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1. SUMMARY 

Recent technological advances and the utilization of high-

throughput DNA and RNA sequencing analyses have 

increased our understanding of cancer diseases, including 

non-small cell lung cancer. For instance, genomic 

characterization has allowed the identification of some gene 

alterations which can be targeted with specific drug 

compounds. However, detection of genomic alterations does 

not fully recapitulate the heterogeneity of the disease and it 

sometimes fail to predict the subset of patients that most 

benefit from chemo- or immunotherapy. In this context, 

transcriptional profiling has emerged as a promising tool for 

patient selection and treatment guidance. Comprehensive 

evaluation of the expression level of pathways and genes 

involved in tumor progression and immune response has 

demonstrated to predict clinical benefit potentially better than 

single agents such as PD-L1 or tumor mutational burden in the 

case of immunotherapy regimens.  

This study aimed to establish a robust classification of lung 

adenocarcinoma (LUAD) and lung squamous cell carcinoma 

(LUSC) tumors, respectively, based on the transcriptional 

profiling of 50 landmark molecular pathways. This work also 

aimed to characterize the subtypes at different levels and to 

identify potential specific vulnerabilities and drug candidates. 

Thus, in this thesis we present a new tumor classification 

framework based on the expression profiling of 50 signaling 
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pathways, which is more robust than the use of single gene 

expression levels, prone to multiple sources of variability. Also, 

this approach allows for the integration of different gene 

expression datasets, significantly increasing the sample size 

and the amount of molecular heterogeneity that can be 

considered. In fact, to our knowledge, no previous LUAD or 

LUSC classification has been derived from such a large 

sample size. Moreover, we have provided a way for drug 

prioritization, based on the molecular characteristics of each 

subtype and the integration of huge cancer cell lines 

pharmacogenomics projects. In the end, this work could lay the 

foundation for improving patient stratification beyond genomics 

and single biomarkers and pave the way for more personalized 

treatment avenues in non-small cell lung cancer.  
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RESUM 
 

Els avenços tecnològics recents i la utilització d'anàlisis de 

seqüenciació d'ADN i ARN d'alt rendiment han augmentat la 

nostra comprensió de les malalties del càncer, inclòs el càncer 

de pulmó de cèl·lula no petita. Per exemple, la caracterització 

genòmica ha permès identificar algunes alteracions 

genètiques que poden ser tractades amb fàrmacs específics. 

No obstant això, la detecció d'alteracions genòmiques no 

recapitula del tot l'heterogeneïtat de la malaltia i a vegades no 

aconsegueix predir el subconjunt de pacients que més es 

beneficiarien del tractament amb quimioteràpia o 

immunoteràpia. En aquest context, l’anàlisi dels perfils 

transcripcionals ha sorgit com una eina prometedora per a la 

selecció del pacient i l'orientació del tractament. Per exemple, 

l'avaluació del nivell d'expressió de vies i gens implicats en la 

progressió tumoral i la resposta immunitària ha demostrat 

predir el benefici clínic de millor manera que marcadors 

individuals com el PD-L1 o la càrrega mutacional del tumor en 

el cas de la resposta a immunoteràpia. 

Aquest estudi tenia com a objectiu establir una classificació 

robusta dels tumors d'adenocarcinoma pulmonar i carcinoma 

de cèl·lules escamoses pulmonars, respectivament. Aquest 

treball també tenia com a objectiu caracteritzar els subtipus a 

diferents nivells i identificar possibles vulnerabilitats 

específiques. 
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Així, en aquesta tesi presentem un nou marc de classificació 

tumoral basat en el perfil d'expressió de 50 vies de 

senyalització, que és més robust que l'ús de nivells d'expressió 

de gens individuals, propens a múltiples fonts de variabilitat. A 

més, aquest enfocament permet la integració de diferents 

conjunts de dades d'expressió gènica, augmentant 

significativament la mida de la mostra i la quantitat 

d'heterogeneïtat molecular que es pot considerar. De fet, 

segons el nostre coneixement, no s'ha obtingut cap 

classificació prèvia d’ adenocarcinoma pulmonar o carcinoma 

de cèl·lules escamoses pulmonars a partir d'una quantitat de 

mostra tan gran. D'altra banda, hem donat una aproximació 

per a la priorització de fàrmacs, basada en les característiques 

moleculars de cada subtipus i la integració de grans projectes 

de farmacogenòmica de línies cel·lulars de càncer. Al final, 

aquest treball podria establir les bases per millorar 

l'estratificació del pacient més enllà de la genòmica i els 

biomarcadors individuals i aplanar el camí per a opcions de 

tractament més personalitzades en càncer de pulmó de 

cèl·lula no petita. 
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2. INTRODUCTION 

2.1 Current clinical management of non-small cell 

lung cancer: the need to dive deeper 

 
Non-small cell lung cancer (NSCLC) is a complex and highly 

heterogeneous disease. However, this complexity does not 

only rely on the tumor’s histological and morphological 

characteristics. For instance, tumors with the same histology 

(e.g., lung adenocarcinoma (LUAD)) and pathological stage do 

not necessarily follow the same clinical course or exhibit 

equivalent responses upon the same therapeutic strategy (1). 

The breakthrough discovery of Epidermal Growth Factor 

Receptor (EGFR) mutations two decades ago led to a 

paradigm shift in the clinical management and launched the 

era of personalized medicine in advanced NSCLC. The 

correlation of clinical response to EGFR tyrosine kinase 

inhibitors and the identification of those actionable alterations 

led to the refinement of the existing treatment algorithm, 

previously based only on histopathological features (2,3). 

During the last decade, additional oncogenic drivers have been 

identified in NSCLC, such as ALK, ROS1, RET and 

Neurotrophic Receptor Tyrosine Kinase NTRK gene 

rearrangements or BRAF, KRAS, ERBB2 or MET mutations, 

that are associated with clinical benefit from specific targeted 

therapies (4). Current European guidelines recommend 

molecular testing in all patients with advanced lung 
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adenocarcinoma and in patients with squamous cell carcinoma 

who do not have significant tobacco exposure or were younger 

than 50 years old. In this context, the incorporation of massive 

parallel sequencing (NGS) has become the most cost efficient 

and appropriate approach to screen oncogenic actionable 

alterations  in NSCLC (5). A reduction of population-level 

mortality from NSCLC in the United States was observed from 

2013-2016 due to treatment advances and, particularly, to the 

incorporation of targeted therapies (6). 

Current studies show that about 50-60% of patients with 

advanced NSCLC harbor potentially actionable driver 

alterations (7). Despite oncogenic addiction driven by those 

genomic alterations, resistance to targeted therapies will 

eventually emerge. Furthermore,  clinical outcomes are 

variable in tumors driven by similar genomic aberrations (8).  

The treatment paradigm for patients with advanced NSCLC 

who did not harbor actionable alterations has also substantially 

changed with the incorporation of  immunotherapy as a novel 

treatment option  (9). However, responses to immunotherapy 

are heterogeneous, and the percentage of long-term survivors 

is still rather low in lung cancer (10). Despite its limitations, PD-

L1 expression is a well-established biomarker currently used 

in the clinic for predicting response to immunotherapy in 

NSCLC. Additional biomarkers, such as tumor mutational 

burden (TMB) or the presence of certain genomic alterations 

(i.e., STK11, KEAP1, PTEN, TP53), have been also correlated 
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with clinical benefit or resistance to immunotherapy. However, 

these biomarkers, on their own, have been unable to fully 

predict clinical response or better survival outcomes upon 

immunotherapy regimens alone or in combination with 

chemotherapy (11). In this context, the incorporation of new 

layers of information could contribute to better capture the 

complexity of this disease and, ultimately, help to improve 

NSCLC patients’ selection and clinical management. 

In this chapter, some facts and figures regarding lung cancer 

epidemiology are introduced, as well as a summarized 

explanation of the current treatment landscape, focusing on 

patient stratification strategies for clinical decisions and 

treatment guidance in NSCLC. Finally, the unmet needs of the 

current patient selection framework can be found in section 

2.1.4. 

 
2.1.1 Non-small cell lung cancer epidemiology 

 
Lung cancer (LC) is a major public health problem. According 

to the World Health Organization (WHO) and the International 

Agency for Cancer Research (IARC), LC was the second most 

frequently diagnosed cancer in 2020 worldwide, with more 

than 2,000,000 cases (11,4% of all cancer diagnosis, 

excluding non-melanoma skin cancer (NMSC)) (Figure 1) 

(12).  
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Figure 1. Estimated number of new cancer cases worldwide during 
2020.  

Pie chart representing the estimated percentage share of the most 
frequently diagnosed cancer types in the total number of cancer-related 
diagnoses made in 2020. Estimation was performed considering both 
sexes, all ages and excluding non-melanoma skin cancers. (Source: 
Adapted from (12)).  

In Western countries, the five-year overall survival rates for 

patients with LC are strongly correlated with tumor stage at the 

time of diagnosis, ranging from 61.2% in patients with localized 

disease to 33.5% in patients with locally advanced disease, 

and down to 7.0% for patients with disseminated disease (13) 

(Figure 2).  
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Figure 2. 5-year relative survival by stage at diagnosis. 

5-year relative survival based on data from the National Cancer Institute 
Surveillance, Epidemiology and End Results (SEER) between 2012 and 
2018. Survival rates were calculated considering both sexes and all races. 
(Source: Extracted from (13)). 

At the time of diagnosis, the majority of patients with lung or 

bronchus cancer show regional or distant dissemination, which 

subsequently has a dramatic impact on the overall prognosis 

and life expectancy of the disease (13). Thus, the fact that 

these diagnoses occur late in the course of the disease, 

contributes to LC being the most frequent cause of cancer-

related deaths worldwide, with almost 1.8 million annual 

deaths (12). Moreover, these numbers are expected to 

increase, reaching more than 3,500,000 diagnoses and almost 

3,000,000 deaths globally by 2040 (12) (Figure 3).  



 

10 

 

 

Figure 3. Estimated number of (A) incident cases and (B) deaths 
worldwide by 2040.  

A 

B 
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Stacked bar chart depicting expected LC incidence and mortality (in 
millions) stratified by continent. Estimation was performed considering both 
sexes and the whole age range [0-85+]. Blue and red bars represent figures 
in 2020 and the increment by 2040, respectively. In addition, the increase 
rate from 2020 to 2040 is highlighted in red for each continent category. 
(Source: Extracted from (12)) 

 
2.1.2 Towards an increasingly accurate non-small 

cell lung cancer classification: from histological 

to molecular subtyping 

 
LC was traditionally classified into NSCLC and small cell lung 

cancer (SCLC), accounting for 85% and 15% of LC cases, 

respectively (14). The incorporation of molecular testing and 

personalized medicine into the clinical management of NSCLC 

led to further stratification of lung tumors beyond histological 

features. In this way, the 2015 WHO classification of lung 

tumors divided NSCLC into three major histological subtypes: 

lung adenocarcinoma (LUAD ~ 40% of NSCLC cases), lung 

squamous cell carcinoma (LUSC ~ 25-30 % of NSCLC cases) 

and large cell carcinoma (LCC ~ 10-15% of NSCLC cases). 

Another subtype is “not otherwise specified” (NOS) which has 

none of the specific characteristics of the aforementioned 

subtypes. This classification determines eligibility for further 

molecular testing and selection for certain therapeutic 

strategies (15).  
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Figure 4. Non-small cell lung cancer subtyping evolution: from 
histological to molecular stratification.  

Timeline highlights some of the most important advancements towards 
increasingly comprehensive non-small cell lung cancer stratification 
(Source: modified from (16)) 

Advances in DNA- and RNA-based high-throughput genomic 

technologies for molecular profiling have also improved the 

classification and clinical management of NSCLC, especially 

for advanced LUAD (17). Specifically, the identification of 

epidermal growth factor (EGFR) mutations (~14%) and 

anaplastic lymphoma kinase (ALK) rearrangements (~2-7%), 

as well as their association with response to selective tyrosine 

kinase inhibitors (TKIs) represented a paradigm shift in the 

treatment of LUAD and transformed the pathological 

classification (18,19). These findings were followed by the 
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discovery of additional actionable oncogenic alterations, 

including KRAS G12C (~14%), BRAF V600E (~ 2-3%) and 

ERRB2 (~ 2%) mutations, MET amplification and exon 14 

skipping mutations (~ 7%) and gene fusions involving ROS1 (~ 

1%), RET (~ 1%) and NTRK (< 1%) genes (20,21). Current 

European clinical guidelines recommend to screen for 

alterations in all the previously mentioned oncogenic drivers 

(4). In the case of advanced LUSC, the frequency of driver 

alterations is much lower and genomic testing is only 

recommended for patients younger than 50 years old or with 

low tobacco exposure (4).  

Finally, an updated LC classification has been published as 

part of the 2021 WHO Classification of Thoracic Tumors (22). 

Briefly, the major features among this new edition include the 

even greater emphasis on genomic profiling than in the 

previous 2015 WHO classification, due to the development of 

high-throughput screening techniques and the discovery of 

new and more effective targeted therapies. A timeline 

representing the evolution of lung cancer classification from 

histological to genomic-based subtypes is depicted in Figure 

4. 

 

2.1.3 Immunotherapy in non-small cell lung 

cancer: the revolutionary weapon 

 
During the past decades, many scientific advances have 

contributed to increase our understanding of the underlying 
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biology of NSCLC. Therefore, we assisted to a paradigm shift 

in the first-line treatment of advanced/metastatic NSCLC 

patients. For instance, this revolution started with the 

identification of targetable oncogenic alterations, as mentioned 

in section 2.1.2. In this way, considering the currently approved 

range of targeted therapies, approximately one third of patients 

with advanced LUAD could be eligible for biomarker-directed 

therapies (23). However, there is still a considerable proportion 

of patients that cannot benefit from these targeted treatments. 

This is especially true for LUSC, where the frequency of 

targetable alterations is much lower than in LUAD (24). In this 

context, immunotherapy, and more specifically, immune-

checkpoint inhibitors (ICIs) targeting PD-1/PD-L1 and CTLA-4, 

alone or in combination with chemotherapy, has become the 

standard of care in the frontline for patients with 

advanced/metastatic NSCLC without actionable driver 

alterations (25). 

NSCLC tumors can activate the PD-1/PD-L1 molecular 

pathway through the adaptive immune resistance, where 

cancer cells change its phenotype in response to a cytotoxic or 

pro-inflammatory immune response, leading to immune 

evasion (26). This adaptive mechanism is promoted by the 

specific recognition of cancer cells by T cells, that secrete 

immune-activating cytokines. Cancer cells express PD-L1 to 

protect themselves from the T cell attack, whereas PD-1, its 

receptor, is preferentially expressed in T cells. PD-1 activation 

leads to the reduction on T cell proliferation, cytokine 
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production and T cytotoxic functions (27). In the end, these 

signals produce an immunosuppressive environment and 

contribute to tumor progression and development. Immune 

checkpoint inhibitors, such as anti-PD-1/PD-L1 antibodies, are 

able to overcome this inhibitory signal and can restore immune 

response, through the reactivation of intratumoral pre-existing 

T cells turned off by adaptive immune resistance. This T cell 

re-invigoration can ultimately lead to tumor destruction (28). 

It has been less than ten years since the anti-PD-1 antibody 

nivolumab received FDA-approval for the treatment of patients 

with LC (29). This marked the beginning of a new era in the 

clinical management of NSCLC, especially for those patients 

not benefiting from targeted therapies. This approval came 

after the results from CheckMate-017 and CheckMate-057, 

two randomized clinical trials which demonstrated that 

nivolumab was able to improve median OS of platinum-

resistant squamous NSCLC and non-squamous NSCLC, 

respectively, compared with docetaxel in the second-line 

setting (30,31). Notably, a combined analyses of data from 

both CheckMate-017 and CheckMate-057, showed that 

patients with nivolumab regimen had a 5-year OS rate of 

13.6% compared with 2.6% for those patients receiving 

docetaxel (32). However, although PD-1 blockade revealed 

unprecedented long-term responses, they were observed only 

in a minority of patients with advanced NSCLC.  
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After nivolumab positive results for platinum-resistant NSCLC 

patients, immune checkpoint inhibitors were evaluated in the 

frontline setting and were compared to platinum-based 

chemotherapy which has been the standard of care for 

decades. Several studies demonstrated the superiority of anti-

PD1 or anti-PD-L1 treatments over chemotherapy in the first-

line setting (28).  However, patient selection based on PD-L1 

expression and molecular testing is crucial for treatment 

planning in the frontline, since not all patients will benefit from 

upfront immunotherapy alone. In this regard, there is still room 

for improvement, especially when selecting patients who might 

best benefit from these treatments and to define the most 

successful combinations for each individual patient. 

2.1.4 Limitations of the current management 

framework of non-small cell lung cancer patients 

 

Current clinical management of patients with NSCLC 

considers three main factors: clinicopathological 

characteristics (i.e., histology, tumor stage and location, age, 

performance status, comorbidities, organic function), presence 

of druggable oncogenic alterations (i.e., EGFR, KRAS G12C, 

BRAF, ALK, ROS1, RET, NTRK, MET) and PD-L1 status 

(5,33).  

Although the introduction of molecular testing within the 

treatment decision framework has revolutionized and improved 

NSCLC patient stratification, this approach has some intrinsic 
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limitations that should be addressed. For instance, patients 

with the similar genotype often follow different disease courses 

for reasons that remain unclear (34). Also, all patients receiving 

targeted therapies will eventually develop treatment resistance 

for reasons that genomic profiling cannot always explain (i.e., 

activation of pathways acting downstream or parallel to the 

inhibited target, interactions with the tumor immune 

microenvironment (TME)) (35). Finally, more importantly, there 

is still a large group of NSCLC patients that do not harbor 

targetable genomic alterations and that cannot, therefore, 

benefit from available targeted therapies.  

Immunotherapy alone or combined with chemotherapy is 

currently the standard of care for advanced NSCLC without 

targetable oncogenic alterations (25). However, the proportion 

of long-term survivors remains low (~20%), probably due to 

insufficient patient selection and lack of understanding of the 

complex interplay between tumor cells and tumor 

microenvironment. In this context, currently used individual 

biomarkers, such as PD-L1 IHC expression or tumor 

mutational burden (TMB), are not able to accurately predict 

immune response clinical benefit for a large proportion of 

patients (11).  

In this context, the implementation of new methodologies 

beyond genomic testing, such as those based on global gene 

expression, could be very useful to further understand disease 
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complexity and, in the end, to deliver more precise and 

effective treatments to NSCLC patients. 

 

2.2 Transcriptional profiling as a tool for tackling 

complexity and molecular heterogeneity in lung 

adenocarcinoma and lung squamous cell 

carcinoma 

In section 2.1, NSCLC has been introduced as a complex and 

molecularly heterogeneous disease. It has been shown that 

the discovery of oncogenic genomic alterations in landmark 

genes (i.e., EGFR, KRAS, BRAF, ERBB2, ALK, ROS1, RET, 

NTRK, MET) that confer sensitivity to specific therapeutic 

strategies has improved both life quality and expectancy of 

patients with advanced NSCLC. However, many patients with 

advanced NSCLC do not harbor actionable genomic 

alterations (50%) and are treated with concurrent or sequential 

chemotherapy and immunotherapy, thus not receiving 

personalized treatments.  

In this context, the study of the transcriptome could be a 

relevant tool for improved patient stratification that could 

enable the transition to a more personalized approach. 

Underpinned by the idea that gene expression analysis 

provides great understanding of cellular processes and tumor 

biology, transcriptional profiling has been extensively used to 

dissect tumor heterogeneity and define clinically relevant 
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subtypes within a cancer entity. Examples of these include 

breast cancer intrinsic subtypes or colorectal cancer 

consensus subtypes (36,37). In lung cancer, initial studies 

demonstrated the ability of transcriptional profiling to 

recapitulate histological subtypes (38,39). Seminal studies 

were able to further classify LUAD into molecularly different 

subtypes based on differential gene expression (40–42). 

Although those studies included a majority of LUAD tumors 

that could have hampered the identification of transcriptional 

groups in other histologies, later studies focused on one 

histology, generally LUAD or LUSC, due to their higher 

incidence (43). 

In this chapter, the current state-of-the-art of transcriptional-

based classifications in the context of NSCLC major subtypes 

(i.e., LUAD and LUSC) will be revised, as well as the clinical 

relevance of these classifications.  

2.2.1 Lung adenocarcinoma transcriptional 

subtypes 

Given the greater transcriptional heterogeneity previously 

observed for LUAD and its higher prevalence, many studies 

have attempted to generate a more refined classification of 

these tumors (Figure 5) (38,39,44–60). Overall, tumors were 

classified according to the gene expression levels of the most 

highly variable genes between samples. Diverse LUAD 

intrinsic transcriptional-based subtypes were identified across 

distinct studies. All of them observed a group of well-



 

20 

 

differentiated LUAD tumors with higher levels of pneumocyte-

related markers and associated with better survival outcomes. 

Also, they identified a subset of poorly differentiated LUAD 

tumors with high expression of proliferation-related genes and 

associated with poor survival. However, despite these 

commonalities, each of these studies also identified unique 

subtypes which weren’t replicated in other works. In addition, 

the genes defining phenotypically comparable subtype specific 

signatures differed between studies, which reduces 

reproducibility and robustness.  
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Figure 5. Transcriptional-based lung adenocarcinoma molecular 
subtypes.  

Timeline highlights transcriptional-based lung adenocarcinoma subtypes 
described by different studies since year 2000.  Identified subtypes are 
depicted next to the corresponding study, represented by an orange box. 
Red color represents subtypes associated with proliferative tumors and 
unfavorable prognosis, whereas green color represents subtypes 
associated with less proliferative tumors and favorable prognosis.  
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To date, the most accepted transcriptional-based classification 

in LUAD was described back in 2006 by Hayes et al. (47). This 

classification was further validated by The Cancer Genome 

Atlas (TCGA) Consortium, and it is also considered as the 

TCGA consensus classification (55). In summary, Hayes et al. 

described three LUAD subtypes:  bronchioid, squamoid, and 

magnoid. These subtypes differed in terms of survival 

outcomes and molecular characteristics. In this way, 

bronchioid subtype was associated with better prognosis 

compared with the other two groups and had higher expression 

of cisplatin-resistance genes. Squamoid tumors were 

characterized by overexpression of angiogenesis-related 

genes and WNT pathway. Finally, magnoid subtype showed 

higher expression of genes involved in inflammatory 

processes, metabolism, cytoskeleton remodeling and 

proliferation. Wilkerson et al. investigated whether these 

intrinsic subtypes were correlated  with particular genomic 

alterations (52). They found that the bronchioid subtype was 

enriched for EGFR alterations, while the magnoid subtype had 

higher frequency of KRAS and TP53 mutations, higher levels 

of genome instability, copy number alterations rate, DNA 

hypermethylation and TMB compared with the other subtypes.  

In 2014, the TCGA Consortium classified 230 LUAD tumors 

according to the Hayes et al. classification (47,55). LUAD 

subtypes were renamed to better represent the histological, 

morphological, and molecular characteristics of the three 

different subtypes: terminal respiratory unit (TRU, 
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bronchioid), proximal inflammatory (PI, squamoid), and 

proximal proliferative (PP, magnoid). Comprehensive 

molecular characterization of the subtypes corroborated the 

association of the TRU subtype with the presence of EGFR 

alterations and also ALK rearrangements. Patients belonging 

to PI intrinsic subtype were enriched for KRAS and STK11 

mutations, whereas in the PP subtype concurrent mutations 

in NF1 and TP53 genes were observed.  

Hu et al. elaborated a framework for a  transcriptional-based 

stratification of LUAD tumors using the new TCGA-LUAD data 

and defined 4 subtypes (58). A pathway enrichment analysis 

of the most representative genes revealed that groups 1 and 2 

showed higher activity of immune-related pathways, whereas 

subtypes 3 and 4 overexpressed pathways involved in cell 

proliferation and extracellular matrix organization, respectively. 

Concerning oncogenic alterations, TP53 mutations were more 

frequently found in tumors belonging to subtypes 1 and 2, while 

group 4 were enriched for EGFR mutations. In addition, 

multivariate analyses demonstrated that these groups had 

independent prognostic value.  

The Clinical Proteomic Tumor Analysis Consortium (CPTAC) 

project conducted a study in which they combined molecular 

data from different sources (i.e., gene expression, genomics, 

proteomics, phosphoproteomics) of 110 LUAD tumors and 

identified four intrinsic molecular subtypes (59). Moreover, 

integration of the different molecular information layers, 
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especially protein phosphorylation and acetylation 

modifications revealed potential tumor-specific markers and 

druggable proteins. 

Also following a multi-omics approach, combining 

transcriptional profiling with other molecular data, Chen et al. 

reported another LUAD classification consisting of six LUAD 

subtypes: AD1-AD4, AD5a, and AD5b (57). In agreement with 

previous reports, those subtypes associated with lower 

differentiation levels demonstrated worse survival rates. 

Additionally, genes representing each identified subtype were 

associated with specific transcriptional programs and 

biological processes.  

In another study, Xiaoyong Ge et al. developed a LUAD 

classification based on the expression of treatment associated 

genes extracted from cancer cell lines pharmacogenomics 

data on the TCGA-LUAD dataset (60). This analysis resulted 

in the identification of three LUAD subtypes: S-I, S-II, and S-III, 

which were associated with different clinical features and 

previously described TCGA consensus subtypes (55). S-I 

displayed overexpression of inflammation-related genes and 

was associated with proliferation and immune evasion. S-II 

showed overexpression of cell cycle-related genes and was 

associated with higher mutation burden. Finally, S-III 

demonstrated higher expression of metabolic signatures and 

its development was associated with methylation processes. 

Interestingly, this study tried to assign potential specific 
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treatments for these subtypes using the CMap database (61). 

In this way, immune checkpoint blockers (ICB), doxorubicin, 

tipifarnib, AZ628, and AZD6244 were found to be potentially 

effective for S-I tumors; cisplatin, camptothecin, roscovitine, 

and A.443654 seemed to work for S-II subtype; and S-III 

tumors could be potentially sensitive to docetaxel, paclitaxel, 

vinorelbine, and BIBW2992.  

Overall, all these classifications highlight the inherent 

heterogeneity of LUAD, which cannot be considered a unique 

histological entity. Therefore, a deeper understanding of this 

diversity and further stratification beyond histological and 

genomic features is needed as it could help to improve the 

clinical management of LUAD. 

2.2.2 Lung squamous cell carcinoma 

transcriptional subtypes 

Although most studies regarding transcriptional subtypes 

definition focused on LUAD due to its higher prevalence, some 

studies also reported transcriptional-based subtypes for LUSC 

(Figure 6). In this way, seminal studies identified a 

transcriptional-based classification of LUSC consisting of two 

main groups associated with different survival outcomes and 

differentiation grades (46,62,63).  

In 2010, the group of Wilkerson et al. reported four LUSC 

intrinsic subtypes based on differential gene expression: 

primitive, secretory, basal, and classical (64). In the same 

way as in LUAD, these subtypes, were further characterized 
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by TCGA and, therefore, this classification is commonly known 

as the TCGA-LUSC consensus classification (65). Overall, 

these subtypes displayed different survival rates, 

differentiation grades and a specific transcriptional footprint. 

Primitive tumors showed higher expression of cell cycle-

related genes and those patients had the worst prognosis. 

Classical subtype had overexpression of genes involved in 

xenobiotic metabolism. Secretory-like tumors were 

associated with immune system-related signatures and 

pneumocyte type II markers expression. Basal subtype 

displayed higher expression levels of cell adhesion and 

basement membrane function associated genes. In a 

subsequent study by Brambilla et al., an additional basaloid-

like subtype was also identified (66). This subtype 

demonstrated a high correlation with Wilkerson et al.’s 

primitive subtype but with an even more strong association with 

poor survival rates.  
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Figure 6. Transcriptional-based lung squamous cell carcinoma 
molecular subtypes.  

Timeline highlights transcriptional-based lung squamous cell carcinoma 
subtypes described by different studies since year 2000.  Identified 
subtypes are depicted next to the corresponding study, represented by an 
orange box. Red color represents subtypes associated with proliferative 
tumors and unfavorable prognosis, whereas green color represents 
subtypes associated with less proliferative tumors and favorable prognosis.  

 

As previously mentioned, following Wilkerson et al.’s 

classification proposal, TCGA conducted a comprehensive 

characterization of the subtypes in almost 200 LUSC samples, 

especially regarding the association with genomic features and 

differential methylation profiles (65). For instance, classical 
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subtype was enriched for KEAP1, NEF2L2 and PTEN 

mutations, strong hypermethylation and overall genomic 

instability, compared to other LUSC classes. On the other 

hand, primitive tumors were enriched in RB1 and PTEN DNA 

alterations, while basal subtype displayed higher NF1 

mutation frequency.  

Finally, the combination of multiple sources of molecular data, 

including transcriptional profiling, improved our understanding 

the complex biology of LUSC tumors. For instance, the CPTAC 

study reported a multi-omics classification into five groups 

based on DNA, RNA, protein, phosphoprotein, and 

acetylprotein information in 108 LUSC: basal-inclusive (B-I), 

epithelial-mesenchymal transition-enriched (EMT-E), 

classical, inflamed-secretory (I-S) and proliferative-

primitive (P-P) (67). B-I subtype comprised basaloid-like 

tumors with high expression of metabolic, immune, and 

estrogen response-related genes. EMT-E subtype was 

characterized by the expression of EMT, angiogenesis and 

myogenesis signatures and included tumors with myxoid 

histology and fibroblast infiltration. Classical subtype was 

associated with higher mutation frequency of KEAP1, CUL3 

and NFEL2L, copy number amplifications in SOX2 and TP63 

genes, hypermethylation, and with the previously described 

TCGA-LUSC classical subtype. Moreover, classical tumors 

displayed higher activity levels of oxidative phosphorylation 

and proliferation signaling pathways, as well as a low activation 

of immune-system related signatures. I-S subtype was 
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strongly associated with the secretory TCGA-LUSC subtype 

and demonstrated upregulation of immune-related genes. 

Finally, P-P subtype showed upregulation of cell cycle-related 

genes and downregulation of immune system-related 

pathways, as well as patterns of DNA hypomethylation. 

Furthermore, this study integrated data from 

pharmacogenomic studies and drug databases to identify 

potential treatments for LUSC tumors. However, although 

some associations were established, therapeutic vulnerability 

identification efforts were not subtype-centered. Finally, Chen 

et al. also reported a LUSC classification in three groups using 

a multi-omics approach: SQ.1, SQ.2a and SQ.2b. SQ.2a and 

SQ.2b displayed similar expression patterns but different 

methylation profiles (57). Also, as reported by CPTAC, Chen 

et al. subtypes were associated with SOX2 and TP63 genes 

and targets. In terms of prognosis, SQ.1 was associated with 

shorter overall survival. Moreover, associations between these 

subtypes and the more accepted TCGA-LUSC classification, 

revealed a correlation between basaloid and secretory 

subtypes with SQ.1, classical subtype with SQ.2a and classical 

and primitive subtypes with SQ.2b. 

Analogously to LUAD, the identification of different 

transcriptional subtypes in LUSC reflects the molecular 

heterogeneity that exists within this often-considered 

homogeneous disease. 
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2.2.3 Clinical relevance of lung adenocarcinoma 

and lung squamous cell carcinoma 

transcriptional-based classifications 

Despite all the efforts mentioned in sections 2.2.1 and 2.2.2 to 

establish a transcriptional-based classification of LUAD and 

LUSC, the reality is that these classifications have not reached 

clinical practice. One of the main concerns is their low 

reproducibility and the limited concordance across different 

studies. In this way, transcriptional subtypes derived from 

these studies, were generally conducted in a limited number of 

samples, were based on differential gene expression analyses 

that provide large lists of genes that, after passing significance 

threshold, are considered to represent each of the defined 

groups. Individual gene expression measures are subjected to 

multiple sources of technical and biological variability, such as 

the use of different gene expression platforms, and this could 

partially explain the lack of reproducibility. Moreover, the 

interpretation of classifications based on large sets of genes is 

complex, and these types of tests are also difficult to be 

implemented in the clinic (68), where the use of fresh tissue is 

scarce. For instance, little overlap was found between the gene 

expression signatures derived from some of these studies, 

even for allegedly correlated subtypes (Figure 7) (69).  
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Figure 7. NSCLC transcriptional subtypes gene expression signatures 
overlap.  

(Source: Extracted from (69)).Size of the dots represents the number of 
genes included in each subtype signature and color indicates the degree of 
overlap between the signatures defining specific subtypes in the different 
studies. Blue colors depict lower overlap degree, whereas red colors 
indicate higher concordance between a specific pair of signatures.  

 

In addition to the high complexity of the analysis and 

interpretation of transcriptomics data, the emergence of 

genomic profiling and the identification of actionable oncogenic 

drivers reduced the interest on gene expression profiling (3). 

However, the most important limitation of all the transcriptomic 
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classifications of lung cancer is the lack of therapeutic impact 

of the intrinsic subtypes. This leads to most patients who do 

not harbor actionable mutations being equally treated with 

chemotherapy and immunotherapy. Moreover, prospective 

validation of those subtypes and their impact on specific 

therapeutic vulnerabilities would be needed before being 

incorporated into NSCLC routine clinical management. Finally, 

an additional limitation is that most studies are retrospective 

and utilized microarray and RNA sequencing (RNA-Seq) 

techniques, which normally rely on fresh-frozen (FF) tissue 

samples. For this reason, most studies are enriched in early or 

locally advanced tumors, in which surgical resection can be 

conducted. Also, access to FF samples is difficult in the clinical 

practice, which also limits the implementation of transcriptional 

subtypes into other type of specimens like formalin-fixed 

paraffin embedded (FFPE) samples. Finally, access to 

systemic therapies is limited in earlier clinical settings and 

therefore unravelling a correlation between intrinsic subtypes 

and specific treatments was indeed very unlikely. 
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2.3 Potential applications of transcriptional 

profiling in the clinical setting: adding another 

layer of information 

In section 2.2 we have seen that, LUAD and LUSC are not 

unique diseases but constitute multiple molecular entities, 

each with a unique transcriptional footprint. Current clinical 

management of NSCLC, based on histological features and 

specific genomic alterations, only captures partly the inherent 

heterogeneity of this disease. This is especially evident when 

variable outcomes and treatment responses are observed 

between patients with identical histology or genotype. In this 

context, the implementation of additional layers of information, 

such as transcriptional profiling, could be helpful to capture this 

heterogeneity and, in the end, to deliver more specific and 

effective treatments to patients with NSCLC.  

This chapter focuses on how gene expression technologies 

can help to explain and tie up some of the loose ends that still 

exist. For instance, its use in the context of patients without 

actionable alterations, drug resistance mechanisms and 

patient stratification for immunotherapy and targeted therapies 

will be discussed throughout the different sections.  
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2.3.1 Patients lacking actionable driver 

alterations: opening a window for new therapeutic 

strategies 

Comprehensive genomic profiling, including not only the 

identification of single nucleotide variants (SNV) but also gene 

fusions and splice variants, has transformed the clinical 

management of patients with non-squamous NSCLC and is 

currently needed to guide treatment decisions (70). The 

identification of novel targets as well as the emergence of 

genomic alterations during tumor progression and subsequent 

drug development, is contributing to the enlargement of 

diagnostic gene panels that, consequently, are becoming more 

comprehensive. Most complete currently available panels offer 

the possibility to analyze DNA and RNA alterations, and more 

recently, tumor mutation burden, homologous recombination 

deficiency or microsatellite instability (71). However, these 

panels still cover a specific and reduced set of genes. Thus, 

the implementation of whole transcriptome RNA-Seq could 

potentially allow for the detection of yet non-described fusions 

or other actionable molecular events not accounted by the 

panels in patients classified as driver-negative by these 

targeted DNA/RNA-Seq techniques (72).  

In addition to sensitivity issues due to the limit of detection for 

certain alterations, around 50% of patients do not harbor 

actionable alterations and therefore cannot benefit from 

targeted therapies (7). This is an important issue for patients 
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with LUSC, in which actionable alterations are anecdotical, and 

for a non-negligible number of patients with LUAD. For this 

reason, there is a need to find new therapeutic vulnerabilities 

in NSCLC, otherwise uniformly treated with 

chemoimmunotherapy. In this way, transcriptional profiling has 

demonstrated to be very useful to guide treatment decisions, 

especially in those cases with advanced tumors that have 

recurred upon treatment. For instance, two recent studies 

concluded that incorporating information from gene expression 

technologies upon progression would increase the rate of 

patients benefiting from targeted therapies, when compared to 

using only DNA (73,74). 

Furthermore, in a recent prospective study published in 2022 

a combination of whole genome and transcriptome analyses 

(WGTA) was used to align treatments to 570 patients with 

metastatic/advanced tumors, from witch 67 (12%) were lung 

cancer patients, and that had received prior therapy (75). 

Integration of these data allowed the identification of 514 

alterations and 248 associated therapies. Actionable targets 

were identified in 83% of tested patients (475/570) and 37% 

(209/570) received corresponding targeted therapy. In this 

study, transcriptomics data proved to be very revealing, being 

the most common data source contributing to WGTA-informed 

treatments (67%, 168/248). Moreover, 25% (63/248) of 

treatments were based exclusively on transcriptional 

information. Meanwhile, genomic mutations contributed to the 

identification of only 34% (85/248) of WGTA-informed 
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treatments, with 14% being discovered through mutation data 

alone (Figure 8).  

 

 
 

Figure 8. UpSet plot describing the number of treatments identified 
using different data types, alone (indicated by filled circles) or in 
combination (indicated by lines connecting different data types 
represented by filled circles).   

(Source: Extracted from (75)) 

 

Results regarding final performance were impressive, with 

almost 50% of delivered treatments resulting in clinical benefit.  

It is important to highlight that in the above-mentioned studies, 

they use transcriptomics for the detection of specific genomic 

alterations, such as fusion events or splice variants, that are 

normally detected using RNA-Seq techniques. Thus, in this 
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case, the treatment is guided by the presence/absence of 

these alterations rather than by the classification of tumors 

based on their transcriptional profiling. This second approach 

would again be particularly interesting for those patients 

without specific actionable alterations who, in the case of 

advanced NSCLC, are normally homogeneously treated with 

chemotherapy and/or immunotherapy regimens. However, 

although potentially informative for treatment guidance, patient 

stratification based on transcriptional signatures, is still not a 

common practice in the clinical setting or clinical trials, as it 

requires more complex analysis and interpretation of the 

results.  

Therefore, although challenging, the combination of genomics 

and transcriptomics data should be seriously considered for 

more precise patient stratification in the context of NSCLC 

clinical management. Moreover, although all the previously 

mentioned studies were conducted mostly under the setting of 

progressive disease, this approach might prove very 

informative in order to choose the appropriate first-line 

treatment regimen.  

 

2.3.2 Anticipate and overcome potential treatment 

resistance mechanisms 

Targeted therapies have revolutionized the treatment 

landscape in NSCLC and have led to an unprecedented 

improvement in patients’ life expectancy. However, treatment 

resistance will eventually emerge, leaving patients with very 
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few treatment alternatives and poor overall prognosis once the 

disease has recurred. Resistance mechanisms can be on-

target, when they are driven by the acquisition of genomic 

alterations that hamper the inhibition of the target by the drug, 

and off-target, when there is an activation of downstream or 

parallel pathways that overcome the blockade of the oncogenic 

protein (76) (Figure 9). 

 

Figure 9. Mechanisms of resistance to targeted therapies.  

A) Diagram representing the mechanism of action of Ras inhibitors in a 
drug-sensitive tumor. B) Diagram depicting  different resistant mechanisms 
for Ras inhibitors in drug-resistant tumors (e.g. on-target mutations, parallel 
pathways activation, downstream pathway activation, alternative pathway 
activation) (Source: Extracted from (76)). 

Current strategies for understanding the basis of tumor 

resistance to therapy include the development of preclinical 

models of tumor resistance (e.g., cell lines, mouse models, 

patient-derived organoids, etc.) and retrospective analyses of 

tumor samples obtained at progression. The development of 

novel sequencing techniques and bioinformatics approaches 
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led to the identification of different biomarkers that helps us 

understand how specific tumor molecular characteristics 

impact on the response to treatment. In this context, 

transcriptional profiling could be very useful to tackle off-target 

resistance. Indeed, many of these mechanisms may be 

originated at non-genomic levels, such as epigenetic 

modifications, tumor-TME interactions or histological 

transformations, but may have an impact on the transcriptome 

behavior (77,78). 

EGFR-TKIs are widely used in the context of EGFR mutated 

NSCLC, and they have proven clinical benefit in this group of 

patients. Thus, overcoming and anticipating resistance is 

clinically relevant (79). In this way, preclinical studies have 

shown many potential off-target resistance mechanisms to 

EGFR-TKIs, including PI3K/AKT/mTOR or EMT pathways 

upregulation (80,81). However, the main limitation of these 

preclinical studies is that they were mainly focused in 

assessing the deregulation of one or two proteins involved in 

these pathways by targeted sequencing or molecular biology 

techniques. Unfortunately, these targeted approaches are less 

likely to unveil the mechanisms that lead to a specific pathway 

aberrant activation than untargeted methods which consider 

the whole transcriptome/proteome. Moreover, untargeted 

methods would also allow to assess whether other relevant 

pathways are being deregulated concurrently with the one 

under study. Therefore, the incorporation of whole 

transcriptome techniques might be crucial for the identification 
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of yet not described mechanisms of resistance that can be 

translated into new strategies to overcome tumor progression 

upon treatment. In this context, there are already some studies 

that have tried to unravel the mechanisms that lead to EGFR 

sensitivity or resistance by using microarray/RNA-Seq 

techniques covering the whole transcriptome (82–91). Briefly, 

these studies managed to generate gene expression 

signatures potentially able to predict EGFR-TKI efficacy. 

Nevertheless, the application of these signatures to the clinical 

setting is subjected to validation in prospective clinical trials, 

with matched gene expression and response rate information 

in NSCLC patients.  

2.3.3 Patient selection for immunotherapy 

treatment regimens 

Immunotherapy alone or in combination with chemotherapy is 

the standard of care in advanced/metastatic NSCLC without 

actionable genomic alterations (25). However, response rates 

to immunotherapy in NSCLC are around 20-40% and this is 

likely due to insufficient patient stratification and lack of 

sufficiently reliable predictive biomarkers (11,60). In this 

context, whole transcriptome sequencing could provide 

comprehensive information at the level of individual patients 

and could also help identify additional immunotherapy 

biomarkers for reliable and robust patient stratification in the 

clinical setting. In fact, the use of gene expression signatures 

to predict response to immunotherapy is being studied, 
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especially since transcriptional profiling data allows for the 

identification and characterization of the immune cell 

populations infiltrating the tumors. In this way, Tamborero et al. 

conducted a comprehensive classification of more than 9,000 

tumor cases from 29 solid cancer types based on the 

expression of 16 gene signatures that represent 16 distinct 

immune cell populations (Figure 10) (92). Briefly, the six 

identified immunophenotypes ranged from very low immune 

infiltration, with low cytotoxic populations abundance, to high 

presence of almost all immune cell types, including cytotoxic 

cells. Furthermore, in this study, Tamborero et al., assessed 

the association of these immunophenotypes with additional 

gene expression and genomic features.  
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Figure 10. TCGA tumor immunophenotypes.  

A) Methodology used for immunophenotypes definition in the different 
TCGA tumor cohorts. B) Heatmap representing the different 
immunophenotypes (1-6) based on the expression of 16 immune cell 
populations signatures. Red and blue colors indicate higher or lower 
infiltration levels of each cell population in each sample, respectively 
(Source: Extracted from (92)).  

 

These biomarkers may help to understand how different 

patient subpopulations respond to immunotherapies, as well 

as to provide new evidence for the development of new 

strategies to boost immune response and overcome 

immunosuppressive scenarios. However, this study does not 

consider the impact of immunotherapy since most tumors from 

TCGA were surgically resected and patients did not receive 

any immunotherapy treatment. 

A recent study focused on multi-gene signatures as predictors 

of immunotherapy response, demonstrated that the integration 

of multiple gene expression levels constituted a robust 

indicator of cytotoxic T cells infiltration in different solid tumors, 

including NSCLC (93). The IFN- (6-gene signature) and T-cell 

inflamed (18-gene signature) signatures derived from this 

study displayed better performances than those observed for 

PD-L1 immunohistochemistry in predicting response to 

pembrolizumab in PD-L1 unselected patients (Figure 11).  
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Figure 11. Evaluation of the predictive usefulness of the 18-gene T 
cell–inflamed GEP compared to PD-L1 IHC in predicting response to 
pembrolizumab in a PD-L1–unselected cohort of 96 patients with 
HNSCC from KEYNOTE-012  

(Source: Extracted from (93)). 

Hwang et al. conducted an immune profile targeted gene 

expression panel on previously untreated tumor samples to 

identify biomarkers that could potentially have an impact on 

immunotherapy response (94). After immunotherapy 

treatment, patients were divided into two different groups 

based on whether they had achieved a durable clinical 

response. Outcomes from gene expression analysis in these 

patients revealed that signatures associated with M1 

macrophages and T cell infiltration were better predictors of 

response durability than currently used PD-L1 protein 

expression or TMB (Figure 12). However, these conclusions 

need to be validated in prospective clinical trials evaluating 

immunotherapy regimens.  
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Figure 12. Predictive abilities of M1 signature, peripheral T cell 
signature, PD-L1 expression, tumor infiltrating lymphocytes (TIL), and 
tumor mutation burden (TMB)  

(Source: Extracted from (94)). 

Overall, these studies demonstrated the utility of multi-gene 

expression signatures over single agent predictors when 

evaluating patient’s potential immunotherapy response. In this 

way, further datasets with available information on 

transcriptional profiling, treatment information and clinical 

response are needed for reliable biomarker candidates’ 

identification. More importantly, future prospective clinical trials 

should start integrating these signatures as tools for improving 

patient selection for immunotherapy, so that they can be 

translated into the clinical practice in the future.  
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2.3.4 Patients harboring targetable genomic 

alterations: do all patients follow the same course 

upon treatment? 

The commitment to precision medicine and the development 

of specific treatments targeting oncogenic pathways has 

transformed the current clinical management of NSCLC. The 

number of actionable genomic alterations to be tested in 

NSCLC have grown considerably (e.g., KRAS, EGFR, ALK, 

ROS1, MET, RET, ERBB2, NTRK and BRAF) based on the 

promising results observed in clinical trials evaluating specific 

inhibitors (95).  

Genomic actionable alterations are found in about 17% - 80% 

of NSCLC, depending on the genetic ancestry, sex, smoking 

history, and histology (96). The identification of these 

mutations enables the use of specific treatments that have 

improved patients’ survival outcomes and reduced undesirable 

adverse effects compared to standard chemotherapy regimens 

(97). Nevertheless, response rates vary between patients with 

the same oncogenic alteration and receiving the same 

treatment. Intratumoral heterogeneity and activation of 

additional molecular pathways beyond the one being targeted 

could partially explain these differences in response and 

duration of clinical benefit to targeted therapies (98).  

Transcriptional profiling could be a good ally for further patient 

stratification in the context of patients harboring actionable 

genomic alterations and predict clinical benefit from targeted 



 

46 

 

therapies in this subgroup of patients. In this context, there are 

some studies that attempted to correlate NSCLC 

transcriptional subtypes with the frequency of actionable 

genomic alterations, mostly in the case of LUAD 

(48,49,52,55,57–59,65,67,99–101).  These studies 

demonstrated that transcriptional stratification further refined 

genomic-based classification. In this sense, only two studies 

found specific transcriptional footprints for EGFR and ALK 

altered tumors, suggesting that the presence of these 

mutations may confer tumors a very specific transcriptional 

landscape (99,101). However, for most of the studies there 

was transcriptional heterogeneity in terms of gene expression 

for tumors harboring the same genomic alteration. For 

instance, EGFR mutated tumors were present across different 

transcriptional subtypes, although they were generally 

enriched in one of the identified groups. In these studies, 

tumors with different actionable alterations (i.e., EGFR, KRAS) 

were classified within the same transcriptional subtype, 

suggesting that different genomic alterations may lead to 

similar transcriptional landscapes and thus sensitivity to 

analogous drug targets. EGFR-driven tumors are considered a 

homogeneous population and are homogeneously treated, but 

variable drug responses and time to progression are observed 

in the clinic. Further stratification on these molecularly selected 

population might be useful for improving patients’ clinical 

management.  
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Transcriptional heterogeneity was even more evident in tumors 

harboring KRAS mutations. KRAS represents the most 

mutated oncogene in non-squamous NSCLC, accounting for 

approximately 25% of LUAD in Western countries (21). 

Although KRAS had the reputation of an “undruggable” target 

due to its structural complexity, specific KRAS inhibitors for the 

G12C variant, such as sotorasib or adagrasib, represent a 

promising therapeutic option for patients with KRAS-G12C 

driven NSCLC (21). Given the great molecular heterogeneity 

observed for KRAS, it is reasonable to expect wide-ranging 

outcomes of those targeted agents and, therefore, a better 

understanding of the underlying biology associated with these 

tumors beyond the mutation itself will be needed to gain 

knowledge on potential predictors of therapy response.   

Overall, these studies support that the characterization of DNA 

alterations alone is not able to fully cope with the complexity 

and heterogeneity underlying NSCLC. In this context, a 

comprehensive stratification incorporating transcriptional 

profiling might help improving patient selection and delivery of 

the most suitable treatment or combination of treatments 

depending on each individual.  
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2.4 Integration of drug sensitivity data from large 

cancer cell lines pharmacogenomic studies for 

specific treatment strategies identification 

In section 2.3, the fact that a non-negligible percentage of 

patients undergo incomplete responses or display no response 

at all to the prescribed treatments was highlighted. Reasons 

behind this variability may include different immune 

landscapes, tumor-microenvironment interactions, or 

deregulation of different transcriptional programs. In this 

context, the potential advantages of introducing whole 

transcriptome profiling into NSCLC clinical management to 

further understand the complexity of the disease and the 

potential reasons of drug response variability were discussed. 

However, to assess the impact of potential predictors on drug 

response it is crucial to study the associations between these 

molecular features and the sensitivity/resistance to specific 

therapeutic compounds. In this regard, the currently ongoing 

cancer cell line drug screening projects are paving the way 

towards more comprehensive approaches that involve the 

characterization of large collections of cancer cell lines in terms 

of their genomic changes; cellular states at the RNA, protein, 

and post-translational levels; and determining their sensitivities 

to anticancer drugs. With a sufficiently large collection of cell 

models, one can correlate therapeutic vulnerabilities with 

specific molecular characteristics, providing invaluable insights 
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into cancer biology, markers for patient selection, and potential 

new targets for cancer drug development (102,103). 

In this chapter, the most prominent pharmacogenomics 

projects on cancer cell lines (CCLs) are reviewed, as well as 

the potential benefits of integrating these data into NSCLC 

precision medicine research.  

2.4.1 Large cancer cell lines pharmacogenomic 

projects: CCLE, GDSC, CTRP, PRISM 

Pan-cancer high-throughput drug screens are majorly 

performed on human CCLs, which are population of cells 

propagated in two-dimension in vitro culture (104). NCI-60 

Human Tumors Cell Lines Screen (NCI60) was born in 1990 

and has accumulated data on cell viability upon treatment with 

more than 50,000 drug compounds in 60 CCLs from nine 

different tissues (105). Although the number of drugs tested is 

huge, the reduced sample size may affect the robustness of 

the outcomes coming out from this study. In this context, the 

Cancer Cell Line Encyclopedia (CCLE), the Cancer 

Therapeutic Response Portal (CTRP), the Profiling Relative 

Inhibition Simultaneously in Mixtures (PRISM) repurposing 

resource and the Genomics of Drug Sensitivity in Cancer 

(GDSC) were created to comprise a larger number of cell lines 

covering a wide range of tumour types (102,106–108). 

Currently, CCLE provides molecular data of almost 2,000 

cancer cell lines, which include gene expression profiles, DNA 

alterations, copy number variants, DNA methylation profiles, 
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gene fusions, proteomic profiles, as well as genetic 

dependencies through short hairpin RNA (shRNA) and 

CRISPR-Cas9 knockdown screens. Moreover, CCLE and 

GDSC cell lines have been used by drug screening projects to 

generate drug sensitivity metrics for hundreds of cell lines and 

compounds. All these data have been compiled into the 

Dependency Map portal (DepMap, https://depmap.org/portal/), 

and can be easily downloaded for analysis (Figure 13) (109). 

Also, the DepMap portal provides with some interactive 

analysis tools that allow researchers to easily find associations 

between molecular features and gene dependencies or drug 

sensitivity for a specific user-defined list of cancer cell lines.  

 

Figure 13. DepMap project data and aims.  

Schema depicting the principal data sources included in the DepMap portal 
and the main objective of the project: combine different data layers to 
construct predictive models for new targets identification, propose new 
drugs and patient selection based on molecular profiles (Source: Extracted 
from (109)) 

 

https://depmap.org/portal/
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2.4.2 Large cancer cell lines pharmacogenomic 

projects as a tool for bringing precision medicine 

to patients with cancer 

Although nowadays there are numerous preclinical models 

available for cancer research (i.e., cancer cell lines, genetically 

engineered mouse models, patient derived xenografts (PDX) 

and three-dimensional culture systems or organoids), immortal 

cancer cell lines (CCLs) continue to be the most widely used 

model for the discovery of potential therapeutic vulnerabilities. 

Moreover, the generation of large pharmacogenomic studies, 

such as those described in section 4.1, has considerably 

accelerated the discovery of clinically relevant molecular 

features-drug associations and subsequent drug development 

(110). In this context, lung cancer is the most represented 

tumor type within DepMap repository accounting for around 

23% of all tumor tissues within the dependency screens 

dataset (Figure 14). Moreover, most lung CCLs can develop 

tumors into animals for in vivo preclinical drug testing and 

validation (111). 
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Figure 14. Tumor types by their cancer cell line representation in the 
dependency screens dataset.  

(Source: Extracted from (111)). 

 

One of the most common uses of CCLs has been to predict the 

efficacy of different therapeutic strategies. Models of LUAD 

have been widely used to assess sensitivity and resistance to 

different targeted therapies. For instance, several CCLs 

models with oncogenic EGFR mutations have been used to 

test different targeted therapies, derive gene expression 

signatures to predict the potential sensitivity or resistance to 

these strategies in the clinic and propose potential molecular 

mechanisms of resistance (69). Large scale 

pharmacogenomic projects could also be useful to improve 

patient stratification in the context of driver-negative NSCLC, 

which is a common scenario for LUSC patients. In this way, 

taking advantage of the genomic information for NSCLC CCLs 
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in the DepMap repository, one could first select driver-negative 

models and then integrate drug sensitivity and other molecular 

data, such as gene expression, to find potential therapeutic 

vulnerabilities and associated gene expression patterns and 

provide a biological rationale for guiding the antitumor 

treatment. Finally, NSCLC-CCLs molecular data could also be 

used to classify cell lines based on biological patterns 

previously derived from primary tumor profiles (i.e., gene 

expression, methylation) to identify potential treatments for 

those specific molecular subtypes.  

Overall, these datasets constitute very important resources 

that allow researchers to link cancer-related molecular features 

with specific therapeutic vulnerabilities. The exploitation of 

these data may help improve NSCLC patient selection and, in 

the end, deliver effective treatments for specific NSCLC sub-

populations.  
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3. HYPOTHESIS  

Given the limitations of DNA alterations not only to capture the 

molecular complexity of tumors, but also to predict response to 

specific therapeutic strategies, innovative approaches are 

needed to improve patients’ clinical outcomes. In this way, 

transcriptional profiling has already been used to further stratify 

colorectal cancer, breast cancer and NSCLC. More 

importantly, these subtypes were found to be associated with 

specific clinicopathological and molecular features. However, 

transcriptional subtypes have been established based on 

differential gene expression individual measures in NSCLC, 

which introduces variability between studies, leading to low 

overlap and lack of reproducibility. Moreover, the lack of 

associations between these subtypes and response to specific 

therapeutic treatments in most of the studies has hindered their 

clinical applicability. In this context, several large projects on 

pharmacogenomics performed in cancer cell lines (i.e., CCLE, 

GDSC, CTRP, and PRISM) has provided great amounts of 

drug sensitivity data to establish potential associations 

between tumor molecular alterations and specific treatments, 

which would be especially relevant for patients not harboring 

actionable genomic alterations.  

The working hypothesis of this thesis is that the analysis of the 

pathway transcriptional footprint of LUAD and LUSC tumors 

will be able to stratify patients into molecularly different 

subtypes with potential implications on prognosis and the 
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response to specific treatment strategies. Overall, the 

proposed classification framework may delineate innovative 

therapeutic strategies beyond currently available DNA 

alteration-based targeted therapies, which is especially 

relevant in the case of driver-negative LUAD and LUSC 

patients, in which options beyond chemoimmunotherapy are 

very limited.  
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4. OBJECTIVES 

4.1 General objectives 

• General objective 1: Definition of transcriptional-based 

consensus molecular subtypes in lung adenocarcinoma 

and lung squamous cell carcinoma.  

• General objective 2: Identification of potential 

vulnerabilities and drug candidates for the different lung 

adenocarcinoma or lung squamous cell carcinoma 

molecular subtypes. 

4.2 Specific objectives 

The two general objectives presented in 4.1, and which 

correspond to two separate publications, have common 

specific objectives which are listed hereafter:  

• Specific objective 1: Identification, collection, and 

annotation of gene expression datasets of lung 

adenocarcinoma and lung squamous cell carcinoma 

human tumors. 

• Specific objective 2: Quantification of the activity 

levels of a pre-defined list of fifty landmark molecular 

pathways across lung adenocarcinoma and lung 

squamous cell carcinoma tumor samples separately.  

• Specific objective 3: Definition of consensus 

transcriptional subtypes based on the joint behavior of 

the evaluated signaling pathways in lung 

adenocarcinoma and lung squamous cell carcinoma.  
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• Specific objective 4: Clinical and molecular 

characterization of the identified lung adenocarcinoma 

and lung squamous cell carcinoma subpopulations (i.e., 

available clinical covariates, DNA alterations, 

mutational signatures, genome instability, immune 

landscape).  

• Specific objective 5: Identification of specific 

therapeutic vulnerabilities for the subtypes using 

publicly available large-scale pharmacogenomic data 

from lung adenocarcinoma and lung squamous cell 

carcinoma cancer cell lines.  
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5. RESULTS 

5.1 Publications 

The two publications presented in this thesis have been 

published in international peer-reviewed journals.  

 

The references are the following: 

 

Hijazo-Pechero S, Alay A, Cordero D, Marín R, Vilariño N, 

Palmero R, Brenes J, Nadal E, Solé X. Transcriptional profiling 

of molecular pathways allows for the definition of robust lung 

squamous cell carcinoma molecular subtypes with specific 

vulnerabilities. Clin Transl Med. 2023 Sep;13(9):e1413. doi: 

10.1002/ctm2.1413. PMID: 37735777; PMCID: 

PMC10514261. 

 

Hijazo-Pechero S, Alay A, Cordero D, Marín R, Vilariño N, 

Palmero R, Brenes J, Montalban-Casafont A, Nadal E, Solé X. 

Transcriptional analysis of landmark molecular pathways in 

lung adenocarcinoma results in a clinically relevant 

classification with potential therapeutic implications. Mol 

Oncol. 2024 Feb;18(2):453-470. doi: 10.1002/1878-

0261.13550. Epub 2023 Dec 21. PMID: 37943164; PMCID: 

PMC10850798. 
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5.2 Global results summary 

5.2.1 Directors’ report 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



                                               Data actualització:  31/01/2020 
 

 
MODEL Informe director/s /tutor sobre l’autorització del dipòsit de la tesi 

 
 
Dr./a. Xavier Solé Acha , com a director de la tesi doctoral titulada “ Re-definition of non-small cell 

lung cancer transcriptional subtypes using integrative bioinformatics approaches”                                                                                                  

i, d’acord amb el que s’estableix a l’article 35 Normativa reguladora del Doctorat a la Universitat de 

Barcelona, emeto el següent: 

 
INFORME  
 
(Informe detallat i motivat sobre el contingut de la tesi i sobre l’autorització de dipòsit de la tesi que s’ha 
demanat ) 

El treball de tesi realitzat per la doctoranda Sara-Hijazo Pechero per optar al títol de doctora a la Universitat 
de Barcelona, s’ha dut ha terme sota la meva co-direcció juntament amb la del Dr. Ernest Nadal a l’Institut 
d’Investigació Biomèdica de Bellvitge (IDIBELL). La tesi es presenta com a compendi de dos articles:  
 

1. Hijazo-Pechero S, Alay A, Cordero D, Marín R, Vilariño N, Palmero R, Brenes J, Nadal E, Solé X. 
Transcriptional profiling of molecular pathways allows for the definition of robust lung squamous 
cell carcinoma molecular subtypes with specific vulnerabilities. Clin Transl Med. 2023 
Sep;13(9):e1413. doi: 10.1002/ctm2.1413. PMID: 37735777; PMCID: PMC10514261. IF 2022: 10.6 
(DECIL 1, MEDICINE, RESEARCH & EXPERIMENTAL) 

 
2. Hijazo-Pechero S, Alay A, Cordero D, Marín R, Vilariño N, Palmero R, Brenes J, Montalban-Casafont 

A, Nadal E, Solé X. Transcriptional analysis of landmark molecular pathways in lung 
adenocarcinoma results in a clinically relevant classification with potential therapeutic implications. 
Mol Oncol. 2024 Feb;18(2):453-470. doi: 10.1002/1878-0261.13550. Epub 2023 Dec 21. PMID: 
37943164; PMCID: PMC10850798. IF 2022: 6.6 (QUARTIL 1, ONCOLOGY) 

 
Atès que compleix tots els estàndards, puc afirmar que la memòria que es presenta té la qualitat suficient 
per ser defensada davant del tribunal corresponent. 

 
Barcelona, 25 d'/de Març de 2024. 

 

 

 

 

(signat) 

  Dr./a      Xavier Solé Acha 

 

 

 

 

 

Un cop s’hagi emplenat l’informe, s’ha d’adjuntar i s’ha de fer arribar al doctorand o al president de la Comissió Acadèmica 

del programa de doctorat responsable de la tesi. 
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MODEL Informe director/s /tutor sobre l’autorització del dipòsit de la tesi 

 
 
Dr./a. Ernest Nadal , com a director de la tesi doctoral titulada “ Re-definition of non-small cell lung 

cancer transcriptional subtypes using integrative bioinformatics approaches”                                                                                                  

i, d’acord amb el que s’estableix a l’article 35 Normativa reguladora del Doctorat a la Universitat de 

Barcelona, emeto el següent: 

 
INFORME  
 
(Informe detallat i motivat sobre el contingut de la tesi i sobre l’autorització de dipòsit de la tesi que s’ha 
demanat ) 

La memòria que es presenta te la qualitat suficient per la seva defensa com a treball de Tesi doctoral. La 
tesi es presenta com a compendi de dos articles:  
 

1. Hijazo-Pechero S, Alay A, Cordero D, Marín R, Vilariño N, Palmero R, Brenes J, Nadal E, Solé X. 
Transcriptional profiling of molecular pathways allows for the definition of robust lung squamous 
cell carcinoma molecular subtypes with specific vulnerabilities. Clin Transl Med. 2023 
Sep;13(9):e1413. doi: 10.1002/ctm2.1413. PMID: 37735777; PMCID: PMC10514261. IF: 10.6 

 
2. Hijazo-Pechero S, Alay A, Cordero D, Marín R, Vilariño N, Palmero R, Brenes J, Montalban-Casafont 

A, Nadal E, Solé X. Transcriptional analysis of landmark molecular pathways in lung 
adenocarcinoma results in a clinically relevant classification with potential therapeutic implications. 
Mol Oncol. 2024 Feb;18(2):453-470. doi: 10.1002/1878-0261.13550. Epub 2023 Dec 21. PMID: 
37943164; PMCID: PMC10850798. IF: 6,6 

 
En resum, els treballs realitzats per la doctoranda, Sara Hijazo Pechero, presenten un nou marc de 
classificació pels tumors de pulmó de cèl·lula no petita basat en el perfil d'expressió de 50 vies de 
senyalització. Aquest mètode resulta més sòlid que la classificació basada en els nivells d'expressió de gens 
individuals, propens a múltiples fonts de variabilitat. Els resultats demostren que els tumors de pulmó es 
classifiquen en diferents subtipus amb empremtes transcripcionals específiques. Aquests subgrups podrien 
tenir implicacions pel que fa a la resposta a diferents tractaments. A més, en aquest estudi s’observa que 
els grups s’associen amb determinades alteracions genòmiques i diferents patrons a nivell del 
microambient immune. D’altra banda, el treball proposa una priorització de fàrmacs per cadascun dels 
subgrups, basant-se en les dades públiques farmaco-genòmiques generades en línies cel·lulars de càncer de 
pulmó de cèl·lula no petita. En general, aquest estudi podria millorar l'estratificació del pacients més enllà 
de la genòmica i dels biomarcadors individuals, posant el focus en l’anàlisi transcriptòmica. Aquesta 
aproximació podria revelar noves opcions de tractament més personalitzades en càncer de pulmó de 
cèl·lula no petita, sobretot en aquells pacients que no tenen cap alteració tractable.  
 
Durant tot aquest temps, la doctoranda ha demostrat una gran capacitat de treball, ha desenvolupat 
capacitats suficients per desenvolupar les tasques de recerca assignades, així com el pensament crític, la 
interpretació i presentació dels resultats. A més durant el seu doctorat, ha col·laborat en diversos projectes 
de recerca amb altres investigadors. Tot plegat, puc afirmar que després de l’experiència del doctorat, la 
Sara Hijazo Pechero està preparada per continuar la seva carrera com investigadora i emprendre una nova 
etapa amb major autonomia.   

 
Barcelona, 25 d'/de Març de 2024. 
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(signat) 

  Dr.  Ernest Nadal Alforja 

 

 

 

 

 

Un cop s’hagi emplenat l’informe, s’ha d’adjuntar i s’ha de fer arribar al doctorand o al president de la Comissió Acadèmica 

del programa de doctorat responsable de la tesi. 



                                            Data actualització:  31/01/2020

MODEL Informe director/s /tutor sobre l’autorització del dipòsit de la 
tesi

Dr./a. Víctor Moreno , com a tutor de la tesi doctoral titulada “  Re-definition of
non-small  cell  lung  cancer  transcriptional  subtypes  using  integrative
bioinformatics  approaches”
i, d’acord amb el que s’estableix a l’article 35 Normativa reguladora del Doctorat
a la Universitat de Barcelona, emeto el següent:

INFORME 

(Informe detallat i motivat sobre el contingut de la tesi i sobre l’autorització de dipòsit de 
la tesi que s’ha demanat )
El treball de tesi realitzat per la doctoranda Sara-Hijazo Pechero per optar al títol de
doctora a la Universitat de Barcelona, té la qualitat suficient per ser defensat davant
del tribunal corresponent. La tesi es presenta com a compendi de dos articles: 

1. Hijazo-Pechero S  , Alay A, Cordero D, Marín R, Vilariño N, Palmero R, Brenes J,
Nadal E, Solé X. Transcriptional profiling of molecular pathways allows for the
definition  of  robust  lung  squamous  cell  carcinoma  molecular  subtypes  with
specific  vulnerabilities.  Clin  Transl  Med.  2023  Sep;13(9):e1413.  doi:
10.1002/ctm2.1413. PMID: 37735777; PMCID: PMC10514261. IF: 10.6

2. Hijazo-Pechero S  , Alay A, Cordero D, Marín R, Vilariño N, Palmero R, Brenes J,
Montalban-Casafont  A,  Nadal  E,  Solé  X.  Transcriptional  analysis  of  landmark
molecular  pathways  in  lung  adenocarcinoma  results  in  a  clinically  relevant
classification  with  potential  therapeutic  implications.  Mol  Oncol.  2024
Feb;18(2):453-470. doi:  10.1002/1878-0261.13550. Epub 2023 Dec 21. PMID:
37943164; PMCID: PMC10850798. IF: 6,6

Com a tutor, autoritzo el dipòsit de la tesi, reconeixent el treball excepcional del 
doctorand.

Barcelona, 25 d'/de Març de 2024.

(signat)
  Dr./a   Víctor Moreno 

Un cop s’hagi emplenat l’informe, s’ha d’adjuntar i s’ha de fer arribar al doctorand o al president de
la Comissió Acadèmica del programa de doctorat responsable de la tesi.



 

 61 

5.2.2 Article 1: Transcriptional profiling of 

molecular pathways allows for the definition of 

lung squamous cell carcinoma molecular 

subtypes with specific vulnerabilities 

In this work, we developed a gene expression-based 

classification of LUSC to improve patient stratification beyond 

histological and genomic features. For this purpose, we 

integrated gene expression profiles from more than 2,000 

publicly available LUSC tumors. To our knowledge, this 

number of cases far exceeds the sample size used for all 

previously proposed LUSC transcriptional-based 

classifications. In addition, instead of relying on gene 

expression measures of individual genes, we evaluated the 

activity of 50 landmark molecular pathways. The evaluation of 

lists of genes that are coordinately expressed to constitute 

pathways is less prone to stochastic variations than single 

gene expression values. As a result, LUSC samples were 

classified in five transcriptional-based subtypes depending on 

the joint behavior of the studied pathways. These subtypes 

were characterized at different levels (i.e., clinical covariates, 

genomic features, immune landscape) and were validated 

using an independent dataset of LUSC tumors. Finally, the 

integration of publicly available cancer cell lines 

pharmacogenomic data suggested specific pharmacologic 

interventions for the subtypes, which are in line with their 

signaling pathway footprint. 
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The main ideas from our manuscript are: 

 

• Current LUSC clinical management is unable to cope 

with disease complexity and predict drug response.  

• Transcriptional profiling of landmark molecular 

pathways in a large LUSC cohort allows for the definition of five 

subtypes:  SCC1 (9.9% of patients), SCC2 (23.9%), SCC3 

(25.8%), SCC4 (31.0%) and SCC5 (9.4%). 

• SCC1 and SCC4 subtypes correlated with higher 

genome instability, cell cycle-related pathway activity levels, 

and specific sensitivity to chemotherapy, based on LUSC cell 

lines data. 

• These transcriptional subtypes have differential immune 

landscapes. SCC2 and SCC3 showed higher infiltration of a 

wide variety of immune cell populations and markers (i.e., PD-

L1). 

• Our SCC group definition was compared to previous 

classifications and validated using and independent dataset 

that was not included in the initial analysis. 

• These results warrant further validation and might be 

useful for patients with lung LUSC, who have lower treatment 

options due to the lack of actionable driver alterations. 

 

 



Received: 25 April 2023 Revised: 30 August 2023 Accepted: 4 September 2023

DOI: 10.1002/ctm2.1413

LETTER TO TH E JOURNAL

Transcriptional profiling of molecular pathways allows for
the definition of robust lung squamous cell carcinoma
molecular subtypes with specific vulnerabilities

Dear Editor,
Lung squamous cell carcinoma (SCC) is a histological
subtype of non-small cell lung cancer associated with
poor prognosis. Actionable driver alterations are extremely
rare in SCC and standard of care (SoC) consists of
immunotherapy alone or combined with chemotherapy
based on the PD-L1 expression, with few long-term sur-
vivors. We hypothesized that transcriptomic data analysis
can improve patient stratification and may unravel novel
treatment approaches for these patients.1
We developed a bioinformatics pathway-based clas-

sification framework using publicly available whole-
transcriptome data from more than 2,000 SCC samples
focusing on 50 pathways. Previous transcriptome-based
classifications used individual gene expression measures,
which are prone to multiple sources of variability.2
Detailed methodology, gene expression datasets and
schematic view of the bioinformatics framework are
shown in Table S1 and Figures S1 and S2, respectively. Five
SCC subtypes were identified based on the combined tran-
scriptional behaviour of the 50 pathways (Figure 1A,B):
SCC1 (9.9% of patients), SCC2 (23.9%), SCC3 (25.8%), SCC4
(31.0%) and SCC5 (9.4%). SCC subtypes displayed their spe-
cific transcriptional footprint, which could shape different
treatment responses (Figure 1C and Figure S3). SCC1 and
SCC4 showed higher activation levels of cell proliferation
and DNA damage response (DDR) pathways, and rather
low transcriptional activation levels of immune-related
programs, especially SCC4. In contrast, SCC2 showed
higher immune system-related pathways activation and
lower cell cycle signatures activation. SCC3 exhibited high
activity of proliferation and immune-related pathways, and
upregulation of KRAS, NFKB, IL2-STAT5 and TNFA sig-
naling pathways, which may play a role in shaping these
tumours’ immunity. SCC5 displayed reduced activation
of most pathways. Our classification partly overlaps with
previous intrinsic subtypes described by Wilkerson et al,3

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the
original work is properly cited.
© 2023 The Authors. Clinical and Translational Medicine published by John Wiley & Sons Australia, Ltd on behalf of Shanghai Institute of Clinical Bioinformatics.

where primitive subtype correlates with the proliferative
SCC4, while secretory subtype was distributed between
the immune-enriched SCC2 and SCC3, and the classical
subtype overlapped with SCC3 and SCC4 (Figure S4). No
significant differences were observed in clinicopathologi-
cal characteristics or overall survival (Table S2 and Figure
S5). This underlines the importance of this work aiming
to distinguish consistent groups within an apparently clin-
ically homogeneous population of patients with SCC and
unravel potential transcriptional vulnerabilities.
SCC subtypes were further characterized to iden-

tify differential genomic patterns (Figure 2). For muta-
tional signatures, tobacco-related genomic signature was
found to be overrepresented across all subtypes, suggest-
ing an equivalent tobacco-related DNA damage (Figure
S6). Although subtle differences were observed regard-
ing tumour mutational burden (TMB), we found higher
copy number alterations (CNA) in SCC1 and SCC4
(Figure 2A,B and Tables S3 and S4). SCC1 further demon-
strated higher DDR deficiency scores compared to other
subtypes (Figure 2C and Table S5). Thus, the greater
genomic instability found for SCC1 and SCC4 might not
be the result of higher exposure to exogenous carcinogens
(i.e. tobacco), but rather a consequence of DDR mecha-
nisms, or replication stress.4 This classification framework
and the reported association of the subtypes with genomic
instability (i.e. higher CNA rates) was validated in an inde-
pendent dataset of SCC (Figure 3).5 All five subtypes were
found in the CPTAC-3 dataset and samples map within
one of the consensus subtypes, which supports the robust-
ness and reproducibility of this classification (Figure 3A).
We observed that both CNA and pathways activation were
concordant in both discovery and validation sets, therefore
genomic alterationswere consistent beyond the expression
patterns used to classify these samples (Figure 3B,C).
Immune checkpoint inhibitors (ICI) alone, combined

with chemotherapy, or following chemoradiotherapy are

Clin. Transl. Med. 2023;13:e1413. wileyonlinelibrary.com/journal/ctm2 1 of 7
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(A)

(C)

(B)

F IGURE 1 Overview of squamous cell carcinoma (SCC) groups at the transcriptional level. (A) Final consensus map of lung SCC
tumours. Each dot represents the summary centroid of the different subpopulations identified during the classification process. Using UMAP
and walktrap clustering method with Euclidean distance on these centroids, five different consensus subtypes represented by different
colours were identified based on the joint behaviour of the 50 studied molecular pathways. (B) Distribution of the five identified lung SCC
subtypes. (C) Relative activity levels of the 50 studied pathways in each of the 2086 SCC samples were assigned to a consensus subtype. Red
colours indicate higher relative activity of a pathway in a certain sample, whereas blue colours indicate lower relative activity of a pathway in
a certain sample.
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(A)

(C)

(B)

F IGURE 2 Genomic characterization. (A) Tumor mutational burden (TMB) across lung squamous cell carcinoma (SCC) consensus
subtypes. Each dot represents the TMB value for a specific sample. The black segment represents the median TMB value for each lung SCC
subtype. Kruskal-Wallis tests were used to make comparisons between groups. p-Value was corrected using the false discovery rate (FDR)
multiple-comparisons correction method. (B) Copy number burden across lung SCC subtypes. Each dot represents the number of altered
genes per sample. Kruskal-Wallis tests were used to make comparisons between groups. p-Value was corrected using the false discovery rate
(FDR) multiple-comparisons correction method. (C) DNA damage repair (DDR) deficiency score distribution across lung SCC subgroups.
Each dot represents the DDR score per sample. Kruskal-Wallis tests were used to make comparisons between groups. p-Value was corrected
using the false discovery rate (FDR) multiple-comparisons correction method.

part of the SoC for advanced SCC.6 However, patient
selection strategies, based on single biomarkers (i.e. TMB
and PD-L1), fail to predict long-term clinical benefit in
SCC.7 We evaluated immune-cell-specific signatures and
immune-related gene expression, which revealed differ-
ent immune landscapes for the subtypes, with poten-
tial clinical implications (Figure 4). For instance, SCC2
and SCC3 demonstrated higher infiltration for both anti-
tumour (i.e., cytotoxic, CD8+ and T-helper 1 cells), and
immunosuppressive populations (i.e. M2-macrophages
and T-regulatory cells), which could eventually prevent
an effective immune response (Figure 4A and Figure S7).
SCC2 and SCC3 also comprised tumours with high expres-
sion of most ICI, including CD274 (Figure 4B and Figure
S8). Although further validation (i.e. scRNA-Seq) would
be needed, these results highlight the need to character-
ize the immune contexture, alongwith conventional single
biomarkers, to stratify patients and deliver tailored and
effective treatment strategies for advanced SCC.
Chemotherapy is also a key treatment for patients with

SCC. Understanding chemotherapy response patterns and
improving patients’ selection remains crucial. Integrative
analysis of pharmacogenomic data in SCC cell lines (SCC-

CCL), showed that the SCC4 subtype might benefit from
different chemotherapy regimens (i.e. average AAC above
0.5 in at least two studies), which correlates with the pro-
liferative nature and higher genome instability observed
for this subtype (Figure 4C). In this set of SCC cell lines,
platinum-based agents showed AAC values below < 0.2,
regardless of the SCC subtype, suggesting lower sensitiv-
ity to these compounds (data not shown). However, the
evaluation of gene-expression signatures predicting plat-
inum resistance showed that primary tumors classified as
SCC4 and SCC5 would potentially be more sensitive to
these chemotherapies (Figure S9).8 Moreover, SCC4 and
SCC1 SCC-CCL showed potential sensitivity for some cell
cycle and DNA damage-targeted therapies (Figure 4C).
Single biomarkers and individual gene signatures have

shown a limited ability to capture tumour heterogeneity.
No pathway was exclusively expressed in one of the
subtypes, but their combined expression pattern allowed
the identification of subtypes with unique transcriptional
footprints. To simplify the classification framework, we
derived gene expression signatures for each subtype in
the discovery cohort and validated them in the valida-
tion cohort (Figure S10 and Table S6). However, these
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(A)

(C)

(B)

F IGURE 3 Lung squamous cell carcinoma (SCC) consensus subtypes independent validation. (A) New CPTAC-3 lung SCC samples
were mapped on the previously established classification of SCC tumours based on the activity levels of the same 50 pathways used to define
the original SCC subtypes. The new sample subtype status was decided based on the most frequent label of the closest neighbours of the
original classification. Coloured circles represent samples used in the original set, whereas triangles represent new CPTAC-3 validation set
samples. (B) Copy number burden across newly classified CPTAC-3 lung SCC samples. Each dot represents the number of altered genes per
sample. The Kruskal-Wallis test was used to make comparisons between groups. p-Value was corrected using the false discovery rate (FDR)
multiple-comparisons correction method. (C) Relative activity levels of the 50 studied pathways in each of the 108 CPTAC-3 lung SCC samples
were assigned to a consensus subtype. Red colours indicate higher relative activity of a pathway in a certain sample, whereas blue colours
indicate lower relative activity of a pathway in a certain sample.
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(A)

(C)

(B)

F IGURE 4 Immune contexture characterization and potential subtype-specific vulnerabilities. (A) Percentage of samples with high
infiltration of each of the 21 evaluated immune cell types. Median immune cell abundance GSVA score values were used as a cut-off to
designate if a sample is enriched for a specific immune cell. Different immune cell categories are represented with different colours on the left
side of the heatmap. (B) Percentage of samples with high expression of each of the evaluated immune-related biomarkers. Median gene
expression values for each gene in each gene expression dataset were used as a cut-off to designate if a sample is enriched for a specific
biomarker. Different immune marker categories are represented with different colours on the left side of the heatmap. (C) Potential
therapeutic vulnerabilities for the lung squamous cell carcinoma (SCC) subtypes based on CTRPv2, GDSC and PRISM lung SCC cell lines
drug sensitivity data. Heatmap representing drugs with mean AAC values greater than 0.5 in at least two studies within the same subtype.
Mean AAC values were only calculated if the drug had been tested in at least two different SCC-CCLs within a subtype and study. Subtypes
were considered potentially sensitive to the treatment if the average AAC value for the cell lines classified within a certain group was greater
than 0.5 for at least two out of the three evaluated pharmacogenomics studies.
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signatures are still complex, and their discrimination abil-
ity needs to be further evaluated.Wewould rather embrace
a whole transcriptome technology, applicable at the clin-
ical level (i.e. HTG Edge-Seq), that enables the evaluation
of the combined activity levels of the proposed pathways.
In conclusion, we have presented a comprehensive

molecular classification of SCC, based on the transcrip-
tional activity of 50 pathways. Although further validation
is required, these results could be useful for improving
precision medicine for patients with lung SCC, who have
limited treatment options and heterogeneous responses to
standard treatments.
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5.2.3 Article 2: Transcriptional analysis of 

landmark molecular pathways in lung 

adenocarcinoma results in a clinically relevant 

classification with potential therapeutic 

implications 

In this work we integrated the transcriptional profiles of more 

than 4,500 LUAD and, based on the activity levels of a set of 

50 molecular pathways, we were able to identify seven LUAD 

molecular subtypes. Importantly, the number of samples 

included in this study further exceeds that of previous studies, 

covering an important part of the molecular diversity of LUAD. 

This classification was associated with survival outcomes and 

was correlated with relevant clinical characteristics. Besides, 

at the genomic level, LUAD transcriptional subtypes were 

associated with the presence of oncogenic driver alterations, 

mutational signatures, copy number alterations burden and 

DNA damage repair capacity. Furthermore, the integration of 

drug sensitivity data from three large pharmacogenomics 

studies unraveled potential therapeutic vulnerabilities for the 

subtypes. Finally, the transcriptional subtypes showed distinct 

patterns in terms of immune cells infiltration and immune-

related biomarkers expression and were able to predict 

immune response in addition to PD-L1 gene expression and 

TMB markers. 

Main results from this work are:  
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• Current LUAD clinical management is unable to cope 

with disease complexity and predict drug response.  

• Transcriptional profiling of landmark molecular 

pathways in a large LUAD cohort allows for the definition of 

seven subtypes: AD1 (16.84% of patients), AD2 (18.70%), 

AD3 (10.43%), AD4 (13.19%), AD5 (20.95%), AD6 (17.06%) 

and AD7 (2.86%). This classification was successfully 

validated in an independent cohort.  

• AD1, AD4 and AD5 subtypes were associated with 

better overall survival. 

• AD2, AD3, AD6 and AD7 were associated with worse 

overall survival.  

• AD1 and AD4 subtypes were enriched in EGFR 

mutations, whereas AD2 and AD6 showed higher TP53 

alteration frequencies. Tumors with the same oncogenic 

alteration were classified in the same subtype, underscoring 

the importance of our classification to explain LUAD molecular 

heterogeneity beyond genomic classification. Conversely, the 

fact that tumors with different driver alterations coexist in the 

same transcriptional subtype, suggests that different 

oncogenic mutations may give rise to similar transcriptional 

phenotypes, which could benefit from similar combinatorial 

strategies. 

• AD2 and AD6 subtypes correlated with higher genome 

instability, proliferation-related pathways expression and 

specific sensitivity to chemotherapy, based on LUAD cell lines 

data. 
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• Pathway transcriptional profiling-based LUAD subtypes 

were able to predict immunotherapy response in addition to 

PD-L1 expression and TMB biomarkers. Tumors within AD4 

subtype were found to be 2.9 times more likely to respond to 

immunotherapy compared to the tumors classified in any other 

subtype. Despite being among the most infiltrated subtypes 

and showing high PD-L1 expression, only 12.5% of AD3 

tumors were predicted as potential responders. Also, in 

correlation with its immune excluded phenotype, AD2 tumors 

were 80% less likely to respond to immunotherapy than other 

subtypes, based on in silico predictions. 
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X. Solé, Molecular Biology CORE, Center

for Biomedical Diagnostics (CDB), Hospital

Clı́nic de Barcelona, C. de Villarroel 170,

stair 5 floor 5, 08036 Barcelona, Spain

Tel: +34 932 275 400 ext. 1798

E-mail: xasole@clinic.cat

and

E. Nadal, Catalan Institute of Oncology

(ICO), Preclinical and Experimental Research

in Thoracic Tumors, Bellvitge Biomedical

Research Institute (IDIBELL), Avinguda de la

Gran Via de l’Hospitalet 199-203, 08908

L’Hospitalet de Llobregat, Barcelona, Spain

Tel: +34 932 60 77 44

E-mail: esnadal@iconcologia.net

(Received 9 May 2023, revised 11

September 2023, accepted 3 November

2023, available online 21 December 2023)

doi:10.1002/1878-0261.13550

Lung adenocarcinoma (LUAD) is a molecularly heterogeneous disease. In

addition to genomic alterations, cancer transcriptional profiling can be

helpful to tailor cancer treatment and to estimate each patient’s outcome.

Transcriptional activity levels of 50 molecular pathways were inferred in

4573 LUAD patients using Gene Set Variation Analysis (GSVA) method.

Seven LUAD subtypes were defined and independently validated based on

the combined behavior of the studied pathways: AD (adenocarcinoma sub-

type) 1–7. AD1, AD4, and AD5 subtypes were associated with better over-

all survival. AD1 and AD4 subtypes were enriched in epidermal growth

factor receptor (EGFR) mutations, whereas AD2 and AD6 showed higher

tumor protein p53 (TP53) alteration frequencies. AD2 and AD6 subtypes

correlated with higher genome instability, proliferation-related pathway

expression, and specific sensitivity to chemotherapy, based on data from

LUAD cell lines. LUAD subtypes were able to predict immunotherapy

response in addition to CD274 (PD-L1) gene expression and tumor muta-

tional burden (TMB). AD2 and AD4 subtypes were associated with poten-

tial resistance and response to immunotherapy, respectively. Thus, analysis

of transcriptomic data could improve patient stratification beyond geno-

mics and single biomarkers (i.e., PD-L1 and TMB) and may lay the foun-

dation for more personalized treatment avenues, especially in driver-

negative LUAD.
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1. Introduction

Lung cancer is a major global health problem. Accord-

ing to the World Health Organization (WHO), lung

cancer was the leading cause of cancer-related deaths

and the second most frequently diagnosed cancer in

2020 [1]. Regarding histological subtypes, lung adeno-

carcinoma (LUAD) is the most prevalent histological

entity, accounting for almost 55% of the diagnoses [2].

In terms of clinical management, chemotherapy alone

or in combination with immunotherapy is considered

the standard of care for patients with advanced LUAD

not harboring actionable oncogenic alterations [3].

Additionally, recent advances in high-throughput

genomic technologies for molecular profiling have

accelerated the evolution of personalized medicine

[4,5]. For instance, the current management of LUAD

requires molecular testing to detect actionable genomic

alterations predicting clinical benefit to targeted thera-

pies [3]. However, patients with advanced LUAD have

heterogeneous responses and poor survival outcomes

(5-year survival rate = 21%) [6]. These differences

between patient response rates have been attributed to

tumor burden, comorbidities, functional status, or

tumor heterogeneity, such as different immune land-

scapes, activation of signaling pathways, and presence

of different cell types [7]. Thus, improving LUAD

patients’ stratification beyond genomic testing could

move forward precision medicine, but is a major

challenge.

Given the limitations of genomics to capture the

complexity of LUAD and to predict response to spe-

cific treatments, innovative approaches are needed to

improve clinical outcome. In this regard, gene expres-

sion profiling has already been used to further stratify

LUAD into different molecular subtypes [8]. However,

the clinical relevance of those classifications was ques-

tioned due to technical intrinsic limitations, inconsis-

tencies between studies, and the lack of association

with potential therapeutic strategies.

The aim of our study was to develop a novel LUAD

classification based on transcriptomics able to improve

patients’ stratification beyond the current histological

and genomic-based classifications. For this purpose,

we integrated transcriptional profiles from more than

4500 LUAD. To the best of our knowledge, this is the

largest study defining transcriptional LUAD subtypes

[8]. In addition, unlike previous attempts relying on

measuring individual gene expression, we assessed the

activity of a set of well-defined molecular pathways,

which makes it less prone to variability [9,10]. Based

on this, a computational framework was developed to

stratify LUAD into different subtypes based on the

expression of specific signaling pathways. These sub-

types were further characterized at different levels (i.e.,

clinical covariates, genomic features, and immune

landscape). Finally, the analysis of publicly available

large-scale cancer cell line drug screening projects

revealed potential therapeutic vulnerabilities for each

group of LUAD tumors [11–14]. Overall, this classifi-

cation may delineate novel therapeutic strategies

beyond current genomic-based targeted therapies,

which could be especially relevant in the case of

driver-negative LUAD patients.

2. Materials and methods

2.1. Datasets and gene expression data

processing

LUAD transcriptional profiles were obtained from

Gene Expression Omnibus (GEO), Lung Cancer

Explorer, and ArrayExpress public data archives [15–
17]. Subsequent filters were applied to keep human

LUAD tumor samples, exclude datasets with less than

10 samples, and remove those studies using platforms

that do not cover a significant part of the transcrip-

tome (i.e., targeted panels covering a smaller subset of

genes). Overall, 56 datasets were included in this anal-

ysis, constituting more than 4500 LUAD samples

(Table S1, Fig. S1).

Raw transcriptomics data were downloaded when

available and later processed using the recommended

method for each microarray platform (i.e., Affymetrix

(Santa Clara, CA, USA), Agilent (Santa Clara, CA,

USA), and Illumina (San Diego, CA, USA).

2.1.1. Affymetrix platforms data processing

Raw expression data from two-color Affymetrix plat-

forms (Table S1) were processed using robust multiar-

ray average algorithm (RMA) implemented in the

AFFY package version 1.56 available through the BIO-

CONDUCTOR software project (https://bioconductor.org).

Probeset-to-gene mapping was done using BioMart

web services via BIOMART R package version 2.34 [18],

selecting the most expressed probe as representative of

gene expression when multiple mapping probes

occurred to avoid duplicated genes.

2.1.2. Two-color Agilent and CHUGAI platforms data

processing

Raw expression data from two-color Agilent and

CHUGAI platforms (Table S1) were processed using
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minimum background correction method as implemen-

ted in the backgroundCorrection function of the LIMMA

package available in R (https://www.r-project.org/).

Background correction accounts for possible biases

related to non-specific binding or spatial heterogeneity

across the array. The next step in the normalization

process is correcting for dye biases due to the presence

of two colors in the array. This correction was per-

formed using the loess method from the normalize-

WithinArrays function also included in the LIMMA

package. This method returns a matrix of corrected M

and A values using the following expressions:

M ¼ log2 R=Gð Þ ¼ log2 Rð Þ�log2 Gð Þ,

A ¼ 1

2
log2 RGð Þ ¼ 1

2
log2 Rð Þ þ log2 Gð Þð Þ:

The idea is to scale the log-ratios to have the same

median absolute deviation (MAD) across samples. After

normalizing each sample for dye biases, a normalization

step between samples is needed to make them compara-

ble with each other. This is achieved using the quantile

method of the normalizeBetweenArrays function within

the R LIMMA package. Finally, the normalized intensity

values for the sample channel (i.e., red or green depend-

ing on the array design) are retrieved by solving the

above-mentioned expressions, using the already calcu-

lated and normalizedM and A values.

The probe-to-gene annotation was performed using

the R package BIOMART version 2.34. When multiple

probes mapped to the same gene, the most expressed

one was selected to obtain a single representative

probe for each gene. Then, HGNCHELPER package was

used for the identification and correction of obsolete

or invalid gene symbols to harmonize all datasets.

2.1.3. Illumina Beadchip Platforms data processing

Raw expression data from Illumina BeadChip Platforms

(Table S1) were processed using the RMA background

correction method as implemented in the background-

Correction function of the LIMMA package. Secondly,

since this is a single-channel platform there is no need

to perform a within-sample normalization, although

between-sample normalization is still required. In this

case, this is achieved using the quantile normalization

method of the normalizeBetweenArrays function within

the LIMMA package. The quantile approach makes the

distribution of microarray signals the same between all

arrays, making samples comparable between them.

Then, HGNCHELPER package was used for the identifica-

tion and correction of obsolete or invalid gene symbols

to harmonize all datasets.

The probeset-to-gene annotation was performed

using the R package BIOMART version 2.34. When mul-

tiple probes mapped to the same gene, the most

expressed one was selected to obtain a single represen-

tative probe for each gene. Then, HGNCHELPER package

was used for the identification and correction of obso-

lete or invalid gene symbols to harmonize all datasets.

For the case of TCGA-LUAD RNA-seq dataset,

transcripts per million processed data were down-

loaded from TCGA2BED FTP repository [19].

2.2. LUAD consensus pathway transcriptional

subtype definition framework

LUAD consensus transcriptional subtype classification

framework is depicted in Fig. S2. Briefly, Gene Set

Variation Analysis (GSVA) algorithm was used to

evaluate the activity level of the 50 pathways included

in the MSigDB hallmarks collection in each dataset,

using a k-fold approach (k = 5) across 100 iterations

[9,10]. Uniform Manifold Approximation and Projec-

tion (UMAP) dimension reduction method and walk-

trap clustering (Euclidean distance) were subsequently

conducted on the previously obtained GSVA scores

matrices to identify potential LUAD subpopulations

[20]. Summary metrics for each potential LUAD sub-

population were calculated and used to establish final

LUAD consensus subtypes using UMAP and walktrap

method. Finally, tumor samples were assigned to the

subtype to which they had been assigned the majority

of times across the classification framework.

2.3. LUAD molecular subtype characterization

2.3.1. Clinicopathological covariates and overall

survival

Association with clinicopathological variables (e.g., age,

sex, stage, smoking status, and presence/absence genomic

alterations) was assessed using COMPAREGROUPS package

for R (V.4.2.0) [21]. Data regarding the presence/absence

of LUAD oncogenic alterations (e.g., EGFR, KRAS,

ALK, TP53, and STK11) were collected from the clinical

data of the datasets included in this study when available.

The Cox proportional hazards models adjusted for

age, sex, stage, smoking status, and study were used to

test for the impact of our classification on overall sur-

vival (OS) rate.

2.3.2. Genomic characterization

TCGA-LUAD dataset [18] had available somatic alter-

ations data for evaluating tumor mutational burden
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(TMB) and COSMIC v3 mutational signatures [22].

For TMB, the total number of alterations per sample

was assessed excluding synonymous variants. These

values were then divided by the number of megabases

(Mb) covered by the TCGA-LUAD whole-exome

sequencing (WES) panel to obtain the number of

mutations per Mb or TMB. Using somatic single

nucleotide variants (SNV), mutational signatures were

inferred using the R package SIGPROFILEREXTRACTORR

[23].

Copy number alteration (CNA) levels were also

evaluated in the TCGA-LUAD dataset [18]. Finally,

genome instability was assessed using previously calcu-

lated DNA damage repair (DDR) deficiency scores in

the TCGA-LUAD dataset [24].

2.3.3. Impact of the LUAD molecular classification on

the immune landscape and immunotherapy response

The immune infiltrate composition of each LUAD

sample was inferred using GSVA algorithm [10]. Gene

signatures of the 21 evaluated immune fractions were

obtained from a previous study [25]. Due to GSVA

methodological constraints, single-gene signatures were

replaced by their multi-gene counterparts published in

a different study [26]. In addition, we also used specific

cell categories when available, instead of the more

generic supercategory (i.e., M1 macrophages and M2

macrophages instead of the broader macrophages cate-

gory). For each cell type, we calculated the percentage

of enriched tumors. Median GSVA scores for each cell

fraction were used as the cut-off to define whether a

sample is enriched in a specific cell type.

The status of a set of immune checkpoint inhibitors

(ICI), activators (ICA), and T-cell effector and exhaus-

tion markers was also evaluated [27,28]. For each gene

expression dataset, the median gene expression value

of each marker was used as the cut-off point for decid-

ing whether a sample is enriched for a specific immune

biomarker.

The predicted response to immunotherapy treatment

was derived from the Tumor Immune Dysfunction and

Exclusion (TIDE) scores already calculated for

TCGA-LUAD dataset [29]. TIDE-positive scores

indicate that a sample is less likely to respond to

immunotherapy, because of the presence of immuno-

suppressive signals, whereas negative scores indicate

potential response to immune checkpoint treatment

(i.e., anti-CTLA4 and anti-PD-1). Binomial generalized

linear models adjusted for PD-L1 gene expression and

TMB values were used to test the impact of our classi-

fication on potential immunotherapy response.

2.4. Consensus transcriptional subtype

independent validation

Subtyping of new samples in the CPTAC-3

validation cohort was inferred using the predict func-

tion of the umap R package version 0.2.7.0 and a k-

nearest-neighbors approximation [20,30]. In summary,

for each sample we obtained GSVA scores of the

same 50 molecular pathways used to establish the

original classification of LUAD tumors. This step

was performed following the same steps previously

described for the LUAD consensus pathway tran-

scriptional subtype definition (fivefold, 100 iterations).

Then, for each iteration, these GSVA scores were

passed as an input to the predict function that pro-

duces 2D coordinates to map new samples onto the

consensus map of LUAD tumors. New samples’ sub-

type was predicted based on the most frequent label

of the closest neighbors in the original classification.

Therefore, after 100 iterations, each validation sample

had 100 putative group assignations. Finally, samples

were allocated to the AD subtype to which they had

been assigned the majority of times throughout the

classification process.

2.5. Identification of potential therapeutic

vulnerabilities

Drug sensitivity data from three large pharmacoge-

nomics studies were integrated to identify potential

therapeutic vulnerabilities for each subtype using

PHARMACOGX BIOCONDUCTOR/R package [31]. First,

LUAD cancer cell lines (LUAD-CCL) were classified

based on the primary tumor’s classification using the

predict function within umap R package as previously

described for the cancer cell lines classification. Area

above the curve (AAC) sensitivity measures for each

drug and cell line were used to identify potential ther-

apeutic vulnerabilities for the different subtypes.

Importantly, PharmacoGx AAC values were normal-

ized by the concentration range of the experiment in

each study and take values between [0, 1]. Thus, the

greater the AAC the more effective is a drug against

a specific cell line. Subtypes were considered as

potentially sensitive to the treatment if the average

AAC value for the cell lines classified within a certain

group was greater than the mean AAC plus 2 stan-

dard deviations for the drugs assessed in at least 2

out of the 3 pharmacogenomics studies. Also, average

AACs were only calculated if the treatment had been

tested in at least 2 different cell lines within a sub-

type and study.
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3. Results

3.1. Consensus classification based on

expression of 50 landmark molecular pathways

yielded seven transcriptional LUAD subtypes

GSVA was conducted on more than 4500 LUAD in

order to establish a consensus transcriptional classifica-

tion based on the activity levels of 50 signaling path-

ways (see Section 2; Table S1) [9,10]. Using this

approach, we identified seven LUAD transcriptional-

based subtypes, labeled as AD1-7 (Fig. 1A). These

subtypes were not evenly distributed throughout the

whole set of tumors analyzed in this study (Fig. 2B).

The most represented subtype was AD5 accounting

for 20.95% of the tumors, whereas AD7 represented

only 2.86% of the tumors.

Based on the relative activity of the signaling molecu-

lar pathways, each group displayed a specific transcrip-

tional fingerprint (Fig. 1C, Fig. S3). A summary of the

relatively upregulated and downregulated pathways

within each LUAD subtype is depicted in Table 1.

3.2. LUAD transcriptional subtypes are

correlated with clinicopathological covariates,

distinct genomic profile, and overall survival

We evaluated the correlation of these subgroups with

clinicopathological characteristics and whether they

are represented across all the datasets included in the

study (Table 2, Table S2). We observed a significant

association with all evaluated covariates. Subtypes

were represented in the different studies, although

some subtypes may be more represented and underrep-

resented in certain datasets, most likely due to intrinsic

biases of retrospective studies.

We also evaluated the association of the LUAD

subtypes with the presence of clinically relevant driver

oncogenic alterations (Table 2). EGFR mutations

occurred more frequently in AD1, AD4, and AD7

groups, while TP53 mutations were more common in

AD2 and AD6 subtypes, and STK11 alterations were

enriched in AD1 and AD2 subtypes. KRAS mutations

and ALK rearrangements were not correlated with any

of the subgroups.

We also assessed whether this classification was

associated with overall survival (OS) (Fig. 2, Fig. S4).

AD1, AD4, and AD5 patients were associated with

longer OS whereas, overall, AD2, AD3, AD6, and

AD7 showed worse survival outcomes. This analysis

was adjusted for the following covariates: age, gender,

tumor stage, smoking history, and dataset.

3.3. LUAD pathway transcriptional profiling-

based subtypes further subdivide previous

mRNA-based subtypes

We performed a comparison with the previous LUAD

mRNA-based consensus classification (bronchioid,

squamoid, and magnoid) first described by Hayes

et al. and later adopted by Wilkerson et al. and the

TCGA for further exploration [18,32,33] (Fig. S5).

Bronchioid mRNA subtype better aligned with AD1,

AD4, and AD5 subtypes, all of them showing lower

expression of proliferation-related pathways (Fig. 1C).

AD1, AD4, and AD5 had consistently better OS as

described for bronchioid tumors, when compared to

squamoid or magnoid subtypes. Also, bronchioid sub-

type was enriched for EGFR mutations, which was

also observed in AD1 and AD4 subtypes. Squamoid

mRNA subtypes were for the most part associated

with AD3, AD5, and AD6 subtypes, all of them show-

ing higher expression of immune-related functions

(Fig. 1C). This correlates with the higher immune cells

infiltration previously found for squamoid tumors [34].

Moreover, AD6 was found to be enriched in TP53

mutations; a trait also described for squamoid mRNA

subtype. Finally, magnoid subtype mainly overlapped

with AD2 proliferative subtype, which was enriched

for TP53/STK11 mutations (Fig. 1C, Table 2). Over-

all, these results demonstrate concordance among both

LUAD classifications, but previous mRNA-based sub-

types were further subdivided by using our approach.

3.4. LUAD transcriptional subtypes were also

correlated with tumor mutational burden and

DNA damage

Using the TCGA-LUAD dataset, LUAD subtypes

were further characterized at the genomic level [18].

First, using whole-exome sequencing data we evaluated

potential differences in terms of TMB and mutational

signatures included in the COSMIC v3 collection

(Fig. 3A,B) [22]. TMB significantly differed among

LUAD transcriptional subtypes (Fig. 3A). AD2 and

AD6, which are also enriched for TP53 mutations,

had significantly higher TMB values when compared

to the rest of subtypes, except for AD7 (Table S3).

Concerning COSMIC mutational signatures, tobacco

and clock-like signatures were overrepresented across

LUAD subtypes (Fig. 3B). Notably, our results

showed a significant association between the subtypes

and the prevalence of mutational signatures SBS1

(clock-like), SBS4 (tobacco), and SBS13 (APOBEC

activity) (Table S4).
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Using TCGA-LUAD data [18], copy number alter-

ations (i.e., amplifications or deletions) were more

common in AD2 and AD6 subtypes compared to

the rest of the subtypes, except for AD7 (Fig. 3C,

Table S5). We also assessed the level of genomic

instability and DNA damage repair (DDR) capacity

according to these subgroups (Fig. 3D). Again, AD2

and AD6 samples showed significantly higher DDR

deficiency scores than the rest of subtypes

(Table S6).

Fig. 1. LUAD subtype pathway transcriptional landscape. (A) LUAD consensus map of pathway transcriptional profiling-based subpopula-

tions. Each dot represents the summary centroid of the different subpopulations identified during the classification process. Using UMAP

and walktrap clustering method with Euclidean distance on these centroids, seven different consensus groups, represented by different

colors, were identified based on the joint behavior of the 50 studied molecular pathways. (B) Barplots representing the distribution of LUAD

tumors across the seven transcriptional subtypes. (C) Heatmap representing relative activity levels (GSVA scores) of the 50 studied path-

ways (rows) in each of the 4573 LUAD tumor samples (columns) that were assigned to a consensus subtype. Red colors indicate higher rel-

ative activity of a pathway in a certain sample, whereas blue colors indicate lower relative activity of a pathway in a certain sample.
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Fig. 2. Overall survival by LUAD

subtype. Kaplan–Meier curves of

each of the identified pathway

transcriptional profiling-based LUAD

groups. Hazard ratios (HR) and

95% confidence intervals (95% CI)

come from a Cox proportional

hazards model adjusted for age,

sex, stage, smoking history, and

dataset. For this analysis, we used

the subset of datasets with

available survival data and complete

covariates information for the Cox

proportional hazards model (n = 10

datasets, n = 1515 samples).
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Table 1. Molecular pathway landscape across LUAD subtypes.

Consensus subtype Upregulated pathways Downregulated pathways

AD1 Metabolic pathways Angiogenesis

Epithelial–mesenchymal transition

Immune-related pathways

Cell cycle-related pathways

PI3K-AKT–MTOR signaling

AD2 DNA repair

Oxidative phosphorylation

Cell cycle-related pathways

Angiogenesis

Epithelial–mesenchymal transition

Immune-related pathways

Apoptosis

TGF-B signaling

Hedgehog/Notch signaling

IL2-STAT5 signaling

AD3 Angiogenesis

Epithelial–mesenchymal transition

Immune-related pathways

Metabolic pathways

Apoptosis

Hypoxia

Protein secretion

TP53 pathway

KRAS signaling

IL2-STAT5 signaling

TNFA via NFKB signaling

PI3K-AKT–MTOR signaling

TGF-B signaling

Notch signaling

MTORC1 signaling

AD4 DNA repair

Metabolic pathways

Apoptosis

Hypoxia

Protein secretion

Cell cycle-related pathways

KRAS signaling

PI3K-AKT–MTOR signaling

TGF-B signaling

MTORC1 signaling

Unfolded protein response

AD5 Immune system-related pathways

Apoptosis

TP53 pathway

IL2-STAT5 signaling

TNFA via NFKB signaling

Hedgehog signaling

DNA repair

Metabolic pathways

Cell cycle-related pathways

Unfolded protein response

AD6 DNA repair

Interferon-gamma

Interferon alpha

Metabolic pathways

Cell cycle-related pathways

PI3K-AKT–MTOR signaling

MTORC1 signaling

Unfolded protein response

Hedgehog signaling

WNT B-catenin signaling

AD7 Estrogen response

Notch signaling
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3.5. LUAD molecular subtypes had distinct

immune cells infiltration patterns and were

associated with different immunotherapy

responses

The immune infiltrate composition of each sample was

quantified by applying GSVA on 21 immune cell-

specific gene signatures (Fig. 4A, Fig. S6) [25]. On

the one hand, AD3 and AD5 tumors displayed higher

infiltration of most immune cells, including both

immune active and immunosuppressive categories.

Nevertheless, there were also some distinctive features

between AD3 and AD5 LUAD subtypes. For instance,

AD3 subtype comprised a higher percentage of tumors

with high Th2 infiltration when compared to AD5.

AD4 subtype was preferentially infiltrated by innate

immune cells (i.e., NK cells, neutrophils, eosinophils,

and mast cells) and some specific T-cell populations

(i.e., follicular T helper cells, T effector memory cells,

T effector memory cells, T gamma-delta cells, and T

helper 17). However, in AD4 subtype the presence of

immunosuppressive cells (i.e., macrophages M2 and T

regulatory cells) was lower than in other highly infil-

trated subtypes (i.e., AD3, AD5, and AD6). AD6

tumors appeared to be more frequently enriched by T-

cell populations, both with cytotoxic and immunosup-

pressive roles (i.e., cytotoxic T cells, T regulatory, T

helper 1, and T helper 2). AD6 subtype was also com-

monly infiltrated by other immunosuppressive cells

(i.e., macrophages) and other innate cells (i.e., active

dendritic cells and CD56dim NK cells). Finally, AD2

was, overall, the least infiltrated subtype compatible

with an immune desert phenotype.

Regarding immune checkpoint and T-cell expression

markers, AD3, AD5, and AD6 were also enriched in

tumors showing higher expression levels of a wide

variety of the evaluated biomarkers, followed by AD4

(Fig. 4B, Fig. S7).

Finally, we also evaluated the utility of our LUAD

subtypes to predict the predisposition to immunotherapy

Table 2. Correlation of clinicopathological variables with LUAD subtypes. The number of samples with available information in each case is

depicted in the N column. MUT, mutated; WT, wildtype.

N

AD1 (%) AD2 (%) AD3 (%) AD4 (%) AD5 (%) AD6 (%) AD7 (%)

PN = 766 N = 851 N = 473 N = 598 N = 952 N = 774 N = 129

Sex, N (%) 3906 < 0.001

M 324 (50.47) 427 (56.86) 217 (51.91) 223 (42.72) 356 (43.41) 331 (50.46) 48 (49.48)

F 318 (49.53) 324 (43.14) 201 (48.09) 299 (57.28) 464 (56.59) 325 (49.54) 49 (50.52)

Age, N (%) 3609 < 0.001

≤ 50 55 (9.18) 77 (11.16) 33 (8.62) 34 (7.02) 61 (8.07) 61 (10.13) 14 (14.74)

> 50–65 245 (40.90) 325 (47.10) 148 (38.64) 198 (40.91) 282 (37.30) 271 (45.02) 41 (43.16)

> 65 299 (49.92) 288 (41.74) 202 (52.74) 252 (52.07) 413 (54.63) 270 (44.85) 40 (42.11)

Stage, N (%) 3128 0.005

Early-stage (I–II) 472 (86.61) 493 (80.42) 260 (81.00) 319 (85.07) 578 (85.50) 408 (79.53) 67 (78.82)

Late-stage (III–IV) 73 (13.39) 120 (19.58) 61 (19.00) 56 (14.93) 98 (14.50) 105 (20.47) 18 (21.18)

Smoking history, N (%) 2788 < 0.001

Never smoker 152 (30.83) 64 (12.19) 56 (20.29) 99 (26.83) 164 (27.89) 81 (17.16) 16 (24.62)

Smoker 341 (69.17) 461 (87.81) 220 (79.71) 270 (73.17) 424 (72.11) 391 (82.84) 49 (75.38)

EGFR mutation, N (%) 1537 < 0.001

WT 185 (62.93) 231 (79.66) 105 (76.09) 111 (63.43) 248 (71.06) 195 (77.38) 24 (61.54)

MUT 109 (37.07) 59 (20.34) 33 (23.91) 64 (36.57) 101 (28.94) 57 (22.62) 15 (38.46)

KRAS mutation, N (%) 1360 0.239

WT 184 (72.73) 173 (70.90) 79 (63.71) 124 (78.48) 225 (72.12) 169 (73.48) 28 (71.79)

MUT 69 (27.27) 71 (29.10) 45 (36.29) 34 (21.52) 87 (27.88) 61 (26.52) 11 (28.21)

ALK translocation, N (%) 456 0.064

WT 99 (94.29) 67 (83.75) 24 (85.71) 52 (85.25) 83 (91.21) 76 (96.20) 10 (83.33)

MUT 6 (5.71) 13 (16.25) 4 (14.29) 9 (14.75) 8 (8.79) 3 (3.80) 2 (16.67)

TP53 mutation, N (%) 849 < 0.001

WT 128 (85.91) 83 (50.30) 65 (78.31) 69 (75.00) 171 (85.93) 80 (56.34) 14 (73.68)

MUT 21 (14.09) 82 (49.70) 18 (21.69) 23 (25.00) 28 (14.07) 62 (43.66) 5 (26.32)

STK11 mutation, N (%) 598 < 0.001

WT 80 (75.47) 87 (73.11) 53 (92.98) 63 (92.65) 128 (91.43) 87 (91.58) 12 (92.31)

MUT 26 (24.53) 32 (26.89) 4 (7.02) 5 (7.35) 12 (8.57) 8 (8.42) 1 (7.69)
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response beyond PD-L1 and TMB biomarkers using pre-

viously calculated TIDE scores in the TCGA-LUAD

dataset [29]. We used a likelihood ratio test to compare

two binomial generalized linear models (GLM) predict-

ing immunotherapy response (i.e., yes or no). The first

GLM included PD-L1 gene expression (i.e., low and high

based on median cut-off) and TMB values as indepen-

dent variables, and the second GLM was identical but

also considering LUAD subtype as a predictor. Results

showed that LUAD subtype further contributes to

predict the probability of immunotherapy response

(P = 0.0003). Moreover, and although not used as a

stratification criterion in NSCLC in clinical trials or in

the clinical practice, we also added PD-1 expression (i.e.,

low and high based on median cut-off) as a proxy of T-

cell infiltration to the model. Again, the results showed

that our classification further contributes to predict the

probability of immunotherapy response (P < 0.001).

Given this outcome, for each subtype, we assessed the

likelihood of immunotherapy response when compared

AD1 AD2 AD3 AD4 AD5 AD6 AD7

SBS1 (clock−like)

SBS2 (APOBEC activity)

SBS4 (Tobacco smoking)

SBS5 (clock−like)

SBS13 (APOBEC activity)

SBS15 (MMR deficiency)

Consensus subtype

% samples with the signature

0

50

100

(A) (B)

(C) (D)

Fig. 3. Genomic characterization in the TCGA-LUAD set. (A) Tumor mutational burden (TMB) across LUAD consensus subtypes. Each dot

represents the TMB value for a specific sample. The black segment represents the median TMB value for each LUAD subtype. The horizon-

tal dotted line represents 10 mutations�Mb�1 TMB value, which is a common cut-off for designating TMB high or low. Kruskal–Wallis test

was used to assess potential differences regarding TMB between LUAD subtypes. P value was corrected using the false discovery rate

(FDR) multiple-comparison correction method. (B) Heatmap representing the percentage of positive samples for each specific COSMIC

mutational signature (rows) in each LUAD subtype (columns). Samples were designated as positive if they harbored at least one mutation

associated with a certain mutational signature. (C) Boxplots of the copy number alterations burden across LUAD subtypes. Each dot repre-

sents the number of altered genes per sample. Kruskal–Wallis test was used to assess potential differences regarding the number of copy

number altered genes between LUAD subtypes. P value was corrected using the false discovery rate (FDR) multiple-comparison correction

method. (D) Boxplots of the DNA damage repair (DDR) deficiency score distribution across LUAD subgroups. Each dot represents the DDR

score per sample. Kruskal–Wallis test was used to assess potential differences regarding DDR scores between LUAD subtypes. P value

was corrected using the false discovery rate (FDR) multiple-comparison correction method. For A–D, only the TCGA-LUAD dataset was used

as it is the only one with associated transcriptomics and genomics data. Number of samples of each subtype are: AD1: 90, AD2: 114, AD3:

34, AD4: 66, AD5: 113, AD6: 85, AD7: 12.
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to the tumors in any other subtypes (Fig. 4C). Tumors

within AD4 subtype were found to be 2.9 times more

likely to respond to immunotherapy compared to the

tumors classified in any other subtype (34.4% predicted

responders in AD4 [n = 64] vs 15.2% in other subtypes

[n = 422]). Despite being among the most infiltrated sub-

types and showing high PD-L1 gene expression (Fig. 4A,

B), only 12.5% of AD3 tumors were predicted as poten-

tial responders. Also, in correlation with its immune

excluded phenotype, AD2 tumors were 80% less likely to

respond to immunotherapy than other subtypes (4.76%

predicted responders in AD2 [n = 105] vs 21.2% in other

subtypes [n = 381]).

3.6. LUAD consensus subtype independent

validation

We conducted an independent validation of the

LUAD subtypes using CPTAC-3 LUAD dataset [30].

The activity level of 50 molecular pathways was
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Fig. 4. Immune characterization

and association with

immunotherapy response. (A)

Heatmap representing the

percentage of samples showing

high relative infiltration of 21

evaluated immune cell types.

Median immune cell abundance

GSVA score values were used as a

cut-off to designate if a sample is

enriched for a specific immune cell.

Different immune cell categories

are represented with different

colors on the left side of the

heatmap. (B) Heatmap representing

the percentage of samples of

samples with high expression of a

set of immune-related biomarkers.

Median gene expression values for

each gene in each gene expression

dataset were used as a cut-off to

designate if a sample is enriched

for a specific biomarker. Different

immune marker categories are

represented with different colors

on the left side of the heatmap. (C)

Forest plot showing the odds

ratios, confidence intervals, and

FDR-adjusted P value for

immunotherapy response in each

LUAD subtype when compared to

all other subtypes. Odds ratio for

AD7 subtype could not be

calculated as 0 patients were

predicted as potential responders in

this subtype. A and B analysis

were performed considering all

gene expression datasets

(n = 4573 LUAD samples). For C,

we used pre-computed TIDE

scores for the TCGA-LUAD dataset

(n = 486, AD1: 86, AD2: 105, AD3:

32 AD4: 64, AD5: 106, AD6: 81,

AD7: 12).

463Molecular Oncology 18 (2024) 453–470 ª 2023 The Authors. Molecular Oncology published by John Wiley & Sons Ltd on behalf of

Federation of European Biochemical Societies.

S. Hijazo-Pechero et al. Transcriptomics lung adenocarcinoma classification



measured and mapped in 111 LUAD which were clas-

sified based on a k-nearest-neighbors algorithm

(Fig. 5A). All seven subtypes were predicted in this

independent dataset, confirming the robustness of the

classification. Moreover, the pathway transcriptional

footprint of each subtype is conserved between the

original and the validation datasets (Fig. S8). To fur-

ther prove the validity of the predictions, we explored

whether the association between the LUAD subtype

and copy number alterations, and TMB is conserved

in the validation set (Fig. 5B,C). Notably, subtype

TMB and copy number alterations rate are highly con-

cordant between the original and validation sets, con-

firming that previously found associations at the

genomic level are maintained (Figs 3A,C and 5B,C).

3.7. Analysis of drug sensitivity in in vitro data

revealed potential therapeutic vulnerabilities for

the subtypes

Data from three large-scale pharmacogenomics studies

conducted on cancer cell lines were integrated to

explore potential therapeutic vulnerabilities in LUAD.

First, LUAD-CCLs were classified according to the

primary tumors’ classification, and then, we assessed

the impact of our classification on the response to spe-

cific compounds (Fig. 6, Fig. S9).

LUAD-CCL subtypes were considered potentially

sensitive to a specific drug whenever average AAC

values were greater than the mean plus 2 standard devia-

tions of all drugs AAC values in at least 2 out of the 3

evaluated studies. Out of 239 evaluated drugs (i.e., num-

ber of drugs tested in at least two studies), only 5 were

found to be consistently effective (i.e., AAC values

above threshold) in at least two studies for some of the

subtypes and not the others. Overall, cells assigned to

AD2 showed potential sensitivity to vincristine and gem-

citabine chemotherapies, which correlates with its prolif-

erative nature. Also, cell lines classified in AD3, AD6,

and AD7 subtypes, also showing high cell cycle activity,

were found to be potentially sensitive to gemcitabine

treatment. Interestingly, AZD7762 CHK1 inhibitor

could be potentially suitable for AD2 cell lines, which

correlates with the higher genome instability described

for AD2 subtype. Despite a lower cycling nature of sub-

type AD1 and AD4, cell lines classified within these sub-

types appeared to be potentially sensitive to dinaciclib,

based on these data.

4. Discussion

In this study, we integrated the transcriptional profiles

of more than 4500 LUAD, and based on the activity

levels of a set of 50 molecular pathways, we were able

to identify seven LUAD molecular subtypes. Impor-

tantly, the number of samples included in this study

further exceeds that of previous studies, covering the

largest part of the molecular diversity of LUAD [8].

This classification was associated with survival out-

comes and was correlated with relevant clinical charac-

teristics. Besides, at the genomic level, LUAD

transcriptional subtypes were associated with the pres-

ence of oncogenic driver alterations, mutational signa-

tures, CNA burden, and DDR capacity. These results

support the previously described transcriptional het-

erogeneity that exists within LUAD histological entity

[8]. Furthermore, the integration of drug sensitivity

data from three large pharmacogenomics studies unra-

veled potential therapeutic vulnerabilities for the sub-

types. Finally, the transcriptional subtypes showed

distinct patterns in terms of immune cells infiltration

and immune-related biomarkers expression and were

able to predict immune response in addition to PD-L1

gene expression and TMB.

Since early 2000s, there have been several efforts to

define clinically relevant LUAD transcriptional sub-

types, which resulted in various different classifica-

tions [8,30,35,36]. Despite all these studies, LUAD

subtypes have never been translated into the clinical

setting. Reasons for this include intrinsic technical

and analytical limitations, such as low overlap

between the gene signatures, probably due to intrinsic

technical and biological variability of individual gene

expression levels. In our work, we focused on the

activity levels of a set of established molecular path-

ways rather than in the expression of individual

genes. This approach is likely to reduce the effect of

the stochastic sources of variability to which multiple

single-gene measures are subjected [9]. Moreover, the

method used for measuring the pathway activity

(GSVA algorithm) is able to overcome batch effects

compared with other deconvolution methods [10,37].

Importantly, we were able to validate our classifica-

tion framework in an independent set of samples [30].

This approach would therefore be capable to accu-

rately classify new prospective samples into one of

the specific transcriptional subtypes.

Also, we evaluated the correspondence between the

widely accepted Hayes et al. mRNA subtypes and

the present classification [21,32,33]. In summary, we

found that, in most cases, our pathway transcriptional

profiling-based subtypes further stratified the ones pro-

posed by Hayes et al., based on individual genes

expression, suggesting a higher resolution of our classi-

fication to deal with the molecular heterogeneity that

exists within LUAD.
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The lack of association of previously described

LUAD intrinsic subtypes with available therapeutic

strategies prevented their clinical use. We tried to

overcome this limitation by integrating drug sensitivity

data from in vitro pharmacogenomics studies [31].

These databases have greater drug coverage compared
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Fig. 5. LUAD pathway transcriptional profiling-based classification independent validation. (A) New samples from the CPTAC-3 LUAD dataset

were mapped on the previously established LUAD classification. New samples’ subtype status was decided based on the most frequent

label of the 51 nearest neighbors of the original classification. Colored circles represent samples used in the original set, whereas triangles

represent new CPTAC-3 validation set samples (n = 105). (B) Boxplot representing tumor mutational burden (TMB) values across newly

classified CPTAC-3 LUAD samples. Each dot represents the TMB value per sample (AD1:14, AD2: 18, AD3: 10, AD4: 17, AD5: 16, AD6: 17,

AD7: 13). Kruskal–Wallis test was used to assess potential differences regarding TMB between LUAD subtypes. P value was corrected

using the false discovery rate (FDR) multiple-comparison correction method. (C) Boxplot representing copy number burden across newly
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with other available ones such as CMap, which has

been used for similar purposes [35]. Although signifi-

cant discrepancies can exist between drug response

results obtained from cancer cell lines and clinical

response in patients, we were able to identify some

potential drug candidates for the different LUAD sub-

types, in line with their molecular characteristics. In

this way, chemotherapy alone, or combined with

immunotherapy, is the cornerstone for patients with

driver-negative LUAD. However, clinical responses

upon chemotherapy regimens are highly heterogeneous

and underscore the need for improving patient selec-

tion [38]. In our work, we observed that AD2, AD3,

AD6, and AD7 cell lines might benefit from vincristine

and gemcitabine chemotherapies. Moreover, cancer

cells classified as AD2 showed potential sensitivity to

AZD7762 CHK1 inhibitor, which correlates with the

higher genome instability seen in this subtype.

Genomic profiling is crucial in LUAD tumors to

guide the most appropriate treatment based on the

detection of actionable oncogenic alterations. In fact,

this study does not intend to replace the current classi-

fication based on genomic profiling. However, there is

a non-negligible percentage of patients lacking tracta-

ble genomic alterations, and even patients with onco-

genic drivers show heterogeneous responses to targeted

therapies for reasons that remain unclear, and all

patients will eventually develop treatment resistance

[39]. Our results highlight the significant heterogeneity

of this disease as patients with the same mutational

event were found to be distributed across all subtypes,

being KRAS mutant LUAD the most heterogeneous

entity. In addition to the role of concurrent genomic

alterations, differences in the activation of transcrip-

tional pathways could explain that patients harboring

identical driver alterations might have distinct clinical

outcomes upon targeted therapy. Conversely, the fact

that tumors with different driver alterations coexist in

the same transcriptional subtype suggests that different

oncogenic mutations may give rise to similar transcrip-

tional phenotypes, which could benefit from similar

combinatorial strategies. Therefore, the implementa-

tion of new methodologies beyond genomic testing,

such as those based on gene expression, could help to

deliver more precise and innovative treatments

to patients with LUAD, specially in those patients

without actionable genomic alterations or that have

progressed frontline chemoimmunotherapy.

Immunotherapy alone or in combination with

chemotherapy has become the standard of care for

driver-negative metastatic LUAD [3]. However, dura-

ble clinical benefit is observed only in a reduced frac-

tion of patients (< 20%) [40]. Previous studies have

shown that TMB or PD-L1 expression cannot accu-

rately predict long-term benefit in all patients [41]. The

improvement of patient selection and the definition of

rational combinations are therefore an unmet clinical

need. Transcriptomic data could provide clinically
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relevant information beyond individual markers. In

this regard, our results showed that AD2, despite hav-

ing high TMB was an immune cold subtype, and was

80% less likely to respond to immunotherapy than

tumors classified in other subtypes. This result is con-

cordant with the findings of a previous study that also

identified a LUAD subtype with high TMB but no

apparent immune infiltration [35]. Overall, these results

underline the limitation of TMB to predict potential

response to immunotherapy in LUAD [42]. We also

found that although most patients classified in AD3

subtype showed higher cytotoxic T-cell infiltration and

PD-L1 gene overexpression (CD274), they were also

unlikely to respond to ICI therapy according to TIDE

scores (12% patients were classified as responders in

AD3) [43]. AD3 tumors not only co-express a wide

variety of immune checkpoint inhibitors and T-cell

exhaustion markers but also showed high infiltration

of immunosuppressive cells, such as M2 macrophages

and T regulatory cells, which could contribute to

intrinsic resistance to immunotherapy. Thus,

macrophage-targeted therapy could be a potential

solution for improving AD3 tumor response [44]. Also,

AD3 shows relatively high TGF-β signaling activity,

which has previously been associated with lack of

response to immunotherapy [45]. For this reason,

rational combinations of ICI and immune cell-specific

targeted therapies could probably improve clinical out-

comes in solid tumors. However, most clinical trials

are not yet selecting patients based on the immune

contexture [46,47]. Tumors classified in AD4 subtype

were 2.9 times more likely to respond to immunother-

apy than tumors classified in other subtypes. These

tumors showed infiltration of cytotoxic T cells and

other cells involved in tumor destruction (i.e., B cells,

NK cells, diverse types of T cells, etc.) and lower infil-

tration of immunosuppressive cells (e.g., T regulatory

cells, macrophages M2, etc.), potentially constituting a

less immune evasive microenvironment. Although fur-

ther validation through other techniques that provide

more cellular resolution (i.e., scRNA-seq) would be

needed, these results underscore the need to compre-

hensively characterize the immune contexture, along

with conventional single biomarkers (i.e., PD-L1 and

TMB), to perform an accurate patient stratification

and deliver tailored and effective treatment strategies

for advanced LUAD.

Despite all the obtained results, our study has some

intrinsic limitations that must be acknowledged. This

is a retrospective analysis of multiple microarray and

RNA-seq gene expression studies, which rely on fresh

tissue biopsies. Thus, further research is needed

towards the implementation of this classification in

formalin-fixed paraffin-embedded samples, which are

routinely available in the clinical setting. For instance,

we believe that with the incorporation of new profiling

technologies, such as HTG EdgeSeq, which allows

whole-transcriptome gene expression profiling in FFPE

samples, it will be possible to evaluate the clinical rele-

vance of our framework using clinical samples. More-

over, although later validated in the CPTAC-3 dataset,

results regarding the association with TMB and CNA

were based exclusively on the TCGA-LUAD dataset,

as the rest of the studies did not have associated WES

or CNA data. Most studies included patients who

were surgically resected and did not receive systemic

therapy, or this information was not available. For

instance, this is particularly relevant for the results

regarding immunotherapy response predictions, which

should be further validated in retrospective and pro-

spective studies of patients with LUAD treated with

ICI. Regarding cancer cell lines drug sensitivity results,

potential drug candidates are based on in vitro data

and do not take into consideration the interplay

between cancer cells and TME. However, these models

are continuously used in preclinical research for similar

purposes (i.e., drug screening and hypothesis genera-

tion) and we believe that this exercise could be useful

to prioritize which compounds could be tested in more

advanced preclinical models (i.e., tumoroids and

patient-derived xenografts).

5. Conclusions

To sum up, we have presented and validated a robust

and clinically relevant classification of LUAD tumors,

based on the transcriptional activity levels of impor-

tant cellular pathways. To our knowledge, no previous

LUAD classification has been derived from such a

large sample size. Despite significant challenges, we

believe that the integration of transcriptomic and

genomic data could improve patient stratification

and may pave the way for guiding novel therapeutic

approaches in patients with LUAD.
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6. DISCUSSION 

6.1 Transcriptional profiling of molecular 

pathways yields a robust classification of lung 

adenocarcinoma and lung squamous cell 

carcinoma   

 

Clinical management of patients with NSCLC was mainly 

based on tumor staging and pathological diagnosis. However, 

during the last few years molecular subclassification and 

genomic profiling of tumors has become crucial, especially for 

patients diagnosed with lung adenocarcinoma. In this way, 

NSCLC classification has evolved from a morphological 

standpoint to a more granular categorization by incorporating 

molecular features and new knowledge from translational 

research. 

In this context, tumors are currently screened for specific 

genomic alterations that can predict survival benefit and 

sensitivity to targeted therapies. These genomic alterations are 

enriched in lung adenocarcinoma, but may be found in any 

histological subtype, and therefore, the presence of these 

mutations may have a greater impact on treatment decisions 

than the histological subtype alone. This personalized 

approach to treatment, also known as precision medicine, is 

becoming increasingly important in the management of 

NSCLC and other solid tumors (112). 
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DNA alterations do not fully capture the complexity of a tumor 

and its potential interactions with specific treatments. Tumors 

are dynamic entities composed of multiple cell types and 

microenvironments, and genetic mutations are only one aspect 

of their biology. We believe that to establish more precise and 

effective therapeutic approaches for NSCLC, tumors will have 

to be characterized in a more accurate and comprehensive 

way. This may include not only DNA sequencing but also 

analyzing the tumor's microenvironment, transcriptomics, 

epigenetics, and proteomics (59,67). 

In the context of cancer, the expression of specific genes can 

influence the behavior of tumor cells, including their growth, 

proliferation, migration, and resistance to therapy. 

Understanding the patterns of gene expression in tumor cells 

can provide insights into the underlying mechanisms driving 

the development and progression of cancer and can also guide 

the development of new therapies. In this way, since the 2000s 

many different research groups have implemented whole-

transcriptome gene expression profiling, coupled with 

bioinformatics analyses, to further classify NSCLC most 

represented histological subtypes (i.e., LUAD and LUSC). 

More interestingly, these intrinsic subtypes have also been 

shown to correlate with genomic features, different immune 

landscapes and have an impact on patients’ prognosis. 

However, despite all the efforts, LUAD and LUSC 

transcriptional-based classifications have never been 

translated into the clinical practice. The most important 
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limitations of previous transcriptome-based classifications of 

NSCLC were their low reproducibility and the lack of overlap 

between the gene signatures defining each tumor subtype 

(69).  

Our study included a broad range of more than 4,500 LUAD 

and 2,000 LUSC, and aimed to develop a bioinformatics 

framework that allows a reproducible and comprehensive 

classification of NSCLC. To our knowledge, no previous 

attempt of transcriptional-based classification has been 

derived from such a large set of samples.  

Previous LUAD and LUSC transcriptional-based classifications 

were mainly based on the expression levels of individual 

genes, which can be affected by multiple factors, like tissue 

sample selection, experimental variability, and the use of 

different sequencing platforms (69). In our work, we quantified 

the activity levels of 50 landmark molecular pathways in each 

tumor sample using Gene Set Variation Analysis (GSVA) 

method (68,113). By analyzing pathways instead of individual 

genes, the stochastic variation of single gene expression 

measures is less likely to affect the results. This is because the 

variation in the expression of one gene within a pathway is 

likely to be balanced out by the expression of other genes 

within the same pathway, which contributes to increase the 

robustness of the data (68). Also, one of the main advantages 

of GSVA is that it can be used to analyze gene expression data 

from multiple datasets, and it has been shown to be more 
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effective at reducing batch effects than other gene expression 

deconvolution methods (92).  

Nevertheless, GSVA scores are relative measures that depend 

on the number and the nature of the accompanying samples in 

the same dataset. In this context, we included a per dataset 

permutation-based procedure step across 100 iterations in our 

framework (see Methods section in both published 

articles). By randomly splitting each dataset in each iteration 

we reduce the impact of any potential sources of bias or 

dependence that may exist in the original data set. Notably, we 

were able to validate our classification using an independent 

set of primary tumor samples (i.e., CPTAC-LUAD and CPTAC-

LUSC datasets, respectively) and NSCLC-CCLs, used for the 

identification of potential drug candidates (59,67,102,106). 

This is important as it allows to confirm that the method is not 

just fitting to the original set of samples, but it could be tested 

and validated in prospective independent datasets. 

6.2 Pathway transcriptional profiling-based 

classification correlates and further subdivides 

widely accepted Wilkerson et al.’s mRNA-based 

subtypes 

The Wilkerson et al. LUSC and LUAD mRNA-based 

classification model, which was then also validated and 

adopted in the 2012 and 2014 famous TCGA comprehensive 

characterization of LUSC and LUAD tumors, respectively, was 

a seminal work, as it improved the understanding of the 
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biological mechanisms underlying LUAD and LUSC intrinsic 

molecular heterogeneity (52,55,64,65).  

We evaluated the correlation between the Wilkerson et al. 

model and the present classification. It is important to 

emphasize that our sample size far exceeds the datasets used 

to establish Wilkerson et al.’s mRNA subtypes, both for LUAD 

and LUSC, which increases tumor diversity and the chances of 

identifying previously unreported subtypes. Also, the 

methodology behind previous mRNA-based subtypes 

definition is differential gene expression of individual genes, 

which, as mentioned in 7.1, is more susceptible to stochastic 

sources of variation.  

Overall, we found that some of the LUAD and LUSC pathway 

transcriptional profiling-based subtypes that we identified 

overlap with the intrinsic subtypes described by Wilkerson et 

al. However, our classification further subdivides the one 

proposed by Wilkerson et al. (Figure 15). For example, 

immune-enriched mRNA-based secretory LUSC subtype, 

better aligned with our SCC2 and SCC3 pathway 

transcriptional profiling-based subtypes, consistent with their 

also higher immune infiltration. However, SCC2 and SCC3 

present different proliferation-related gene expression 

patterns. Moreover, our SCC1 and SCC5 LUSC and AD7 

LUAD pathway transcriptional profiling-based subtypes were 

not found to be particularly associated with any of the 

Wilkerson et al. LUSC and LUAD mRNA subtypes, 



 

 71 

respectively. This further subdivision of the Wilkerson et al. 

classification, also observed for other LUSC and LUAD mRNA-

based subtypes, and the identification of potential new groups, 

suggests an increased resolution of our classification.  

 

Figure 15. Links between pathway transcriptional profiling-based 

subtypes and Wilkerson et al.’s mRNA-based subtypes.  

(A) Wilkerson et al.’s LUAD mRNA- based subtypes (i.e., bronchioid, 
magnoid and squamoid) were assigned to each of our LUAD samples using 
the nearest centroid predictor approach described by the original authors. 
The overlap degree (proportion of samples within the same category) 
between the two classifications is displayed.  (B) Wilkerson et al.’s LUSC 
mRNA-based subtypes (i.e., secretory, basal, classical, and primitive) were 
assigned to each of our LUSC samples using the nearest centroid predictor. 
The overlap degree (proportion of samples within the same category) 
between the two classifications is displayed. 

 

A 

B 
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6.3 Integration of transcriptomic and genomic 

data could improve current NSCLC patient 

stratification in patients with driver positive lung 

adenocarcinoma  

Genomic profiling is currently crucial for identifying actionable 

driver alterations and guiding treatment in patients with 

NSCLC, especially for LUAD, in which the frequency of driver 

actionable alterations far exceeds that of LUSC (4). Moreover, 

recent research has shown that the presence of multiple 

concurrent genetic mutations could also play a role in 

determining treatment response (16). However, LUAD is a 

highly heterogeneous disease, and the presence of certain co-

alterations alone does not fully explain the varied treatment 

responses seen in patients with the same driver mutation. 

Our research showed that while there are associations 

between certain genetic mutations and specific pathway 

transcriptional-based LUAD subtypes (i.e., EGFR, TP53, 

STK11), patients with the same mutation can be found across 

different transcriptional subtypes. KRAS mutant LUAD was 

found to be particularly heterogeneous in this regard. Thus, in 

addition to concurrent genomic alterations, differences in the 

activation of transcriptional pathways could explain that 

patients harboring specific driver alterations would have 

distinct clinical outcomes upon targeted therapy.  

Conversely, we observed that LUAD with different driver 

alterations were allocated within the same transcriptional 



 

 73 

subtype. This could suggest that different mutations may give 

raise to similar transcriptional phenotypes, which could 

potentially be treated with similar combinatorial therapies. 

6.4 Lung adenocarcinoma and lung squamous 

cell carcinoma transcriptional-based subtypes 

show differential genome instability features 

Genomic instability, which is a common feature of cancer cells, 

is driven by both DNA damage and errors made by the DNA 

damage repair (DDR) systems (114). On the one hand, 

cigarette smoking contributes significantly to the accumulation 

of DNA damage and is the most important risk factor for lung 

cancer development (115). Indeed, tobacco-related genomic 

signature (SBS4) was found to be overrepresented across 

both LUAD and LUSC pathway transcriptional profiling-based 

subtypes. However, no relevant differences were observed 

between LUAD or LUSC subtypes in terms of the presence of 

SBS4 signature, which suggests an equivalent tobacco 

carcinogens-related DNA damage in LUAD and LUSC 

development.  

On the other hand, we did discover differences in terms of 

tumor mutational burden and copy number alterations between 

subtypes. SCC1 and SCC4 LUSC subtypes and AD2 and AD6 

LUAD subtypes were enriched for copy number alterations 

(CNA) rates compared with other subtypes, respectively. 

Moreover, AD2 and AD6 tumors further displayed higher TMB 

values when compared with other LUAD subtypes. 
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Interestingly, SCC1, SCC4, AD2 and AD6 also demonstrated 

higher activation of proliferation-related pathways and a 

potentially higher impairment of DDR mechanisms.    

These results suggest that the greater genomic instability 

found for some of the subtypes (i.e., LUAD: AD2, AD6; LUSC: 

SCC1, SCC4), might not be the result of a higher exposure to 

exogenous carcinogens (i.e., tobacco), but rather a 

consequence of higher error rates made by DDR mechanisms, 

or replication stress due to high proliferation rates (116). 

Moreover, AD2 and AD6 LUAD subtypes also displayed higher 

frequency of genomic TP53 alterations, which have also been 

associated with higher genome instability (117).  

6.5 Lung adenocarcinoma and lung squamous 

cell carcinoma transcriptional-based subtypes 

display specific therapeutic vulnerabilities 

As previously mentioned, the lack of association of previously 

described NSCLC transcriptional subtypes with specific 

therapeutic vulnerabilities has prevented their use in the clinic 

(69). Here, we tried to overcome this limitation by integrating 

drug sensitivity data from in vitro drug sensitivity studies (i.e., 

CTRPv2, GDSC, PRISM) (118). These large projects have 

greater drug coverage than other available databases such as 

CMap, which has been previously used for similar purposes 

(60). Although we are aware of the limitations of cancer cell 

lines drug screening studies and that there can be 

discrepancies with clinical benefit in patients, we identified 
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some potential therapeutic vulnerabilities for specific LUAD 

and LUSC subtypes.  

In this way, chemotherapy alone, or combined with 

immunotherapy, is still widely used for the treatment of driver 

negative NSCLC. However, clinical responses upon 

chemotherapy regimens are highly heterogeneous. Therefore, 

identifying which patients may derive larger benefit or 

experience an early progression from these treatments 

remains an important clinical need. Regarding LUAD subtypes, 

results showed that AD2, AD3, AD6 and AD7 cell lines might 

benefit from G2/M or S/G2 chemotherapies (i.e., vincristine, 

gemcitabine). This is in line with the higher expression of 

proliferation related pathways in these groups.  Moreover, 

cancer cells classified within AD2 showed potential sensitivity 

to AZD7762 CHEK1 inhibitor, which correlates with the higher 

genome instability seen in this subtype.  It is important to note 

that this was conceived as a drug repositioning exercise to 

identify potential therapeutic specificities for the subtypes. 

Thus, some of the drugs may not be currently used as a 

treatment in lung adenocarcinoma (i.e., vincristine). However, 

drugs from the same family, such as vinorelbine could be 

considered.  

Similarly, LUSC cancer cell lines classified in SCC4 genome 

unstable (i.e., higher CNA rate) and proliferative subtype 

showed potential sensitivity to different G2M phase 

chemotherapy regimens (i.e., docetaxel, paclitaxel, and 
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vincristine). In this context, replication stress might cause 

these tumors to be dependent on the DDR machinery (cell 

cycle checkpoints and DNA repair mechanisms) for survival, 

which is in concordance with the observed overexpression of 

DNA repair pathways and G2M checkpoints observed for this 

LUSC subtype (116). Furthermore, SCC1 and SCC4 cell lines 

also displayed potential sensitivity to some DNA damage and 

cell cycle targeted therapies, which is also in line with the 

proliferative nature that characterize these subtypes. 

6.6 Lung adenocarcinoma and lung squamous 

cell carcinoma transcriptional-based subtypes 

display different immune landscapes with 

potential therapeutic implications 

 

Immunotherapy alone or in combination with chemotherapy is 

the standard of care for metastatic NSCLC without actionable 

driver alterations (25). However, only a minority of patients 

(~20%) are long-term survivors and experience long-lasting 

responses to immunotherapy (119).  

The only biomarker utilized in clinical practice is tumor PD-L1 

expression. Other potential markers like TMB or certain 

genomic alterations (e.g., PTEN, STK11, KEAP1, and TP53) 

have also been considered potential biomarkers for 

immunotherapy, but they are not able to accurately predict 

clinical benefit. The immune system is indeed a complex and 
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intricate network of intercellular interactions, and it is 

challenging to pinpoint a single factor that determines its 

activity. This complexity makes it difficult to achieve a situation 

similar to molecularly targeted therapy, where treatment 

efficacy is based on a single driving alteration, making patient 

selection for immunotherapy regimens extraordinarily difficult 

(120). 

In this context, recent studies have demonstrated the capacity 

of gene expression profiling to provide comprehensive and 

clinically relevant information beyond single biomarkers (92–

94). Given the intrinsic biological differences observed for the 

different pathway transcriptional profiling-based LUAD and 

LUSC subtypes, we were interested in elucidating whether 

subtype-specific transcriptional footprints might shape different 

immune landscapes. Understanding these differences may 

contribute to the selection of patients that might benefit from 

immunotherapy treatment.  

We used multiple gene expression signatures, each one 

representing a specific immune cell type, to infer the immune 

cell infiltration pattern of the different subtypes. Results from 

these analyses revealed different immune cell infiltration 

patterns for LUAD and LUSC transcriptional subtypes.  We 

observed that the presence of anti-tumoral immune response 

(i.e., cytotoxic cells, Th1 cells, B cells) can coexist with 

immunosuppressive cells (i.e., T regulatory cells, 

macrophages M2), which act as a major barrier to cancer 
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immunotherapy (121). For instance, AD3, enriched in tumors 

with relatively high cytotoxic T cell infiltration and PD-L1 gene 

expression, was not specially associated with ICI therapy 

response (only 12.5% of AD3 tumors were predicted as 

responders). Importantly, AD3 tumors co-expressed other 

immune checkpoint inhibitors and T-cell exhaustion markers. 

Moreover, AD3 tumors were also enriched in tumors with high 

infiltration M2 macrophages and T regulatory cells, which could 

contribute to immune evasion and intrinsic resistance to 

immunotherapy in AD3 tumors. The same infiltration patterns, 

combining both anti-tumoral and pro-tumoral immune cells 

expression, were observed for LUSC SCC2 and SCC3 

subtypes. For this reason, rational combinations of ICI and 

immune cell specific targeted therapies could probably 

improve clinical outcomes in solid tumors.   

Although further validation through other techniques that 

provide greater cellular resolution (i.e., scRNA‐seq) would be 

useful, these results support the idea that a comprehensive 

characterization of immune contexture could improve our 

capability to predict response or resistance to immunotherapy, 

as opposed to testing single biomarkers (i.e., PD-L1, TMB).  

Moreover, better patients’ stratification might help clinicians to 

define more rational combinations of distinct ICIs and other 

treatments targeting immunosuppressive immune cells. 

Unfortunately, most clinical trials are focusing on single 

biomarkers such as PD-L1 and just combining distinct 
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immunotherapies without conducting any patient selection or 

evaluating tumor’s immune contexture. 

6.7 Limitations of the present work and future 

perspectives 

Despite the robustness of our classification, this study has 

some limitations. First, this is a retrospective analysis of a wide 

collection of microarrays and RNA-Seq gene expression 

datasets, which rely on fresh tissue biopsies to ensure mRNA 

quality. Thus, further efforts are needed towards the 

implementation of this classification framework in formalin-

fixed paraffin-embedded tumor samples, which are more likely 

to be available in the clinical setting than fresh tissue. For 

instance, we believe that with the incorporation of new profiling 

technologies, that allow whole‐transcriptome gene expression 

profiling in FFPE samples, it will be possible to evaluate the 

clinical relevance of our framework using clinical samples. 

Most datasets used included early-stage patients who were 

surgically resected and did not receive systemic therapy, or 

this information was not available in the associated clinical 

information. For instance, this is particularly relevant for the 

results regarding immunotherapy response predictions, which 

should be further validated in retrospective and prospective 

studies of patients with LUAD and LUSC treated with ICI. In 

addition, all the results regarding the association with genomic 

features (i.e., TMB, mutational signatures, CNA, and DDR 

deficiency) were based on the TCGA-LUAD and TCGA-LUSC 
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datasets, respectively, since the rest of studies lacked 

associated whole exome sequencing data. However, the 

CPTAC-LUAD and CPTAC-LUSC validation datasets allowed 

us to prove that our classification can be reproduced in an 

independent dataset and that the association of the different 

LUAD and LUSC subtypes with copy number alterations and 

TMB is also conserved beyond the gene expression patterns 

used to classify these samples. Nevertheless, validation in a 

prospective cohort is warranted to further validate the clinical 

utility of this classification.  

Also related with the association between the subtypes and the 

presence of relevant oncogenic drivers, especially in the case 

of LUAD, it would have also been interesting to stratify patients 

by specific gene mutation (i.e., KRAS G12C, KRAS 

G12D…etc.). Unfortunately, this information was not available 

for most of the gene expression datasets used in this study 

(only in TCGA-LUAD or TCGA-LUSC), preventing this 

analysis. 

Regarding cancer cell lines drug sensitivity results, potential 

drug candidates are based on in vitro data and, therefore, do 

not take into consideration the interplay between cancer cells 

and TME. However, these preclinical models are 

continuously used in experimental research for similar 

purposes (i.e., drug screening and hypothesis generation) 

and we believe that this exercise could be useful to 

prioritize which compounds could be tested in more 

advanced preclinical models (i.e., tumoroids and patient‐
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derived xenografts). Thus, further validation in more 

advanced in vivo models and prospective patient cohorts is 

warranted to confirm these results but is beyond the scope of 

this dissertation.  

Finally, have recently been important developments in the field 

of transcriptomics to increase resolution and specificity. In 

traditional RNA-seq experiments, gene expression is 

measured from a homogenized mixture of cells, resulting in the 

loss of spatial information. In contrast, single-cell RNA-Seq 

allow the determination of the gene expression profiles of 

individual tumor cells and microenvironment populations. Also, 

spatial transcriptomics enables the mapping of gene 

expression profiles onto the tissue architecture, providing a 

comprehensive understanding of gene expression patterns in 

their native spatial context. In this way, these two high-

throughput techniques provide information about tumor 

heterogeneity and cellular interactions. This would have been 

particularly useful for the study of the immune landscape and 

TME heterogeneity, which in the end shapes immunotherapy 

responses. Future studies in this direction are beginning to 

revolutionize our understanding of tissue biology and to drive 

the development of new therapies and diagnostic tools in a 

more rational way. 
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7. CONCLUSIONS 

In this work, we have presented and validated a robust, 

reproducible, and clinically relevant classification of LUAD and 

LUSC, based on the activity levels of landmark molecular 

pathways. To our knowledge, no previous LUAD or LUSC 

classification has been derived from a such a large collection 

of tumor samples. Despite significant difficulties, we believe 

that the joint implementation of transcriptomic and genomic 

data could improve patient stratification and may pave the way 

for guiding personalized-medicine approaches in patients with 

NSCLC. 

Specifically, we have shown that: 

1) Transcriptional profiling of landmark molecular pathways in 

a large tumor sample collection yielded seven and five 

pathway transcriptional profiling-based subtypes in LUAD 

and LUSC, respectively; 

2) Cox multivariate analyses adjusted for sex, age, stage, 

smoking history, and study clinical covariates, reveal a 

significant association between LUAD subtypes and overall 

survival;  

3) Analysis of available genomic alterations revealed an 

association between LUAD transcriptional subtypes and 

specific actionable oncogenic alterations;  

4) LUAD and LUSC transcriptional subtypes showed different 

genomic features, specifically in terms of tumor mutational 
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burden, copy number alteration rates and DNA damage 

repair capacity;  

5) Integration of in vitro drug sensitivity data from large 

pharmacogenomic studies, allowed the identification of 

specific therapeutic vulnerabilities for these subtypes, in 

line with their molecular characteristics;  

6) Gene expression profiling of immune-related gene 

expression signatures and biomarkers revealed different 

immune landscapes for the LUAD and LUSC subtypes that 

might help improving our capability to predict response to 

immunotherapy, as opposed to testing single biomarkers 

(i.e., PD-L1, TMB), which have shown limited capacity to 

accurately predict clinical benefit;  

7) Integration of genomic and transcriptomic data might 

improve patient stratification and treatment guidance 

towards more personalized-medicine approaches.  

 

 

 

 

 

 

 



 

 84 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 85 

Bibliography 

1. Uramoto H, Tanaka F. Recurrence after surgery in patients with 

NSCLC. Transl Lung Cancer Res. august 2014;3(4):242-9.  

2. Paez JG, Jänne PA, Lee JC, Tracy S, Greulich H, Gabriel S, et al. 

EGFR Mutations in Lung Cancer: Correlation with Clinical Response to 

Gefitinib Therapy. Science. 4 june 2004;304(5676):1497-500.  

3. Lynch TJ, Bell DW, Sordella R, Gurubhagavatula S, Okimoto RA, 

Brannigan BW, et al. Activating Mutations in the Epidermal Growth Factor 

Receptor Underlying Responsiveness of Non–Small-Cell Lung Cancer to 

Gefitinib. N Engl J Med. 20 may 2004;350(21):2129-39.  

4. Hendriks LE, Kerr KM, Menis J, Mok TS, Nestle U, Passaro A, et 

al. Oncogene-addicted metastatic non-small-cell lung cancer: ESMO 

Clinical Practice Guideline for diagnosis, treatment and follow-up☆. Ann 

Oncol [Internet]. 24 january2023 [citat 7 march 2023];0(0). Disponible a: 

https://www.annalsofoncology.org/article/S0923-7534(22)04781-0/fulltext 

5. Planchard D, Popat S, Kerr K, Novello S, Smit EF, Faivre-Finn C, 

et al. Metastatic non-small cell lung cancer: ESMO Clinical Practice 

Guidelines for diagnosis, treatment and follow-up. Ann Oncol Off J Eur Soc 

Med Oncol. 1 october 2018;29(Suppl 4):iv192-237.  

6. Howlader N, Forjaz G, Mooradian MJ, Meza R, Kong CY, Cronin 

KA, et al. The Effect of Advances in Lung-Cancer Treatment on Population 

Mortality. N Engl J Med. 13 august 2020;383(7):640-9.  

7. Tan AC, Tan DSW. Targeted Therapies for Lung Cancer Patients 

With Oncogenic Driver Molecular Alterations. J Clin Oncol. 20 february 

2022;40(6):611-25.  

8. Meador CB, Hata AN. Acquired resistance to targeted therapies in 

NSCLC: Updates and evolving insights. Pharmacol Ther. june 

2020;210:107522.  

9. Shields MD, Marin-Acevedo JA, Pellini B. Immunotherapy for 

Advanced Non–Small Cell Lung Cancer: A Decade of Progress. Am Soc 

Clin Oncol Educ Book. june 2021;(41):e105-27.  

10. Garon EB, Rizvi NA, Hui R, Leighl N, Balmanoukian AS, Eder JP, 

et al. Pembrolizumab for the treatment of non-small-cell lung cancer. N Engl 

J Med. 21 may 2015;372(21):2018-28.  

11. Lagos GG, Izar B, Rizvi NA. Beyond Tumor PD-L1: Emerging 

Genomic Biomarkers for Checkpoint Inhibitor Immunotherapy. Am Soc Clin 

Oncol Educ Book Am Soc Clin Oncol Annu Meet. march 2020;40:1-11.  



 

 86 

12. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, 

Jemal A, et al. Global cancer statistics 2020: GLOBOCAN estimates of 

incidence and mortality worldwide for 36 cancers in 185 countries. CA 

Cancer J Clin. 4 february 2021;  

13. Cancer of the Lung and Bronchus - Cancer Stat Facts [Internet]. 

SEER. [cited 21 october 2022]. Available at: 

https://seer.cancer.gov/statfacts/html/lungb.html 

14. Pirker R. Conquering lung cancer: current status and prospects for 

the future. Pulmonology. 1 september 2020;26(5):283-90.  

15. Travis WD, Brambilla E, Nicholson AG, Yatabe Y, Austin JHM, 

Beasley MB, et al. The 2015 World Health Organization Classification of 

Lung Tumors: Impact of Genetic, Clinical and Radiologic Advances Since 

the 2004 Classification. J Thorac Oncol Off Publ Int Assoc Study Lung 

Cancer. september 2015;10(9):1243-60.  

16. Chin L, Andersen JN, Futreal PA. Cancer genomics: from discovery 

science to personalized medicine. Nat Med. march 2011;17(3):297-303.  

17. Travis WD, Brambilla E, Noguchi M, Nicholson AG, Geisinger KR, 

Yatabe Y, et al. International association for the study of lung 

cancer/american thoracic society/european respiratory society international 

multidisciplinary classification of lung adenocarcinoma. J Thorac Oncol Off 

Publ Int Assoc Study Lung Cancer. february 2011;6(2):244-85.  

18. Rosell R, Moran T, Queralt C, Porta R, Cardenal F, Camps C, et al. 

Screening for Epidermal Growth Factor Receptor Mutations in Lung 

Cancer. N Engl J Med. 3 september 2009;361(10):958-67.  

19. Li T, Kung HJ, Mack PC, Gandara DR. Genotyping and Genomic 

Profiling of Non–Small-Cell Lung Cancer: Implications for Current and 

Future Therapies. J Clin Oncol. 10 march 2013;31(8):1039-49.  

20. Finn SP, Addeo A, Dafni U, Thunnissen E, Bubendorf L, Madsen 

LB, et al. Prognostic Impact of KRAS G12C Mutation in Patients With 

NSCLC: Results From the European Thoracic Oncology Platform 

Lungscape Project. J Thorac Oncol. 1 june 2021;16(6):990-1002.  

21. Clinical Practice Living Guidelines – Metastatic Non-Small-Cell 

Lung Cancer | ESMO [Internet]. [citat 21 october 2022]. Disponible a: 

https://www.esmo.org/guidelines/guidelines-by-topic/lung-and-chest-

tumours/clinical-practice-living-guidelines-metastatic-non-small-cell-lung-

cancer 

22. Paik PK, Pillai RN, Lathan CS, Velasco SA, Papadimitrakopoulou 

V. New Treatment Options in Advanced Squamous Cell Lung Cancer. Am 

Soc Clin Oncol Educ Book Am Soc Clin Oncol Annu Meet. 

january2019;39:e198-206.  



 

 87 

23. Tsao MS, Nicholson AG, Maleszewski JJ, Marx A, Travis WD. 

Introduction to 2021 WHO Classification of Thoracic Tumors. J Thorac 

Oncol. 1 january2022;17(1):e1-4.  

24. Lam VK, Tran HT, Banks KC, Lanman RB, Rinsurongkawong W, 

Peled N, et al. Targeted Tissue and Cell-Free Tumor DNA Sequencing of 

Advanced Lung Squamous-Cell Carcinoma Reveals Clinically Significant 

Prevalence of Actionable Alterations. Clin Lung Cancer. 1 

january2019;20(1):30-36.e3.  

25. Ettinger DS, Aisner DL, Wood DE, Akerley W, Bauman J, Chang 

JY, et al. NCCN Guidelines Insights: Non-Small Cell Lung Cancer, Version 

5.2018. J Natl Compr Cancer Netw JNCCN. july 2018;16(7):807-21.  

26. Ribas A. Adaptive immune resistance: How cancer protects from 

immune attack. Cancer Discov. september 2015;5(9):915-9.  

27. Pawelczyk K, Piotrowska A, Ciesielska U, Jablonska K, Glatzel-

Plucinska N, Grzegrzolka J, et al. Role of PD-L1 Expression in Non-Small 

Cell Lung Cancer and Their Prognostic Significance according to 

Clinicopathological Factors and Diagnostic Markers. Int J Mol Sci. 14 

february 2019;20(4):824.  

28. Grant MJ, Herbst RS, Goldberg SB. Selecting the optimal 

immunotherapy regimen in driver-negative metastatic NSCLC. Nat Rev Clin 

Oncol. october 2021;18(10):625-44.  

29. Kazandjian D, Suzman DL, Blumenthal G, Mushti S, He K, Libeg 

M, et al. FDA Approval Summary: Nivolumab for the Treatment of 

Metastatic Non-Small Cell Lung Cancer With Progression On or After 

Platinum-Based Chemotherapy. The Oncologist. may 2016;21(5):634-42.  

30. Brahmer J, Reckamp KL, Baas P, Crinò L, Eberhardt WEE, 

Poddubskaya E, et al. Nivolumab versus Docetaxel in Advanced 

Squamous-Cell Non-Small-Cell Lung Cancer. N Engl J Med. 9 july 

2015;373(2):123-35.  

31. Borghaei H, Paz-Ares L, Horn L, Spigel DR, Steins M, Ready NE, 

et al. Nivolumab versus Docetaxel in Advanced Nonsquamous Non-Small-

Cell Lung Cancer. N Engl J Med. 22 october 2015;373(17):1627-39.  

32. Borghaei H, Gettinger S, Vokes EE, Chow LQM, Burgio MA, de 

Castro Carpeno J, et al. Five-Year Outcomes From the Randomized, Phase 

III Trials CheckMate 017 and 057: Nivolumab Versus Docetaxel in 

Previously Treated Non-Small-Cell Lung Cancer. J Clin Oncol Off J Am Soc 

Clin Oncol. 1 march 2021;39(7):723-33.  

33. Lim ZF, Ma PC. Emerging insights of tumor heterogeneity and drug 

resistance mechanisms in lung cancer targeted therapy. J Hematol OncolJ 

Hematol Oncol. 9 december 2019;12(1):134.  



 

 88 

34. Rotow J, Bivona TG. Understanding and targeting resistance 

mechanisms in NSCLC. Nat Rev Cancer. november 2017;17(11):637-58.  

35. Guinney J, Dienstmann R, Wang X, de Reyniès A, Schlicker A, 

Soneson C, et al. The consensus molecular subtypes of colorectal cancer. 

Nat Med. november 2015;21(11):1350-6.  

36. Horr C, Buechler SA. Breast Cancer Consensus Subtypes: A 

system for subtyping breast cancer tumors based on gene expression. Npj 

Breast Cancer. 12 october 2021;7(1):1-13.  

37. Garber ME, Troyanskaya OG, Schluens K, Petersen S, Thaesler Z, 

Pacyna-Gengelbach M, et al. Diversity of gene expression in 

adenocarcinoma of the lung. Proc Natl Acad Sci U S A. 20 november 

2001;98(24):13784-9.  

38. Bhattacharjee A, Richards WG, Staunton J, Li C, Monti S, Vasa P, 

et al. Classification of human lung carcinomas by mRNA expression 

profiling reveals distinct adenocarcinoma subclasses. Proc Natl Acad Sci U 

S A. 20 november 2001;98(24):13790-5.  

39. Beer DG, Kardia SLR, Huang CC, Giordano TJ, Levin AM, Misek 

DE, et al. Gene-expression profiles predict survival of patients with lung 

adenocarcinoma. Nat Med. august 2002;8(8):816-24.  

40. Tomida S, Koshikawa K, Yatabe Y, Harano T, Ogura N, Mitsudomi 

T, et al. Gene expression-based, individualized outcome prediction for 

surgically treated lung cancer patients. Oncogene. july 2004;23(31):5360-

70.  

41. Inamura K, Fujiwara T, Hoshida Y, Isagawa T, Jones MH, Virtanen 

C, et al. Two subclasses of lung squamous cell carcinoma with different 

gene expression profiles and prognosis identified by hierarchical clustering 

and non-negative matrix factorization. Oncogene. october 

2005;24(47):7105-13.  

42. Hayes DN, Monti S, Parmigiani G, Gilks CB, Naoki K, 

Bhattacharjee A, et al. Gene Expression Profiling Reveals Reproducible 

Human Lung Adenocarcinoma Subtypes in Multiple Independent Patient 

Cohorts. J Clin Oncol. november 2006;24(31):5079-90.  

43. Takeuchi T, Tomida S, Yatabe Y, Kosaka T, Osada H, Yanagisawa 

K, et al. Expression Profile–Defined Classification of Lung Adenocarcinoma 

Shows Close Relationship With Underlying Major Genetic Changes and 

Clinicopathologic Behaviors. J Clin Oncol. 20 april 2006;24(11):1679-88.  

44. Shibata T, Hanada S, Kokubu A, Matsuno Y, Asamura H, Ohta T, 

et al. Gene expression profiling of epidermal growth factor receptor/KRAS 

pathway activation in lung adenocarcinoma. Cancer Sci. 2007;98(7):985-

91.  



 

 89 

45. Park YY, Park ES, Kim SB, Kim SC, Sohn BH, Chu IS, et al. 

Development and Validation of a Prognostic Gene-Expression Signature 

for Lung Adenocarcinoma. PLOS ONE. 7 september 2012;7(9):e44225.  

46. Staaf J, Jönsson G, Jönsson M, Karlsson A, Isaksson S, 

Salomonsson A, et al. Relation between smoking history and gene 

expression profiles in lung adenocarcinomas. BMC Med Genomics. 7 june 

2012;5(1):22.  

47. Wilkerson MD, Yin X, Walter V, Zhao N, Cabanski CR, Hayward 

MC, et al. Differential Pathogenesis of Lung Adenocarcinoma Subtypes 

Involving Sequence Mutations, Copy Number, Chromosomal Instability, 

and Methylation. PLOS ONE. 10 may 2012;7(5):e36530.  

48. Cheung WKC, Zhao M, Liu Z, Stevens LE, Cao PD, Fang JE, et al. 

Control of Alveolar Differentiation by the Lineage Transcription Factors 

GATA6 and HOPX Inhibits Lung Adenocarcinoma Metastasis. Cancer Cell. 

10 june 2013;23(6):725-38.  

49. Fukui T, Shaykhiev R, Agosto-Perez F, Mezey JG, Downey RJ, 

Travis WD, et al. Lung adenocarcinoma subtypes based on expression of 

human airway basal cell genes. Eur Respir J. 1 november 2013;42(5):1332-

44.  

50. Collisson EA, Campbell JD, Brooks AN, Berger AH, Lee W, 

Chmielecki J, et al. Comprehensive molecular profiling of lung 

adenocarcinoma. Nature. july 2014;511(7511):543-50.  

51. Ringnér M, Staaf J. Consensus of gene expression phenotypes and 

prognostic risk predictors in primary lung adenocarcinoma. Oncotarget. 16 

july 2016;7(33):52957-73.  

52. Chen F, Zhang Y, Parra E, Rodriguez J, Behrens C, Akbani R, et 

al. Multiplatform-based molecular subtypes of non-small-cell lung cancer. 

Oncogene. march 2017;36(10):1384-93.  

53. Hu F, Zhou Y, Wang Q, Yang Z, Shi Y, Chi Q. Gene Expression 

Classification of Lung Adenocarcinoma into Molecular Subtypes. 

IEEE/ACM Trans Comput Biol Bioinform. july 2020;17(4):1187-97.  

54. Gillette MA, Satpathy S, Cao S, Dhanasekaran SM, Vasaikar SV, 

Krug K, et al. Proteogenomic Characterization Reveals Therapeutic 

Vulnerabilities in Lung Adenocarcinoma. Cell. 9 july 2020;182(1):200-

225.e35.  

55. Ge X, Liu Z, Weng S, Xu H, Zhang Y, Liu L, et al. Integrative 

pharmacogenomics revealed three subtypes with different immune 

landscapes and specific therapeutic responses in lung adenocarcinoma. 

Comput Struct Biotechnol J. 2022;20:3449-60.  



 

 90 

56. Connectivity Map (CMAP) [Internet]. Broad Institute. 2015 [citat 21 

october 2022]. Disponible a: https://www.broadinstitute.org/connectivity-

map-cmap 

57. Raponi M, Zhang Y, Yu J, Chen G, Lee G, Taylor JMG, et al. Gene 

Expression Signatures for Predicting Prognosis of Squamous Cell and 

Adenocarcinomas of the Lung. Cancer Res. 2 august 2006;66(15):7466-

72.  

58. Larsen JE, Pavey SJ, Passmore LH, Bowman R, Clarke BE, 

Hayward NK, et al. Expression profiling defines a recurrence signature in 

lung squamous cell carcinoma. Carcinogenesis. 1 march 2007;28(3):760-

6.  

59. Wilkerson MD, Yin X, Hoadley KA, Liu Y, Hayward MC, Cabanski 

CR, et al. Lung Squamous Cell Carcinoma mRNA Expression Subtypes 

Are Reproducible, Clinically Important, and Correspond to Normal Cell 

Types. Clin Cancer Res. 29 september 2010;16(19):4864-75.  

60. Hammerman PS, Lawrence MS, Voet D, Jing R, Cibulskis K, 

Sivachenko A, et al. Comprehensive genomic characterization of 

squamous cell lung cancers. Nature. september 2012;489(7417):519-25.  

61. Brambilla C, Laffaire J, Lantuejoul S, Moro-Sibilot D, Mignotte H, 

Arbib F, et al. Lung Squamous Cell Carcinomas with Basaloid Histology 

Represent a Specific Molecular Entity. Clin Cancer Res. 13 november 

2014;20(22):5777-86.  

62. Satpathy S, Krug K, Jean Beltran PM, Savage SR, Petralia F, 

Kumar-Sinha C, et al. A proteogenomic portrait of lung squamous cell 

carcinoma. Cell. 5 august 2021;184(16):4348-4371.e40.  

63. Liberzon A, Birger C, Thorvaldsdóttir H, Ghandi M, Mesirov JP, 

Tamayo P. The Molecular Signatures Database Hallmark Gene Set 

Collection. Cell Syst. 23 december 2015;1(6):417-25.  

64. Hijazo-Pechero S, Alay A, Marín R, Vilariño N, Muñoz-Pinedo C, 

Villanueva A, et al. Gene Expression Profiling as a Potential Tool for 

Precision Oncology in Non-Small Cell Lung Cancer. Cancers. 

january2021;13(19):4734.  

65. Cheng DT, Mitchell TN, Zehir A, Shah RH, Benayed R, Syed A, et 

al. Memorial Sloan Kettering-Integrated Mutation Profiling of Actionable 

Cancer Targets (MSK-IMPACT): A Hybridization Capture-Based Next-

Generation Sequencing Clinical Assay for Solid Tumor Molecular 

Oncology. J Mol Diagn. 1 may 2015;17(3):251-64.  

66. Fernandes MGO, Jacob M, Martins N, Moura CS, Guimarães S, 

Reis JP, et al. Targeted Gene Next-Generation Sequencing Panel in 



 

 91 

Patients with Advanced Lung Adenocarcinoma: Paving the Way for Clinical 

Implementation. Cancers. september 2019;11(9):1229.  

67. Robinson DR, Wu YM, Lonigro RJ, Vats P, Cobain E, Everett J, et 

al. Integrative clinical genomics of metastatic cancer. Nature. august 

2017;548(7667):297-303.  

68. Rodon J, Soria JC, Berger R, Miller WH, Rubin E, Kugel A, et al. 

Genomic and transcriptomic profiling expands precision cancer medicine: 

the WINTHER trial. Nat Med. may 2019;25(5):751-8.  

69. Tuxen IV, Rohrberg KS, Oestrup O, Ahlborn LB, Schmidt AY, 

Spanggaard I, et al. Copenhagen Prospective Personalized Oncology 

(CoPPO)—Clinical Utility of Using Molecular Profiling to Select Patients to 

Phase I Trials. Clin Cancer Res. 15 february 2019;25(4):1239-47.  

70. Pleasance E, Bohm A, Williamson LM, Nelson JMT, Shen Y, 

Bonakdar M, et al. Whole-genome and transcriptome analysis enhances 

precision cancer treatment options. Ann Oncol. 1 september 

2022;33(9):939-49.  

71. Neel DS, Bivona TG. Resistance is futile: overcoming resistance to 

targeted therapies in lung adenocarcinoma. Npj Precis Oncol. 20 march 

2017;1(1):1-6.  

72. Alam N, Gustafson KS, Ladanyi M, Zakowski MF, Kapoor A, 

Truskinovsky AM, et al. Small-cell carcinoma with an epidermal growth 

factor receptor mutation in a never-smoker with gefitinib-responsive 

adenocarcinoma of the lung. Clin Lung Cancer. 1 september 

2010;11(5):E1-4.  

73. Yamada T, Takeuchi S, Nakade J, Kita K, Nakagawa T, Nanjo S, 

et al. Paracrine receptor activation by microenvironment triggers bypass 

survival signals and ALK inhibitor resistance in EML4-ALK lung cancer 

cells. Clin Cancer Res Off J Am Assoc Cancer Res. 1 july 

2012;18(13):3592-602.  

74. Tan CS, Gilligan D, Pacey S. Treatment approaches for EGFR-

inhibitor-resistant patients with non-small-cell lung cancer. Lancet Oncol. 1 

september 2015;16(9):e447-59.  

75. Zhu X, Chen L, Liu L, Niu X. EMT-Mediated Acquired EGFR-TKI 

Resistance in NSCLC: Mechanisms and Strategies. Front Oncol. 

2019;9:1044.  

76. Fumarola C, Bonelli MA, Petronini PG, Alfieri RR. Targeting 

PI3K/AKT/mTOR pathway in non small cell lung cancer. Biochem 

Pharmacol. 1 august 2014;90(3):197-207.  



 

 92 

77. Coldren CD, Helfrich BA, Witta SE, Sugita M, Lapadat R, Zeng C, 

et al. Baseline Gene Expression Predicts Sensitivity to Gefitinib in Non–

Small Cell Lung Cancer Cell Lines. Mol Cancer Res. 1 august 

2006;4(8):521-8.  

78. Balko JM, Potti A, Saunders C, Stromberg A, Haura EB, Black EP. 

Gene expression patterns that predict sensitivity to epidermal growth factor 

receptor tyrosine kinase inhibitors in lung cancer cell lines and human lung 

tumors. BMC Genomics. 10 november 2006;7(1):289.  

79. Zhang Z, Lee JC, Lin L, Olivas V, Au V, LaFramboise T, et al. 

Activation of the AXL kinase causes resistance to EGFR-targeted therapy 

in lung cancer. Nat Genet. august 2012;44(8):852-60.  

80. Byers LA, Diao L, Wang J, Saintigny P, Girard L, Peyton M, et al. 

An Epithelial–Mesenchymal Transition Gene Signature Predicts 

Resistance to EGFR and PI3K Inhibitors and Identifies Axl as a Therapeutic 

Target for Overcoming EGFR Inhibitor Resistance. Clin Cancer Res. 2 

january2013;19(1):279-90.  

81. Terai H, Soejima K, Yasuda H, Nakayama S, Hamamoto J, Arai D, 

et al. Activation of the FGF2-FGFR1 Autocrine Pathway: A Novel 

Mechanism of Acquired Resistance to Gefitinib in NSCLC. Mol Cancer Res. 

1 july 2013;11(7):759-67.  

82. Geeleher P, Cox NJ, Huang RS. Clinical drug response can be 

predicted using baseline gene expression levels and in vitro drug sensitivity 

in cell lines. Genome Biol. 3 march 2014;15(3):R47.  

83. Liu YN, Chang TH, Tsai MF, Wu SG, Tsai TH, Chen HY, et al. IL-8 

confers resistance to EGFR inhibitors by inducing stem cell properties in 

lung cancer. Oncotarget. 18 march 2015;6(12):10415-31.  

84. Rothenberg SM, Concannon K, Cullen S, Boulay G, Turke AB, 

Faber AC, et al. Inhibition of mutant EGFR in lung cancer cells triggers 

SOX2-FOXO6-dependent survival pathways. Davis R, editor. eLife. 16 

february 2015;4:e06132.  

85. Mojtabavi Naeini M, Tavassoli M, Ghaedi K. Systematic 

bioinformatic approaches reveal novel gene expression signatures 

associated with acquired resistance to EGFR targeted therapy in lung 

cancer. Gene. 15 august 2018;667:62-9.  

86. Cheng C, Zhao Y, Schaafsma E, Weng YL, Amos C. An EGFR 

signature predicts cell line and patient sensitivity to multiple tyrosine kinase 

inhibitors. Int J Cancer. 2020;147(9):2621-33.  

87. Fan XX, Wu Q. Decoding Lung Cancer at Single-Cell Level. Front 

Immunol [Internet]. 2022 [citat 21 october 2022];13. Disponible a: 

https://www.frontiersin.org/articles/10.3389/fimmu.2022.883758 



 

 93 

88. González-Silva L, Quevedo L, Varela I. Tumor Functional 

Heterogeneity Unraveled by scRNA-seq Technologies. Trends Cancer. 1 

january2020;6(1):13-9.  

89. Tamborero D, Rubio-Perez C, Muiños F, Sabarinathan R, Piulats 

JM, Muntasell A, et al. A Pan-cancer Landscape of Interactions between 

Solid Tumors and Infiltrating Immune Cell Populations. Clin Cancer Res. 31 

july 2018;24(15):3717-28.  

90. Ayers M, Lunceford J, Nebozhyn M, Murphy E, Loboda A, Kaufman 

DR, et al. IFN-γ–related mRNA profile predicts clinical response to PD-1 

blockade. J Clin Invest. 127(8):2930-40.  

91. Hwang S, Kwon AY, Jeong JY, Kim S, Kang H, Park J, et al. 

Immune gene signatures for predicting durable clinical benefit of anti-PD-1 

immunotherapy in patients with non-small cell lung cancer. Sci Rep. 20 

january2020;10(1):643.  

92. Rajurkar S, Mambetsariev I, Pharaon R, Leach B, Tan T, Kulkarni 

P, et al. Non-Small Cell Lung Cancer from Genomics to Therapeutics: A 

Framework for Community Practice Integration to Arrive at Personalized 

Therapy Strategies. J Clin Med. 15 june 2020;9(6):E1870.  

93. Adib E, Nassar AH, Abou Alaiwi S, Groha S, Akl EW, Sholl LM, et 

al. Variation in targetable genomic alterations in non-small cell lung cancer 

by genetic ancestry, sex, smoking history, and histology. Genome Med. 15 

april 2022;14(1):39.  

94. Pakkala S, Ramalingam SS. Personalized therapy for lung cancer: 

striking a moving target. JCI Insight [Internet]. 9 august 2018 [cited 21 

october 2022];3(15). Available at: 

https://insight.jci.org/articles/view/120858 

95. Guo L, Chen Z, Xu C, Zhang X, Yan H, Su J, et al. Intratumoral 

heterogeneity of EGFR-activating mutations in advanced NSCLC patients 

at the single-cell level. BMC Cancer. 23 april 2019;19(1):369.  

96. Angulo B, Suarez-Gauthier A, Lopez-Rios F, Medina P, Conde E, 

Tang M, et al. Expression signatures in lung cancer reveal a profile for 

EGFR-mutant tumours and identify selective PIK3CA overexpression by 

gene amplification. J Pathol. 2008;214(3):347-56.  

97. Planck M, Isaksson S, Veerla S, Staaf J. Identification of 

Transcriptional Subgroups in EGFR-Mutated and EGFR/KRAS Wild-Type 

Lung Adenocarcinoma Reveals Gene Signatures Associated with Patient 

Outcome. Clin Cancer Res. 16 september 2013;19(18):5116-26.  

98. Okayama H, Kohno T, Ishii Y, Shimada Y, Shiraishi K, Iwakawa R, 

et al. Identification of Genes Upregulated in ALK-Positive and 



 

 94 

EGFR/KRAS/ALK-Negative Lung Adenocarcinomas. Cancer Res. 2 

january2012;72(1):100-11.  

99. Chen EY, Raghunathan V, Prasad V. An Overview of Cancer Drugs 

Approved by the US Food and Drug Administration Based on the Surrogate 

End Point of Response Rate. JAMA Intern Med. 1 july 2019;179(7):915-21.  

100. Barretina J, Caponigro G, Stransky N, Venkatesan K, Margolin AA, 

Kim S, et al. The Cancer Cell Line Encyclopedia enables predictive 

modelling of anticancer drug sensitivity. Nature. 28 march 

2012;483(7391):603-7.  

101. Garnett MJ, Edelman EJ, Heidorn SJ, Greenman CD, Dastur A, 

Lau KW, et al. Systematic identification of genomic markers of drug 

sensitivity in cancer cells. Nature. 28 march 2012;483(7391):570-5.  

102. Feng F, Shen B, Mou X, Li Y, Li H. Large-scale pharmacogenomic 

studies and drug response prediction for personalized cancer medicine. J 

Genet Genomics. 20 july 2021;48(7):540-51.  

103. Shoemaker RH. The NCI60 human tumour cell line anticancer drug 

screen. Nat Rev Cancer. october 2006;6(10):813-23.  

104. Yang W, Soares J, Greninger P, Edelman EJ, Lightfoot H, Forbes 

S, et al. Genomics of Drug Sensitivity in Cancer (GDSC): a resource for 

therapeutic biomarker discovery in cancer cells. Nucleic Acids Res. 

january2013;41(Database issue):D955-961.  

105. Seashore-Ludlow B, Rees MG, Cheah JH, Cokol M, Price EV, 

Coletti ME, et al. Harnessing Connectivity in a Large-Scale Small-Molecule 

Sensitivity Dataset. Cancer Discov. november 2015;5(11):1210-23.  

106. Corsello SM, Nagari RT, Spangler RD, Rossen J, Kocak M, Bryan 

JG, et al. Discovering the anti-cancer potential of non-oncology drugs by 

systematic viability profiling. Nat Cancer. february 2020;1(2):235-48.  

107. DepMap: The Cancer Dependency Map Project at Broad Institute 

[Internet]. [cited21 october 2022]. Available at: https://depmap.org/portal/ 

108. Trastulla L, Noorbakhsh J, Vazquez F, McFarland J, Iorio F. 

Computational estimation of quality and clinical relevance of cancer cell 

lines. Mol Syst Biol. july 2022;18(7):e11017.  

109. Tsherniak A, Vazquez F, Montgomery PG, Weir BA, Kryukov G, 

Cowley GS, et al. Defining a Cancer Dependency Map. Cell. 27 july 

2017;170(3):564-576.e16.  

110. Michelotti A, de Scordilli M, Bertoli E, De Carlo E, Del Conte A, 

Bearz A. NSCLC as the Paradigm of Precision Medicine at Its Finest: The 

Rise of New Druggable Molecular Targets for Advanced Disease. Int J Mol 

Sci. january2022;23(12):6748.  



 

 95 

111. Hänzelmann S, Castelo R, Guinney J. GSVA: gene set variation 

analysis for microarray and RNA-Seq data. BMC Bioinformatics. 16 

january2013;14(1):7.  

112. Skoulidis F, Heymach JV. Co-occurring genomic alterations in non-

small cell lung cancer biology and therapy. Nat Rev Cancer. september 

2019;19(9):495-509.  

113. Torgovnick A, Schumacher B. DNA repair mechanisms in cancer 

development and therapy. Front Genet. 23 april 2015;6:157.  

114. Huang CC, Lai CY, Tsai CH, Wang JY, Wong RH. Combined 

effects of cigarette smoking, DNA methyltransferase 3B genetic 

polymorphism, and DNA damage on lung cancer. BMC Cancer. 29 

september 2021;21(1):1066.  

115. Zhu H, Swami U, Preet R, Zhang J. Harnessing DNA Replication 

Stress for Novel Cancer Therapy. Genes. september 2020;11(9):990.  

116. Eischen CM. Genome Stability Requires p53. Cold Spring Harb 

Perspect Med. june 2016;6(6):a026096.  

117. Smirnov P, Safikhani Z, El-Hachem N, Wang D, She A, Olsen C, et 

al. PharmacoGx: an R package for analysis of large pharmacogenomic 

datasets. Bioinforma Oxf Engl. 15 april 2016;32(8):1244-6.  

118. Punekar SR, Shum E, Grello CM, Lau SC, Velcheti V. 

Immunotherapy in non-small cell lung cancer: Past, present, and future 

directions. Front Oncol [Internet]. 2022 [cited 7 march 2023];12. Available 

at: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9382405/ 

119. Murciano-Goroff YR, Warner AB, Wolchok JD. The future of cancer 

immunotherapy: microenvironment-targeting combinations. Cell Res. june 

2020;30(6):507-19.  

120. Qiu Y, Chen T, Hu R, Zhu R, Li C, Ruan Y, et al. Next frontier in 

tumor immunotherapy: macrophage-mediated immune evasion. Biomark 

Res. 9 october 2021;9(1):72.  

121. van Maldegem F, Downward J. Mutant KRAS at the Heart of Tumor 

Immune Evasion. Immunity. 14 january2020;52(1):14-6.  

 

 

 

 



 

 96 

 

  

 


	Transcriptional profiling of molecular pathways allows for the definition of robust lung squamous cell carcinoma molecular subtypes with specific vulnerabilities
	ACKNOWLEDGEMENTS
	CONFLICT OF INTEREST STATEMENT
	FUNDING INFORMATION
	DATA AVAILABILITY STATEMENT

	ORCID
	REFERENCES
	SUPPORTING INFORMATION

	Outline placeholder
	mol213550-aff-0001
	mol213550-aff-0002
	mol213550-aff-0003
	mol213550-aff-0004
	mol213550-aff-0005
	mol213550-aff-0006
	mol213550-fig-0001
	mol213550-fig-0002
	mol213550-tbl-0001
	mol213550-tbl-0002
	mol213550-fig-0003
	mol213550-fig-0004
	mol213550-fig-0005
	mol213550-fig-0006
	mol213550-bib-0001
	mol213550-bib-0002
	mol213550-bib-0003
	mol213550-bib-0004
	mol213550-bib-0005
	mol213550-bib-0006
	mol213550-bib-0007
	mol213550-bib-0008
	mol213550-bib-0009
	mol213550-bib-0010
	mol213550-bib-0011
	mol213550-bib-0012
	mol213550-bib-0013
	mol213550-bib-0014
	mol213550-bib-0015
	mol213550-bib-0016
	mol213550-bib-0017
	mol213550-bib-0018
	mol213550-bib-0019
	mol213550-bib-0020
	mol213550-bib-0021
	mol213550-bib-0022
	mol213550-bib-0023
	mol213550-bib-0024
	mol213550-bib-0025
	mol213550-bib-0026
	mol213550-bib-0027
	mol213550-bib-0028
	mol213550-bib-0029
	mol213550-bib-0030
	mol213550-bib-0031
	mol213550-bib-0032
	mol213550-bib-0033
	mol213550-bib-0034
	mol213550-bib-0035
	mol213550-bib-0036
	mol213550-bib-0037
	mol213550-bib-0038
	mol213550-bib-0039
	mol213550-bib-0040
	mol213550-bib-0041
	mol213550-bib-0042
	mol213550-bib-0043
	mol213550-bib-0044
	mol213550-bib-0045
	mol213550-bib-0046
	mol213550-bib-0047

	mol213550-supitem

