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Abstract
Background Gut dysbiosis has been associated with colorectal cancer (CRC), the third most prevalent cancer in the 
world. This study compares microbiota taxonomic and abundance results obtained by 16S rRNA gene sequencing 
(16S) and whole shotgun metagenomic sequencing to investigate their reliability for bacteria profiling. The 
experimental design included 156 human stool samples from healthy controls, advanced (high-risk) colorectal lesion 
patients (HRL), and CRC cases, with each sample sequenced using both 16S and shotgun methods. We thoroughly 
compared both sequencing technologies at the species, genus, and family annotation levels, the abundance 
differences in these taxa, sparsity, alpha and beta diversities, ability to train prediction models, and the similarity of the 
microbial signature derived from these models.

Results As expected, the results showed that 16S detects only part of the gut microbiota community revealed 
by shotgun, although some genera were only profiled by 16S. The 16S abundance data was sparser and exhibited 
lower alpha diversity. In lower taxonomic ranks, shotgun and 16S highly differed, partially due to a disagreement in 
reference databases. When considering only shared taxa, the abundance was positively correlated between the two 
strategies. We also found a moderate correlation between the shotgun and 16S alpha-diversity measures, as well as 
their PCoAs. Regarding the machine learning models, only some of the shotgun models showed some degree of 
predictive power in an independent test set, but we could not demonstrate a clear superiority of one technology 
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Background
Colorectal cancer (CRC) is the second deadliest cancer 
and the third most common malignancy worldwide [1]. 
It is estimated that 80% of CRC cases are not heritable 
[2] and take place following the adenoma-carcinoma 
sequence (ACS) that involves the progressive accumu-
lation of mutations in a period of 10–15 years on aver-
age [3]. Apart from being older than 50 years, there are 
modifiable (e.g., lifestyle and dietary habits) and non-
modifiable (e.g., type 2 diabetes) risk factors for CRC [4]. 
Moreover, the gut microbiota is one active player that 
influences the CRC development [5, 6], and their char-
acterization is continuously improving in pursuit of can-
didate screening biomarkers [7, 8]. The dynamics of the 
microbiota studied throughout ACS and the prediction 
of different stages of CRC development allow the iden-
tification of certain microbiological taxa of interest: the 
‘microbial signature’. Bacteria widely associated to CRC 
include several Fusobacterium species [7, 9–13], Par-
vimonas micra [7, 10, 11, 13, 14], Porphyromonas asac-
charolytica [9–11], Bacteroides fragilis [10, 12, 13].

Traditionally, microbial communities have been char-
acterized using culture-dependent methods, yet over 
70% of human gut microbiome species remain uncul-
tured [15]. Advances in high-throughput sequencing, 
such as 16S rRNA gene sequencing and shotgun whole 
genome sequencing, have broadened our understanding 
beyond what is possible with laboratory isolation alone 
[16]. The 16S rRNA gene sequencing, which targets nine 
hypervariable regions, remains the most widely used 
method for profiling microbial communities [17]. How-
ever, reliance on specific regions (usually V3-V4) for PCR 
primer design can introduce biases, as no single region 
can adequately distinguish all species [17, 18]. Addition-
ally, variability in the number of 16S rRNA gene copies 
and within-genome differences can affect the accuracy 
of this method [19]. While 16S rRNA sequencing offers a 
cost-effective and computationally efficient approach for 
microbial identification, shotgun sequencing is becoming 
increasingly attractive. Traditionally, shotgun sequencing 
required more resources and incurred higher costs. How-
ever, recent advancements have narrowed the cost gap, 

making it a more viable option for many labs. Despite its 
established role, 16S sequencing may face growing com-
petition from shotgun sequencing as affordability contin-
ues to improve.

In contrast to the targeted approach of 16S, shotgun 
sequences all genomes and genomic regions present in 
a given sample. Covering genomic regions outside the 
small 16S rRNA gene means that specific strain-level 
discrimination is achievable. Furthermore, shotgun can 
identify viruses, fungi, protozoa, bacteria, archaea, and 
other microorganisms. Currently, the greatest disadvan-
tages of this sequencing technique are its higher cost, the 
noisy signal due to host contamination, and the need for 
a more intensive and complex bioinformatics analysis. 
Shotgun sequencing analysis is strongly dependent on 
the reference genome database [20], which may induce 
biases when many reads map to unknown taxa, especially 
when working with samples from complex or scarcely 
studied environments such as floodplain [21, 22] How-
ever, in studies focusing on the human gut microbiota 
this problem can minimized with the use of specialized 
databases.

Both techniques are widely employed in microbiome 
research and have their advantages and drawbacks, as 
depicted previously. However, researchers using these 
distinct methods often encounter difficulties reconciling 
their results. In addition to the differing resolution and 
potential sequencing biases discussed above, a key prob-
lem lies in the existence of distinct reference databases 
for each methodology (e.g., SILVA, Greengenes and RDP 
for 16S, and NCBI refseq, GTDB, UHGG, for shotgun). 
These databases differ significantly in size, update peri-
odicity, content, and how they are curated [23]. Due to 
all these challenges, direct method comparisons between 
16S and shotgun for human samples are limited [18]. 
Most of the available literature on this topic [16, 24–27] 
focuses on a “classical” view comparing taxonomic agree-
ment, alpha-diversity values and beta-diversity projec-
tions generated by both techniques. Other studies [9, 
28, 29] contrast the performance and microbial signa-
ture given by machine learning (ML) prediction models 

over the other. Microbial signatures from both sequencing techniques revealed taxa previously associated with CRC 
development, e.g., Parvimonas micra.

Conclusions Shotgun and 16S sequencing provide two different lenses to examine microbial communities. While 
we have demonstrated that they can unravel common patterns (including microbial signatures), shotgun often 
gives a more detailed snapshot than 16S, both in depth and breadth. Instead, 16S will tend to show only part of the 
picture, giving greater weight to dominant bacteria in a sample. Therefore, we recommend choosing one or another 
sequencing technique before launching a study. Specifically, shotgun sequencing is preferred for stool microbiome 
samples and in-depth analyses, while 16S is more suitable for tissue samples and studies with targeted aims.
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trained in shotgun and 16S data. Typically, comparisons 
are performed at the genus level, at least for 16S.

In this study, we apply several statistical models and 
methods developed for prokaryote profiling using 156 
human stool samples. Our main objective is to perform 
a thorough comparison of 16S and shotgun sequenc-
ing technologies that includes both a classical ecologi-
cal analyses like alpha and beta diversity measures or 
Permutational Analysis of Variance (PERMANOVA), 
and diverse ML approaches aiming to predict advanced 
(high-risk) colorectal lesions (HRL) and CRC.

Methods
Sample collection
The research cohort was recruited among individuals 
who participated in the COLSCREEN study [13]. Par-
ticipants were men and women aged 50–69, invited to 
the ongoing population-based CRC screening program 
conducted during 2016–2020 by the Catalan Institute of 
Oncology in L’Hospitalet del Llobregat, Barcelona, Spain. 
Some clinically detected CRC cases were also included 
to enrich this group, because cancer incidence is a rare 
event in screening programs. One week prior to the colo-
noscopy preparation, participants were instructed to 
store a fecal sample at home at a temperature of -20 °C. 
On the day of the colonoscopy, participants delivered the 
stored sample which was preserved at -80  °C. The sam-
ples from all participants, including those from clinically 
detected CRC cases, were collected using the same stan-
dardized protocol, stored under identical conditions, and 
sequenced together in the same batch. Individuals were 
categorized based on the criteria commonly employed 
in CRC screening programs for risk assessment [30]. For 
this study, a subset of 156 cases belonging to the follow-
ing three categories was selected: no-lesions/controls 
(n = 51), HRL (n = 54), and CRC cases (n = 51). Each stool 
sample was processed and sequenced with both shotgun 
and 16S techniques. The research protocol was approved 
by the ethics committee of Bellvitge University Hospital 
under the reference PR084/16.

DNA extraction and sequencing
The fecal DNA was extracted using the NucleoSpin Soil 
Kit (Macherey-Nagel, Duren, Germany) following the 
manufacturer’s instructions for shotgun analysis [13] 
and through Dneasy PowerLyzer Powersoil kit (Qia-
gen, ref. QIA12855) for 16S [31]. The details for shotgun 
whole genome metagenomic sequencing and 16S rRNA 
amplicon sequencing are detailed in Obón-Santacana 
et al., 2022 [13] and Khannous-Lleiffe et al., 2022 [32] 
respectively.

Bioinformatics analysis
For 16S, we applied our in-house bioinformatic pipeline 
to increase the proportion of amplicon sequence variants 
classified to the species level, in contrast to the conven-
tional strategy [23]. The 16S data was preprocessed as 
previously described [32]. In brief, the 16S rRNA gene 
hypervariable V3-V4 region amplicon data were pro-
cessed and analyzed using DADA2 v1.22.0 [33]. Low-
quality reads were filtered and trimmed based on the 
observed quality profiles using the filterAndTrim func-
tion, truncating forward and reverse reads below 290 and 
230, respectively, and considering a value of 2 as the max-
imum expected error. Furthermore, the first 10 nucleo-
tides of each read were removed. We combined identical 
sequencing reads into unique sequences, made a sample 
inference from the matrix of estimated learning errors, 
and merged paired reads. For the sample inference step, 
the argument of the pool was defined as True. Chime-
ras and contaminants are often rare but spread across 
samples, making them more effectively identified when 
the samples are pooled (pool = T). Chimeric sequences 
were removed by using the removeBimeraDenovo func-
tion and taxonomy was assigned utilizing the SILVA 16S 
rRNA database (v138.1). Subsequently, to increase the 
percentage of Amplicon Sequence Variants (ASV) classi-
fied up to species level, from the ASV sequences obtained 
through DADA2, an additional taxonomic classification 
was performed using custom BLASTN database con-
structed from the SILVA database version stated above 
and performing an extra taxonomical classification based 
on k-mers (Kraken2 and Bracken2) using the NCBI Ref-
Seq Targeted Loci Project database. Only 2.2% of ASVs 
could not be found in the reference database and were 
excluded from further analyses. For approximately one-
fifth of the lineages we found more than one candidate 
species. These ASVs are named after all potential candi-
dates, separated by “/” and alphabetically arranged (e.g., 
Blautia obeum/wexlerae).

Concerning shotgun, raw data in fastq format were 
processed to filter out human sequence reads (using 
human genome GRCh38) through Bowtie2 (v2.3.4) with 
options –very-sensitive-local and -k 1. A fastq file was 
then generated from reads that did not align (carrying 
SAM flag 12) using Samtools (v1.8). Then, once human 
sequences were removed, quality procedures and filters 
were applied. In detail, sequences were deduplicated 
using clumpify from the BBTools suite (v38.26), fol-
lowed by a quality trimming (PHRED > 20) on both ends, 
sequencing adapters removal, and exclusion of read pairs 
where one read had a length lower than 75 bases using 
BBDuk (BBTools suite). In addition, with fastqcr v0.1.2 
R package, FASTQC (v0.11.7), and Multi-QC (v1.12), a 
detailed analysis and snapshot of the quality control pro-
cess was tackled. After the cleansing process, the reads 
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were classified using Kraken2 (v2.1.2), with a filtering 
threshold of 0.1, followed by Bayesian re-assignment 
at the species level using Bracken2 (v2.2), with the read 
length parameter set at 150. The database used for the 
taxonomy assignment corresponded to prokaryotic data 
from the UHGG database v2.0.1 [34]. We selected this 
database that is specific for human gut microbiome to 
reduce false assignments that we experienced in previ-
ous attempts with the default NCBI RefSeq database that 
Kraken2 uses. We excluded fungi, viruses, and protozoa 
and focused on bacteria and archaea for the shotgun 
and 16S comparison. Only 11.8% (± 2.04%) of reads per 
sample could not be mapped to the UHGG database and 
were excluded from the subsequent analyses.

Finally, we ensured an adequate matching of taxo-
nomical lineages between both techniques because the 
DADA2 pipeline for 16S used SILVA v138.1 + NCBI 
RefSeq Target Loci, while for shotgun we had selected 
UHGG v2.0.1. A thorough search allowed identify-
ing discrepancies, mostly due to outdated taxa names, 
which were corrected and homogenized according to the 
NCBI taxonomy (16th March 2023). We used R packages 
(myTAI v0.9.3 and taxonomizr v0.10.2) for this task.

Data pre-processing
The shotgun count matrix was normalized by genome 
length. Besides the original, species-level data, we also 
performed comparisons of the count matrices aggre-
gated at genus and family taxonomic ranks. Some of the 
analyses (taxonomic overlap between shotgun and 16S, 
alpha diversity) were performed using the unfiltered 
abundance dataset, but the rest were performed after fil-
tering all the species that were not present in at least 5% 
of the samples with 0.1% abundance or higher. To com-
pare shotgun vs. 16S regarding sparsity, we computed 
the percentage of zeros by sample before and after filter-
ing. In general, we favored a compositional treatment of 
the abundance matrices, as recommended for microbi-
ome data [35]. Since metagenomic data are sparse, i.e., 
the taxa count matrix contains many zeros, zero-value 
replacement was performed using the square root Bayes-
ian-Multiplicative method implemented in the R package 
zCompositions (v1.4.0–1). For the beta-diversity analysis, 
PERMANOVA, and ML models, we used the centered 
log ratio (clr)-transformation of this filtered and zero-
replaced abundance matrix.

During this step, we noticed that, in 16S data, some 
candidate species appeared in more than one ASV (e.g., 
Eubacterium callanderi/limosum, Eubacterium limosum/
maltosivorans). To avoid ambiguity in the microbial sig-
nature, we aggregated these taxa (and then applied the 
aforementioned data filtering, zero-replacement and clr-
transformation) before training the 16S ML models.

Statistical analysis
Statistical analyses were performed using R v4.2.2. The 
global overlap between shotgun and 16S within a given 
taxonomy rank (i.e. taxa detected by both methods) was 
visualized with Venn diagrams. We excluded from this 
comparison the unnamed fraction of taxa from both 
methods that was only identified by accession codes in 
the reference database (for instance, in shotgun, those 
species that start with MGYG). Then, we studied the cor-
relation (Spearman) of the average abundance of taxa 
shared by shotgun and 16S. To this effect, we replaced the 
zero values and computed the closed geometric means 
(centre of compositional variable [36]) of the species, 
genus and families datasets separately for 16S and shot-
gun. For this analysis, we considered only taxa that were 
present in both sequencing methods. Then, we computed 
the geometric mean of the relative abundance of the taxa 
found by both sequencing method across samples and 
we ordered them in decreasing order to select the top 
50 most prevalent taxa for shotgun and 16S. These were 
represented in heatmaps (heatmap.2 function of v3.1.3 of 
package gplots). In addition to these analyses over “aver-
aged” data, as the 156 stool samples were sequenced 
through both 16S and shotgun methods, we compared 
the taxonomic overlap and abundance profiles per sam-
ple. Moreover, taxon abundance agreement was assessed 
by the unweighted Cohen’s Kappa coefficient [37] after 
defining new binary variables for each taxon: 0 for those 
samples with less or equal counts than the median of 
that taxon and 1 to those with counts greater than the 
median. Furthermore, for all 156 samples, the top 15 
most abundant species, genera and families detected by 
each of the two sequencing methods were represented in 
bar plots (comp_barplot function of v0.10.8 of MicroViz 
package). The order of the samples was the same in both 
sequencing methods, according to the Bray-Curtis dis-
similarity distance [38] of 16S samples. To better identify 
the common shotgun-16S taxa, the same color legend is 
used in shotgun and 16 S barplot. We highlighted with “*” 
the species, genera and families with a prevalence > 90% 
(i.e. the core microbiota [39]).

Alpha diversity of the samples was computed from 
the raw data tables using two measures: Shannon 
(v2.6-4 package vegan) and Chao 1 Diversity Indexes 
(v0.4.0 package fossil). In order to allow a proper Shan-
non Index comparison [40], we adjusted the differences 
regarding the number of reads across the samples rarefy-
ing to the minimum number of reads in each method: 
the shotgun data at the value of 2,813,748 and 16S at 
6,619. The Rarefaction Efficiency Indexes [41] were 0.94 
and 0.92 respectively. As Chao 1 takes into account the 
unobserved species, it was calculated directly from raw 
abundance data [42]. Alpha diversity measures were rep-
resented with boxplots to facilitate the comparison of 
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their distributions between the two sequencing methods. 
Additionally, scatterplots were used to visually illustrate 
the association between alpha diversity values obtained 
from shotgun and 16S sequencing for each sample. The 
strength of the association is measured by Spearman’s 
correlation coefficient [43] and represented by a regres-
sion line. Furthermore, the alpha diversity comparison 
between sequencing methods was statistically tested with 
the Wilcoxon Rank Sum Test.

We selected the Aitchison distance as beta-diver-
sity measure due to its compatibility with composi-
tional data analysis (Gloor et al., 2017), computed as 
the Euclidean distance over the clr-transformed data. 
Then, a principal coordinates analysis (PcoA) of this 
distance matrix was used to visualize the relationships 
between the 156 samples. Additionally, we conducted 
an Analysis of Similarities (ANOSIM) using the vegan 
v2.6-4 R library to quantify the similarities, and a PER-
MANOVA using the same library to test for differences 
(adjusted p-value < 0.05) among the three diagnostic 
groups (controls, HRL, and CRC). A post-hoc analysis 
of PERMANOVA was performed through the function 
pairwise.perm.manova (RVAideMemoire R package) and 
the multiple test correction of Benjamini and Hochberg 
was applied. Next, we computed the correlation between 
the 16S and shotguns’ PcoA projections with Procrustes 
r (library vegan) and Co-inertia RV coefficient (library 
ade4 v1.7-22) and used a permutation test for signifi-
cance. To visually represent the relation between the 6 
PCoAs, we projected the matrix K of pairwise RV coef-
ficients onto a principal component analysis (PCA). First, 
we computed the singular value decomposition of K, 
which equals to K=𝐔𝚲2𝐔T, as K is a squared, symmetric, 
and positive semidefinite matrix. Here, 𝚲2 is the diago-
nal matrix that contains the singular values of K, and U 
is an orthogonal matrix that contains the eigenvectors in 
the columns. Then, the PCA projections were obtained as 
𝐔𝚲.

Machine learning models
We used the clr-transformed abundance data to train ML 
algorithms predicting the diagnosis label: controls/HRL/
CRC. We opted for linear SVM (kernlab package v0.9-31) 
and the nonlinear RF (randomForest package v4.7-1.1) 
methods. Our main objective was to compare if the shot-
gun and 16S data were able to fit similar classification 
models. To do so, we studied four items:

1. Training and test accuracy, measured as

  
Accuracy = 100

correct predictions

total predictions

 when computing the training accuracy, “predictions” 
were the labels (controls/HRL/CRC) fitted by the model.

2. The shotgun-16S concordance with respect to the 
model fit and test prediction. This was measured 
with Cohen’s Kappa and with classification 
agreement, computed as

  
Agreement =

number of shotgun predictions equal to 16 S predictions

total predictions

 when comparing model fits, “predictions” correspond 
to the labels fitted in training. When working with SVM 
models we also computed the correlation between 16S 
and shotgun predictions. (Recall that every SVM model 
returns a numeric output that is binarized as: y > 0 → 
positive class, y < 0 → negative class)

3. (only in SVM) The matching of the shotgun-16S 
support vectors (SV), i.e. the subset of training 
samples that define the classification hyperplane. 
In addition to Cohen’s kappa, we computed the SV 
agreement following the previous formula (in this 
case, “predictions” corresponded to SV).

4. The similarity of the shotgun and 16S microbial 
signatures. To do so, we recovered the importance 
given by the models to each taxon and ranked the 
taxa from most to least important. The similarity 
was computed with the Kendall rank correlation 
coefficient between the shotgun and 16S rankings. 
Finally, we established the microbial signatures 
as the topmost important taxa of each model and 
computed the “agreement” as the percentage of taxa 
present in both shotgun and 16S signatures.

The training/test splitting was done via stratified random 
sampling. The test set for all models consisted of the same 
30 individuals (N controls = 10, N HRL = 10, N CRC = 10), 
while the remaining 126 individuals (N controls = 41, N 
HRL = 44, N CRC = 41) were used for training. Hyperpa-
rameter optimization was done via 5 x cross-validation in 
the training set. For SVM, we optimized the cost using 
candidate values {0.1,1,10,100}. For RF, we performed a 
grid search over the number of trees (500, 1000, or 2000) 
and minimum node size (2 or 3). As SVM performs only 
binary classification, we used a one-versus-one strategy 
(i.e. we trained three models: Control vs. HRL, Control 
vs. CRC and HRL vs. CRC) to give a multi-class predic-
tion. The whole setup was performed in parallel for the 
species, genus and family datasets.
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Results
Taxonomy comparison
The median (range) sequencing reads of the 16S samples 
was 26,438 (ranging from 6,619 to 80,095) and 5,698,549 
reads (from 2,813,748 to 397,298,642) for shotgun. Shot-
gun sequencing detected 4,512 different species belong-
ing to 1,049 different genera and 214 families. Instead, 
16S detected 525 species belonging to 239 genera and 
80 families. We verified that rarefaction curves reached 
a plateau in terms of identified species, genera, and fami-
lies (Additional Figure S1). Next, we computed the over-
lap between the taxa detected by 16S and shotgun. As 
expected, we found a great overlap in higher taxonomic 
ranks, where the 16S taxa is a subset of the shotgun taxa 
(Fig.  1). This changes in the family, genus, and species 
ranks. Overall, there were 15 phyla, 23 classes, 37 orders, 
68 families, 179 genera, and 272 species that appear in 
both 16S and shotgun datasets (Fig. 1; Table 1). 6 phyla, 
10 classes, 34 orders, 93 families, 434 genera and 666 spe-
cies were present in shotgun samples but not in the 16S 
ones. Conversely, 5 families, 51 genera, and 203 species 
were present only in 16S sequenced samples but not in 
the shotgun ones. When analyzing sample by sample, the 
percentage of shared taxa was consistently lower than 

that observed in the overall comparison across all taxon-
omy levels (Table 1). In all scenarios, the lower the taxo-
nomic rank, the lower the shotgun-16S agreement.

Abundance comparison
We found a positive correlation between the 16S and 
shotgun average counts of shared taxa within the Spe-
cies, Genus, and Family taxonomic ranks (Fig. 2: Spear-
man correlation coefficient ranged from 0.50 to 0.53, 
p-values < 2e-16). We observed that the abundant species 
in 16S data also exhibited a high abundance in shotgun; 
however, the opposite was not always true: high-abun-
dance shotgun species may appear in 16S in low frequen-
cies. There were also some prevalent taxa according to 
one of the sequencing methodologies that were com-
pletely absent according to the other. Here we highlight 
some abundant taxa (> 64 counts per sample) in 16S that 
did not appear in the shotgun dataset: at the species level 
(Fig.  2a) Coprococcus comes, Roseburia inulinivorans, 
Neglectibacter timonensis, Ruminococcoides bili, Erysip-
elotrichaceae UCG-003 bacterium, Phocaeicola vulga-
tus, Massiliprevotella massiliensis, Alistipes inops and 
Succinivibrio dextrinosolvens; at the genus level (Fig. 2b) 
Neglectibacter, Ruminococcoides, Erysipelotrichaceae 

Fig. 1 Venn diagrams of the common and non-common taxa of shotgun and 16S taking into account all samples at all taxonomic ranks
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UCG-003, Massiliprevotella, Mesorhizobium, Labrys, 
Escherichia-Shigella and at the family level (Fig. 2c) Ery-
sipelatoclostridiaceae, Xanthobacteraceae. When com-
paring abundance sample by sample, both the Spearman 
coefficient for counts and Cohen’s Kappa coefficient 
for binary variables revealed a substantial agreement 
between shotgun and 16S (Table  1). Specifically, the 
Spearman coefficient ranged from approximately 0.80 
to 0.99 at higher taxonomy levels and from 0.38 to 0.72 
at species level. Meanwhile, Cohen’s Kappa coefficient 
ranged from approximately 0.20–0.30 to 1 at higher tax-
onomy levels and from 0.07 to 0.62 at species level. To 
compute these coefficients, we exclusively used the 16S 
species that were unambiguous (i.e. without slashes).

Regarding the relative abundance of the shared 16S and 
shotgun taxa, we did not find major visual differences in 
most of the top 50 most prevalent species (Additional 
Figure S2a), genera (Additional Figure S2b) and families 
(Additional Figure S2c). Nevertheless, a few taxa showed 
differences between the sequencing methods. Some of 
them were Prevotella copri, Eubacterium coprostanolige-
nes, Blautia massiliensis, Methanobrevibacter smithii and 
Holdemanella biformis at the species level; Collinsella, 
Streptococcus, Alistipes, Ruminococcus, Bacteroides, and 
Blautia at genus level and Bacteroidaceae, Methanobac-
teriaceae, Streptococcaceae, and Erysipelotrichaceae at 
the family level, among others.

Finally, we compared the relative abundance of the top 
15 most prevalent species between the two sequencing 
methods across the 156 samples (Fig.  3a and b). It can 
be observed that 16S samples were dominated by fewer 
microbial species than shotgun samples. The predomi-
nant species in both shotgun and 16S was Faecalibacte-
rium preausnitzii. Other shared species in top 15 were: 

Ruminococcus bromii, Akkermansia muciniphila, Gem-
miger formicilis, Bacteroides uniformis and Blautia wex-
lerae. Moreover, the top 3 genera were the same in both 
methods: Blautia, Ruminococcus and Faecalibacterium 
(Additional Figure S3a; Additional Figure S3b), though 
in a different order. The other genera in the top 15, like 
Phocaeicola, Bacteroides, Bifidobacterium, were shared 
by the two methods. Finally, Lachnospiraceae, Oscillospi-
raceae and Bacteroidaceae were in the top four families 
both in 16S and shotgun (Additional Figure S3c; Addi-
tional Figure S3d). The other shared families in the top 15 
most prevalent were Bifidobacteriaceae, Prevotellaceae, 
Eubacteriales Order and Enterobacteriaceae.

Sparsity, alpha and beta diversity
Both Shannon and Chao 1 diversity indices showed sta-
tistically significant differences between the two sequenc-
ing methods at the species, genus and family level (Fig. 4; 
Additional Table S1). Samples sequenced using shotgun 
had a statistically significant higher diversity than the 16S 
ones, especially in richness, estimated by Chao1. How-
ever, for the Shannon index, differences were smaller as 
we ascended from the species to the family level. When 
we computed the Spearman correlation between shot-
gun and 16S’ alpha-diversities, we found a positive cor-
relation for both diversity indexes at the three taxonomy 
ranks (Fig.  5). Spearman correlation index ranged from 
0.16 to 0.42, statistically different from 0 in all cases 
(p-values < 1e-4 for Shannon index and < 0.02 for Chao1). 
Specifically for the Shannon index, there was a slight 
increase in correlation values with the higher the taxo-
nomic rank. We identified the outliers in the regression 
lines in Fig. 5, which can be attributed to technical issues. 
The two 16S CRC samples with lower alpha-diversity 

Table 1 Taxonomic agreement between shotgun and 16S. In the first column, number of unique taxa detected by 16S and shotgun 
sequencing methods, and shared taxa in absolute and relative frequency with respect to shotgun and 16S. all samples and taxonomic 
ranks are taken into account. In the second column, the 16S-shotgun agreement is computed per sample. We show the median and 
range of the shared taxa across all samples, the percentage of common taxa with respect to shotgun and 16S and Cohen’s Kappa 
agreement coefficient; and Spearman correlation coefficient (rho) median, quartile 1 (Q1) and (Q3)
Taxonomy 
level

16S Shotgun Shared Shared/16S 
(%)

Shared/
shotgun 
(%)

Shared
Median 
(range)

Shared/16S(%)
Median
(range)

Shared/
shotgun(%) 
Median
(range)

Rho
Median 
(Q1, Q3)

Kappa
Median
(range)

Phylum 15 21 15 100.0 71.4 8
(4, 12)

100.0
(100.0, 100.0)

53.3
(26.7, 80.0)

0.95
(0.83, 0.99)

0.73
(0.20, 1)

Class 23 33 23 100.0 69.7 14
(7, 20)

100.0
(90.0, 100.0)

56.6
(28.8, 80.0)

0.89
(0.71, 0.95)

0.65
(0.30, 1)

Order 37 71 37 100.0 52.1 20
(9, 27)

100.0
(81.8, 100.0)

52.6
(23.1, 71.1)

0.90
(0.74, 0.96)

0.62
(0.13, 0.89)

Family 73 161 68 93.2 42.2 34
(12, 44)

94.1
(80.0, 100.0)

49.3
(17.6, 62.9)

0.76
(0.63, 0.88)

0.65
(0.03, 0.88)

Genus 229 613 179 78.2 29.2 70
(17, 97)

95.4
(88.6, 100.0)

39.5
(9.4, 54.5)

0.65
(0.45, 0.76)

0.50
(0.11, 0.70)

Species 609 938 355 58.3 37.8 114
(15, 175)

18.7
(2.5, 28.7)

12.2
(1.6, 18.7)

0.58
(0.38, 0.72)

0.47
(0.07, 0.62)
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Fig. 2 Decimal logarithm scatter plot representation of closed geometric means (centre of a composition) of Species, Genus and Families abundances 
in 16S and shotgun. The strength of the association over shared taxa is estimated with Spearman Correlation Coefficient and represented with a regres-
sion line. The blue dots indicate shared taxa, in green we can see the counts of the shotgun taxa that cannot be found in 16S, in red we can find the ones 
detected by 16S and not by shotgun. Furthermore, the unnamed 16S species are colored in orange
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than their shotgun counterparts had very few reads. In 
fact, according to the rarefaction curves, they were the 
two 16S samples with the less observed species. The 
outlier HRL shotgun sample had 50% of Escherichia coli 
resulting in a notably low diversity (in its paired sample 
in 16S, Escherichia coli/Shigella sonnei account for 25% 
of the total abundance). This particular sample had the 
minimum coverage and species richness in the shotgun 
analysis.

The 16S count matrix was much sparser than shot-
gun’s (Wilcoxon Rank Sum Tests p-value < 2.2e-16), in the 
three studied ranks (family, genus, and species) before 
and after filtering rare taxa (Fig.  6). When comparing 
diagnosis, we could observe that in the 16S data controls, 
HRL and CRC samples presented similar sparsity levels 

(Additional Table S2). In the shotgun species and genera 
datasets, HRL were slightly sparser than the other two 
groups. However, these differences were no longer sig-
nificant after Bonferroni correction (α = 0.05/12).

From this point forwards we exclusively utilized the fil-
tered datasets. After filtering, shotgun retained 466 spe-
cies, 213 genera and 67 families, while 16S retained 191 
species, 105 genera, and 44 families. Figure 7 shows the 
Aitchison distance PCoAs, representing the shotgun and 
16S data for the three taxonomic ranks studied. There 
was a great overlap among the three diagnosis groups. 
In the shotgun PCoAs, HRL appeared as an intermedi-
ate group between controls and CRC cases. Instead, in 
the 16S PCoAs, HRL samples clustered aside from both 
controls and cases; this is especially striking in the Family 

Fig. 3 Bar plots of the top 15 most common species in 16S and shotgun abundance data. Each row represents a different sample with the same order 
in both plots
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Fig. 5 Scatter plot of the Shannon and Chao 1 Diversity indexes in 16S and shotgun colored by diagnostic status. The association is measured with Pear-
son Correlation Coefficient and represented with a dashed regression line

 

Fig. 4 Box plots of the Shannon and Chao 1 Diversity Indexes for 16S and shotgun stratified per diagnosis (controls, HRL and CRC cases) at Species, Genus 
and Family taxonomy level
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Fig. 6 Shotgun vs. 16S sparsity. The zeros’ proportion of the controls, HRL and CRC cases in shotgun (blue-purple) and 16S (brown-green) abundance 
data. As the number of taxa differs between the two matrices, the proportion of zeros was computed by sample. Kruskal-Wallis among the three diag-
nostic groups is shown in Additional Table S2. Left panels correspond to unfiltered data, while right panels correspond to filtered data. First row is for the 
Species rank, second row is for Genus and third is for Family
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Fig. 7 Shotgun and 16S Aitchison PCoAs. Only the two first axes are shown, along with their corresponding % of explained variance. Controls are in blue, 
HRL samples in yellow and CRC samples in red. Shotgun PCoAs are in the left panels, while 16S’ are in the right panels. First row is for the Species rank, 
second row is for Genus and third is for Family
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clr-PCoA. Nevertheless, these were minor differences 
observed visually in the graph. It is important to note 
that the PCoA plot depicts only the first two principal 
components, and thus does not capture all the variabil-
ity in the data. Additionally, we found extremely similar 
R statistic values when comparing the similarity of sam-
ples within groups respect to between groups for each 
method. At the species level, the ANOSIM R values were 
0.08 for 16S and 0.07 for shotgun. At the genus level, the 
R values were 0.08 for 16S and 0.09 for shotgun. At the 
family level, the R values were 0.10 for both 16S and shot-
gun. Values larger than zero indicate differences among 
groups, which were confirmed by a PERMANOVA and 
its posthoc analysis with adjusted p-value < 0.05, irre-
spective of the sequencing technique and taxonomic rank 
(Additional Table S3).

Subsequently, Co-Inertia Analysis and Procrustes 
analysis were used to assess and compare the correlation 
between the Shotgun and 16S PCoAs. In all cases the 
permutation test gave p-values = 0.001, statistically differ-
ent from 0. The co-inertia RV coefficient had the follow-
ing values: Species = 0.52, Genus = 0.43 and Family = 0.35. 
Procrustes r had the following values: Species = 0.77, 
Genus = 0.64 and Family = 0.44. That is, both analyses 
of the PCoA projections showed a decreasing similar-
ity pattern: the higher the rank, the lower the similarity. 
Finally, the relations between the 6 datasets (shotgun 
vs. 16S across 3 taxonomic ranks) were visually sum-
marized using a PCA (Additional Figure S4). It is clearly 
evident that the primary difference among datasets is the 
sequencing technique (first PC: shotgun vs. 16S) followed 
by the aggregation of taxa from species to genus to family 
(second PC).

Machine learning models
Finally, an assessment was conducted to determine the 
similarity between prediction models trained either on 
shotgun or 16S abundance data. Table 2, shows the accu-
racies for both training (i.e. the fitting) and test sets of 
the RF and SVM models (shotgun and 16S across 3 tax-
onomic ranks). Test accuracies were clearly lower than 
those of the training sets’, indicating a certain degree of 
overfitting, a common drawback when dealing with small 
training sets. 16S appeared to be more affected by over-
fitting than shotgun. Overall, SVM gave better results 
in shotgun and RF in 16S data, although it was difficult 
to make a conclusive statement as the accuracy 95% CIs 
were very wide due to the small size of the test. In fact, 
only two models achieved accuracies above the random 
model threshold and thus could be presumed to have 
some degree of predictive power: SVM shotgun Spe-
cies = 56.7 (95%CI: 38.9, 74.4), and SVM shotgun Fam-
ily = 53.3% (95%CI: 35.5, 71.2).

Next, the agreement between shotgun and 16S models 
built from data of the same taxonomic rank was assessed. 
Cohen’s kappa and its 95% CI was also computed, and 
both results are presented in Table 3. Overall, the agree-
ment was lower in the RF models, which can be attrib-
uted to the random nature of the RF algorithm. The fitted 
models presented a fair-moderate agreement (∼ 0.37) 
over the training data. However, agreement in the test 
was much lower, which is consistent with the overfit-
ting we observed in Table 2. Likewise, wide 95%CIs were 
observed and the only Cohen’s kappa not including zero 
belonged to the SVM models over species data: 0.33 
(95%CI: 0.05, 0.60).

The SVM classification models are binary by nature, 
and so the SVM model presented earlier was an ensem-
ble of the three two-group models (control vs. HRL, con-
trol vs. CRC and HRL vs. CRC). In Additional Table S4, 
the agreement results are presented separately for these 
three classifiers. It can be observed that the aforemen-
tioned high Cohen’s Kappa was driven by a substantial 
concordance between shotgun and 16S control vs. CRC 
models: Cohen’s kappa = 0.47 (0.14, 0.80). Instead, in 

Table 2 Training and test accuracies (%) for the RF and SVM 
prediction models. Test 95%CI obtained via bootstrap (n = 2000). 
Performances above the random model (accuracy = 33.34%) are 
in bold

Models RF 
Fit-
ted 
(%)

SVM 
Fitted 
(%)

RF test (%) SVM test 
(%)

Species Shotgun 54.0 75.4 43.3 (26.7, 60.0) 56.7 (40.0, 
73.3)

16S 61.9 80.2 43.3 (26.7, 60.0) 46.7 (30.0, 
63.3)

Genus Shotgun 50.8 69.8 36.7 (20.0, 53.3) 43.3 (26.7, 
60.0)

16S 54.8 74.6 50.0 (30.0, 66.7) 46.7 (30.0, 
63.3)

Family Shotgun 47.6 69.1 40.0 (23.3, 56.7) 53.3 (36.7, 
70.0)

16S 52.4 69.1 50.0 (30.0, 66.7) 40.0 (23.3, 
56.7)

Table 3 Training and test classification coincidence between the 
shotgun and 16S models: proportion of agreement (between 0 
and 1) and Cohen’s Kappa. Statistically significant Cohen’s kappa 
are highlighted in bold

Models Agreement Cohen’s Kappa
Training Test Training Test

Species RF 0.60 0.43 0.39 (0.25, 0.52) 0.14 (-0.11, 0.38)
SVM 0.71 0.57 0.55 (0.42, 0.67) 0.33 (0.05, 0.60)

Genus RF 0.47 0.30 0.19 (0.06, 0.32) -0.10 (-0.31, 0.11)
SVM 0.63 0.50 0.43 (0.30, 0.55) 0.15 (-0.11, 0.41)

Family RF 0.53 0.40 0.30 (0.16, 0.43) 0.11 (-0.10, 0.33)
SVM 0.61 0.53 0.38 (0.25, 0.52) 0.19 (-0.09, 0.47)
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higher taxonomic ranks, control vs. HRL and HRL vs. 
CRC are the most concordant. Following our explora-
tion of the SVM models, Additional Table S5 shows the 
concordance between models with regard to their Sup-
port Vectors (SV), i.e. the training patients each model 
considers relevant to discriminate between the classes. In 
the three taxonomic ranks, the control vs. CRC models 
were the more akin with regard to their SV, followed by 
the HRL vs. CRC models.

Finally, we studied the similarity between “micro-
bial signatures” (the taxa considered most important by 
a model to perform the prediction). The complete list 
of shotgun and 16S taxa, ranked by importance, were 
compared with the Kendall rank correlation coefficient 
(Table  4) The strength of Kendall correlation between 
shotgun and 16S was fair-moderate (around 0.22–0.31) 
and did not show great differences across taxonomic 
rank or ML method (RF, SVM). The top-50 species for 
the shotgun and 16S SVM and RF models are presented 
in Fig.  8, while the equivalent plot for Genus and Fam-
ily models can be viewed in Additional Figures S5 and 
S6. In the Species models, we can find several taxa that 
have been previously related to the ACS (Parvimonas 
micra, Bacteroides fragilis, Streptococcus thermophilus 
or Fusobacterium nucleatum), and their lineages were 
also present in the genus and family signatures. Some of 
these CRC-related species (e.g., Parvimonas micra) were 
common to shotgun and 16S models. For clarity, Fig.  8 
highlights all taxa shared by the shotgun and 16S, while 
Table  4 details the percentage of agreement between 
signatures. In RF models, there was at least 22% of coin-
cidence between the top-50 taxa, while in SVM there 
was at least 18% (as a fraction of the taxa is unnamed in 
16S and/or shotgun databases, real agreement may be 
greater). If we compare these species’ signatures count-
ing the genera they share, both RF and SVM showed 
an agreement of 36%. Thus, we can consider that the 
“true” agreement is bounded by these two limits. Similar 

agreements are by the genus and family signatures. Addi-
tional Figure S7 provides the signature of the SVM binary 
models. Again, the highest coincidence was found in the 
control vs. CRC model, with agreement ranging from 22 
to 28%.

Discussion
Increasing interest in the role of the gut human micro-
biome during CRC development raises the urgency of 
selecting appropriate methods for unraveling human-
associated microbial communities. Taxonomic resolu-
tion has been widely cited as one of the main differences 
between shotgun and 16S [16, 22, 26, 44, 45]. This dif-
ference impacts not only the “depth” of the lineages they 
are able to assign (16S datasets are often limited to the 
genus level) but their ability to represent the broad pic-
ture of a microbial community, capturing even rare taxa. 
On the other hand, this attention to detail has an impact 
over abundance data. Moreover, using different reference 
databases for 16S and shotgun sequencing can introduce 
inconsistencies. To address this issue, we updated all tax-
onomic lineages obtained for 16S and shotgun analyses 
using two specific R packages related to NCBI (package 
myTAI and taxonomizr), see Material and Methods for 
further details.

In this study we have followed a compositional 
approach, i.e. we have studied the relative frequencies 
of microorganisms belonging to a community– in fact, 
absolute frequencies in this kind of data may be not infor-
mative [35]. In this scenario a change in any of the parts 
comes at the expense of the rest: when a new bacterium 
is detected in a sample, the relative abundance of some 
or all the other decreases. Even without any primer or 
database bias, this dependency may cause that some taxa 
appears inflated when comparing 16S to shotgun [46]. 
Also, this suggest that shotgun needs a very good cover-
age (some studies recommend > 500,000 reads [26]) not 
only in order to detect rare taxa, but also to have enough 
reads to give reliable abundance estimations.

With a very good coverage, our results support that 
shotgun provides a more detailed resolution of the gut 
microbial community than 16S. It detected many more 
species (9x in our data), including rare species, and con-
sequently had greater levels of alpha diversity. Instead, 
16S data were much sparser, even after filtering by infre-
quent taxa. This sparsity, as well as the visual represen-
tation of the most frequent species (Fig.  3), proves that 
16S samples are dominated by fewer bacteria. This is 
likely not due to sequencing depth, as rarefaction curves 
arrived at the plateau. All these findings are in line with 
most of the previous literature [16, 22, 25, 26, 44]. Only 
a few studies arrived at different conclusions: see, for 
instance Tessler et al., 2017 and Zuo et al., 2022 stated 
that 16S yielded more diverse bacterial phyla and families 

Table 4 Taxa importance coincidence between the shotgun 
and 16S models: agreement and Kendall’s tau. Kendall rank 
correlation coefficient is computed considering all shared taxa 
in shotgun and 16S models. Agreement refers to the coincident 
taxa of the microbial signature shown in Fig. 8 (top-50 species), 
additional figures S5 (top 20 genera) and S6 (top 10 families). 
p-values < 0.05 are in bold

Models Agreement
(top importances)

Kendall’s tau
Kendall’s tau (95%CI) p-value

Species RF 22–36% 0.22 (0.05, 0.38) 4e-3
SVM 18–36% 0.27 (0.13, 0.40) 5e-4

Genus RF 30% 0.28 (0.14, 0.42) 4e-4
SVM 20% 0.31 (0.17, 0.45) 1e-4

Family RF 30% 0.30 (0.03,0.57) 0.01
SVM 30% 0.31 (0.11, 0.51) 0.01



Page 15 of 20Bars-Cortina et al. BMC Genomics          (2024) 25:730 

Fig. 8 Microbial signature agreement. Barplot represents the top-50 importances of the Species models, sorted. RF importances are in turquoise and 
SVM importances in orange. Left panels correspond to the Shotgun data, while right panels are for the 16S data. Species common to 16S and shotgun 
signatures are highlighted in blue. Note: Complete names of the 16S taxa that have been truncated in the plot:
• Sphingomonas echinoides/mali/oligophenolica/sanxanigenens
• Streptococcus salivarius/thermophilus/vestibularis
• Streptococcus australis/cristatus/gordonii/infantis/mitis/oralis/parasanguinis/pneumoniae/pseudopneumoniae/sanguinis
• Bacteroides fragilis/koreensis/kribbi/ovatus/xylanisolvens
• Enterococcus avium/casseliflavus/durans/faecium/gallinarum/hermanniensis/hirae/hiraes/phoeniculicola/raffinosus/saccharolyticus/thailandicu
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than shotgun sequencing, but the reference database 
lacked reference sequences for their data, and the avail-
able reads they had for taxonomic profiling were low 
(approx. 360,000) [21, 26], which could explain their find-
ings. On the other hand, Zuo et al., 2022 found that shot-
gun and 16S provided a similar alpha-diversity in their 
samples.

Taxonomically speaking we found that the lower the 
taxonomic rank, the lower the shotgun-16S agreement, 
and this holds both when considering all organisms 
detected (i.e. columns of the abundance table) and when 
computing the percentage of shared taxa per sample. In 
higher ranks (phylum to order), l6S taxa were a mere sub-
set of shotgun. It is noteworthy that almost 25% of the 
genera detected by 16S were not detected by the shotgun 
strategy. Upon investigating this issue, we found that the 
vast majority of genera detected by 16S but not shotgun 
are human gut inhabitants not included in the UHGG 
v2.0.1 database: indicating an issue of “closed annotation” 
[14]. Furthermore, when both 16S and shotgun detected 
a taxon, a moderate to substantial correlation was 
observed in the counts identified by these two sequenc-
ing technologies. This correlation was evident not only 
on average but also when computed sample by sample. 
In Results we highlighted some taxa that presented more 
than 64 counts for 16S but were undetected by shotgun. 
Again, most of them are compatible with the human gut 
but are not included in the UHGG v2.0.1 database [34]. 
Nevertheless, there are some exceptions: the ambiguous 
16S genus Escherichia/Shigella (Escherichia is present in 
shotgun samples, but not Shigella) and genera Mesorhi-
zobium and Labrys (from the family Xanthobacteraceae). 
The latter bacteria are usually found in soil, which may 
point to a possible contamination or a misidentification 
by the reference database. For a detailed description 
of this issue for the 50 genera only detected on 16S, see 
Additional File S1. It should be noted that, contrary to 
UHGG, the 16S reference database (SILVA) is not spe-
cific to the human gut.

Regarding diversity measures, shotgun had substan-
tially higher diversity than 16S. A moderate, positive 
correlation between these two sequencing methods 
was observed for the Shannon index. This correlation 
increased at higher taxonomic ranks: at the family level, 
16S samples were more similar to shotgun in evenness/
richness (Figs.  4 and 5; see also Fig.  3). Unsurprisingly, 
the correlation was low for the Chao1 index, which 
includes information on the richness of very rare taxa. 
As for beta-diversity comparisons, neither sequencing 
method delivered clear-cut clusters of microbial com-
munity structure across the three diagnostic groups in 
PCoA (though PERMANOVA confirmed that differences 
existed). However, shotgun placed the HRL samples 
between the controls and CRC cases (which would be 

consistent with considering these lesions an intermedi-
ate entity between health and cancer), while 16S tended 
to separate them into a third group. Despite Co-inertia 
and Procrustes analyses showing a substantial correla-
tion in community structure between shotgun and 16S, 
one of the most intriguing findings in our results was the 
large dissimilarity in community at higher the taxonomic 
ranks. This observation contradicted our hypothesis and 
diverged from some other metrics shown in this paper. 
Consistent to our findings, a similar pattern was observed 
by Tessler et al., 2017. We hypothesize that this may be 
caused by decreasing the dimensionality, so a small abun-
dance difference in one taxon may significantly impact 
the resulting ordination more than when working with 
the higher-dimension species dataset.

We have discussed above the main taxonomic and 
abundance divergences between shotgun and 16S in 
our samples. However, a second factor enters into play 
when training and comparing ML models for diagnos-
tic prediction. These models demand abundance differ-
ences in the three groups of enough magnitude to make 
them separable; also, these differences should be strong 
enough to be observed both in shotgun and 16S. There 
is abundant literature that shows that ML models have a 
good performance in discriminating healthy from CRC 
and HRL microbial samples [7, 9–12, 14, 47]. Only a few 
authors contrasted shotgun versus 16S models [9, 29], 
either noting that they yielded similar performances or 
that shotgun was slightly better than 16S. Although the 
small training size hinders our models, our results are 
consistent with previous literature on this point. In addi-
tion, we also studied the agreement between shotgun and 
16S models regarding their fitted and predicted labels 
and their SV. We found the maximum agreement in the 
SVM species model, and this agreement seems be driven 
mainly by the control vs. CRC classification. If we con-
sider controls and CRC cases as extremes of a continuum, 
it is logical that the greater differences (which should be 
easier to observe) arise when comparing the extremes. 
Moreover, it has been consistently reported higher per-
formances classifying control vs. CRC than control vs. 
HRL [10, 13, 14]. On the other hand, our 16S models 
tended to consider that HRL have a distinct microbial 
pattern. This is consistent with the PCoAs (Fig.  7) and 
with other 16S studies that found that the CRC micro-
bial markers are specific and have limited value to predict 
HRL [14].

Regarding microbial signatures, we detected some 
species previously linked to CRC that show a moder-
ate correlation between shotgun and 16S. As discussed 
before, the predictive importance of a taxon is completely 
unrelated to its prevalence (Fig.  8; see also Fig.  3 and 
Additional Figure S2). Among the most frequent spe-
cies in our 16S and shotgun samples, only Akkermansia 
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muciniphila appears in both microbial signatures and it 
has been associated previously to CRC [32]. However, 
some low-abundance bacteria that are very discrimina-
tive of the phenotype of interest may be sidelined during 
pre-processing. This is the case of Fusobacterium nuclea-
tum, a key species in CRC progression, which appears as 
the 1st (RF) or 2nd (SVM) most important species in the 
16S microbial signature (Fig. 8), but did not pass the shot-
gun’s filtering step. Shotgun genus-level models include 
Fusobacterium in their microbial signature (Additional 
Figure S5). On the other hand, the lower taxonomic 
resolution of 16S led to ASV ambiguity that probably 
hindered the prediction models. For instance, shotgun 
models highlighted the CRC-enriched Bacteroides fragi-
lis and control-enriched Bacteroides ovatus [46], which 
appeared in 16S models as a single feature (Bacteroides 
fragilis/koreensis/kribbi/ovatus/xylanisolvens) and with 
lower importance. In any case, the high consistency in 
shotgun and 16S of some other CRC microbial biomark-
ers like Parvimonas micra [7, 10, 11, 13, 14] and Porphy-
romonas asaccharolytica [9–11] is remarkable. Regarding 
HRL status, as mentioned by Thomas et al., 2019 and 
Obón-Santacana et al., 2022, it is an arduous task to 
find some microbiome markers at this stage. Taking into 
account this increased difficulty, along with the scarce lit-
erature available on the genus Alistipes in relation to HRL 
and CRC, the SVM results suggested Alistipes ihumii as a 
possible candidate for an HRL biomarker.

BesiBesidess, our models showed that a significant 
number of species associated with a healthy human gut 
were found in common between the two compared tech-
niques. These species were: Barnesiella intestinihominis 
[48], Bifidobacterium longum [49], Methanobrevibacter 
smithii [50], Sutterella wadsworthensis [51], and Ligilac-
tobacillus ruminis [52].

Study limitations
A primary limitation of our study is the relatively modest 
sample size. Though the sample size probably is enough 
for our main aim, the comparison between 16S and shot-
gun diversity, and composition, it is insufficient for the 
comparison of CRC and HRL prediction models. A larger 
sample size would have favored narrower CIs and pre-
vent ML overfitting. Another important challenge was 
the fraction of ambiguous (in 16S) or unnamed species 
(especially prevalent in shotgun), which we were forced 
to exclude to enable a taxonomic comparison between 
shotgun and 16S. In fact, we have proven with differ-
ent examples that part of the differences between both 
sequencing methods are related to differences between 
the reference databases. Therefore, the issue of “closed 
annotation” of the taxonomical databases imposes a 
strong limitation when comparing shotgun with 16S. 
Recently, a new version of the Greengenes database 

appeared (Greengenes2) [53] that provides a single refer-
ence database for both sequencing technologies, which 
could aid in this up-to-date limitation of having indepen-
dent databases. Currently, the Greengenes2 is available in 
Qiime2 pipeline for 16S and in the Woltka for shotgun. 
Surely this update will be available in the near future in 
other commonly used taxonomical classifiers (for exam-
ple, DADA2 for 16S and Kraken2 for shotgun, which 
currently offers the older Greengenes database). On the 
other hand, despite involving the same participants, the 
16S and shotgun data were obtained at different times. 
As explained in the Methodology, different DNA extrac-
tion kits were used, and sequencing was conducted by 
two different companies. This was required by the service 
contracting policies that govern our institution.

Conclusions
Shotgun and 16S sequencing provide two different lenses 
to examine microbial communities. While we have 
demonstrated that they can unravel common patterns 
(including microbial signatures), shotgun often gives a 
more detailed snapshot than 16S, both in depth (lineage 
resolution) and breadth (number of species, including 
rare species). However, a downside to its high richness 
is that some (or all) taxa may appear in lower relative 
frequencies within a sample than expected. Researchers 
should be careful in this scenario, as high-interest bacte-
ria may be filtered for having “low” abundance. On the 
other hand, 16S will tend to show only part of the pic-
ture, giving greater weight to dominant bacteria in a 
sample. Sometimes, bacteria of closely related lineages 
but opposing biological roles may be aggregated due to 
the lower taxonomic resolution. However, in cases where 
only representative bacteria are of interest, 16S may 
beat the shotgun approach. Furthermore, 16S reference 
databases have been curated for a longer time and may 
contain lineages not yet present in shotgun databases. 
Our comparative analysis reveals that shotgun sequenc-
ing exhibits slightly higher sensitivity and specificity in 
detecting CRC and HRL compared to 16S, attributed to 
its superior resolution and ability to comprehensively 
profile microbial functions and potential biomarkers. 
This makes it particularly well-suited for studies requir-
ing precise microbial characterization, especially in 
stool microbiome samples. However, for tissue samples 
or studies with targeted aims, 16S remains a preferable 
option due to its efficiency and suitability for lower bio-
mass samples. In summary, the choice between shotgun 
and 16S sequencing should be guided by the specific 
goals of the study, the type of samples being analysed, 
the required resolution and depth of microbial analysis, 
and the available resources. For comprehensive analyses 
with higher interpretability, particularly in stool samples, 
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shotgun sequencing is recommended. Conversely, for 
studies with clear and targeted aims, 16S is a suitable 
choice.
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