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1. INTRODUCTION

In universal algebra, varieties are classes of similar algebras that are closed under
subalgebras, homomorphic images and direct products. Concrete examples of these struc-
tures arise and are used in many different contexts, for instance, they provide appropriate
semantics for many relevant logics. In this context, the semantics of classical propositional
logic is given by the variety of Boolean algebras. Similiarly, the semantics of intuitionistic
logic is given by the variety of Heyting algebras. Many other different and more exotic
examples of varieties can be found in the literature (see [8], [14],[15], [5] for instance),
nevertheless, variety theory can be very useful when studying classes of algebras of any
kind (not necessarily related to logic) such as groups, rings and fields among others (see
[19] and [16] for example).

One of the central results regarding the characterization and description of varieties is
due to Birkhoff, who showed in 1935 in his paper On the Structure of Abstract Algebras ([4])
that this classes coincide with the equational classes, which are the ones defined by a set of
identities. Some years later, in 1946, Tarski proved in [26] that a variety V indeed coincides
with the class HSP(V), meaning that every algebra in V is a homomorphic image of a
subalgebra of a product of members in V . In fact, we can consider more generally a class K
of algebras which is not a variety, and it turns out that the least variety V(K) containing K
is the same as HSP(K).

In this thesis we will restrict our attention only to classes of finite algebras. Besides the
inherent motivation in studying finite algebras, they appear and are used in many other
fields. For example, finite semigroups and monoids are very useful in the theory of au-
tomata and rational languages (see [22] and [9]). In particular, the classes considered in this
context have some special properties, namely, they are closed under homomorphic images,
under subsemigoups and under finite products. This motivates the general definition of a
pseudovariety, which is a class of finite algebras closed under homomorphic images, under
subalgebras and under finite products.

We may ask if it is possible for a pseudovariety to be a variety. It turns out that this
question has a negative answer: no pseudovariety is a variety. This is a direct consequence
of the fact that every nontrivial variety contains infinite algebras I. This means that no
pseudovariety is equational (in the sense that it is not axiomatizable by a set of equations)II

and that Birkhoff’s theorem is not valid for classes of finite algebras. Due to this, one may
also think that pseudovarieties can be obtained considering only the finite members of a
variety, and although this is sometimes the case (what we call them equational pseudova-

IEvery nontrivial variety contains at least one algebra. Then, due to the closure of arbitrary products, it
suffices to take the infinite power of this algebra to construct an infinite one.

IIOtherwise, if there is some set of identities axiomatizing a pseudovariety, this becomes immediately into
a variety due to Birkhoff’ theorem and therefore it must contain an infinite algebra, which is not possible.
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rietiesIII), it is not true in general. For instance, the class of finite groups in the language
of semigroups is not one of these equational pseudovarieties. Many other examples (and
more sophisticated), can be found in [23], [3] and in [1], as the classes of finite nilpotent
semigroups, finite cancellation monoids, finite abelian p-groups and semigroups where the
idempotent elements are left-zeros among others. We refer the reader especially to [1] since
the examples are more developed. We want to emphasize that, although some of these
examples can be somehow unfamiliar, this phenomenom affects to classes as natural and
useful as finite groups, which are widely studied. Therefore, the lack of a characterization
for this classes is not a trivial issue.

Some different approaches have been adopted to resolve this problem (see [10],[2] and
[3]); nevertheless, we are particularly interested in Reiterman’s work of his paper [23]. Here,
he introduce the concept of an implicit operation, which can be viewed as a generalization
of the usual notion of term-definable function. In a few words, given a pseudovariety V
of some specific language, an n-ary implicit operation (relative to V) is a family of n-ary
mappings that commute with homomorphism between members in V . A pseudoidentity
for V is defined as a pair of two implicit operations (both of the same arity), and it can be
viewed as a generalization of the usual identities (as implicit operations for term-definable
functions). With this two ingredients (and the help of topological machinery), Reiterman
stated in his celebrated theorem that pseudovarieties (contained in a larger pseudovariety)
coincide with the classes of finite algebras axiomatized by a set of pseudoidentities, i.e., a
pseudovariety V can be defined by a set of pseudoidentities relative to some pseudovariety
containing V , and every class defined by a set of pseudoidentities is a pseudovariety.
Roughly speaking, Reiterman’s theorem is a version of Birkhoff theorem for classes of
finite algebras.

One of the typical examples of implicit operations (relative to the pseudovariety S
of all finite semigroups in this case) is the unary mapping denoted by xω, which helps
to understand what an implicit operation is. For each finite semigroup S, this function
sends every element s in S to some power of s that is idempotent (see [1] and [22]). This
implicit operation appears in many axiomatizations of pseudovarieties. As it happens,
in the axiomatization of the examples of pseudovarieties mentioned above the implicit
operation sω plays a significant role.

The main aim of the following text is to state and prove Reiterman’s theorem for pseu-
dovarieties, but there are many things to develop before achieving that objective, namely,
all the theoretical framework and machinery and tools for proving it. To do that, and trying
to keep a transparent exposition, we will divide the text in mainly four blocks or chapters.
It is worthy of mention that great part of the material exposed here (if not all) follows

IIIThe class of all finite semigroups, for example
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1. INTRODUCTION

Almeida’s book [1]. We have tried to make a more detailed exposition of what appears in
[1] making all necessary steps explicit.

In chapter 2 we will introduce some preliminaries. Although it may be quite com-
pressed, the chapter will include all the needed background (algebraic and topological) for,
at least, understand what follows. On the one hand, basic notions in universal algebra will
be defined. Even if some of them are not strictly related to what we are going to develop,
they are a kind of their ”predecessors” and are fundamental for understanding the motiva-
tions for Reiterman’s theorem. Some of these concepts involve the formal definitions of an
algebra and a variety, and, of course, the Birkhoff’s theorem. To conclude the preliminaries
regarding algebra, we will give some examples of particular algebras as well as a their
few properties. On the other hand, all the necessary topologial notions will be introduced:
topological space, continuous functions, compactness and Stone spaces among others. In
addition, every relevant result will be clearly stated.

In chapter 3 we will provide a desired framework where Reiterman’s theorem and other
results (as auxiliary lemmas and propositions for proving Reiterman’s main theorem) are
stated. Pseudovarieties will be introduced in the first place along with the analogous result
for the HSP theorem. Once we have defined pseudovarieties, we will be in a good shape to
define properly implicit operations. After this, the chapter will be splitted into two sections:
algebraic and topological aspects. In the first part, we will see how an algebraic structure
can be defined over the set of all n-ary implicit operations relative to some pseudovariety V
(Ω̄V

n ) and we will prove some properties of such algebra, as its relation with the respective
algebra of term-definable implicit operations (called explicit operations). Regarding the
topological part, we first endow Ω̄V

n with a topology and then some properties of this space
are studied. For instance, we will prove that it is a Stone space (as a topological space) and
that it also forms a topological algebra. Moreover, we will see that also a metric can be
defined and that the topology that it defines coincides with the first one considered.

In chapter 4 we finally tackle the main theorem, however, some technical lemmas need
to be stated and proved before undertaking the proof. Roughly speaking, we study the
behaviour of continuous homomorphisms regarding the algebras of a pseudovariety V and
the algebra of n-ary implicit operations. After this work, we conclude with Reiterman’s
theorem and its proof.

Finally, chapter 5 will be dedicated to give some examples of pseudovarieties. We
introduce the notion of equational pseudovariety and provide a couple of simple examples
of them. To finish, we show that the pseudovariety of finite groups is not equational and
therefore it must be defined by what we call pseudoidentities. In particular, the unary
implicit operation denoted by sω will play a significant role as we have mentioned along
this introduction.
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2. PRELIMINARIES

2.1 Some algebraic notions

In this section, some basic definitions and properties of universal algebra will be stated.
Moreover, we will also introduce a particular type of algebras, namely (finite) semigroups.
As mentioned in the introduction, these algebras, very related to automata theory, form
interesting examples of pseudovarieties and therefore it is worthwhile showing their defi-
nitions and properties. We refer the reader to [7], [1] and [22] for more information and
details.

The very first notion in the area of universal algebra is the one of an algebraic language
or type.

Definition 2.1. A language or type of algebras is a set τ of function symbols such that for each
σ ∈ τ a nonnegative integer n is assigned to σ. We call this integer the arity of σ, and σ is said to
be an n-ary function symbol.

We will not consider neither infinite nor infinitary languages along this text, so when-
ever appears a type it would be assumed to be finite and finitary. In addition, for a language
τ, we will adopt the notation nσ for the arity of each σ ∈ τ.

Definition 2.2. Given a set X of variables and a language τ, we define the terms of τ with variables
in X by recursion as follows:

i) Each member of X is a term.

ii) For every σ ∈ τ, given terms t1(x̄), . . . , tnσ(x̄) the expression σ(t1(x̄), . . . , tnσ(x̄)) is also a
term.

The set of all terms of τ with variables in X is denoted by T(X).

Definition 2.3. Let τ be a language. An algebra A of type τ is an ordered pair ⟨A, τ⟩ where
A is a nonempty set and such that for every σ ∈ τ the interpretation of σ in A is a function
σA : Anσ → A. The set A is called the universe of A.

Given a langauge τ and a set X, we can define an algebraic structure T(X) := ⟨T(X), τ⟩
where for each σ ∈ τ its interpretation is defined as

σT(X)(t1, . . . , tnσ) = σ(t1, . . . , tnσ)

for every t1, . . . , tnσ ∈ T(X). In case X = {x1, . . . , xn} we will use the notation T(x1, . . . , xn)
instead of T({x1, . . . , xn}).

Definition 2.4. Let A be an algebra of type τ and let X be a set. An assigment h of X on A is a
mapping h : X → A.
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2.1. Some algebraic notions

Definition 2.5. Given two algebras A and B of the same type τ, we say that B := ⟨B, τ⟩ is a
subalgebra of A and denote by B ⩽ A if B ⊆ A and if for every σ ∈ τ we have σB := σA ↾ B.

Definition 2.6. Let A be an algebra of type τ and let B ⊆ A be nonempty. B is said to be a
subuniverse of A if for every σ ∈ τ and every b1, . . . , bnσ ∈ B we have σA(b1, . . . , bnσ) ∈ B. We
say that B is closed under the operations in τ in that case.

Definition 2.7. Let A be an algebra of type τ and let B ⊆ A be nonempty. The subalgebra of A
generated by B is defined as

[B]A := ⟨[B]A, τ⟩

where [B]A is the least subuniverse of A containing B. When B is finite, we say that it is finitely
generated.

Lemma 2.8. Let A be an algebra of type τ and let B ⊆ A be nonempty. Then, taking X to be a set
such that |X| = |B| and taking an enumeration ⟨bi : i < α⟩ of B for some ordinal α, we have

[B]A = {pA(⟨bi : i < α⟩) : p ∈ T(X)}

Proof sketch. The inclusion ⊇ is proved by induction on the construction of terms. The
members of B constitute the base cases and the inductive cases follows from Definition 2.7.
The inclusion ⊆ follows from the easy observation that the set {pA(⟨bi : i < α⟩) : p ∈ T(X)}
is closed under the operations in τ. Then, we just apply Definition 2.7.

⊠

Definition 2.9. Let A and B two algebras of the same type and a mapping h : A → B. We say
that h is a homomorphism if for every σ ∈ τ and every a1, . . . , anσ ∈ A the following equality:

h(σA(a1, . . . , an)) = σB(h(a1), . . . , h(an)) .

We will write h : A ↠ B when h is a surjective homomorphism between the algebras A
and B. Similarly, we write h : A ↪→ B when h is injective.

Definition 2.10. Let h be a homomorphism h : A → B for some algebras A and B of the same type.
We say that h is an isomorphism if it is injective and surjective. In this case, we write A ∼= B.

Lemma 2.11 ([7] Theorem 6.5). Let h1 : A → B and h2 : B → C be two homomorphisms for
some algebras A, B and C of the same type τ. Then, the mapping h2 ◦ h1 is a homomorphism.

Definition 2.12. Let A be an algebra of type τ and let θ ⊆ A2. We say that θ is a congruence on
A if the following holds:

i) ⟨a, a⟩ ∈ θ for every a ∈ A.

ii) For every a, b ∈ A if ⟨a, b⟩ ∈ θ then ⟨b, a⟩ ∈ θ and viceversa.
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2. PRELIMINARIES

iii) For every a, b, c ∈ A if ⟨a, b⟩ ∈ θ and ⟨b, c⟩ ∈ θ then we have ⟨a, c⟩ ∈ θ.

iv) For each σ ∈ τ and for every a1, . . . , anσ , b1, . . . , bnσ ∈ A if ⟨ai, bi⟩ ∈ θ for every 1 ⩽ i ⩽ nσ

then ⟨σA(a1, . . . , anσ), σA(b1, . . . , bnσ)⟩ ∈ θ.

The set of all congruences on A is denoted by Con(A).

Definition 2.13. Let h be a homomorphism between two algebras A and B of the same type. Then,
we define the kernel of h as the set ker h := {⟨a, b⟩ ∈ A2 : h(a) = h(b)}.

Lemma 2.14 ([7] pg. 49 Theorem 6.8). Let A and B be algebras of the same type and h a
homomorphism between them. Then ker(h) is a congruence on A.

Definition 2.15. Let A be an algebra of type τ and θ a congruence on A. The quotient algebra of
A by θ, denoted by A/θ, is the algebra whose universe is A/θ and where the interpretation of the
function symbols is defined as

σA/θ(a1/θ, . . . , an/θ) := σA(a1, . . . , an)/θ

for each n-ary function symbol σ and for every a1, . . . , an ∈ A.

For an algebra A and a congruence θ on A, we can define the natural (projection)
mapping ρθ : A → A/θ, which is in fact a sujective homomorphism (see [7]).

Theorem 2.16 (Homomorphism theorem). Let A and B be algebras of the same type and h be a
surjective homomorphism from A onto B. Then, the mapping h ◦ ρker h is an isomorphism between
A/(ker h) and B.

This theorem is quite standard an it can be found in many texts. Nevertheless, see [7]
pg. 50 Theorem 6.12.

VARIETIES

Before giving the definition of a variety, it is required to define the operators I, H, P and S

over a given class K of algebras of the same type.

Definition 2.17. Given a class of algebras K of the same type, we define the previous operators as
follows:

I(K) := {B : A ∼= B f or some A ∈ K}

H(K) := {B : A ↠ B f or some A ∈ K}

S(K) := {B : B ⩽ A f or some A ∈ K}

P(K) := {B : B = ∏
i∈I

Ai f or some ∅ ̸= {Ai : i ∈ I} ⊆ K}.

8



2.1. Some algebraic notions

If we restrict P to finite products, we get a new operator denoted by P f in. Notice that, if
we have two classes K1 and K2 of similar algebras such that K1 ⊆ K2, then O(K1) ⊆ O(K2)
if O is one of the operators previously named.

Definition 2.18. Let K be a class of algebras of the same type. We say that K is a variety if it is
closed under H, S and P. That is,

S(K) ⊆ K , H(K) ⊆ K , P(K) ⊆ K.

Let K be some class of algebras of the same type. The least variety containing K is
denoted by V(K) and we call it the variety generated by K.

Proposition 2.19 (Tarski). For every class K of algebras of the same type it holds that

V(K) = HSP(K).

Proposition 2.19 is essential in the theory of varieties and it originally appeared in [26].
Nevertheless, the reader can also resort to [7] (pg. 67 Theorem 9.5) and [17] (pg. 8) for a
more transparent and updated formulation.

Definition 2.20. Let τ be a language and X a set of variables. An identity over τ is a pair (ε, δ)
(or ε ≈ δ) such that ε(x1, . . . , xm), δ(x1, . . . , xm) ∈ T(X). Given an algebra A of type τ we say
that A satisfies the identity ε ≈ δ and denote by A |= ε ≈ δ if for every assigment h : X → A we
have

εA(h(x1), . . . , h(xm)) = δA(h(x1), . . . , h(xm)).

If we have a variety V , we say that V |= ε ≈ δ if for every A ∈ V we have A |= ε ≈ δ. We define
the set of identities of V as

Id(V) := {(ε, δ) : V |= ε ≈ δ}.

Definition 2.21. Let K be a class of algebras of the same type τ and let U(X) be an algbera of the
type τ generated by some set X. We say that U(X) has universal mapping property for K over
X if for every A ∈ K and for every map h : X → A there is a homomorphism h̄ : U(X) → A
extending h, i.e., h(x) = h̄(x) for every x ∈ X. In this case, we call X a set of free generators of
U(X) and we say that U(X) is freely generated by X.

Remark 2.22. In fact, given an algebra U(X) with the universal mapping property and an
algebra A of the same type, if we have a mapping h : X → A then the homomorphism h̄
from the above definition is unique (see [7] Lemma 10.6).

Remark 2.23. Notice that every assigment h : X → A can be uniquely extended to a
homomorphism h̄ : T(X) → A where h̄ is defined by recursion as follows:

• For each member x ∈ X define h̄(x) := h(x).

9



2. PRELIMINARIES

• If we have a term t ∈ T(X) such that t = σ(t1, . . . , tn) for some n-ary function
symbol σ ∈ τ and some t1, . . . , tn ∈ T(X) where h̄(ti) is defined for every i ⩽ n, then
h̄(t) := σA(h̄(t1), . . . , h̄(tn)).

Definition 2.24. Let K be a class of algebras of the same type τ and let X be a set. We define the
congruence θK on T(X) by

θK(X) :=
⋂
{ϕ ∈ Con(T(X)) : T(X)/ϕ ∈ IS(K)}.

Then, define FK(X̄) the K-free algebra over X̄ as

FK(X̄) := T(X)/θK(X)

and where X̄ := X/θK(X).

For the sake of clarity, we will write θV if the set of variables is known from the context.

Theorem 2.25 (([7] pg. 72 Theorem 10.8)). For every K classes of algebras of a fixed type τ and
and every a nonempty set X, the algebra T(X) has the universal mapping property for K over XI

Given a class K of algebras of the type τ and a set X, this algebra exists whenever the
term algebra T(X) exists, i.e., if X ̸= ∅ or if the type has 0-ary function symbols (constants).
In case FK(X̄) exists, we know due to Birkhoff the following property.

Theorem 2.26 (Birhoff ([7] pg. 73 Theorem 10.10)). Let K be a class of algebras of type τ and X
a nonempty set. Then, the algebra FK(X̄) has the universal mapping property for K over X̄.

Theorem 2.27 (Birkhoff ([7] pg. 74 Theorem 10.12)). Let K be a nontrivial class of algebras of
the same type τ and let X be a set. If T(X) exists, then FK(X̄) ∈ ISP(K).

This means that for an arbitrary class K of similar algebras the K-free algebra may not
be a member of K. In particular, this is does not happen in the case of varieties since these
free algebras are always in them.

Since FK(X̄) is unique up to isomorphism ([7] Theorem 10.7), we will denote the K-free
algebra over n free generators by by FnK.

Theorem 2.28 (Birkhoff). Let K be a class of algebras of the same type. K is a variety if an only if
K = {A : A |= Σ} for some set Σ of identities.

In the next, we give a brief introduction to semigroups.

IFor each mapping h : X → A for some A ∈ K, the homomorphism h̄ : T(X) → A extending h is
constructed by recursion from the set X, i.e., for each p(x⃗) ∈ T(X) we have h̄(p(x⃗)) = pA(h(x⃗)). Again, see
[7] pg. 72 theorem 10.8 for more details.
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2.1. Some algebraic notions

SEMIGROUPS

Definition 2.29. A semigroup is an algebra ⟨S, ·⟩ where the operation · is binary and associative.

To denote products, we will often use the natural notation x · y, however, there will be
some cases in where we will need to use the notation ·(x, y), which is in fact the formal
one.

Definition 2.30. For a given semigroup S, an element v ∈ S is called a unit if for every s ∈ S we
have

s · v = v · s = s .

Definition 2.31. For a given semigroup S, an element v ∈ S is a zero if for every s ∈ S we have

s · v = v · s = v .

Definition 2.32. For a given monoid S and a member s in S, an element v ∈ S is said to be the
inverse of s (denoted by s−1) if

s · v = 1 .

Remark 2.33. Proving that a semigroup can have at most one unit and zero elements is a
simple exercise, so, in case they exist, we will denote them 1 and 0 respectively. For more
details, see [22].

Definition 2.34. A monoid is a semigroup with unit element. In a monoid S, for every s, v ∈ S
we say that s is the inverse of v if

s · v = v · s = 1 .

When every element in a monoid S has an inverse element, we say that S is a group.

Proposition 2.35 ([22] Proposition 3.12). Let G be a finite group. Then, for every g ∈ G we have
g|G| = 1.

Proposition 2.36 ([22] Proposition 3.13). A nonempty subsemigroup of a finite group is a
subgroup.

Definition 2.37. Let S be a semigroup. We say that an element e ∈ S is idempotent if e · e = e.

Lemma 2.38. Let G be a finite group. The unit is the unique idempotent element in G.

Proof. Suppose that there is some g ∈ G that is idempotent. Then,

g · g = g

g · g · g−1 = g · g−1

g = 1

⊠

11



2. PRELIMINARIES

Proposition 2.39 ([22] Proposition 6.33). Let S be a finite semigroup. Then, there is some n ∈ ω
such that for every s ∈ S the element sn is idempotent. We will denote this element by sω.

Remark 2.40. In fact, if S is a finite semigroup, each member s has an idempotent power
(see [22] Proposition 6.31). Thus, the number n (in the previous proposition) can be defined
as

n := lcm(ms : s ∈ S)

where for each s ∈ S the power sms is idempotent (see the proof of Proposition 2.39 in [22]
for more details).

Example 2.41.

i) The structure (Z+,+) with the usual interpretation for the sum forms a semigroup (but not
a monoid).

ii) The structures (N,+) and (N, ·) with the usual sum and product are monoids (but not
groups). Moreover, in the case of (N, ·) the 0 is a zero element.

iii) The structure (Z,+) with the usual sum forms a group.

2.2 Some topological aspects

We now refresh some concepts and results of topology. For general definitions and proper-
ties see [20], [13] and [18]. Regarding the content about metric spaces, although they also
appear in the previous references, we suggest the reader to see [24] since it is dedicated to
this kind of spaces in particular. Finally, for Stone spaces we resort the reader to [12].

TOPOLOGICAL SPACES

Definition 2.42. Given a set X, a topology T on X is a set of subsets of X satisfying the following
properties:

i) X ∈ T and ∅ ∈ T.

ii) For every U ⊆ T we have ∪U ∈ T.

iii) For every finite U ⊆ T we have ∩U ∈ T.

The sets in T are called open sets.

Definition 2.43. Given a set X and a topology on X, the pair (X, T) is a topological space.

Sometimes, one wants to compare topologies defined on a same set X, so we introduce
the following definition.

12



2.2. Some topological aspects

Definition 2.44. Let X be a nonempty set and T1 and T2 topologies on X. We say the topologies
T1 and T2 coincide if T1 = T2, i.e, for every Y ⊆ X we have Y ∈ T1 if and only if Y ∈ T2.

There are many different possible definitions for a closed set, however, we consider the
more usual one.

Definition 2.45. Let (X, T) be a topological space. Then, a set A ⊆ X is closed if and only if
X \ A ∈ T. Moreover, if a set A ⊆ X is open and closed at the same time, we say that A is clopen.

Lemma 2.46 ([18] Proposition 17.1). Let (X, T) be a topological space. Then, the following hold:

i) X and ∅ are closed.

ii) Finite unions of closed sets are closed.

iii) Arbitrary intersections of closed sets are closed.

Definition 2.47. Let (X, T) be a topological space and A ⊆ X. If IA := {C ⊆ X : C is closed and A ⊆
C}, we define the closure of A as cl(A) :=

⋂
C∈IA

C.

Remark 2.48. It follows immediately from Definition 2.47 that for every A ⊆ X it holds
A ⊆ cl(A).

Definition 2.49. Let (X, T) be a topological space. A basis for the topology on X is a collection B
of subsets in T such that every U ∈ T is the union of elements of B.

In general, whenever we have a set X whithout a topology and a collection B of subsets
of X satifying the properties

i) For each x ∈ X there is some B ∈ B such that x ∈ B,

ii) For each x ∈ X, if x ∈ B1 ∩ B2 for some B ∈ B, then there is some B3 ∈ B such that
x ∈ B3 ⊆ B1 ∩ B2,

we can define a topology T on X by means of B as follows: for every U ⊆ X we say that
U ∈ T if for each x ∈ U there is some B ∈ B such that x ∈ B. That is, B is a basis of the
called topology generated by B. In fact, a basis is sometimes defined as a collection of open
subsets of a topological space (X, T) satisfying the properties i) and ii). For more details
see [18] (pg. 76-77).

Definition 2.50. Let (X, T) be a topological space. A subbasis for the topology on X is a collection
B of subsets in T such that the collection B′ of finite intersections of members in B is a base.
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2. PRELIMINARIES

This definition means that if we have a subbasis B of a topological space (X, T), then
every open set is equal to an arbitrary union of finite intersections of members in B.
Moreover, if we have a set X and a collection B of subsets of X such that X =

⋃
B∈B B, then

we can endow X with a topology T such that B is a subbasis (see [18] pg. 82).

Definition 2.51. Given a topological space (X, T) and some Y ⊆ X, we say that Y is a dense
subset if and only if for every U ∈ T we have that Y ∩ U ̸= ∅.

Lemma 2.52. Let (X, T) be a topological space and a dense subset A ⊆ X. Then, Ā = X.

Proof. The inclusion Ā ⊆ X is trivial, so we need to focus on the other one. Assume
towards a contradiction that X \ Ā ̸= ∅. Observe that, by definition, Ā is closed, so X \ Ā
is open. Then, by Remark 2.48 we deduce that A ∩ X \ Ā. However, this is not possible
since A is dense in X; hence, we conclude that Ā = X. ⊠

Definition 2.53. Given a topological space (X, T), a family U of open sets is called open covering
of X if X = ∪U∈UU.

Definition 2.54. We say that a topological space (X, T) is compact if for every open covering U
of X there is a finite family U ′ ⊆ U such that X = ∪U∈U ′U

Notice that an immediate consequence of the definition is that every finite topological
space is compact.

Lemma 2.55 ([18] Theorem 26.2). Let (X, TX) be a compact topological space. If C ⊆ X is closed,
then it is also compact.

Definition 2.56. We say that a topological space (X, T) is Hausdorff if for every pair of distinct
elements x, y ∈ X there are some open sets Ux and Uy containing x and y respectively, and such
that Ux ∩ Uy = ∅.

Lemma 2.57 ([18] Theorem 26.3). Let (X, TX) be a Hausdorff space. If C ⊆ X is compact, then
it is closed.

Usually Hausdorff spaces are also called T2 spaces. In fact, this notation is adopted
to name many kind of topological spaces coming from different separation axioms. For
instance, Kolmogorov spaces are also called T0 and are formally defined as follows.

Definition 2.58. A topological space (X, T) is T0 if for every x, y ∈ X if x ̸= y then there is an
open set U ∈ T such that either x ∈ U and y /∈ U or x /∈ U and y ∈ U.

Notice that every T2 space is automatically a T0 space.

Definition 2.59. A topological space (X, T) is zero-dimensional if it has a basis of clopen sets.

14



2.2. Some topological aspects

There are many examples and types of topological spaces, but a few of them will be
considered along this text. Nevertheless, they are basic examples

Example 2.60. Discrete topology: Given a set X, the set of all subsets of X compounds a topology
TD on X and it is called the discrete topology. Notice that the set {{x} : x ∈ X} is a basis for
this topology. The discrete topology on a set X is an example of a zero-dimensional Hausdorff space.
It is clear that it is T2

II. To see that it is zero-dimensional, recall that every subset U of X is open
and therefore X \ U is open. Since U = X \ (X \ U) we obtain that U is also closed. Hence, in
particular, the singletons are clopen sets and (X, TD) is zero-dimensional.

Example 2.61. Product topology: Let I be some set of indexes and let (Xi, Ti) be a topological
space for each i ∈ I. Considering the cartesian product ∏i∈I Xi, for each i ∈ I we denote with pi
the natural projection functions pi : ∏i∈I Xi → Xi. The product topology on ∏i∈I Xi, denoted
by TP, is the topology generated by the basis {∏i∈I Ui : ∀i ∈ I Ui ∈ Ti}. In fact, it can be proven
that the collection ⋃

i∈I

{p−1
i [U] : U ∈ Ti}

is a subbasis for the space (∏i∈I Xi, TP) (see [18] pg. 88 Theorem 15.2).
Moreover, if we have a basis Bi for each (Xi, Ti) the collection⋃

J⊆I
|J|<ω

{∏
j∈J

Bj × ∏
i∈I\J

Xi : ∀j ∈ J Bj ∈ Bj} (2.1)

forms a basis of (∏i∈I Xi, TP) (see [18] pg. 116 Theorem 19.2).

Example 2.62. Subpace topology: Given a topological space (X, T) and a subset Y ⊆ X, the
subspace topology (Y, TY) is defined by

TY := {Y ∩ U : U ∈ T}.

Moreover, if we have a basis B of (X, T) then the collection {B ∩ Y : B ∈ B} is a basis of (Y, TY)
([18] pg. 87 Lemma 16.2).

We state now some properties of these spaces.

Proposition 2.63 ([18] Theorem 16.3). Let (X, TX) and (Y, TY) be topological spaces and A ⊆ X
and B ⊆ Y. Then, in A × B the subspace topology inherited from the product X × Y (with the
product topology) coincides with the product topology of the subspaces topologies in A and B
respectively.

IIFor every x, y ∈ X such that x ̸= y just take Ux := {x} and Uy := {y}.
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Proposition 2.64 ([18] Theorem 17.11).

• Let (X, T) be a Hausdorff space and Y ⊆ X. The space (Y, TY) (with the subspace topology)
is Hausdorff.

• Let (Xi, Ti) be Hausdorff spaces for some set I and every i ∈ I. Then, the space (∏i∈I Xi, TP)
is Hausdorff.

Theorem 2.65 (Tychonoff). Let (Xi, Ti) be compact spaces for some set I and every i ∈ I. Then,
the space (∏i∈I Xi, TP) is compact.

Proposition 2.66. ([18] pg. 165 Theorem 26.2) Let (X, T) be a compact space and Y ⊆ X a closed
set. Then, the space (Y, TY) (with the subspace topology) is compact.

CONTINUOUS FUNCTIONS

Definition 2.67. Let (X, TX) and (Y, TY) be topological spaces. A function f : (X, TX) → (Y, TY)
is continuous if for every U ∈ TY we have f−1[U] ∈ TX.

Proposition 2.68. Let (X, TX) and (Y, TY) be topological spaces and f : (X, TX) → (Y, TY) a
function. If BY is a basis of Y, then the following are equivalent:

i) f is continuous.

ii) For every B ∈ BY we have f−1[B] ∈ TX.

iii) For every closed subset A of Y, f−1[A] is closed in X.

Lemma 2.69 ([25] Proposition 8.4). Let (X, TX), (Y, TY) and (Z, TZ) be topological spaces
and let f : (X, TX) → (Y, TY) and g : (Y, TY) → (Z, TZ) be continuous functions. Then, the
composition g ◦ f : (X, TX) → (Z, TZ) is continuous.

Definition 2.70. Let (X, TX) and (Y, TY) be topological spaces and f : (X, TX) → (Y, TY) a
continuous function. We say that f is closed if for every closed subset of X then f [X] is closed.

Lemma 2.71 ([18] Theorem 26.5). Let (X, TX) and (Y, TY) be topological spaces and f :
(X, TX) → (Y, TY) a continuous function. If C ⊆ X is compact then f [C] is compact.

Proposition 2.72. Let (X, TX) be a compact space, (Y, TY) a Hausdorff space and f : X → Y a
continuous function. Then, f is a closed function.

Proof. Let C ⊆ X be a closed subset. Since (X, TX) is compact, by Lemma 2.57 the set C is
compact. Then, by Lemma 2.71 we have that f [C] is compact and therefore, by Lemma
2.55 f [C] is closed. ⊠

16



2.2. Some topological aspects

Lemma 2.73. Let (X1, T1) and (X2, T2) be topological spaces. Then, the projection function
pi : X1 × X2 → Xi is a continuous surjective function for each i ∈ {1, 2}.

Proof. We will proof that p1 is continuous and surjective. The case for p2 is completely
identical. Let U ∈ T1. Then, p−1

1 [U] = U × X2 and therefore it is open because both U
and X2 are open in the topologies T1 and T2 respectively. Hence, p1 is continuous. Lastly,
notice that for every x ∈ X1 we have p1(x, y) = x where y is an arbitrary element in X2.
Therefore, p1 is surjective. ⊠

Remark 2.74. Notice that Lemma 2.73 can be easily generalized to arbitrary products (the
proof is analogous to Lemma 2.73).

Lemma 2.75 ([25] Proposition 10.11). Let (X1, T1), (X2, T2) and (Y, TY) be topological spaces.
A mapping f : Y → X1 × X2 is continuous if and only if the mappings p1 ◦ f : Y → X1 and
p2 ◦ f : Y → X2 are continuous.

Proposition 2.76 ([6] pg. 76 Corollary 1). Let (X, TX) and (Y, TY) be topological Hausdorff
spaces, f , g : (X, TX) → (Y, TY) be continuous function and Y ⊆ X a dense subset. If for every
y ∈ Y we have f (y) = g(y) then f = g.

Lemma 2.77. Let (X, TX) and (Y, TY) be discrete topological spaces. Then, the product (X ×
Y, TP) is a discrete topological space.

Proof. It suffices to check that the singletons of members in X × Y are open III. Fix some
arbitrary (x, y) ∈ X × Y. Certainly, {(x, y)} = p−1

1 [{x}] ∩ p−1
2 [{y}] where p1 : X × Y →

X and p2 : X × Y → Y are the projection functions. Since these functions p1 and p2
are continuous (Lemma 2.73), and since by assumption {x} and {y} are open sets in
the topologies TX and TY respectively, we have that {(x, y)} is open since it is a finite
intersection of open sets. ⊠

From Lemma 2.77 we deduce the following corollary.

Corollary 2.78. Any finite product of discrete topologies is also discrete.

Lemma 2.79. Let (Xi, Ti) be zero-dimensional spaces for some set I and every i ∈ I. Then, the
space (∏i∈I Xi, TP) is zero-dimensional.

Proof. We give a proof sketch. We have a basis Bi of clopen sets of (Xi, Ti) for each i ∈ I by
assumption, so we just need to check that the members of the basis 2.1 are clopen. To this
end, use Proposition 2.68 with respect to each projection map pi and then apply Lemma
2.46. ⊠

IIIIf this is the case, then every subset of X × Y is open since it is equal to the union of all the singletons of
its members.
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Sometimes, algebra and topology meet and we can endow the universe of an algebra A
of type τ with a topology. Under some assumptions, we call these structures topological
algebras.

Definition 2.80. Let A be an algebra of type τ and (A, T) a topological space. We say that A is a
topological algebra if for each σ ∈ τ the mapping σA : Anσ → A is continuous (with the prodcut
topology on Anσ ).

Proposition 2.81. Let A be a topological algebra (with the topology T) and B ⩽ A. Then, B is also
a topological algebra with respect to the subspace topology TS.

Proof. We want to check that for every σ ∈ τ the mapping σB is continuous, so pick some
σ ∈ τ and assume without loss of generality that it is a m-ary symbol. Let U ⊆ B be an
open set so that U is of the form B ∩ V for some V ⊆ A and A ∈ T. Notice that

(σB)−1[U] = {(b1, . . . , bm) ∈ Bm : σB(b1, . . . , bm) ∈ U}
= {(b1, . . . , bm) ∈ Bm : σB(b1, . . . , bm) ∈ B ∩ V}
= {(b1, . . . , bm) ∈ Bm : σA(b1, . . . , bm) ∈ B ∩ V}
= Bm ∩ {(b1, . . . , bm) ∈ Am : σA(b1, . . . , bm) ∈ V}
= Bm ∩ (σA)−1[V]

By hypothesis we know that the set (σA)−1[V] is open in Am and therefore, by Proposition
2.63 the set Bm ∩ (σA)−1[V] is open in Bm. Hence, (σB)−1[U] is open and we are done. ⊠

METRIC SPACES

Definition 2.82. A metric on a set X is a function d : X2 → R satisfying the following properties:

i) For every x ∈ X it holds d(x, x) = 0.

ii) For every x, y ∈ X, if x ̸= y then d(x, y) > 0.

iii) For every x, y ∈ X it holds d(x, y) = d(y, x).

iv) (Triangle inequality) For every x, y, z ∈ X it holds d(x, z) ⩽ d(x, y) + d(y, z).

Definition 2.83. If d is a metric on a set X, we say that (X, d) is a metric space.

Remark 2.84. Given a set X and a metric d over it, if we define the balls Bε(x) := {y ∈ X :
d(x, y) < ε}, then the collection T := {Bε(x) : x ∈ X and ε > 0} defines a topology over X
(see [24]) denoted by Td

X.

We say that a metric space is compact if the topological space that it defines (as above) is
compact.
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Definition 2.85. Let (X, dX) and (Y, dY) be metric spaces. A function f : (X, dX) → (Y, dY)
is uniformly continuous if for every ε > 0 there is some δ > 0 such that for every x, y ∈ X if
dX(x, y) < δ then dY( f (x), f (y)) < ε.

Proposition 2.86. [Heine-Cantor] ([18] pg. 176 theorem 27.6) Let (X, dX) and (Y, dy) be a metric
spaces and (X, dx) compact. If a function f : (X, dX) → (Y, dY) is continuous then it is uniformly
continuous.

Definition 2.87. An ultrametric on a set X is a function d : X2 → R satisfying the following
properties:

i) For every x ∈ X it holds d(x, x) = 0.

ii) For every x, y ∈ X, if x ̸= y then d(x, y) > 0.

iii) For every x, y ∈ X it holds d(x, y) = d(y, x).

iv) (Strong triangle inequality) For every x, y, z ∈ X it holds d(x, z) ⩽ max{d(x, y), d(y, z)}.

See [21] for more details about ultrametrics and ultrametric spaces.

Definition 2.88. If d is an ultrametric on a set X, we say that (X, d) is an ultrametric space.

Observe that every ultrametric space is in fact a metric space since the strong triangle
inequality implies the triangle inequality.

STONE SPACES

Stone spaces conform another example of topological spaces in which we will be concerned.
This spaces, although they are not as simple as the examples considered before, they are
quite relevant since they link topology, algebra and logic thanks to the Stone Representation
Theorem (see section 4 of chapter IV of [7]).

Definition 2.89. A topological space (X, T) is called a Stone space if it is compact, T0 and
zero-dimensional.

Proposition 2.90. Let (X, T) be a Stone space and Y ⊆ X. If Y is closed in (X, T) then topological
space (Y, TY) is a Stone space.

Proof. By Proposition 2.64 and Proposition 2.66 we obtain that (Y, TY) is Hausdorff and
compact, so it suffices to check that it is zero-dimensional. To this end, let Y ∩ U be an
arbitrary member of the basis of (Y, TY). We need to prove that Y ∩ U is closed, i.e., that
Y \ (Y ∩U) is open. Notice that Y \ (Y ∩U) = Y ∩ (X \U). Now, by assumption we know
that U is closed in (X, T) and therefore X \ U is open in (X, T). Thus, Y ∩ (X \ U) is open
in (Y, TY) and we are done. ⊠
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Example 2.91. Given a set I of indexes, possibly infinite, and for each i ∈ I a finite space
(Xi, Ti) with the discrete topology, the product space ∏i∈I Xi with the product topology
forms a compact, Hausdorff and zero-dimensional space. This follows from the facts
that each Xi is compact, Hausdorff and zero-dimensional space and using the Tychonoff
theorem (2.65), Proposition 2.64 and Lemma 2.79. Consequently, (∏i∈I Xi, Tp) is a Stone
space.
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3. PSEUDOVARIETIES AND THEIR IMPLICIT OPERATIONS

This chapter can be divided in two different part. On the one hand, we will introduce
pseudovarieties and their respective implicit operations. Some algebraic properties will be
also stated and proved regarding the nature of these objects. More precisely, we will endow
the set of all the implicit operations of a given pseudovariety V with the structure of an
algebra and study some of its basic properties. On the other hand, topological features will
be considered, namely, a topology over the algebra mentioned above. This will be crucial
on the study and the proof of Reiterman‘s Theorem later on.

3.1 Pseudovarieties and the algebra of implicit operations

Definition 3.1. We call a class of similar finite algebras K a pseudovariety if it is closed under
homomorphic images, finite products, and subalgebras.

Definition 3.2. Let V be a pseudovariety of type τ and W ⊆ V . We say that W is a subpseu-
dovariety of V if W is itself a pseudovariety.

We define the pseudovariety generated by some class of finite similar algebras K as the
least pseudovariety containing it and we denote it by pV(K). If K is finite, we say that
it is finitely generated, and if K = {A1, . . . , Am}, then we write for the sake of simplicity
pV(A1, . . . , Am) instead of pV({A1, . . . , Am}). Moreover, such as for varieties, the exis-
tence of such pseudovariety is justified by the following proposition, which is analogous
to the Tarki’s HPS theorem ([26]). However, in order to prove it, we will make use of the
construction involving homomorphisms from below.

If we are considering some homomorphism h : A → B for some algebras A and B, we
can define the homomorphism hn : An → Bn by the rule hn(a1, ..., an) = (h(a1), ..., h(an)).
The fact that it is a homomorphism is a easy verification. In fact, we can consider
more genarally the algebras A1, . . . , An, B1, . . . , Bn and for each i ⩽ n a homomorphism
hi : Ai → Bi, and define the homomorphism ⟨h1, . . . , hn⟩ : A1 × · · · × An → B1 × · · · × Bn
by the rule ⟨h1, . . . , hn⟩(a1, . . . , an) = (h1(a1), . . . , hn(an)). Again, to check that it is a homo-
morphism is an easy verification.

Having this in mind, we are in a good shape to prove the next proposition.

Proposition 3.3. Let K be a class of finite similar algebras. Then,

pV(K) = HSP f in(K)

Proof. We first check that HSP f in(K) is a pseudovariety. Recall that, if we have an algebra
A then A ∈ HSP f in(K) if and only if there are some B1, . . . , Bk ∈ K (for some k < ω) such
that A is a homomorphic image of some D ⩽ B1 × · · · × Bk.
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3.1. Pseudovarieties and the algebra of implicit operations

The inclusion HHSP f in(K) ⊆ HSP f in(K) is almost trivial since we only need to take
the composition of both homomorphism. The inclusion SHSP f in(K) ⊆ HSP f in(K) fol-
lows from the fact that SHSP f in(K) ⊆ HSSP f in(K) ⊆ HSP f in(K)(see [7] Lemma 9.2).

To prove that it is closed under finite products, pick some A1, . . . , Ak ∈ HSP f in(K).
Then, there are for each i ⩽ k an algebra Di ⩽ Bi

1 × · · · × Bi
ri

and a surjective homo-
morphism hi : Di → Ai. Thus, we have Di × · · · × Dk ⩽ ∏i⩽k Bi

1 × · · · × Bi
ri

and a
homomorphism ⟨h1, . . . , hk⟩ : D1 × · · · × Dk → A1 × · · · × Ak described before. The
surjectivity of h′ follows from the surjectivity of each hi. Therefore, we conclude that
A1 × · · · × Ak ∈ HSP f in(K).

We claim now that HSP f in(K) is the least pseudovariety containing K. Of course,
notice that if W is an arbitrary pseudovariety containing K, then, ⊠

From now on, we will fix an arbitrary pseudovariety V of a type τ and some n ∈ ω.
Notice that a pseudovariety is also closed under the operator I since I(V) ⊆ H(V).
Therefore, and since the cardinality of I(V) can not be bounded by any cardinal, any
pseudovariety is a proper class I. This is something we want to avoid in the definition that
follows, so we restrict to the set of representative of the class I(V), which we denote by V0.
Observe that since we are working with finite algebras, we have the equality V0 = ∪n∈ωVn

0
where Vn

0 = {A ∈ V0 : |A| = n}. Then, since there are only finitely non-isomorphic
finite-many algebras of size n (because τ is assumed to be finite), we have |Vn

0 | < ℵ0 for
each n ∈ ω and therefore |V0| ⩽ ℵ0.

Definition 3.4. An n-ary implicit operation over V is a tuple f = ⟨ f A : A ∈ V0⟩ of functions
f A : An → A such that for every homomorphism h : B → C between members in V0 we have
h ◦ f B = f C ◦ hn.

The spirit of this definition is to weaken the idea of term-definable functions, that is, an
implicit operation may be a mapping commuting with homomorphisms that can not be
expressed with the operations of the language. On the other side, every term defines an
implicit operation (as we will see later).

Definition 3.5. We define the operator Ω̄n which assigns to a given pseudovariety V the set of
n-ary implicit operations over V . We will denote this set with Ω̄nV .

IThis follows from the question of whether the collection of sets of a certain cardinality is a set or a proper
class. The answer is that it is a proper class. For instance, the collection of set of cardinality 1 is already a
proper class, just consider the bijection from the class of all sets to the collection of sets of cardinality 1 that
sends a set x to the singleton {x}.
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3. PSEUDOVARIETIES AND THEIR IMPLICIT OPERATIONS

Definition 3.6. Let V be a pseudovariety. We define the algebra Ω̄V
n = ⟨Ω̄nV , τ⟩ where for each

m-ary operation σ ∈ τ and every f1, ..., fm ∈ Ω̄V
n , the m-ary implicit operation σΩ̄V

n f1, ..., fm is
defined for each algebra A ∈ V0 by the rule

(σΩ̄V
n f1, ..., fm)

A(a1, ..., an) = σA( f A
1 (a1, ..., an), ..., f A

m (a1, ..., an)).

It is not difficult to check that σΩ̄V
n ( f1, ..., fm) defined as above is indeed an implicit

operation. It is a straightforward verification of the commutative property using that each
fi satisfies it.

Notice that for each i ⩽ n, we can define an n-ary implicit operation x̂i = ⟨x̂A
i : A ∈ V0⟩

where x̂A
i is the i-th projection function, that is, for every a1, . . . , an ∈ A the map x̂A

i
is defined as x̂A

i (a1, . . . , an) = ai. Due to obvious reasons, we will call these implicit
operations projections. But, of course, it remains to check that for every homomorphism
h : B → C between member in V0 it holds h ◦ x̂B

i = x̂C
i ◦ hn.

Lemma 3.7. For each i ⩽ n, the map x̂i is an implicit operation over V .

Proof. Consider a homomorphism h between some A, B ∈ V0. Then, for every
a1, . . . , an ∈ A we have, on the one hand,

h ◦ x̂A
i (a1, ..., an) = h(x̂A

i (a1, . . . , an))

= h(ai)

and on the other hand,

x̂B
i ◦ hn(a1, . . . , an) = x̂B

i (h(a1), . . . , h(an))

= h(ai)

as desired. ⊠

Moreover, we claim that every term t(x1, . . . , xn) induces a n-ary implicit operation
⟨tA : A ∈ V0⟩ if we thought each variable xi as the projection x̂i described above. In this
case, Lemma 3.7 becomes a particular case of the following lemma.

Lemma 3.8. Every term t(x1, . . . , xn) in the language τ induces an n-ary implicit operation over
V .

Proof. The base case is just Lemma 3.7. For the inductive case, we have a term of the form

t(x1, . . . , xn) = σ(t1(x1, . . . , xn), . . . , tm(x1, . . . , xn))
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3.1. Pseudovarieties and the algebra of implicit operations

for some m-ary operation f and such that for each i ⩽ m the term ti induces an implicit op-
eration. To show that ⟨tA : A ∈ V0⟩ is an implicit operation, consider some homomorphism
h : A → B and fix some arbitrary a1, . . . , an ∈ A. On the one hand,

h ◦ tA(a1, . . . , an) = h(σA(tA
1 (a1, . . . , an), . . . tA

m(a1, . . . , an)))

= σB(h(tA
1 (a1, . . . , an)), . . . , h(tA

m(a1, . . . , an)))

since h is a homomorphism. Moreover, by induction hypothesis we also have

σB(h(tA
1 (a1, . . . , an)), . . . , h(tA

m(a1, . . . , an))) = σB(tB
1 (h(a1), . . . , h(an)), . . . , tB

m(h(a1), . . . , h(an))).

On the other hand,

tB ◦ hn(a1, . . . , an) = tB(h(a1), . . . , h(an)) = σB(tB
1 (h(a1), . . . , h(an)), . . . , tB

m(h(a1), . . . , h(an))).

Therefore, we have h ◦ tA = tB ◦ hn.
⊠

For the sake of clarity, given a term t(x1, . . . , xn),, the n-ary implicit operation induced
by t described above will be denoted by t̂. We illustrate now the previous lemma using the
next simple example.

Example 3.9. Let V be an arbitrary pseudovariety of semigroups and let t(x, y) := x · y be a
term. Then, ⟨tA : A ∈ V0⟩ is a binary implicit operation over V . To see how it is computed, fix an
arbitrary semigroup A ∈ V0 and let a and b be some elements in A. Then,

tA(a, b) = ·A(xA(a, b), yA(a, b))

= ·A(a, b)

Definition 3.10. We define Ωn
V as the subalgebra of Ω̄V

n generated by {x̂1, . . . , x̂n} ⊆ Ω̄nV . The
members in Ωn

V are called n-ary explicit operations and the universe of ΩV
n is denoted by ΩnV .

Remark 3.11. Notice that by Lemma 2.8 we have that

ΩnV = {tΩ̄nV (x̂1, . . . , x̂n) : t ∈ T(x1, . . . , xn)}.

Lemma 3.12. Let h be a mapping from {x1, . . . , xn} to Ωn
V asigning xi to x̂i for each i ⩽ n. Then

there is a unique homomorphism h̄ : T(x1, . . . , xn) → Ωn
V extending h.

Proof. From Theorem 2.25 we know that such homomorphism exists, and by Remark 2.22
it is unique. The surjectivity follows from Remark 3.11 since for every f ∈ Ωn

V there is
some term p ∈ T(x1, . . . , xn) such that f = pΩ̄nV (x̂1, . . . , x̂n) and therefore h̄(p) = f (see
the footnote of Theorem 2.25). ⊠
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3. PSEUDOVARIETIES AND THEIR IMPLICIT OPERATIONS

Definition 3.13. Let f , g ∈ Ω̄V
n . We say that the pair ( f , g) is a pseudoidentity for V and

we denoted by f ≈ g. We say that an algebra A ∈ V0 satisfies the pseudoidentity ( f , g) if the
functions f A and gA are equal, and we denote it by A ⊩ f ≈ g. Given K a subclass of V0 we write
K ⊩ f ≈ g if A ⊩ f ≈ g for every A ∈ K.

In general terms, if we do not focus on the parameter n, pseudoidentities for a pseu-
dovariety V are members in the set ∪n∈ω(Ω̄V

n )
2. In fact, observe that for each f ≈ g we

have V0 ⊩ f ≈ g if and only if V ⊩ f ≈ gII, thus we define the set

pId(V) := { f ≈ g ∈ ∪n∈ω(Ω̄
V
n )

2 : V0 ⊩ f ≈ g}.

In addition, the notation ⊩ is adopted here in order to avoid any ambiguity with the
notation |= defined in the preliminaries. Nevertheless, both validity concepts are closely
related (and coincide under some assumptions) as the following lemma shows.

Lemma 3.14. Let p, q ∈ T(x1, . . . , xn), then p ≈ q ∈ Id(V) if and only if p̂ ≈ q̂ ∈ pId(V).

Proof. Recall that p̂ = ⟨pA : A ∈ V0⟩ and the same for q̂. If p ≈ q ∈ Id(V), then for each
algebra A ∈ V and every a⃗ ∈ An we have pA(⃗a) = qA(⃗a). Therefore, V0 ⊩ p̂ ≈ q̂ and hence
p̂ ≈ q̂ ∈ pId(V). The other implication is symetric. ⊠

Proposition 3.15. Ωn
V is isomorphic to FnV .

Proof. To construct the isomorphism, let h be a mapping h : T(x1, . . . , xn) → Ω̄V
n which

for every t ∈ T(x1, . . . , xn) the image h(t) is the n-ary implicit operation t̂ induced by the
term t. Clearly this function is well defined. To see that it is an homomorphism, pick some
m-ary function symbol σ and terms t1(x1, . . . , xn), . . . , tm(x1, . . . , xn). Notice that

h(σ(t1, . . . , tm)) = ⟨σA(tA
1 , . . . , tA

m) : A ∈ V0⟩ .

So, for every A ∈ V0 and every a1, . . . , an ∈ A we have

(h(σ(t1, . . . , tm)))
A(a1, . . . , an) = σA(tA

1 (a1, . . . , an), . . . , tA
m(a1, . . . , an))

Now, recall that from Definition 3.6 we have for every A ∈ V0 and every a1, . . . , an ∈ A the
following:

(σΩ̄V
n (h(t1), . . . , h(tm)))

A(a1, . . . , an) = σA(h(t1)(a1, . . . , an), . . . , h(tm)(a1, . . . , an))

= σA(tA(a1, . . . , an), . . . , tA(a1, . . . , an))

Therefore, for every A ∈ V0 the equality

(h(σ(t1, . . . , tm)))
A = (σΩ̄V

n (h(t1), . . . , h(tm)))
A

IIThis holds since V0 is the class of isomoprhic members of V .
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3.1. Pseudovarieties and the algebra of implicit operations

and hence
h(σ(t1, . . . , tm)) = (σΩ̄V

n (h(t1), . . . , h(tm))).

That is, h is a homomorphism. Notice that, due to Remark 3.11, the image of h is precisely
Ωn

V . Moreover, ker h = θV where θV is the congruence from Definition 2.24. To see this,
observe that

ker h = {(p, q) ∈ T(x1, . . . , xn)
2 : h(p) = h(q)}

= {(p, q) ∈ T(x1, . . . , xn)
2 : p̂ = q̂}

= {(p, q) ∈ T(x1, . . . , xn)
2 : pA = qA f or all A ∈ V0}

= {(p, q) ∈ T(x1, . . . , xn)
2 : V0 ⊩ p̂ ≈ q̂}

= {(p, q) ∈ T(x1, . . . , xn)
2 : V ⊩ p̂ ≈ q̂}

= {(p, q) ∈ T(x1, . . . , xn)
2 : V |= p ≈ q}

= θV .

The last equality holds due to the fact that (p, q) ∈ θV (x1, . . . , xn) if and only if V |= p ≈ q
for every p, q ∈ T(x1, . . . , xn) (see [1] Proposition 1.3.6). Hence, by the homomorphism
theorem (Theorem 2.16), we have T(x1, . . . , xn)/θV ∼= Ωn

V as desiredIII. ⊠

Corollary 3.16. The algebra Ωn
V has the universal mapping property for V over {x̂1, . . . , x̂n}.

Proof. For every A ∈ V and every mapping h1 : {x̂1, . . . , x̂n} → A, define the function
h2 : {x1/θV , . . . , xn/θV} → A sending each xi/θV to h1(x̂i). Since FnV has the universal
mapping property for V over {x1, . . . , xn}/θV , there is a unique homomorphism h′2 :
FnV → A extending h2. Let h : Ωn

V → FnV be an isomorphism. Then, we just define the
mapping h′1 : Ωn

V → A by the rule

h′1( f ) = h′2(h( f )).

That is, h′1 = h′2 ◦ h and by Lemma 2.11 h′1 is a homomorphism. ⊠

The first lemmas we will prove describe the character of both algebras (Ωn
V and Ω̄V

n )
in relation to the nature and characteristics of the pseudovariety we are considering. In
particular, the following Lemma says basically that in case our pseudovariety V is, in some
sense, simple, then we obtain that the algebra Ωn

V falls into V .

Lemma 3.17. If V is generated by a single algebra, then for every n ∈ ω we have Ωn
V ∈ V .

Proof. Let A be a finite algebra such that V = pV(A) and fix some n ∈ ω. We can assume
without loss of generality that A ∈ V0. We first observe that every implicit operation

IIIRecall that FnV = T(x1, . . . , xn)/θV .

27



3. PSEUDOVARIETIES AND THEIR IMPLICIT OPERATIONS

f ∈ Ω̄V
n is completely determined by f A. To see the reason behind this, we will compute

f B where B ∈ P f in(A), that is, B is of the form Am for some m > 0. The other cases are
completely analogous and are left to the reader. For every j ⩽ m let pj : Am → A be the
j-th natural projection. Then, we have the following diagram

Am × · · · × Am → f B Am

↓(pj)n ↓pj

A × · · · × A → f A A

where (pj)
n is the homomorphism obtained from the construction described at the be-

ginning of this chapter. Due to Definition 3.4, the diagram commutes and therefore
pj ◦ f B = f A ◦ (pj)

n. So, for every a⃗1, . . . , a⃗n ∈ Am the j-th component of f B(⃗a1, . . . , a⃗n) is
obtained as follows:

( f B(⃗a1, . . . , a⃗n))j = ( f A ◦ (pj)
n)(⃗a1, . . . , a⃗n)

= f A((a⃗1)j, . . . , (a⃗n)j)

Thus, in general we have that

f B(⃗a1, . . . , a⃗n) = ( f A((a⃗1)1, . . . , (a⃗n)1), . . . , f A((a⃗1)m, . . . , (a⃗n)m)).

Keeping this in mind, we tackle the main proof. The strategy is to define a homomorphism
h from Ωn

V to AAn
in a natural way by the rule h( f ) = f A for every f ∈ Ωn

V IV. Notice
that, by obvious reasons, we have that AAn ∈ V ; hence, if we prove that h is injective then
we obtain by the Theorem 2.16 that Ωn

V ∼= h[Ωn
V ] ⩽ AAn

concluding that Ωn
V ∈ V as

desired (because, in that case, Ωn
V ∈ HS(AAn

) ⊆ V).

It is immediate from the definition of h that it is a well-defined homomorphism V, so
it only remains to show that is is in fact injective. Observe that if f ̸= g then necessarily
f A ̸= gA; otherwise, since for every B ∈ V0 the mappings f B and gB are completely
determined by f A and gA, we have that f B = gB and this contradicts the assumption f = g.
Thus if we have n-ary implicit operations over V such that f ̸= g then

h( f ) = f A ̸= gA = h(g)

and so, h is injective. We conclude then, as explained in the previous paragraph, that
Ωn

V ∈ V ⊠

Moreover, thanks to the following lemma, we can extend the previous result to arbitrary
finitely generated pseudovarieties.

IVStrictly speaking, h( f ) shoud be defined as f AAn
, but due to the observation done at the beginning of the

proof, the mapping f A is enough to contstruct f AAn
.

VIf we have f , g ∈ Ωn
V such that f = g, then necessarily f A = gA.
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3.1. Pseudovarieties and the algebra of implicit operations

Lemma 3.18. If V is finitely generated, then it is also generated by a single algebra.

Proof. Let V = pV(A1, . . . , Am). We claim that V = pV(A1 × · · · × Am). The inclusion
V ⊇ pV(A1 × · · · × Am) is trivial since A1 × · · · × Am ∈ V , so all we need to do is
to prove that V ⊆ pV(A1 × · · · × Am). Moreover, to see that it suffices to check that
Ai ∈ pV(A1 × · · · × Am) for each i ⩽ m. But this is quite clear once we notice that the
projection mappings pi : A1 × · · · × Am → Ai are surjective homomorphisms. Therefore,
for every i ⩽ m we have Ai ∈ pV(A1 × · · · × Am) and hence V ⊆ pV(A1 × · · · × Am).

⊠

Then, from Lemma 3.17 and Lemma 3.18 we deduce the following corollary.

Corollary 3.19. If V is finitely generated, then for any n ∈ ω we have Ωn
V ∈ V .

Continuing with finitely generated pseudovarieties, we have another helpful character-
ization for Ω̄V

n . But first, we need the following lemma to prove it.

Lemma 3.20. If V is finitely generated, then Ω̄V
n = Ωn

V .

Proof. Due to Lemma 3.18, we can assume without loss of generality that V is generated
by a single algebra A and therefore, by Lemma 3.17 we know that Ωn

V ∈ V . Since the
inclusion Ωn

V ⊆ Ω̄V
n is trivial, it suffices to check the other inclusion.

Pick an arbitrary f ∈ Ω̄V
n and recall from Lemma 3.12 there is a surjective homomor-

phism h̄ from T(x1, . . . , xn) to Ωn
V extending the mapping h : {x1, . . . , xn} → A defined

by the rule h(xi) = x̂i for every i ⩽ n. Recall that Ωn
V ∈ V ; so, there is an isomorphic

copy of Ωn
V in V0, which we will denote also by Ωn

V for simplicity. Then, it is clear that
f Ωn

V
(x̂1, . . . , x̂n) ∈ Ωn

V . Thus, since h̄ is surjective, there is some term t ∈ T(x1, . . . , xn)
such that

h̄(t) = f Ωn
V
(x̂1, . . . , x̂n).

Recall from Lemma 3.12 that h̄(t) = tΩn
V
(x̂1, . . . , x̂n), so for every A ∈ V0 and every

a1, . . . , an ∈ A we have

( f Ωn
V
(x̂1, . . . , x̂n))

A(a1, . . . , an) = tA(a1, . . . , an).

Now, recall from Definition 3.6 that

( f Ωn
V
(x̂1, . . . , x̂n))

A(a1, . . . , an) = f A(x̂1(a1, . . . , an), . . . , x̂n(a1, . . . , an))

= f A(a1, . . . , an).

Therefore, for all A ∈ V0 we have that f A = tA and therefore f = t̂, so we conclude that
f ∈ Ωn

V . ⊠
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3. PSEUDOVARIETIES AND THEIR IMPLICIT OPERATIONS

In general, there is no precise characterization for the algebra of n-ary implicit opera-
tions over a pseudovariety V . However, as we have seen in Lemmas 3.19 and 3.20, when
considering finitely generated pseudovarieties (one thing that we will repeatedly do along
proofs) we obtain a good description of Ω̄V

n with well-known properties.

3.2 The space of implicit operations

Until now we have studied only the algebraic aspects of the algebra Ω̄V
n , but it is also

possible to define a topology on its universe Ω̄nV and get the structure of a topological
algebra in Ω̄V

n (as we will see later). To do that, observe first that each f ∈ Ω̄V
n can be

seen as an element of ∏A∈V0
AAn

and therefore Ω̄V
n ⊆ ∏A∈V0

AAn
. Now, we consider the

discrete topology on AAn
for each algebra A in V0. Define for each B ∈ V0 the projection

mapping πB : ∏A∈V0
AAn → BBn

defined by the rule πB(⟨ f A : A ∈ V0⟩) := f B. Then, we
have on ∏A∈V0

AAn
the product topology generated by the subbase

{π−1
A [X] : A ∈ V0 and X ⊆ AAn}VI.

Observe that, due to Remark 2.74, the mapping πA is continuous and surjective for each
A ∈ V0. Thus, we define on Ω̄V

n the subspace topology TS, which is generated by the
subbase (see Example 2.62)

{Ω̄V
n ∩ π−1

A [X] : A ∈ V0 and X ⊆ AAn}. (3.1)

Therefore, every open set U in T̄S is of the form⋃
i∈I

(
⋂

A∈Ki

(Ω̄V
n ∩ π−1

A [XA]))

where I is an arbitrary set of indexes, and for each i ∈ I the class Ki is a finite subclass of
V0 and XA ⊆ AAn

for every A ∈ Ki. Moreover, due to the commutativity of the intersection
and the distributivity of the union over the intersection, we have that

U = Ω̄V
n
⋂
(
⋃
i∈I

(∩A∈Ki π
−1
A [XA])). (3.2)

Of course, notice that since it holds that Ωn
V ⊆ Ω̄V

n , we can also consider on Ωn
V a

topology, namely, the subspace topology inherited by the topology on Ω̄V
n . More precisely,

we have the topological space (Ωn
V , T′

S) for which the family

{Ωn
V ∩ π−1

A [X] : A ∈ V0 and X ⊆ AAn}

VIsee Example 2.61.
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forms a subbase.

We begin proving that our space (Ω̄V
n , T̄s) is a Stone space and therefore a compact,

T0 and zero-dimensional space. Moreover, since ∏A∈V0
AAn

with the product topology
is Hausdorff, we obtain also that (Ω̄V

n , Ts) is T2 and not only T0 (see Example 2.62 and
Proposition 2.64).

Theorem 3.21. Ω̄V
n is a Stone space.

Proof. Recall that for each A ∈ V0 we are considering the discrete topology on AAn
,so, due

to Example 2.91 we know that ∏A∈V0
AAn

is a Stone space. Therefore, by Proposition 2.90
it suffices to check that it is closed in ∏A∈V0

AAn
.

Pick some f ∈ ∏A∈V0
AAn \ Ω̄V

n and recall that f = ⟨ f A : A ∈ V0⟩. We want to find
a clopen set containing f but not elements in Ω̄V

n . Since f /∈ Ω̄V
n there are some algebras

B, C ∈ V0, a homomorphism h : B → C and some b⃗ ∈ Bn such that

f Chn (⃗b) ̸= h( f B⃗b) (3.3)

We define now X := (πB)−1[{ f B}] ∩ (πC)
−1[{ f C}]. Notice that, since the spaces AAn

and BBn
are discrete, { f B} and { f B} are clopen sets in BBn

and CCn
respectively (see

Example 2.60), and since both πB and πC are continuous (see Lemma 2.73), we have that
(πB)−1[{ f B}] and (πC)

−1[{ f C}] are open sets. Therefore, X is an open set and it clearly
contains f . Recall that ∏A∈V0

AAn
is zero-dimensional, so there is a clopen U such that

f ∈ U ⊆ X. To finish the proof, we need to see that U ∩ Ω̄V
n = ∅.

It is obvious that if X ∩ Ω̄V
n = ∅ then U ∩ Ω̄V

n = ∅, so it suffices to check that X ∩ Ω̄V
n =

∅. Let some g ∈ X. Due to how X is defined we have that πB(g) = f B and πC(g) = f C.
Observe that the condition 3.3 forces that g /∈ Ω̄V

n , thus we get X ∩ Ω̄V
n = ∅ concluding the

proof. ⊠

In fact, the algebra Ω̄V
n equipped with the topology described above forms also a

topological algebra as we show here below. Recall that, for each m-ary function symbol
σ ∈ τ, its interpretation in ∏A∈V0

AAn
is defined pointwise as

(σ∏A∈V0
AAn

( f1, . . . , fm))
B(b1, . . . , bn) := σB( f B

1 (b1, . . . , bn), . . . , f B
m(b1, . . . , bn)) (3.4)

for every f1, . . . , fm ∈ ∏A∈V0
AAn

, for every B ∈ V0 and every b1, . . . , bn ∈ B. For each
A ∈ V0 we also consider the algebra ⟨AAn

, τ⟩ where for every σ ∈ τ and every f A
1 , . . . , f A

mσ
∈

AAn
we have

(σAAn

( f A
1 , . . . , fm))(a1, . . . , an) := σA( f A

1 (a1, . . . , an), . . . , f A
m (a1, . . . , an)). (3.5)

Lemma 3.22. The space (∏A∈V0
AAn

, T) is a topological algebra.
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Proof. Pick an arbitrary mm-ary function symbol σ ∈ tau and fix some B ∈ V0. We
define for each i ⩽ m the mapping hi : ∏A∈V0

AAn → BBn
as the composition πB ◦ pi.

Clearly, both πB and pi are continuous functions; so, each hi is continuous by Lemma
2.69. Then, the mapping h : ∏A∈V0

× . . . ,×∏A∈V0
→ BBn × · · · × BBn

defined by the
rule h( f1, . . . , fm) = (h1( f1, . . . , fm), . . . , hm( f1, . . . , fm)) is a continuous function (see [18]
Theorem 19.6). It is easy to see that

πB ◦ σ∏A∈V0
AAn

= σBBn

◦ h, (3.6)

we just need to apply the definitions 3.4 and 3.5 of the interpretations of σ. Recall that we
are considering on BBn

the discrete topology, therefore BBn × · · · × BBn
is also a discrete

space (see Corollay 2.78). Hence, the mapping σBBn
: BBn × · · · × BBn → BBn

is continuous.
Again, the composition of continuous functions is continuous, so σBBn

◦ h is continuous.

Due to equality 3.6 we have that piB ◦ σ∏A∈V0
AAn

is continuous, and since we already know

that πB is continuous, the mapping σ∏A∈V0
AAn

is necessarily continuous. ⊠

Theorem 3.23. (Ω̄V
n , Ts) is a topological algebra.

Proof. From Lemma 3.22 we know that (∏A∈V0
AAn

, T), so if we prove that Ω̄V
n ⩽ ∏A∈V0

AAn

then by Proposition 2.81 we obtain automatically what we want. Recall that the universe
of Ω̄V

n is a subset of ∏A∈V0
AAn

, therefore, by Definition 3.6 we have that for every m-ary
operation σ ∈ τ and every f1, . . . , fm ∈ Ω̄V

n we have

σΩ̄V
n ( f1, . . . , fm) = σ∏A∈V0

AAn

( f1, . . . , fm) .

Hence, Ω̄V
n is indeed a subalgebra of ∏A∈V0

AAn
.

⊠

Concerning subpseudovarieties, consider a subpseudovariety W of V . Let W0 be the set
of representatives of the isomorphic class of W . Then, we can construct the corresponding
space Ω̄W

n as we have done with V0. Moreover, notice that W0 can be assumed to be without
loss of generality a subset W0 ⊆ V0, so, this will be the case from now on. Therefore, it
makes sense to define a projection mapping

pW0 : Ω̄V
n → Ω̄W

n
⟨ f A : A ∈ V0⟩ → ⟨ f A : A ∈ W0⟩.

Whenever the subpseudovariety is clear from the context, we will use simply the
notation p instead of pW0 . Notice also that, until now, we have used the notation pi for
the i-th projections considering arbitrary direct products. In addition, it is important to
emphasize that when speaking about the mappings πA may not be clear if it corresponds
to the one with domain ∏A∈V0

AAn
or with domain ∏A∈W0

AAn
. Therefore, in case it is
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3.2. The space of implicit operations

not clear from the context, we will make that explicit using πV0
A , for instance. However,

this does not create confusion with the convention adopted in the previous phrase since
the notation for these projections will always have the subscript of the corresponding
coordinate.

Lemma 3.24. The mapping π∗ : ∏A∈V0
AAn → ∏A∈W0

AAn
defined by the rule

π∗( f ) = ⟨ f A : A ∈ W0⟩

is a continuousVII and surjective mapping.

Proof. Notice that, for every A ∈ W0 and for every f ∈ ∏A∈V0
AAn

it holds that πV0
A (π∗( f )) =

πV0
A ( f ), i.e, πV0

A ◦ π∗ = πV0
A . Since for each A ∈ W0 the mapping πV0

A is continuous, we
have by Lemma 2.75 that π∗ is continuous. Surjectivity follows from the fact that for
each f ∈ ∏A∈W0

AAn
there is some f ′ ∈ ∏A∈V0

AAn
such that π∗( f ′) = f and where f ′

is defined as then ( f ′)A = f A for every A ∈ W0, and ( f ′)A(a1, . . . , an) := a1 for every
A ∈ V0 \W0 and for every a1, . . . , an ∈ AVIII. ⊠

Lemma 3.25. Given a subpseudovariety W of V , the natural projection p : Ω̄V
n → Ω̄W

n defined by
the rule p( f ) = ⟨ f A : A ∈ W0⟩ is a continuous homomorphism.

Proof. Recall from previous lemma that the mapping π∗ : ∏A∈V0
AAn → ∏A∈W0

AAn
de-

fined by the rule π∗ f = ⟨ f A : A ∈ W0⟩ is a continuous and surjective mapping. Moreover,
we also have that π∗ ↾ Ω̄V

n = p.

To check that it is continuous, take (due to Propositon 2.68) an open set U ⊆ Ω̄W
n of

the form Ω̄V
n ∩ (

⋂
A∈K π−1

A [XA]) for some finite K ⊆ W0 and XA ⊆ AAn
for each A ∈ W0.

Then,

p−1[U] = { f ∈ Ω̄V
n : (p( f ))A ∈ XA f or all A ∈ K}

=
⋂

A∈K
{ f ∈ Ω̄V

n : (p( f ))A ∈ XA}

If UA := { f ∈ Ω̄V
n : (p( f ))A ∈ XA}, we claim that for each A ∈ K it holds UA =

Ω̄V
n ∩ (π∗)−1[(πW0

A )−1[XA]]:

Ω̄V
n ∩ (π∗)−1[(πW0

A )−1[XA]] = { f ∈ Ω̄V
n : π∗( f ) ∈ (πW0

A )−1[XA]}
= { f ∈ Ω̄V

n : p( f ) ∈ (πW0
A )−1[XA]}

= { f ∈ Ω̄V
n : (p( f ))A ∈ XA}

= UA.

VIIConsidering the corresponding product topology in each space.
VIII f ′ is just an example of a member in ∏A∈V0

AAn
such that π∗( f ′) = f , but observe that for each

A ∈ V0 \W0 we can define ( f ′)A as we wanted since we do not need to impose any property to f ′ beyond
that π∗( f ′) = f (in contrast with implicit operations).
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The second equality holds since π∗ ↾ Ω̄V
n = p, and the last one is just the definition of

UA. Then, by the continuity of π∗ and πW0
A we have that Ω̄V

n ∩ (π∗)−1[(πW0
A )−1[XA]] is

open and so it UA for each A ∈ K. Therefore, since K is finite and p−1[U] = ∩A∈KUA, we
conclude that p−1[U] is open and hence p is continuous.

To prove that p is a homomorphism. So, let σ ∈ τ be a m-ary function symbol and
f1, . . . , fm ∈ Ω̄V

n . We need to check the equality

p(σΩ̄V
n ( f1, . . . , fm)) = σΩ̄W

n (p( f1), . . . , p( fm)). (3.7)

From the definition of p, we have that

p(σΩ̄V
n ( f1, . . . , fm)) = ⟨(σΩ̄V

n ( f1, . . . , fm))
A : A ∈ W0⟩.

We want to prove for every A ∈ W0 the equality

(σΩ̄V
n ( f1, . . . , fm))

A = (σΩ̄W
n (p( f1), . . . , p( fm)))

A,

since in that case, we obtain the equality 3.7. To do that, fix an arbitrary B ∈ W0. Then,
from Definition 3.6 we have that for every a1, . . . , an ∈ B

(σΩ̄V
n ( f1 . . . fm))

B(a1, . . . , an) = σB( f B
1 (a1, . . . , an), . . . , f B

m(a1, . . . , an)).

Moreover, again due to Definition 3.6, we have that

(σΩ̄W
n (p( f1) . . . p( fm)))

B(a1, . . . , an) = σB((p( f1))
B(a1, . . . , an), . . . , (p( fm))

B)(a1, . . . , an))

= σB( f B
1 (a1, . . . , an), . . . , f B

m(a1, . . . , an)).

Notice that the last equality from above holds since f A
j = (p( f j))

B (recall that B ∈ W0).
Thus, for every A ∈ K

(σΩ̄V
n ( f1, . . . , fm))

A = (σΩ̄W
n (p( f1), . . . , p( fm)))

A,

and therefore
p(σΩ̄V

n ( f1, . . . , fm)) = ⟨(σΩ̄V
n ( f1, . . . , fm))

A : A ∈ W0⟩,

showing that p is a homomorphism.

⊠

Proposition 3.26. Ωn
V is a dense subset of Ω̄V

n .
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3.2. The space of implicit operations

Proof. To prove that Ωn
V is a dense subset, it suffices to check that for every non-empty

open set U ⊆ Ω̄V
n it holds that U ∩ Ωn

V ̸= ∅. So, fix an arbitrary nonempty open U ⊆ Ω̄V
n

and recall that it is of the form Ω̄V
n
⋂
(
⋃

i∈I(∩A∈Ki π
−1
A [XA])) for some set I, a finite class

Ki ⊆ V0 for each i ∈ I and XAi ⊆ AAn
i

i for each A ∈ Ki. Observe that

Ωn
V ∩ U = { f ∈ Ωn

V : f ∈ U}
= { f ∈ Ωn

V : ∃i ∈ I s.t. f ∈ ∩A∈Ki π
−1
A [XA]}

= ∪i∈I{ f ∈ Ωn
V : f ∈ ∩A∈Ki π

−1
A [XA]}

= ∪i∈I{ f ∈ Ωn
V : f ∈ π−1

A [XA] f or all A ∈ Ki}
= ∪i∈I(∩A∈Ki{ f ∈ Ωn

V : f ∈ π−1
A [XA]})

= ∪i∈I(∩A∈Ki{ f ∈ Ωn
V : πA( f ) ∈ XA}).

Now, assume towards a contradiction that Ωn
V ∩ U = ∅. Therefore, for every i ∈ I

there is some Ai ∈ Ki such that πAi [Ωn
V ] ⊆ AAn

i
i \ XAi (since otherwise Ωn

V ∩ U ̸= ∅).
Let K be the class compounded by all such algebras, that is, K := {Ai : i ∈ I}. Hence, for
every i ∈ I we have XAi ∩ πAi [Ωn

V ] = ∅.

The last step is to prove that indeed for every i ∈ I we have that πAi [Ωn
V ] = πAi [Ω̄

V
n ].

With this we would get a contradiction since XAi ∩ πAi [Ω̄
V
n ] ̸= ∅ for every i ∈ I (observe

that for every i ∈ I we have πAi [U] ⊆ XAi ∩ πAi [Ω̄
V
n ] and πAi [U] is nonempty because U

is nonemtpy).

Fix an arbitrary i ∈ I. To prove that πAi [Ωn
V ] = πAi [Ω̄

V
n ], notice that the inclusion

⊆ is trivial because Ωn
V ⊆ Ω̄V

n , so we need to focus on the other one. Pick an arbitrary
a ∈ πAi [Ω̄

V
n ] for which, from the surjectivity of πAi , there is some f ∈ Ω̄V

n such that
πAi( f ) = a. Let W = pV(Ai) be the pseudovariety generated by Ai. Observe that
p( f ) ∈ Ω̄W

n and that in fact a = πAi(p( f )) because Ai ∈ W . Recall that, due to Lemma
3.20, since W is finitely generated we know that Ω̄W

n = Ωn
W , so there must be some

g ∈ Ωn
W such that g = p( f ). Moreover, since g is an explicit operation, there is some

t ∈ T(x1, . . . , xn) such that

g = ⟨tA(x̂A
1 , . . . , x̂A

n ) : A ∈ W0⟩.

We consider then the mapping

g′ = ⟨tA(x̂A
1 , . . . , x̂A

n ) : A ∈ V0⟩,

which is, by obvious reasons, an element in Ωn
V . It is immediate then that p(g′) = g, thus

(since Ai ∈ W0)
πAi(g′) = πAi(g) = πAi(p( f )) = a
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and we obtain that a ∈ πAi [Ωn
V ]. In conclusion, for every i ∈ I it holds the equality

πAi [Ωn
V ] = πAi [Ω̄

V
n ] and therefore we finish the proof.

⊠

Corollary 3.27. The equality cl(Ωn
V ) = Ω̄V

n holds.

Proof. Just apply Lemma 2.52. ⊠

Proposition 3.28. Let W be a subpseudovariety of V . The continuous homomorphism p : Ω̄V
n →

Ω̄V
n

IX is surjective.

Proof. First of all, notice that for every f ∈ Ωn
W it is of the form ⟨tA(x̂A

i , . . . , x̂A
i ) : A ∈ W0⟩.

Then, the tuple f ′ := ⟨tA(x̂A
i , . . . , x̂A

i ) : A ∈ V0⟩ is a member in Ωn
V and p( f ′) = f . This

means that Ωn
W ⊆ p[Ωn

V ] ⊆ p[Ω̄V
n ].

To check that p is surjective it suffices to check that p[Ω̄V
n ] = Ω̄W

n . The inclusion
p[Ω̄V

n ] ⊆ Ω̄W
n is clear. For the other inclusion, suppose, towards a contradiction, that

Ω̄W
n \ p[Ω̄V

n ] ̸= ∅. Since p is continuous, Ω̄V
n compact and Ω̄W

n Hausdorff, we deduce that
p is closed (see Proposition 2.72). Therefore, since Ω̄V

n is closed, we have that p[Ω̄V
n ] is a

closed subset. We obtain then (by the previous paragraph) that Ω̄W
n \ p[Ω̄V

n ] is an open set
such that (Ω̄W

n \ p[Ω̄V
n ]) ∩ Ωn

W = ∅, which is a contradiction since Ωn
W is dense in Ω̄W

n .
Thus, we conclude that p[Ω̄V

n ] = Ω̄W
n . ⊠

In the following, we will define a metric on Ω̄V
n . In fact, the distance we will define

below defines a stronger notion than a metric, namely, an ultrametric. After, we will define
another topology in via this ultrametric, which turns out to be the same as the considered
before as we will see later. Due to this fact, no change will be made in a topological sense
thanks to this new approach, however, it will be helpful when proving some auxiliary
results in the next chapter.

We begin defining the function r : Ω̄V
n × Ω̄V

n → N ∪ {∞} by the rule

r( f , g) = min
A∈V0

{|A| : f A ̸= gA}. (3.8)

When V ⊩ f ≈ g, that is, when there is no algebra A ∈ V0 such that f A ̸= gA, we define
r( f , g) = ∞. It is easy to see that r is well-defined. Finally, This function allows us to define
the ultrametric d we are looking for, which is defined as

d( f , g) = 2−r( f ,g) (3.9)

IXThe one defined in Lemma 3.25.
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3.2. The space of implicit operations

and where for every f , g ∈ Ω̄V
n we have r( f , g) = ∞ if and only if d( f , g) = 0. We define

the topology generated by the basis

B := {B f (ε) : f ∈ Ω̄V
n , ε ∈ R and ε > 0} (3.10)

where
B f (ε) := {g ∈ Ω̄V

n : d( f , g) < ε}.X

These kind of topologies coming from a metric are called metrizable topologies (see [18] for
example), and, in this cases, both notions of continuity (in the topological and the metric
context) coincide ([18] Theorem 21.1).

Proposition 3.29. The map d satisfies the following properties:

i) For every f ∈ Ω̄V
n we have d( f , f ) = 0.

ii) For every f , g ∈ Ω̄V
n if f ̸= g then d( f , g) > 0.

iii) For every f , g ∈ Ω̄V
n d( f , g) = d(g, f ).

iv) For every f , g, w ∈ Ω̄V
n d( f , g) ⩽ max{d( f , w), d(w, g)}.

v) For every m-ary σ ∈ τ and every f1, . . . , fm, g1, . . . , gm ∈ Ω̄V
n

d(σΩ̄V
n ( f1 . . . fm), σΩ̄V

n (g1 . . . gm)) ⩽ max
i⩽m

{d( fi, gi)}.

Therefore it is an ultrametric on Ω̄V
n .

Proof. i) Trivial from the definition of d. Just notice that r( f , f ) = 0.

ii) If f ̸= g then there is some nontrivial A ∈ V0 such that f A ̸= gA. Hence, r( f , g) < ∞
and therefore d( f , g) > 0.

iii) Trivial since clearly r( f , g) = r(g, f ).

iv) Supose that it is not the case and that d( f , g) > d( f , w), d(w, g). This means that

2−r( f ,g) > 2−r( f ,w), 2−r(w,g)

and it follows that r( f , g) < r( f , w), r(w, g). Take A ∈ V0 such that
|A| = r( f , g) and f A ̸= gA. Since |A| < r( f , w), r(w, g) we have that
A ⊩ f ≈ w and A ⊩ w ≈ g. Mixing both results we obtain that A f ≈ g, which is a
contradiction.

XSee Remark 2.84.
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v) The proof of this point is quite similar to the previous one. Assume that

d(σΩ̄V
n ( f1 . . . fm), σΩ̄V

n (g1 . . . gm)) > d( f1, g1), . . . , d( fm, gm).

Then, we have that

r(σΩ̄V
n ( f1 . . . fm), σΩ̄V

n (g1 . . . gm)) < r( f1, g1), . . . , r( fm, gm).

Let A ∈ V0 such that |A| = r(σΩ̄V
n ( f1 . . . fm), σΩ̄V

n (g1 . . . gm)) and
A ⊮ σΩ̄V

n ( f1 . . . fm) ≈ σΩ̄V
n (g1 . . . gm). Now, since for every i ⩽ m we have |A| <

r( fi, gi), it implies that A ⊩ fi ≈ gi for each i ⩽ m. As above, from these we obtain
that A ⊩ σΩ̄V

n f1 . . . fm ≈ σΩ̄V
n (g1 . . . gm) which is a contradiction.

⊠

It is convenient to proof that both topologies on Ω̄V
n , the topology TS described in the

first place and the topology Td induced by the ultrametric d XI, coincide. As we have
mentioned before, this is in fact the case, and we will prove it in the next theorem. Roughly
speaking, this means that both spaces have the same general properties, and therefore
there is no difference in considering one topology or the other in what follows. Indeed, the
approach from the topology Td simplify significantly some of the proofs in the next section.

Definition 3.30. Let f ∈ Ω̄V
n and ε > 0. We define

mε := min{m ∈ ω : 2−m ⩽ ε}. (3.11)

Lemma 3.31. Let f , g ∈ Ω̄V
n and some ε > 0, and consider K := {A ∈ V0 : |A| < mε}. Then,

g ∈ B f (ε) if and only if g ∈ ∩A∈Kπ−1
A [{ f A}].

Proof. Suppose that we have g ∈ B f (ε), and assume towards a contradiction that g /∈
∩A∈Kπ−1

A [{ f A}], i.e., there is some algebra A ∈ K such that f A ̸= gA. Then, by the
definition of the function r (see 3.8), we have r( f , g) ⩽ |A| and therefore

2−|A| ⩽ 2−r( f ,g) < ε. (3.12)

Recall that, by hypothesis, |A| < mε , so we also have

ε < 2|A|. (3.13)

Putting 3.12 and 3.13 together, we obtain

2−|A| ⩽ 2−r( f ,g) < ε < 2|A|,

which is clearly a contradiction. Therefore, g ∈ ∩A∈Kπ−1
A [{ f A}].

Pick now some g ∈ ∩A∈Kπ−1
A [{ f A}], then for every A ∈ K we have f A = gA. This means,

due to 3.8, that mε ⩽ r( f , g); hence, 2−r( f ,g) ⩽ 2−mε < ε. In conclusion, d( f , g) < ε and
g ∈ B f (ε). ⊠

XIThe topology with basis 3.10.
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Theorem 3.32. The topologies TS and Td on Ω̄V
n coincide, i.e., TS = Td.

Proof. ⊆: Pick some U ⊆ Ω̄V
n open in TS. We need to check that U is also open in

(Ω̄V
n , Td). As usual, U has the form Ω̄V

n ∩ (
⋃

i∈I(∩A∈Ki π
−1
Ai

[Xi])) where I is a set of

indexes, Ki ⊆ V0 a finite class for each i ∈ I and XAi ⊆ AAn
i

i for each A ∈ Ki. For
each i ∈ I let mi = max{|Ai| : i ∈ I} and define m := sup{mi : i ∈ I}. We claim that

U = ∪ f∈UVf

where Vf = {g ∈ Ω̄V
n : d( f , g) < 2−m}. Notice that U ⊆ ∪ f∈UVf since for every

f ∈ U we have f ∈ Vf . For the other inclusion, pick an arbitrary g ∈ ∪ f∈UVf . Then,
there is some f ∈ U such that g ∈ Vf and therefore d( f , g) < 2−m. This means that,
necessarily, for every i ∈ I and every A ∈ Ki we have f A = gA XII. Thus, since f ∈ U
we know that f A ∈ XA for some i ∈ I and every A ∈ Ki. Therefore, since f A = gA

for every A ∈ Ki we obtain gA ∈ XA for each A ∈ Ki, i.e., g ∈ ∩A∈Ki π
−1
A [XA], so we

conclude that g ∈ U. Then, each Vf is open in (Ω̄V
n , d) and thus so is U.

⊇: Following the same strategy as in the previous inclusion, let U ⊆ Ω̄V
n be an open

set in the topology induced by the metric d. Then, we know that U has the form
∪i∈I B fi(ε i) for some set I and for some fi ∈ Ω̄V

n and some ε i > 0 for each i ∈ I. We
define the class Ki := {A ∈ V0 : |A| < mi} for every i ∈ I. Notice that the cardinality
of each Ki is finite since the language of V is finite. Then, we claim that

U = Ω̄V
n ∩ (

⋃
i∈I

(∩A∈Ki π
−1
A [{ f A

i }])).

Pick some g ∈ U. Then, there is some i ∈ I such that g ∈ B fi(ε i). By Lemma 3.31 we
know that g ∈ ∩A∈Ki π

−1
A [{ f A

i }], hence g ∈ Ω̄V
n ∩ (

⋃
i∈I(∩A∈Ki π

−1
A [{ f A

i }]))XIII. For
the other inclusion, pick g ∈ Ω̄V

n ∩ (
⋃

i∈I(∩A∈Ki π
−1
A [{ f A

i }])), so that there is some
i ∈ I such that g ∈ ∩A∈Ki π

−1
A [{ f A

i }]. Again, by Lemma 3.31 we have g ∈ B fi(ε i).
Thus, g ∈ U and we are done.

⊠

XIIOtherwise, there must be some i ∈ I and some A ∈ Ki such that f A ̸= gA and therefore d( f , g) ⩾ 2−|A|,
which contradicts the fact that g ∈ Vf .

XIIIFrom g ∈ b ∈ U we already have g ∈ Ω̄V
n .
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REITERMAN’S THEOREM
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Once we have developed all the necessary framework, we can finally undertake our
main objective: Reiterman’s Theorem for pseudovarieties. Nevertheless, and although
we have the sufficient ingredients to state it, some previous work is still needed for the
proof of the main Theorem. Therefore, in the following we will set the lemmas (and some
Propositions). Recall that on each algebra A ∈ V0 we are considering the discrete topology;
so, from now on, everytime some algebra A ∈ V0 appears it would be assumed to be
endowed with the discrete topology. In addition, n ∈ ω and V are still fixed.

Lemma 4.1. Let A be a finite algebra of the same type of V and h : Ω̄V
n → A a continuous

homomorphism. Consider a subpseudovariety W of V and assume that for every f , g ∈ Ω̄V
n

whenever we have the equality p( f ) = p(g)I it holds that h( f ) = h(g). Then, the mapping
h̄ : Ω̄W

n → A defined by the rule h̄(p( f )) = h( f ) is a well-defined continuous homomorphism.

Proof. First of all, to see that it is well-defined, let f , g ∈ Ω̄W
n such that f = g. Then, by

the surjectivity of p (see Lemma 3.28) there are some f ′, g′ ∈ Ω̄V
n such that p( f ‘) = f and

p(g′) = g. Since, f = g (that is, p( f ′) = p(g′)), we have by assumption that h( f ′) = h(g′).
But h̄(p( f ′)) = h( f ‘) and h̄(p(g′)) = h(g′), so we conclude that h̄( f ) = h̄(g). It remains to
check that h̄ is a homomorphism and continuous.

We begin seeing that it is a homomorphism. So, let σ ∈ τ be a k-ary function symbol
and pick some f1, . . . , fk ∈ Ω̄V

n . We need to check the following equality:

h̄(σΩ̄W
n (p( f1), . . . , p( fk))) = σA(h̄(p( f1)), . . . , h̄(p( fk))).

So,

h̄(σΩ̄W
n (p( f1), . . . , p( fk))) = h̄(p(σΩ̄V

n ( f1, . . . , fk)))

= h(σΩ̄V
n ( f1, . . . , fk))

= σA(h( f1), . . . , h( fk))

= σA(h(p( f1)), . . . , h(p( fk)))

where the first and the third equalities hold since p and h are homomorphisms. In the other
ones we just apply the definition of h.

It remains then to see that h is continuous, so consider an open set U ⊆ A. We want to
see that h−1[U] is open. The strategy we are going to follow is to first prove the equality

h−1[U] = (h−1[Uc])c (4.1)

and then see that h−1[Uc] is indeed a closed set to finish the proof. From now on, thanks to
the surjectivity of p, we will refer to elements in Ω̄W

n as p( f ) for some f ∈ Ω̄V
n .

IThis function p is the same as in Lemma 3.25.
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The equality 4.1 is easy to see (actually, it is a general fact):

p( f ) ∈ h−1[U] ⇔ h(p( f )) ∈ U ⇔ h(p( f )) /∈ Uc

⇔ p( f ) /∈ h−1[Uc]

⇔ p( f ) ∈ (h−1[Uc])c

To see that h−1[Uc] is closed, we claim that h−1[Uc] = p[h−1[Uc]]. Observe that since
p is a continuous function between compact Hausdorff spaces it is also a closed function
(see Lemma 2.72). Therefore, since Uc is closed and h continuous, we have that h−1[Uc] is
closed and hence p[h−1[Uc]] is closed. So, we prove the needed equality:

h−1[Uc] = {p( f ) : f ∈ Ω̄V
n , p( f ) ∈ h−1[Uc]}

= {p( f ) : f ∈ Ω̄V
n , h(p( f )) ∈ Uc}

= {p( f ) : f ∈ Ω̄V
n , h( f ) ∈ Uc}

= {p( f ) : f ∈ Ω̄V
n , f ∈ h−1[Uc]}

= p[h−1[Uc]]

⊠

Proposition 4.2. Let A ∈ V and h : {x̂1, ..., x̂n} → A a mapping. Then, there is a unique
continuous homomorphism h̄ : Ω̄V

n → A extending h.

Proof. First, we will show that it is unique. So, consider two extensions h̄1 and h̄2 that are
continuous homomorphisms. Since, by assumption, for j = 1, 2 and every i ⩽ n we have
h̄j(x̂i) = h(x̂i), then certainly h̄1 ↾ Ωn

V = h̄2 ↾ Ωn
V II. Therefore, since Ωn

V is dense in Ω̄V
n

we conclude by Proposition 2.76 that h̄1 = h̄2.

We turn to prove the existence of such an extension, so let W = pV(A) and notice that
Ω̄W

n = Ωn
W (see Lemma 3.20). Let hp : {p(x̂1), . . . , p(x̂n)} → A be the mapping defined

as hp(p(x̂i)) := h(x̂i) for every i ⩽ n. Observe also that, since A ∈ W , we have due to
Corollary 3.16 that there is a unique homomorphism h′ : Ω̄W

n → A extending hp (i.e.,
h′(p(x̂i)) = hp(x̂i) for every i ⩽ n). We define the mapping h̄ = h′ ◦ p and we claim that
h̄ satisfies the desired conditions. It is clear that it is a homomorphismIII, so it remains
to check that it is continuous. To see that h̄ is continuous it suffices to check that h′ is
continuous; so, let U ⊆ A be an arbitrary subset, which is open since we have the discrete
topology in A. We define X := {{h(x̂1)} × · · · × {h(x̂n)} × U}, which is a open subset of

IIRecall that Ωn
V is the subalgebra of Ω̄V

n generated by the projection mappings x̂1, . . . , x̂n. Then, since
every member f ∈ Ωn

V is of the form pΩ̄V
n (x̂1, . . . , x̂n),

IIIThe composition of homomorphism is a homomorphism. See Lemma 2.11.
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AAn IV. Then,

(h′)−1[U] = { f ∈ Ω̄W
n : h′( f ) ∈ U}

We claim that
(h′)−1[U] = Ω̄W

n ∩ π−1
A [X]. (4.2)

To prove the inclusion ⊆ pick some f ∈ (h′)−1[U]. Then, it suffices to check that f A(h(x̂1), . . . , h(x̂n)) ∈
U. Since f ∈ Ωn

W , there is some t ∈ T(x1, . . . , xn) such that f = tΩ̄W
n (p(x̂1), . . . , p(x̂n)).

So, since h′ is a homomorphism we have

h′( f ) = h(tΩ̄W
n (p(x̂1), . . . , p(x̂n)))

= tA(h′(p(x̂1)), . . . , p(x̂n))

= tA(h(x̂1), . . . , h(x̂n)).

Finally, notice that

Ω̄W
n ∩ π−1

A [X] = Ω̄W
n ∩ πA(tΩ̄W

n (p(x̂1), . . . , p(x̂n)))

= (tΩ̄W
n (p(x̂1), . . . , p(x̂n)))

A,

so

(tΩ̄W
n (p(x̂1), . . . , p(x̂n)))

A(h(x̂1) . . . , h(x̂n)) = tA(h(x̂1), . . . , h(x̂n)) = h′( f ) ∈ U,

which means that πA( f ) ∈ X and therefore f ∈ Ω̄W
n ∩ π−1

A [X].

For the other inclusion, let f ∈ Ω̄W
n ∩ π−1

A [X]. From we have mentioned above we have

(tΩ̄W
n (p(x̂1), . . . , p(x̂n)))

A ∈ X,

so, by the definition of X, we get that (tΩ̄W
n (p(x̂1), . . . , p(x̂n)))A(h(x̂1) . . . , h(x̂n)) ∈ U and

therefore f ∈ (h′)−1[U]. Thus, we conclude that (h′)−1[U] ⊇ Ω̄W
n ∩ π−1

A [X].
As Ω̄W

n ∩ π−1
A [X] is an open set in Ω̄W

n , the set (h′)−1[U] is also open and therefore h′ is
a continuous homomorphism. ⊠

Lemma 4.3. Let h : Ω̄V
n → A be a surjective continuous homomorphism for some algebra A ∈ V0.

Then, for every f ∈ Ω̄V
n it holds that

h( f ) = f A(h(x̂1), . . . , h(x̂n)).

IVRecall that, we are considering on AAn
the discrete topology and that AAn ⊆ P(An+1) (see [11]).
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Proof. Let W := pV(A) and define the mapping h1 : {p(x̂1), . . . , p(x̂n)} → A as h1(p(x̂i)) =
h(x̂i) for every i ⩽ nV. Then, by Proposition 4.2 we have a continuous homomorphism
h′1 : Ω̄W

n → A extending h1. Moreover, since by Lemma 3.20 we have that Ω̄W
n = Ωn

W ,
for every f ∈ Ω̄V

n there is some t ∈ T(x1, . . . , xn) such that p( f ) = tΩ̄W
n (p(x̂1), . . . , p(x̂n)).

Hence, for every f ∈ Ω̄V
n we have

(h′1 ◦ p)( f ) = h′1(p( f ))

= h′1(t
Ω̄W

n (p(x̂1), . . . , p(x̂n)))

= tA(h′1(p(x̂1)), . . . , h′1(p(x̂n)))

= tA(h(x̂1)), . . . , h(x̂n))

= f A(h(x̂1)), . . . , h(x̂n)),

where the third equality holds since h′1 is a homomorphism and the fourth one is by the
definition of h′1. The last equality is justified since f A = (p( f ))A because A ∈ W0. Finally,
we want to show that h′1 ◦ p = h. To do that, pick an arbitrary f ∈ Ωn

V . Then, we
have f = tΩ̄V

n (x̂1, . . . , x̂n) for some t ∈ T(x1, . . . , xn), and therefore (since p, h′1 and h are
homomorphisms)

(h′1 ◦ p)( f ) = (h′1 ◦ p)(tΩ̄V
n (x̂1, . . . , x̂n))

= h′1(p(tΩ̄V
n (x̂1, . . . , x̂n)))

= h′1(t
Ω̄W

n (p(x̂1), . . . , p(x̂n))))

= tA(h′1(p(x̂1)), . . . , h′1(p(x̂n))))

= tA(h(x̂1), . . . , h(x̂n))

= h(tΩ̄V
n )(x̂1, . . . , x̂n)

= h( f ).

We have showed that (h′1 ◦ p) ↾ Ωn
V = h ↾ Ωn

V , so by Proposition 2.76 we obtain that
h′1 ◦ p = hVI. We conclude then that for every f ∈ Ω̄V

n

h( f ) = (h′1 ◦ p)( f )

= f A(h(x̂1)), . . . , h(x̂n)).

⊠

Proposition 4.4. Let A be a finite algebra. Then, A ∈ V if and only if there is some n ∈ ω and a
continuous surjective homomorphism h : Ω̄V

n → A.
VRecall that p is the function from Lemma 3.25.

VIRecall that the composition of continuous functions is continuous, see Lemma 2.69.
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Proof. For the left to right implication, assume that A ∈ V . Taking n = |A| we can define
a mapping h : {x̂1, . . . , x̂n} → A so that it becomes surjective. Then, by Proposition 4.2 it
extends uniquely to the continuous homormophism h̄ : Ω̄W

n → A that we need.

For the other implication, suppose that we have some surjective and continuous homo-
morphism h : Ω̄V

n → A. Since (Ω̄V
n , d) is a compact metric space, we have by Proposition

2.86 that h is also uniform. Hence, there is some m > 0 (notice in fact that m = |A|) such
that for every f , g ∈ Ω̄V

n
d( f , g) < 2−m ⇒ h( f ) = h(g) (4.3)

Consider the class K := {B ∈ V0 : |B| ⩽ m} and recall that |K| < ω. Define
W := pV(K). Since it is finitely generated, we know by Corollary 3.19 that Ω̄W

n ∈ W ⊆ V .
Hence, if we prove that h there is a mapping h̄ : Ω̄W

n → A such that h̄(p( f )) = h( f ) for
every f ∈ Ω̄V

n , we will then have that A ∈ V as desired (because A ∈ H({Ω̄W
n }) ⊆ WVII).

Observe that, by definition of W , the equality p( f ) = p(g) implies that d( f , g) < 2−m

VIII. So, by condition 4.3 we obtain that p( f ) = p(g) ⇒ h( f ) = h(g). Applying Lemma 4.1
we obtain automatically the continuous homomorphism h̄ : Ω̄W

n → A that we want. In
addition, in this case, the surjectivity of h implies the surjectivity of h̄ too.

⊠

Given a subclass K of V and a set Σ ⊆ ∪n∈ω(Ω̄V
n )

2 of pseudoidentities we write K ⊩ Σ
whenever K ⊩ f ≈ g for every f ≈ g ∈ Σ. Moreover, we define the subclass defined by
some Σ as

[Σ]V := {A ∈ V : A ⊩ Σ}.

We can now tackle the main Theorem, that states as follows:

Theorem 4.5 (Reiterman). Let W a subclass of a pseudovariety V . W is a pseudovariety if and
only if W is defined by some set of pseudoidentities on Ω̄V

n .

Proof. We begin with the implication from left to right. So, suppose that W is a pseudova-
riety. Define the set of pseudoidentities

Σ := { f ≈ g ∈ ∪n∈ω(Ω̄
V
n )

2 : W ⊩ f ≈ g}.

We claim that W = [Σ]V . The inclusion ⊆ follows from the definition of Σ.
To prove the inclusion ⊇, consider some algebra A in [Σ]V . In view of Proposition 4.4, in
order to prove that A ∈ W it suffices to find some continuous surjective homomorphism

VIIW is a pseudovariety.
VIIISuppose that d( f , g) ⩾ 2−m. Then, r( f , g) ⩽ m and therefore there is some algebra A ∈ V0 with |A| ⩽ m

such that f A ̸= gA. Since |A| ⩽ m we have A ∈ K and therefore A ∈ W . This implies that p( f ) ̸= p(g), which
contradicts the assumption p( f ) = p(g).
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h̄ : Ω̄W
n → A for some n ∈ ω. Notice that, also by Proposition 4.4, since A ∈ V , there is

some n < ω and some continuous surjective homomorphism h : Ω̄V
n → A.

We want to apply here Lemma 4.1, so we need to show that for every f , g ∈ Ω̄V
n

if p( f ) = p(g) then h( f ) = h(g). So, let f , g ∈ Ω̄V
n such that p( f ) = p(g). Observe

that p( f ) = p(g) implies that f ≈ g ∈ Σ. Recall that by Lemma 4.3 we know that
h( f ) = f A(h(x̂1), . . . , h(x̂n)) and the same for g; hence, since A ⊩ f ≈ g

h( f ) = f A(h(x̂1), . . . , h(x̂n)) = gA(h(x̂1), . . . , h(x̂n)) = h(g) .

Therefore, due to Lemma 4.1 we obtain a continuous homomorhpism h̄, which is surjec-
tive because both p and h are surjectiveIX. Finally, since there is a surjective continuous
homomorphism h̄ : Ω̄W

n → A we conclude that A ∈ W .

For the other implication, if W is defined by some set of pseudoidentities Σ, that is,
W = [Σ]V , what we need to check that W is closed under the operators H, S and P f in.

S: Pick some A ∈ W and let B be a subalgebra of A. We need to check that B ⊩ Σ, so
pick some ( f , g) ∈ Σ in order to see that f B = gB. Notice first that we already have
that f A = gA. Moreover, observe that f B = f A ↾ B and the same for g, hence we
automatically get that f B = gB.

H: Pick A ∈ W and consider B = h[A] for some homomorphism h. By the definition
of implicit operations, we have the equalities h ◦ f A = f B ◦ hn and h ◦ gA = gB ◦ hn.
Now, since by assumption we have f A = gA we also have the equality h ◦ f A = h ◦ gA.
Therefore,

f B ◦ hn = h ◦ f A = h ◦ gA = gB ◦ hn

and hence f B = gB. This means that B ⊩ f ≈ g and that B ∈ W .

P f in: Consider A1, ..., Am ∈ W and let B = A1 × ... × Am. Pick some arbitrary ( f , g) ∈ Σ.
From now on, fix an arbitrary i ⩽ m and consider the i-th projection pi. Of course, pi
is a homomorphism and therefore we get due to the same reason as in the case for
homomorphic images that pi ◦ f B = f Ai ◦ pn

i and pi ◦ gB = gAi ◦ pn
i . Notice that in

fact those equalities are valid for every i ⩽ m. Now, by assumption, we know that
f Ai = gAi for every i ⩽ m; hence, we also have that f Ai ◦ pn

i = ρAi ◦ pn
i . Then, for

every i ⩽ m we have (similarly as before)

pi ◦ f B = f Ai ◦ pn
i = gAi ◦ pn

i = pi ◦ gB.

That is, pi ◦ f B = pi ◦ gB for every i ⩽ m, thus we conclude that f B = gB and
B ⊩ f ≈ g, meaning that B ∈ W as desired.

⊠

IXFor the surjectivity of p see Proposition 3.28.
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SOME EXAMPLES OF

PSEUDOVARIETIES
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5. SOME EXAMPLES OF PSEUDOVARIETIES

5.1 Equational pseudovarieties

An easy way of getting examples of pseudvarieties is to consider what we called equational
pseudovarieties. This classes are constituted by the finite algebras of some variety. That
is, if we have some variety V , we denote by V F the class of all its finite members. It does
not require a great effort to notice that V F is closed under finite products, subalgebras and
homomorphic images due to the fact that V is a variety. Therefore, it is clear that V F is
a pseudovariety. We say then that a pseudovariety W is an equational pseudovariety if
W = V F for some variety V .

Consider the language {·} of semigroups. The pseudovariety of finite semigroups
is the first example one can contemplate. In fact, observe that it is an equational pseu-
dovariety since it is equal to V F for the variety V of semigroups defined by the identity
Σ := {(x · y) · z ≈ x · (y · z)}. We only need to interpret the terms (x · y) · z and x · (y · z)
as explicit operations on S and see Σ as a set of pseudoidentities.

Sometimes, if we add symbols to our language, psuedovarities that are not equational
with respect the original language, when considering the expanded language they become
equational. For instance, if we consider the language {·, 1} the pseudovariety of finite
monoids V is equational since it is equal to W F where W is the variety of monoids defined
by the equations {(x · y) · z ≈ x · (y · z), x · 1 ≈ x, 1 · x ≈ x}. Otherwise, it is not equational
since the unit is not term-definable. Nevertheless, there are examples where expanding the
language does not help as the class of nilpotent semigroups (see [1]).

5.2 Pseudovarieties that are not equational

Let S be the class of all finite semigroups. The class of finite groups is another example of
pseudovariety that can not be defined by a set of identities. Recall that by Proposition 2.39
in every finite semigroup S for every element there is some power of it (denoted by sω

S )
that is idempotent. Then, for every finite semigroup S we can define the mapping

xω
S : S → S

s 7→ sω
S

It turns out that the sequence xω := ⟨xω
S : S ∈ S⟩I is an implicit operation over S

since it commutes with homomorphisms as we will show now. We take the notation sω
S to

denote xω
S (s). Let S1, S2 ∈ S and a homomorphism h : S1 → S2. To see that xω commutes

with h, we want to check that for every s ∈ S1 it holds h(sω
S1
) = (h(s))ω

S2
. Recall that we

have some nS1 > 0 such that for every s ∈ S1 we have sω
S1

= snS1 and (see Proposition

IThat is, following the notation used along the text, for every finite semigroup S ∈ S we have (xω)S = xω
S .
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5.2. Pseudovarieties that are not equational

2.39). So, in particular, there is some nS1 > 0 such that sω
S1

= snS1 . Observe that, since h is a
homomorphism and since sω

S1
· sω

S1
= sω

S1
:

h(sω
S1
) = h(sω

S1
· sω

S1
)

h(snS1 ) = h(snS1 · snS1 )

h(s)nS1 = h(s)nS1 · h(s)nS1 ,

so the element h(s)nS1 ∈ S2 is idempotent. Therefore, by Remark 2.40, there is some k ∈ ω
such that nS1 · k = nS2 . Hence,

h(s)nS2 = h(s)nS1 ·k = (h(s)nS1 )k = h(s)nS1 .

We obtain then h(sω
S1
) = (h(s))ω

S2
as desired.

Proposition 5.1. The class G of finite groups forms a pseudovariety.

Proof. We only need to check that G is closed under subalgebras, homomorphic images and
finite products. Clearly, every homomorphic image of a group is again a group. The finite
product of finite groups is also a finite group since we only need to define the operation
in the product pointwise. Finally, by Proposition 2.36 we know that a subsemigroup of a
finite group is a subgroup, so G is closed under subalgebras too. ⊠

Proposition 5.2. The class G of finite groups is not equational.

Proof. Let G be the class of finite groups and consider the variety V := V(G). We will
prove that in V there is some algebra that is not a group; therefore, V can not be the variety
of all groups.

Consider the 1-generated free semigroup F1V and notice that F1V ∼= (Z+,+)II. Pick
an arbitrary n ∈ ω. We can define a sujective homomorphism hn : Z+ → Zn (where Zn
is the cyclic group of n elements) by the rule hn(x) = x(mod n). The mapping is clearly
surjective, and the fact that it is a homomorphism is justified by the property

x1 ≡ x2( mod n), y1 ≡ y2( mod n) ⇒ x1 + y1 ≡ x2 + y2( mod n) .

With all of these homomorphism, we define the homomorphism h : (Z+,+) → ∏n∈ω Zn
by the rule

h(x) := ⟨hn(x) : n ∈ ω⟩ .

Moreover, it is easy to check that h is in fact injective. Pick some arbitrary x ̸= y in Z+.
Then, there is some n ∈ ω such that hn(x) ̸= hn(y) (namely n = max{x, y}), and therefore

IIAlthough we are considering the language of V to be {·}, we use of the additive notation in (+,+) in
order to avoid any possible misunderstanding. We could interpret · in N as the usual sum, but this could lead
to confusion.
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h(x) ̸= h(y). By the Homomorphism theorem we obtain that (Z+,+) is isomrphic to a
subalgebra of the product ∏n∈ω Zn. Since each Zn ∈ V and V is a variety (it is closed under
P), we also have that ∏n∈ω Zn ∈ V . In addition, since V is closed under H, we obtain that
(Z+,+) ∈ V . It is well-known that Z+ is not a group, so we have found an algebra in V
that is not a group and therefore V can not be the variety of all groups. ⊠

We have shown that the pseudovariety G of finite groups is not equational, but due to
Reiterman’s theorem we know that there must be some set of pseudoidentities defining it.
In the following, we will show that G = [Σ]S where

Σ := {(x · y) · z ≈ x · (y · z), xω · y ≈ y, y · xω ≈ y}.

Theorem 5.3. The pseudovaritey G of finite groups of type {·} is equal to the pseudovariety defined
by the set of pseudoidentities Σ := {(x · y) · z ≈ x · (y · z), xω · y ≈ y, y · xω ≈ y} over S .

Proof. Let G ∈ G be an arbitrary finite group. Since groups are associative, it is clear that
G ⊩ (x · y) · z ≈ x · (y · z). Moreover, there is a unit element 1 ∈ G, which is the unique
idempotent (see Proposition 2.38). Therefore, for every s ∈ G the element sω

G is necessarily
equal to 1. That is, the mapping xω

G : G → G sends each g ∈ G to 1. It is obvious then that
G ⊩ xω · y ≈ y and G ⊩ y · xω ≈ y. Thus, G ∈ [Σ]S and therefore G ⊆ [Σ]S . It remains
to check the other inclusion, so pick some A ∈ [Σ]S . Since A ⊩ Σ, it is clear that A is an
asociative semigroup. Moreover, the pseudoidentities xω · y ≈ y and y · xω ≈ y ensure the
existence of a unit element in A (that we will denote 1 from now on), which by Remark
2.33 is unique. To see that every member in A has a inverse element, fix some arbitrary
a ∈ A. Recall that aω

A = anA for some nA > 0. Then,

a · anA−1 = anA

= aω
A

= 1.

Therefore, the element anA · anA−1 is an inverse of a and we conclude that A is a group and
A ∈ G. Thus, [Σ]S ⊆ G and we end the proof. ⊠
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