hate Binary Non-Hate, Hate Outcome
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2.1.2 Causal Inference

We aim to analyze how offense affects the perception of hate speech. To that end,
we use a causal inference (Pearl, 2009) approach to quantify the effect of offensive
language on the perception of hate. The causal role of each variable in our causal
inference scenario appears in Table 2.1.

Our key causal metrics to quantify the effect of the treatment on the outcome are
the following:

ITE = p(Hi|Offi = 1, Si, Mi)− p(Hi|Offi = 0, Si, Mi) (2.1)

ATE =
1
n

n

∑
i=1

(p(Hi|Offi = 1, Si, Mi)− p(Hi|Offi = 0, Si, Mi)) (2.2)

In these equations, ’H’ designs the hate, ’Off’ the offense, ’S’ the sentiment, ’M’
the meaning and ’n’ the total number of evaluated comments.

By using the Individual Treatment Effect (ITE) (Eq. 2.1), we assess the difference
in hate probability for each comment based on the presence or absence of offense.The
Average Treatment Effect (ATE) (Eq. 2.2) is then calculated by averaging these ITEs.
However, we can only observe one of the two offense states for a given comment. To
estimate the hate probability for the unobserved state, we need to intervene on the
offense variable.

FIGURE 2.2: Causal Graph after the intervention on Offense. It also
shows the causal role of each node

Figure 2.2 shows the causal graph after the intervention. As we can observe,
the link from meaning to offense has disappeared because we are fixing the offense
value and it doesn’t depend anymore on the meaning.

Figure 2.3 illustrates the general methodology that we follow to perform causal
inference. First, we intervene on the comment’s offense to generate a new represen-
tation with its offense value altered. Next, we obtain the hate of these representa-
tions, to further calculate the causal metrics.
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FIGURE 2.3: Methodology that we use to perform causal inference.

We employ two different causal inference methods which follow the described
methodology. Each method has a distinct way of intervening on the offense.

The first method follows the traditional backdoor criterion (Pearl, 2009), and, by
using a S-Learner (Künzel et al., 2019), will allow us to model the covariates and
treatment as features in a machine learning or deep learning model that predicts
hate. In this approach, the offense is represented by a single binary feature, so, we
can intervene it by simply changing its value.

The second method leverages the capabilities of large language models (LLMs)
(Bommasani et al., 2021) to generate textual counterfactuals. In this method, it’s the
LLM who intervenes on the offense by revising the text. The original and revised
texts are then individually processed through a deep learning model to obtain its
hate speech probability.

2.2 Backdoor Criterion

The Backdoor Criterion allows us to identify a set of variables Z that, when condi-
tioned on, will block all the confounding paths, thus isolating the causal effect of
X on Y. This makes it possible to estimate the causal effect by adjusting for Z. It’s
important to block confounding paths as far as they introduce bias and distortions
into the relationship between the treatment and the outcome variables.

In this problem, X is the offense, Y is the hate and the adjusted concepts Z are the
sentiment and the meaning.

A set of variables Z satisfies the backdoor criterion relative to (X,Y) in a directed
acyclic graph G if:

1. No node in Z is a descendent of X.

2. Z blocks every path between X and Y that contains an arrow into X.

As we can see in Figure 2.2, these conditions are satisfied. Therefore, we can es-
timate the causal effect of offense on hate by using the variables in the causal graph.

2.2.1 S-Learner

We are going to use the S-Learner (Single-Learner) meta-algorithm (Künzel et al.,
2019). The S-Learner approach integrates the treatment effect estimation directly
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into a single predictive model. This is done by including the treatment variable as an
additional feature along with the covariates. Then, we can use a machine learning
model to estimate p(Hi|O f f i = 1, Si, Mi) and p(Hi|O f f i = 0, Si, Mi) by changing
the offense binary value. To subsequently calculate the ITE (Eq. 2.1) and the ATE
(Eq. 2.2).

We use an architecture that is partially based on the PEACE model (Sheth et al.,
2023) (this model is explained in Section 1.2). Unlike PEACE, our goal is not to
achieve the best predictive performance, but to conduct a causal analysis. There-
fore, we adopt its causal architecture while omitting elements like the integration of
causal modules using attention vectors.

FIGURE 2.4: Our simplified PEACE model. ’k’ indicates the length of
the tokenized text and ’h’ the size of the embeddings produced by the

last hidden layer of the RoBERTa models for each token.

Figure 2.4 shows our simplified PEACE model. We utilize roBERTa models (Liu
et al., 2019) to process the comments and obtain their values of sentiment, meaning
and offense.

The sentiment model (Rosenthal, Farra, and Nakov, 2017) is a roBERTa-base
model (Liu et al., 2019) trained on approximately 124M English tweets and fine-
tuned for sentiment analysis to detect the sentiment values: ’negative’, ’neutral’ or
’positive’. The offense model (Zampieri et al., 2019) is another roBERTa-base model
trained on around 58M English tweets and fine-tuned for offensive language iden-
tification to detect the values: ’non-offensive’ or ’offensive’. Finally, the meaning
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model is a roBERTa-base model without any additional training.

For the sentiment and meaning models, we extract the embeddings from the
last hidden layer and apply a global average pooling operation (TensorFlow, 2024),
discarding the classification head of the sentiment model. For the offense model, we
obtain the binarized offense value from its classification head. We then concatenate
these embeddings and the offense value to train a neural network classifier with two
layers of 128 neurons for hate-speech detection.

2.2.2 TARNet

In our PEACE architecture, the neural network classifier receives the meaning and
sentiment embeddings, each with a shape of (768,1), and a single binary value for
the offense. Consequently, we are probably suffering the curse of dimensionality
(Hastie et al., 2009), and the offense could have a minimal repercussion on the hate
detection, making it challenging to estimate its causal impact.

To face this problem, we are also going to use a TARNet instead of the former
neural network classifier. TARNet (Treatment-Agnostic Representation Network)
(Shalit, Johansson, and Sontag, 2017) consists of two main components: a shared
representation network and two separate heads for predicting outcomes for each
value of the binary treatment.

The shared network learns a representation of the covariates independent of the
treatment, which is then used by the treatment-specific heads to estimate outcomes.

During training, the network aims to minimize a loss function based on the fac-
tual outcomes observed in the data. Specifically, the loss is calculated using the head
corresponding to the observed value of the treatment.

Then, by separating the representation of the covariates from the treatment effect
estimation, TARNet ensures that the treatment value is considered despite the high
dimensionality of the covariates.

FIGURE 2.5: TARNet architecture.

Figure 2.5 shows the architecture of our TARNet. The shared network is a neural
network composed of three layers, each with 200 neurons. Each treatment-specific
head is a neural network with two layers, containing 100 neurons per layer.
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2.3 Counterfactuals generated by an LLM

With this second causal inference method, we are going to intervene the offense
by the creation of textual counterfactuals. Counterfactuals (Lewis, 2013) are hypo-
thetical scenarios used to reason about causality by considering what would have
happened under different circumstances. In other words, they allow us to explore
the effects of changing a treatment variable while keeping everything else constant.

We achieve this more directly by using the backdoor criterion based method de-
scribed in Section 2.2, where we intervene on the Offense at the feature level by mod-
ifying a single binary feature. However, we now aim to perform this intervention by
revising the text of the comment. For this purpose, we leverage a Large Language
Model (GPT-3.5 (Generative Pre-trained Transformer 3.5) (OpenAI, 2023a)) to gen-
erate textual counterfactuals.

Thanks to having been trained with large amounts of natural language data to
learn language patterns, LLM models like GPT-3.5 can understand requests and an-
swer with meaningful responses. We will leverage this capability in order to gen-
erate textual counterfactuals in a zero-shot manner, i.e., by simply prompting the
model to do so and without having to train it specifically for this purpose. This
approach is less demanding from a modeling perspective compared to the backdoor
criterion method, which requires training a specific model for each node in the causal
graph.

However, the quality of this LLM generated counterfactuals will depend on GPT-
3.5’s ability to modify the offense of the comment while keeping everything else
unchanged just through text revision. This task appears to be more challenging for
this method compared to the backdoor criterion, where, as previously mentioned,
we can directly intervene on the offense just by modifying a binary feature.

2.3.1 Prompt design

We ask GPT-3.5 to generate counterfactuals from each comment of the inference
dataset (explained in Section 3.1), depending on its binary offense value. These of-
fense values are obtained by means of the roBERTa model for offensive language
identification (Zampieri et al., 2019) (We have already obtained them in Section 2.2.1).
If the comment is Offensive we ask the LLM to make it Non-Offensive, and vice
versa. To achieve this, we need, for each one of these two tasks, to prompt the model.

We adopt some prompt engineering (Marvin et al., 2023) tactics from OpenAI
documentation (OpenAI, 2023b), also used in recent papers for counterfactual gen-
eration (Gat et al., 2023; Li et al., 2024; Bhattacharjee et al., 2024; Kıcıman et al., 2023).

GPT-3.5 allows to define different types of messages to create the prompt. On
the one hand, the system message helps set the behavior of the model by providing
specific instructions. On the other hand, the user messages provide requests for the
assistant to respond to.

First of all, we need to clearly indicate what we want. As a system message, we
instruct the model on how to modify the treatment (the offense) without changing
anything else, by asking it to increase or decrease the offensiveness without altering
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the meaning of the sentence. With this, our aim is to preserve the sentiment, as well
as other concepts included within the meaning. As a prompt engineering tactic, we
include four examples in the system message to help GPT-3.5 understand what we
want. This is known as ’few-shot’ prompting.

In the user message, we ask the model to create the counterfactual using the same
format as the examples. We also use delimiters to clearly indicate distinct parts of the
input, such as XML tags to separate the examples, an emphasize important words
for the task, such as the value of the treatment.

We have defined two prompts, each one with a different system message. One
to make Offensive a comment (system message 0) and the other to make it Non-
Offensive (system message 1). In Figure 2.6 we show the prompt to make Offensive
a given Non-Offensive comment. The other prompt is similar and we can find it in
Appendix A.1.

FIGURE 2.6: Prompt messages to make a comment Offensive.

Figure 2.7 presents a diagram illustrating the counterfactual generation method-
ology.

2.3.2 Evaluation of the counterfactuals

In Section 3.2 we will test the quality of the generated counterfactuals by compar-
ing them to the original comments (we call these samples ’factuals’). We want to
evaluate if the LLM is able to modify the offense without significantly altering the
sentiment and the meaning.

To achieve this, we utilize the roBERTa models from (Zampieri et al., 2019; Rosen-
thal, Farra, and Nakov, 2017) (previously used in Section 2.2.1) to predict the offense
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FIGURE 2.7: Diagram of the counterfactual generation methodology.

and sentiment values for each pair of factual/counterfactual and compare them. Ad-
ditionally, we will use another deep learning model to compare the semantic simi-
larity.

Finally, when calculating the causal metrics, we will also compare the ones from
this approach to the obtained with the backdoor criterion method.

2.3.3 Hate models

To obtain the hate probability from the comments and the intervened comments, the
current LLM counterfactual approach does not limit us to an architecture that allows
the modification of the treatment value. Therefore, we can use other hate prediction
models that don’t require training a specific model for each node in the causal graph.
We also use our simplified PEACE model, for comparison purposes. We test three
models.

Regarding the PEACE model, predictions from the offense module are no longer
required. Then, we can discard this offense module and use only the globally aver-
aged embeddings of the covariates to train the neural network classifier. No further
modification is required. The new architecture is shown in Figure 2.8.

The second hate model is HateBERT (Caselli et al., 2021). It is a re-trained BERT
model (Devlin et al., 2018) for abusive language detection obtained by further train-
ing the English BERT base uncased model (Devlin et al., 2018) with more than 1
million posts from banned Reddit communities.

It hasn’t been trained to directly detect hate speech, but rather with a Masked
Language Model objective (Salazar et al., 2019). Therefore, we extract the globally
averaged embeddings from the model to further train a neural network classifier
with a few layers (in the same way as we do with our PEACE model). The model
usage is shown in Figure 2.9a.

The last model (Antypas and Camacho-Collados, 2023) is a roBERTa-base model
(Liu et al., 2019) trained on approximately 58M tweets and fine-tuned for binary
hate-speech classification on a combination of 13 different hate-speech datasets in
the English language.

Therefore, we can use it without requiring any additional training. We will test
it in this manner but, also, by extracting the globally averaged embeddings from the
last hidden layer of this roBERTa-base model (discarding its classification head) to
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FIGURE 2.8: Architecture of the PEACE model that we use to evaluate
the LLM generated counterfactuals. ’k’ indicates the length of the
tokenized text and ’h’ the size of the embeddings produced by the

last hidden layer of the RoBERTa models for each token.

further train a neural network classifier with a few layers. Again, for comparison
purposes. The model usage is shown in Figure 2.9b and 2.9c.

(A) HateBERT (B) RoBERTa hate
(C) RoBERTa hate
with our classifier

FIGURE 2.9: Architectures to use the HateBERT and the RoBERTa
hate models.
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Chapter 3

Experiments

3.1 Datasets

3.1.1 Original datasets

We construct our dataset with data from two widely used hate benchmark datasets
which contain user comments from different platforms: Facebook, Twitter, Reddit
and Youtube.

The first one is the FRENK dataset (Ljubešić, Fišer, and Erjavec, 2021). It con-
tains comments to Facebook posts on the topics of migrants and LGBT. They can be
written in Croatian, English or Slovenian, but we are only interested in the English
subset (Ljubešić, Fišer, and Erjavec, 2019), which consists of 10,705 data samples.

Each comment is annotated by the topic and its target (as ordinal variables) and
by a binary hate speech variable (which indicates if the comment can be considered
hate speech or not). We only take the text of the comment and the binary hate speech
variable.

The second hate dataset is Twitter-Reddit-Youtube (Kennedy et al., 2020). It con-
sists of a collection of comments in English from those three platforms annotated
by 7,912 annotators. It has more than 100 variables, but the "hate speech score" is
the primary outcome. It is a continuous score created from the combination of 10
ordinal labels (sentiment, (dis)respect, insult, humiliation,violence,etc...).

We binarize this data such that any comment with a hate speech score less than
0.5 is considered non-hateful, and vice versa. As with the FRENK dataset, we take
only the text and the binary hate, from 10,705 samples.

3.1.2 Our datasets

As far as we now have the same variables from both datasets (the comment as a
string and the binary hate-speech variable), we can simply concatenate them, ob-
taining 21,410 rows. In Table 3.1 we show a few samples with short texts.

TABLE 3.1: A few samples from the dataset

Text Label
"This is not just a migration, it’s planned Islamic invasion." 1

"Oh don’t worry. We are all Summers here!" 0
"i almost puke seeing this transvestite" 1
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TABLE 3.2: A few discarded texts from the inference dataset.

"Penny Baker"
"........."

"Mmmm"
"http://www.abc.net.au/news/2012-03-06/badgett-good-things-about-gay-marriage/3870750"

The length of the comments ranges from 1 to 7322 characters. But, as we can
see in the bar chart from Figure 3.1, most have fewer than 200 characters. After this
value, the length starts to decrease very quickly, to the point where very few texts
have more than 600 characters.

FIGURE 3.1: Frequency of the number of characters of the comments.

We split our data into two datasets. The first dataset will be used for causal
inference and analysis, i.e., to obtain the offensiveness of the comment, intervene it
and to predict the hate, to later calculate the causal metrics. With the second dataset
we will train the models that predict hate.

Initially, 4,602 samples go to the inference set and 16,808 to the training set.

Inference set (Factuals)

The texts from the inference set are the ones that will be used to generate the LLM
counterfactuals. Then, to make the task easier for the LLM, we are going to filter the
texts.

We remove too short and too long texts. In general, the too short comments of
our data don’t have so much meaning, finding cases in which only appear the name
of a person or just one word such as "hi", "Lol", or "No". And, as we have already
seen in Figure3.1, most texts have less than 200 characters. Then, we discard com-
ments with less than 20 characters (338 texts) and with more than 200 characters
(1137 texts).

We can also find comments between those length limits that only have an URL. It
may be that, with this kind of texts, GPT-3.5 cannot be able to create a counterfactual.
As far as, after the length filtering, the number of texts which contains and URL is
just 70, we can discard all of them. In Table 3.2 we show a few discarded samples.

We end up with 3057 samples in the inference set, which will be a good number
for us when creating the LLM counterfactuals, due to our limited resources. As we
can see in the histogram from Figure 3.2, the number of characters frequency also
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tends to decrease in this range between 20 and 200 characters.

FIGURE 3.2: Frequency of the number of characters of the comments
from the inference set.

Hate training set

We don’t feel necessary to make any filtering to the set for training the hate models,
unlike with the inference set. We want to consider all the comments to train a more
robust model, and we also think that texts like the previously discarded can be now
useful. For instance, the model can be able to predict short texts better. With this
idea, we add to the training set the texts discarded from the inference set, obtaining
18,353.

Now, we are going to consider the class distribution of the two datasets. As we
can see in Figure 3.3, we find a very similar distribution in both datasets, with a
higher number of non-hate labels. Therefore, we are in an imbalanced classes sce-
nario (Haixiang et al., 2017) and we will take this into account when training the
model and when evaluating its prediction.

(A) Inference set (B) Hate training set

FIGURE 3.3: Class distributions of the inference and training sets.

A summary of the datasets can be found in Table 3.3.

3.2 Experiment 1: Evaluation of the LLM counterfactuals

In this first experiment, our objective is to assess the quality of the LLM generated
counterfactuals, by comparing them to the factual instances. We test if the LLM can
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TABLE 3.3: Datasets summary.

Dataset Number of comments Hateful comments
Inference 3,057 986

Hate training 18,353 5,769

modify the offense without significantly altering the sentiment and the meaning.

3.2.1 Offense and Sentiment comparison

To predict the offense and sentiment for each factual and counterfactual, we use the
roBERTa models from (Zampieri et al., 2019; Rosenthal, Farra, and Nakov, 2017)
(previously used in Section 2.2.1). On the one hand, as illustrated in Figure 3.4a, by
processing a text through the offense model, we obtain the probability of being of-
fensive. On the other hand, as shown in Figure 3.4b, processing the text through the
sentiment model provides the probability for each one of the possible values (nega-
tive, neutral or positive) as a vector.

(A) Offense
model

(B) Sentiment
model

FIGURE 3.4: Usage of the offense and sentiment models to predict the
probabilities.

For each factual and counterfactual pair, we calculate the offense distance
p(cf_Off = 1)− p(fact_Off = 1) if the factual is non-offensive and the offense dis-
tance p(fact_Off = 1)− p(cf_Off = 1) if the factual is offensive. Then, we average
these distances.
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Regarding the sentiment, we calculate the euclidean distance between the senti-
ment probability vectors of each factual and counterfactual pair, and then we aver-
age these distances.

Additionally, we discretize both the offense and the sentiment. Then, we count
the number of factual and counterfactual pairs where the binarized offense is differ-
ent between the factual and the counterfactual. This count is then divided by the
total number of pairs to compute the accuracy.

We compute another accuracy by counting the number of pairs where the LLM
is able to maintain the same discretized sentiment value between the factual and the
counterfactual.

As an additional metric, we calculate the accuracy of offense improvement. This
measures whether the LLM increases the offensive probability when the factual is
non-offensive and decreases it when the factual is offensive.

3.2.2 Semantic similarity

To compare the meaning of the factual and counterfactual texts, we could use em-
beddings generated by a roBERTa model (Liu et al., 2019). However, roBERTa pri-
marily produces embeddings for individual tokens rather than entire sentences or
texts. While it is possible to obtain a single vector by averaging token embeddings
(like we do in Section 2.2.1), this kind of approaches often fail to effectively capture
the full semantic meaning of the sentence (Reimers and Gurevych, 2019).

Therefore, we use the ’all-MiniLM-L6-v2’ model from the Sentence Transformers
library to obtain the embeddings (Reimers and Gurevych, 2020). This model maps
texts to a 384 dimensional dense vector space and can be used for tasks such as se-
mantic similarity (Agirre et al., 2012).

We compare the embeddings of the factual to the counterfactual ones by the use
of the semantic similarity. Specifically, we calculate the cosine similarity (Salton,
Wong, and Yang, 1975), i.e., the cosine of the angle between the two vectors, by
using Eq. 3.1.

Cosine similarity =
A · B

∥A∥∥B∥ (3.1)

This value measures the similarity focusing on the vector direction in the embed-
ding space rather than their absolute magnitude. This is crucial because the direction
often captures semantic meaning more effectively than absolute distances. (Reimers
and Gurevych, 2019). As a metric, we average the semantic similarities of all the
factual and counterfactual pairs.

3.2.3 Results

In the call to the OpenAI API, we ask GPT-3.5 to generate 5 responses for each re-
quest. Consequently, for each of the 3,057 factual instances in the inference dataset,
5 corresponding counterfactuals are generated, resulting in a total of 15,285 factual-
counterfactual pairs. Five factual-counterfactual pairs corresponding to the same
factual are shown in Table 3.4. This factual is considered offensive by the offense
model, then, the GPT-3.5 task was to make it non-offensive.
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TABLE 3.4: Factual-counterfactual pairs corresponding to the same
factual.

Factual Counterfactual
“This is a really stupid comment to be fair” "This comment seems to lack intelligence, to be honest."
“This is a really stupid comment to be fair” "This comment seems rather unfounded, to be honest."
“This is a really stupid comment to be fair” "This comment seems a bit uninformed, to be honest."
“This is a really stupid comment to be fair” "This is not a very insightful comment, to be honest."
“This is a really stupid comment to be fair” "This comment isn’t very thoughtful, to be honest."

TABLE 3.5: Metrics to compare the factuals to the LLM generated
counterfactuals.

Metric Value
Average of offense distances 0.39

Average of sentiment distances 0.44
Accuracy of distinct offense 0.71
Accuracy of same sentiment 0.61

Accuracy of offense improvement 0.94
Average of semantic similarities 0.68

For each factual-counterfactual pair, we obtain the sentiment and offense prob-
abilities, as well as the semantic embeddings. To next calculate the metrics, as de-
scribed in the previous two sections. Table 3.5 shows the metrics.

We find that the average offense distance effectively modifies the binary offense
in 71% of cases. Additionally, GPT-3.5 achieves a high accuracy of 0.94 in success-
fully increasing or decreasing offensiveness. Concerning sentiment, the average sen-
timent distance suggests that sentiment is altered to some extent when the LLM at-
tempts to modify the offense, although the discretized sentiment remains preserved
in 61% of the cases, which is not that bad.

However, we find the average semantic similarity of around 0.7 reasonably sat-
isfactory in order to assess if the LLM can modify the offense without altering too
much the semantic meaning.

Figure 3.5 presents histograms of offense and sentiment distances, as well as se-
mantic similarities. The offense distances present the higher frequencies around 0.5,
with the frequencies decreasing for both lower and higher values. It looks promis-
ing, although there are also many samples close to a distance of 0.

Regarding sentiment distances, there are a lot of samples near 0, with frequency
gradually decreasing as the distance increases. It’s a positive outcome to have too
many samples near 0.

For semantic similarity, there are few samples near 0, and frequencies gradually
increase up to about 0.9, after which they drop significantly. This distribution is fa-
vorable, as we have higher frequencies near a high similarity value.

In summary, the LLM seems capable of modifying the offensiveness of com-
ments, although the sentiment and semantic meaning are being altered to some ex-
tent. Nevertheless, the higher frequencies near low sentiment distances and near
high similarity values are a positive result.
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(A) Offense distances histogram (B) Sentiment distances histogram

(C) Semantic similarities histogram

FIGURE 3.5: Histograms of offense and sentiment distances, as well
as semantic similarities.

3.3 Experiment 2: Causal inference analysis

In this experiment, we perform causal inference and analyze the resulting metrics
for the tested methods, aiming to compare them. We consider the various architec-
tures used in each method to estimate the probability of hate speech. For both causal
inference methodologies, we follow the general steps from Figure 2.3.

For evaluating the hate speech predictions made by the different models, we cal-
culate the accuracy and F1-score (Powers, 2020). While our goal is not to achieve the
best predictive performance, these metrics serve as useful benchmarks, for exam-
ple, for the parameter tunings that we make. The F1-score is chosen to address the
class imbalance issue found in Section 2.2. Additionally, we train with class weights
(Scikit-Learn, 2024).

3.3.1 Settings

Backdoor criterion methods

First, we follow the methodology explained in Section 2.2 to calculate the ITE (Eq. 2.1
and ATE (Eq. 2.2) by processing the texts from the inference dataset. For both PEACE 2.4
and TARNet 2.5 models.

The neural network classifier of the PEACE model consists of two layers, each
one with 128 neurons. Regarding the TARNet, the shared network is a neural net-
work with three layers, each containing 200 neurons. Each treatment-specific head
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consists of a neural network with two layers, each having 100 neurons.

We train both the neural network of PEACE and the TARNet model using the
’hate training’ dataset. For the PEACE neural network, we employ the Adam op-
timizer, a learning rate of 0.001, a batch size of 32 and we train for 10 epochs. The
neural network architecture and training parameters have been selected after a pa-
rameter tuning.

Given the variability observed in the metrics across different training runs of the
neural network model, we decided to split off a 10% validation set from the ’hate
training’ dataset. This validation set is used to select the model from the training
run that achieves the best F1-score. We will apply this approach to all the models
that predict hate. For the PEACE neural network, we performed 20 training runs.

Regarding TARNet training parameters, we utilize the Stochastic Gradient De-
scent optimizer, a learning rate of 1e-5, a batch size of 64, train with a maximum of
300 epochs and run 20 TARNet trainings.

Hate models to evaluate the LLM generated counterfactuals

Now, to calculate the ITEs (Eq. 2.1) and ATE (Eq. 2.2) of the factual/counterfactual
pairs, we follow the methodology explained in Section 2.3. For all the hate predic-
tion models tested, which have been trained on the ’hate training’ dataset.

All neural network classifiers used with the hate prediction models present the
same neural network architecture and training parameters. For the architecture, two
layers, each one with 128 neurons. Regarding the training parameters, we utilize the
Adam optimizer, a learning rate of 0.001, a batch size of 32, we train for 10 epochs
and run 20 trainings. After some parameter tuning, we found that these settings,
also used with the PEACE model from the backdoor criterion method, provided
satisfactory performance for all models.

3.3.2 Results

Methods based on the backdoor criterion

Regarding the methods which follow the backdoor criterion, we obtain an ATE of
0.04 for the S-Learner approach with the PEACE model. If we change the neural
network classifier by the TARNet, now we get an ATE of 0.10. The first ATE seems
to be very small, but, in order to confirm that the curse of dimensionality is affecting
the PEACE model, let’s check the histograms of the ITEs, to observe their frequence
distribution.

As shown in Figure 3.6, the higher frequencies concentrate on low ITE values for
the PEACE model, and higher values get very few frequencies in comparison. In
contrast, for the TARNet, we find high frequencies on a wider range of values. This
suggests that, as we expected, the higher dimensionality of the covariates is limiting
PEACE model’s ability to estimate effectively the causal impact of the binary treat-
ment.

Consequently, for the comparison with the method based in LLM generated
counterfactuals, we are going to consider only the causal metrics of the TARNet.
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(A) ITE PEACE histogram (B) ITE TARNet histogram

FIGURE 3.6: Histograms of the ITE obtained with the methods that
follow the backdoor criterion.

TARNet vs. LLM generated counterfactuals

Table 3.6 presents the ATE, Accuracy and F1-score obtained with the TARNet and
with the hate models used in the LLM counterfactuals based method. These last
methods achieve similar ATE values, which are considerably higher than the one
from TARNet.

TABLE 3.6: Average Treatment Effect (ATE), Accuracy and F1-score
of the tested models which predict hate.

Model ATE Acc. F1-score
TARNet 0.10 0.76 0.61

PEACE for LLM cf eval. 0.30 0.73 0.66
HateBERT 0.29 0.73 0.63

RoBERTa hate 0.30 0.73 0.58
RoBERTa hate w/ our classifier 0.28 0.75 0.65

Regarding Accuracy and F1-score, we have obtained considerably close values
between all models, with PEACE and the ’roBERTa hate with our classifier’ achiev-
ing the higher F1-scores. The ’roBERTa hate’ model obtains the lowest F1-score,
likely due to the absence of an additional neural network trained on our hate train-
ing dataset.

We delve deeper into the comparison of the causal metrics by the use of scatter
plots. We plot the ITEs from TARNet vs. the ITEs from the LLM counterfactuals
based method. We need to remind that, from TARNet, we have as many ITEs as
samples on the inference dataset. But, from the LLM counterfactuals method, we
have 5 times more ITEs (since each factual has 5 ITEs associated, corresponding to
the 5 counterfactuals generated). To compare them, we select, for each factual, the
ITE closest to the TARNet ITE.

As we can observe in Figure 3.7, the scatter plots from all models, except for
’roBERTa hate’, present a similar shape. While the values from TARNet are gener-
ally confined to the range of [−0.25, 0.5], the values from the LLM counterfactuals
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FIGURE 3.7: Scatter plots of TARNet ITEs vs. LLM counterfactuals
ITEs.

models reach more extreme values (especially positive ones), with some ITEs reach-
ing values close to 1.

The scatter plot of TARNet vs. ’roBERTa hate’ indicates that ’roBERTa hate’
reaches more extreme values than the other models, including some extreme nega-
tive ones. Again, the main difference of this model is its lack of an additional neural
network trained on our hate training dataset.

In conclusion, the causal effect of offense on hate is higher with the LLM gener-
ated counterfactuals than with the methodology that follows the backdoor criterion.
By modifying the offense by text revision, the comment is changed in a way that
tends to increase the hate more than simply changing the value of a binary feature.
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Predicting ITE with a Machine
Learning model

4.1 ITE model

As an additional approach to determining the causal impact of a comment, we are
going to train a machine learning model to directly predict the ITE from a given
factual comment, without needing to intervene it. The model will learn the following
function to estimate the ITE given the covariates:

µ ∼ E[ITE|S, M] (4.1)

Figure 4.1 illustrates the architecture of the ITE model. We utilize the embeddings
obtained from the meaning and sentiment models (Liu et al., 2019; Rosenthal, Farra,
and Nakov, 2017) to next concatenate them and train a neural network regressor to
estimate the ITE.

The ITEs are the target of the model. We use those computed from the hate pre-
dictions obtained with the PEACE model 2.8 (after processing the factual/counterfactual
pairs through this PEACE model). We want to do the prediction only from the fac-
tual comment, however, we have obtained 5 ITEs for each factual (as far as we have
generated 5 counterfactuals for each factual). We utilize all these ITEs, resulting in 5
different ITE values for the same factual.

But, for the training purpose, we can use these textual counterfactuals as factuals
as well, and also train the model with them. Therefore, we have in the training set
as many samples as two times the number of factual/counterfactual pairs, which
gives a total number of 30,570 samples. Each sample consists of the sentiment and
meaning embeddings as features and the ITE as the target. In order to evaluate the
training, we split of a 30% test set from the training set.

The neural network consists of two layers, with 128 and 64 layers, respectively.
Regarding the training parameters, we utilize the Adam optimizer, a learning rate of
0.001, a batch size of 32 and train for 20 epochs. Since the ITE is a continuous value,
this neural network is trained for regression, with a mean squared error (MSE) loss
function (Hastie et al., 2009).

As done in Section 3.3, we split off a 10% validation set from the training set,
in order to select the model from the training run that achieves the lowest mean
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FIGURE 4.1: Architecture of the ITE model.

TABLE 4.1: Metrics to evaluate the ITE model.

Dataset MSE ATE
Training 0.033 0.30

Test 0.054 0.30

squared error. We performed 10 training runs.

For the evaluated metrics, we compute the mean square error for both training
and test sets. Additionally, we calculate the ATE by averaging the predicted ITEs.
As we can observe in Table 4.1, the resulting ATEs, for both training and test sets,
match the ATE of 0.30 obtained with the PEACE model in Section 3.3. We consider
this consistency, as well as the moderately low MSEs, a positive outcome.

Now, we can train the ITE model using both training and test sets, for being able
to predict in a future the ITE of new comments.
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Chapter 5

Conclusion

In this study, the hate speech detection problem has been addressed through a causal
approach. We have investigated how offense influences the perception of hate speech
in social media comments.

First, we constructed a causal graph to identify our accessible causal relation-
ships that influence hate in comments. Then, the causal objective metrics, to quan-
tify the impact of the treatment on the outcome, were defined, as well as the general
methodology that we followed to perform causal inference with the distinct meth-
ods.

We selected and filtered two sets of data from existing hate benchmark datasets.
The first set was used for causal inference and analysis, while the second set was
utilized to train models that predict hate.

Concerning the first causal inference method, we defined how the backdoor crite-
rion allows us to estimate the causal effect. Then, with the S-Learner meta-algorithm,
we developed a deep learning architecture (inspired by the PEACE model from
Sheth et al. (Sheth et al., 2023)) to predict the hate from the variables in the causal
graph. By the additional use of a TARNet, we achieved to face the curse of dimen-
sionality problem that we encountered when using the S-Learner.

Next, we explored another method to perform causal inference by intervening
on the treatment variable using textual counterfactuals generated by GPT-3.5. We
adopted some prompt engineering tactics to prompt the model and being able of
generating the counterfactuals in a zero-shot manner, without requiring any train-
ing or fine-tuning. Then, the causal metrics were computed based on the hate values
predicted by different models and architectures.

The counterfactuals generated by the LLM were compared to the factual com-
ments to evaluate if GPT-3.5 could modify the offensiveness without significantly
altering the sentiment and the meaning of the comment. Our findings suggest that
the LLM is capable of modifying the offensiveness of comments, although the senti-
ment and semantic meaning are also altered to some extent.

Our causal inference experiments led us to the conclusion that, by modifying the
offense by text revision with an LLM, the comment is changed in a way that tends
to increase the hate more than with the traditional methodology, where we simply
change the value of a binary feature.
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Finally, as an additional approach to determine the causal effect of a comment,
we trained a machine learning model to directly predict the Individual Treatment
Effect (ITE) from a comment. With this model, we will be able to predict in a future
the ITE of new comments.

As future directions, we could test other LLM’s (such as GPT-4) in order to see if
the results are consistent across different models.

We could also experiment with the prompt design by trying different number of
shots for the few-shot setting (i.e., different number of examples). Or try to provide
more specific task guidelines. To see how it affects the generated counterfactuals
and the causal metrics.
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Appendix A

GPT-3.5 counterfactuals

A.1 Prompt to make Non-Offensive a comment

FIGURE A.1: Prompt messages to make a comment Non-Offensive.
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