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Abstract. This work studies the characteristics of thunderstorms that cause lightning-caused wildfires in Catalonia, 
north-east Iberian Peninsula, using lightning and weather radar data. Although thunderstorms produce ,57 000 cloud-to- 
ground (CG) flashes yearly in Catalonia, only 1 in 1000 end up as a flaming wildfire. Characterisation of thunderstorms 
that ignite wildland fires can help fire weather forecasters identify regions of increased ignition potential. Lightning data 
and radar products like maximum reflectivity, echo tops heights and equivalent liquid content were obtained over a 7-year 
period. Characteristics of thunderstorms that ignite wildfires are examined including storm motion, duration, morphology 
and intensity. It was found that most probable ignition candidates are lightning associated with cellular thunderstorms and 
non-linear systems. Radar reflectivity values for lightning that ignites wildfires were found to be below average, these 
morphological types favouring the occurrence of lightning outside regions of high reflectivity, where precipitation 
reaching the ground is low or non-existent. Thunderstorms that ignite wildfires are typically of low intensity, with a CG 
flash rate below average. Most ignitions occur during the maturity phase when the CG flash rate is the highest. A better 
scientific understanding of the thunderstorms that cause lightning wildfires will help improve early firefighting response. 

Keywords: lightning, lightning-ignited wildfire, lightning location system, weather radar, thunderstorm tracking, 
Catalonia. 
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Introduction 
Wildfires cause substantial socio-economic losses and impact 
natural biodiversity in Mediterranean areas. In the southern 
European Union (EU) countries (Portugal, Spain, France, Italy 
and Greece), ,47 650 fires every year burn 448 400 ha on 
average (1980–2018), and a small number of large fires (,5%) 
account for the bulk of burned area (San-Miguel-Ayanz et al. 
2019). Causality records from the European Fire Database 
(Camia et al. 2010) show that wildfires in the Mediterranean 
countries are mostly related to human activity (56% deliberate 
action, 33% negligence, 6% accidental). Contrarily to boreal 
forests, where lightning ignitions predominate (e.g. Stocks et al. 
2002; McGuiney et al. 2005; Veraverbeke et al. 2017), and to 
the European Alps, were lightning fires account for up to a third 
of forest fires and burned area during the summer months (Cesti 
et al. 2005; Conedera et al. 2006; Mu¨ller et al. 2013; Moris et al. 
2020), lightning is a minor cause of forest fires in the southern 
EU countries (5–10%). Therefore, little attention has been paid 
to lightning-ignited wildfires (hereafter, LIWs) in the area. 
Nonetheless, LIWs must be considered a major disruptive agent 
in Mediterranean-climate regions as they can trigger large fires 

(San-Miguel-Ayanz et al. 2013). Although most of the LIWs 
burn less than 1 ha, some of the largest fires recorded in Spain 
were caused by lightning (e.g. the 1994 Villarluengo and Mill- 
ares wildfires with 75 000 burned ha, Fernandes et al. 2021). In 
Mediterranean ecosystems, fires usually burn under extreme 
meteorological conditions (e.g. Oliveras et al. 2009). Extended 
dry spells are conductive to extended periods of low fuel 
moisture (e.g. Jain et al. 2017); the drying of soils and vegetation 
allows increased opportunities for fire ignitions and can gener- 
ate more severe fires (Westerling et al. 2006). Under these 
conditions, intense storm systems can cause multiple, fairly 
simultaneous LIWs (e.g. Keeley and Syphard 2021). In addition, 
since lightning ignitions can occur anywhere, ignitions in 
complex topography can be challenging, leading to complex 
LIW episodes that may overwhelm fire brigades, resulting in 
longer response times and more difficult firefighting campaigns 
(Costafreda-Aumedes et al. 2016). A significant example was 
the California 2020 wildfire season, where lightning complex 
fires, like the Sonoma–Lake Napa Unit (LNU) and the Santa 
Clara Unit (SCU) burned 147 000 and 160 000 ha respectively, 
causing  six  fatalities  and  significant  economic  and 
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environmental impacts (Department of Forestry and Fire Pro- 
tection of California, https://fire.ca.gov/). 

Wildfires are driven by the availability of fuel, oxygen and 
heat (the so-called fire triangle, Pyne et al. 1996). Ignition 
sources can be natural or anthropogenic. Among natural causes, 
lightning is the most important source worldwide (Komarek 

1964; Pyne et al. 1996). It is generally accepted in scientific 
literature that lightning with long continuing current (LCC, a 
continuing current component that lasts longer than ,40 ms; 

Brook et al. 1962; Kitagawa et al. 1962) heats the fuel for longer 
and consequently has a higher capacity to ignite a fire (Fuquay 
et al. 1967; Fuquay 1980; Latham and Williams 2001). High- 
speed video observations (e.g. Ballarotti et al. 2005; Campos 

et al. 2007; Saba et al. 2006, 2010; Montanya` et al. 2012; Pineda 
et al. 2014) have shown that, although LCC is not present in all 

lightning flashes, it is present with both polarities. However, 
LLC is more common in positive cloud-to-ground ( CG) 
flashes (65–75%) than in negative cloud-to-ground ( CG) 

flashes (20–60%). As CG have a major probability of ignition, 
past research focused on this type of lightning (Fuquay 1982; 
Rust et al. 1985; Latham and Schleiter 1989). However, since 
CG climatologically outnumber CG (80–90% v. 10–20%), 

in the end, the majority of LIW are ignited by negative flashes 
(e.g. Pineda et al. 2014; Schultz et al. 2019; Moris et al. 2020). 

Most lightning flashes occur within the rain shaft of a 
thunderstorm, under the thunderstorm convective core. Many 

studies have established positive correlations between lightning 
production and high radar reflectivity (35–40 decibels of reflec- 
tivity, dBZ) volume above the –108C isotherm height (e.g. Dye 
et al. 1989; Williams et al. 1989; MacGorman et al. 1999; Liu 
et al. 2012; Salvador et al. 2020). This relationship can be 

explained by the dominant charging mechanism in most 
thunderstorms, a non-inductive process (Takahashi 1978; 

MacGorman et al. 2008) that involves rebounding collisions 
within the mixed-phase environment, wherein hydrometeors of 
multiple phases coexist: graupel pellets, ice crystals and super- 
cooled liquid water (Williams et al. 1991; Deierling et al. 2005). 
In a classical, convective-scale thunderstorm, where the ascent 
is provided by conditional instability and the release of convec- 
tive available potential energy, the electrical structure consists 

of a vertical tripole, with a dominant middle negative charge 
region and positive charge regions above and below (Krehbiel 
1986; Williams 1989; Stolzenburg and Marshall 2008). This 
typical layer configuration favours the production of CG light- 
ning (Tessendorf et al. 2007; Stolzenburg and Marshall 2008; 

Salvador et al. 2021). However, the majority of lightning-caused 
ignitions under convective cores are extinguished by concurrent 
heavy rainfall. In contrast, a small fraction of CG flashes strike 
outside the main core with very little or no nearby concurrent 

rainfall (e.g. Hall 2008; Dowdy and Mills 2012; Vant-Hull et al. 
2018; Mu¨ller and Vacik 2017; Pineda and Rigo 2017). Rorig and 
Ferguson (1999) defined those strikes as ‘dry lightning’, as they 
occur with rainfall less than 2.54 mm (0.1 inches). In the present 
study, we use a threshold of less than 2 mm precipitation (Pineda 
and Rigo 2017). Ignitions caused by dry lightning are more 
likely to produce flaming wildfire because precipitation reach- 
ing the ground is weak or non-existent. Despite the probability 

of ignitions having been related to lightning density (e.g. 
Latham and Schleiter 1989), the survival phase is highly 

dependent on fuel moisture, and that is why the concept of dry 
lightning is of importance (Dowdy and Mills 2012; Nauslar et al. 
2013). Therefore, the probability of LIW occurrence depends 
not on the probability of ignitions, but on the fraction that 
eventually survives the thunderstorm. 

Fuel moisture content is increased by groundwater availabil- 
ity, atmospheric humidity and especially precipitation (e.g. 
Flannigan and Wotton 1991; Evett et al. 2008; Morin et al. 
2015). The relative timing between the lightning strike and 
precipitation, which is critical to whether lightning ignitions 
survive and turn into flaming combustion, is a key issue for 
understanding lightning-caused ignitions (Hall 2007). Past 
research has dealt with the relationship between lightning- 
ignited wildfires and precipitation (e.g. Pineda and Rigo 
2017). There has also been a significant amount of research 
concerning radar reflectivity related to thunderstorms and light- 
ning (e.g. Williams et al. 1989; Carey and Rutledge 1996; 
MacGorman et al. 1999; Rigo et al. 2010, Salvador et al. 
2020) but there has been little research linking radar-derived 
thunderstorm patterns with the locations of lightning-ignited 
wildfires (Hall 2008). 

The acquisition of quantitative data on lightning-ignited 
wildfires is challenging yet critical to improve our current 
knowledge on natural wildfire processes. This lack of data 
limits the understanding of this wildfire–atmosphere interac- 
tion and hampers the ability to model and predict its occur- 
rence. There has been limited research analysing naturally 
ignited wildfires in relation to storm structure and lifecycle. In 
this regard, the present study aims to improve the characterisa- 
tion of wildfire-producing storms. By adding weather radar 
data to the systematic analysis of LIWs, a better understanding 
of the characteristics of thunderstorms that trigger LIWs can be 
acquired. In doing so, the present study aims to shed new light 
on some observations reported in past research. Namely, 
Kera¨nen (1929), Kitterman (1980) and Granstro¨m (1993) 
suggested that isolated afternoon storms are more likely to 
generate a fire than storms associated with a front crossing. 
According to Larjavaara (2005), the probability of ignition is 
higher in low-intensity storms, because although there is less 
lightning, these have little associated precipitation and there- 
fore a possible ignition is more likely to end in a fire. Rorig and 
Ferguson (2002) and Larjavaara (2005) suggest that in areas 
across which a storm has moved rapidly, there is a lower 
accumulation of rain that leads to an increase in the probability 
of ignition of a fire. According to Hall (2008), the discharges 
most likely to cause fires occur on the margins of storms, where 
precipitation reaching the ground is low or even non-existent. 
Consequently, the fact that storms with smaller areas have 
relatively a larger ratio of perimeter to area than storms over 
large areas makes the probability of ignition higher on days 
when there are many small storms than on days with fewer but 
more extensive storms (Flannigan and Wotton 1991). While 
this series of works gives an idea of which kind of storms 
generate LIWs, a systematic study is needed to objectively 
characterise wildfire-producing storms. Although the datasets 
and methods of the current study partially overlap with those in 
prior studies (Pineda et al. 2014; Pineda and Rigo 2017), the 
current study extends the science of these earlier works to the 
study of LIW parent thunderstorms. 

https://fire.ca.gov/
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Fig. 1. Geographical distribution of lightning-ignited wildfires for the 2012–2018 period in Catalonia (NE Iberian Peninsula). The size of the 
circle is proportional to the burned area. Wildfire data source: Forest Protection Agency, Autonomous Government of Catalonia. Land cover 
map data source: land cover map of Catalonia (https://www.creaf.cat/ca/land-cover-map-catalonia). 

 
Data 
The study area was Catalonia, a region of ,32 000 km2 in the 
north-east of the Iberian Peninsula, in the north-west of the 
Mediterranean basin (Fig. 1). Two main geographical features 
delimit the region: the Pyrenees mountain range on the 
northern border, and the Mediterranean Sea along the SW–NE 
coastline. Regarding forest fires caused by lightning, another 
relevant orographic feature is the pre-littoral mountain range 
(1000–1700 m above sea level (asl)) that runs parallel to the 
Mediterranean coastline and encompasses a significant num- 
ber of LIWs (Fig. 1). Catalonia’s Mediterranean climate, with 
hot and dry summers, prolonged drought periods and strong 
winds (Mart´ın-Vide et al. 2010), plays a significant role in the 
Mediterranean fire regime (Ganteaume et al. 2013). Catalonia 
is extensively covered with forests and shrublands: ,60% of 
the country is forest land according to the Ecological Forest 
Inventory of Catalonia (IEFC, Gracia et al. 2004). Dominant 
tree species where most of the LIW take place (Fig. 1) are 
conifers, like Pinus halepensis, Pinus nigra and Pinus sylves- 
tris. Additionally, these conifer stands have abundant highly 
flammable species in the understorey like Erica sp., Genistella 
tridentata  and  Calluna  vulgaris,  among  others,  which 

contribute to fire propagation after ignition (Rodr´ıguez-Pe´rez 
et al. 2020). Moreover, the IEFC reported a significant increase 
of 3.2% in forest land cover between1966 and 2001, mainly 
related to rural exodus. Indeed, forest fires are an increasing 
natural hazard (e.g. Llasat-Botija et al. 2007), owing to land 
use changes that have increased the wildland–urban interface 
and promoted homogeneous forest landscapes and forest fuel 
accumulation (Badia et al. 2002; Gonza´lez and Pukkala 2007; 
Alcasena et al. 2019). 

Since 1986, the Forest Protection Agency of the autonomous 
government of Catalonia (Servei Prevencio´ Incendis Forestals, 
SPIF) has managed the governmental wildfire database. 
Records include information on the cause of ignition, and the 
date, time and coordinates of the point of ignition. Based on the 
available data, there are 640 wildfires a year, which burn 7700 
forested ha per year, on average. Large fires (.100 ha) account 
for more than 88% of the burned area. Wildfires caused by 
lightning only represent 10.4% of the total number of wildfires 
and 2% of the burned area. There have been 2250 wildfires due 
to lightning since 1986, thus an average of 66 LIWs per year. 
Most of them occur during summer, the months from June to 
September encompassing 90% of the LIWs. 

https://www.creaf.cat/ca/land-cover-map-catalonia
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During the period of the present study (2012–2018), light- 
ning caused 393 LIWs, with an average of 56 wildfires per year 
and 200 burned ha per year. The burned area rarely exceeded 
1 ha per LIW (Fig. 1). These 7 years were selected based on the 
availability of radar data; however, the yearly average of LIWs 
is representative of the longer SPIF record. 

Lightning data used in the current study were provided by the 
Servei Meteorolo`gic de Catalunya (SMC) lightning location 
system (hereafter SMC-LLS). This LLS is composed of four 
total lightning detectors (Vaisala LS-8000). Individually 
detected CG strokes are grouped into CG flashes using an 
algorithm based on time and distance criteria (Cummins et al. 
1998; San Segundo et al. 2020). The performance of the SMC- 
LLS is periodically evaluated (see Pineda and Montanya` 2009 
for details on the evaluation methods). These periodical evalua- 
tions indicate a CG flash detection efficiency (DE) of ,85–90% 
for the SMC-LLS. 

Weather radar was used to determine the characteristics 
of the thunderstorms that produce LIW in the study region. 
The SMC operates a weather radar network composed of four 
C-band (5.600 to 5.650 MHz) Doppler radars. Polar volumes are 
acquired every 6 min, in a 16-elevation scan scheme. Radar 
volumes include 16 plan position indicator (PPI) scans every 
6 min, the scan range being 130 km. Time-synchronised 
volumetric data from individual radars are combined into a 
single three-dimensional volume, which is used to generate 
composite products like the Constant Altitude Plan Position 
Indicator (CAPPI). Radar composite products allow a substan- 
tially improvement in individual radar coverage, which other- 
wise is limited by orographic beam blockage in several sectors 
(Bech et al. 2003; Trapero et al. 2009). Further details of the 
SMC radar network can be found in Bech et al. (2004) and 
Argem´ı et al. (2014). 

 
Methods 
Most probable candidate 
The first step seeks to identify the fire starter for each of the 
LIWs that took place in Catalonia between 2012 and 2018. To 
this end, two independent datasets are combined: the SPIF 
wildfire and the SMC-LLS databases. The first step looks for all 
lightning occurring in the vicinity of the wildfire (10 km radius) 
within the previous 72 h. In a second step to select the most 
probable candidate (hereafter MPC) among the lightning flashes 
located close to each wildfire, we used the method described in 
Pineda et al. (2014), which, in turn, is an adaptation of the 
‘proximity index’ proposed by Larjavaara et al. (2005) (Eqn 1). 
The proposed probability distributions as a function of time (T) 
and distance (S) are linear and assume that a stroke with T ¼ 0 
and S ¼ 0 is certainly the fire starter: 

A ¼ 
r
1 - 

 T 
1 

x 
r
1 -  

S 
1 

ð1Þ 

holdover period) is determined for each LIW, subtracting the 
start time of the wildfire report from the time of the MPC. 
Holdover times greater than 3 days are rare in the study area 
(Pineda and Rigo 2017); thus, generally at least one candidate is 
to be found within the previous 72 h. In the case where no 
lightning candidates are found, the time period is extended to 
10 days. 

 
Characteristics of lightning 
At present, LLSs locate lightning CG strikes with high effi- 
ciency and precision. However, ground-based LLSs rely on the 
strong peak current of the return strokes, but fail to detect weak 
current signals like those coming from the LCC component. 
Therefore, all lightning reported by the LLS has to be considered 
as a potential ignition candidate. Past research focused on the 
use of lightning attributes like multiplicity, polarity and peak 
current as a proxy for wildfire ignition, given the possible 
dependence of LCC on polarity and multiplicity (e.g. Latham 
and Schlieter 1989; Latham and Williams 2001; Durden et al. 
2004). However, currently this approach seems ineffective as 
later studies have found that the multiplicity and peak current of 
igniting lightning candidates are not substantially different from 
those of the rest of lightning (e.g. Larjavaara et al. 2005; Hall 
and Brown 2006; Nieto et al. 2012; Pineda et al. 2014; Mu¨ller 
and Vacik 2017; Schultz et al. 2019). Nevertheless, lightning 
attributes from the MPC selection were compared with lightning 
climatology. 

 
Thunderstorm selection 
Once a lightning flash has been identified as the MPC for each 
LIW, the next step is to find the parent thunderstorm that pro- 
duced the MPC. To this end, two independent datasets are 
combined: the SMC lightning database and the SMC storm 
tracking database (Rigo et al. 2010). Here, the MPC is associ- 
ated with the closest storm cell object within the 6-min time span 
to which the lightning belongs. This association was manually 
supervised using the CAPPI product using geographic infor- 
mation system (GIS) techniques. Although it was a time- 
demanding task, it was considered necessary since the MPC 
can be in the stratiform region of the storm system, outside the 
convective core (storm cell object). Once the parent storm is 
identified and validated, lifetime characteristics of the LIW 
parent thunderstorm are retrieved from the SMC storm tracking 
database. 

 
Storm morphology 
Thunderstorm systems producing LIWs were also analysed in 
terms of storm morphology. The selected LIW parent thunder- 
storms (hereafter, LIW-PTs) were classified according to their 
dominant storm morphology, using the classification system 
developed by Parker and Johnson (2000) and Gallus et al. (2008) 

Tmax Smax based on the analysis of weather radar reflectivity CAPPI 
sequences. As pointed out by Duda and Gallus (2010), classi- 

where Tmax defines the longest considered holdover time (72 h) 
and Smax the maximum buffer radius around the ignition point 
(10 km). The MPC is therefore the lightning stroke with the 
highest A score. Once the MPCs are identified, the time span 
between the lightning occurrence and the wildfire start date (the 

fying convective systems by visual inspection of radar data is 
somehow subjective, but the quantitative guidelines contained 
in the method should reduce subjectivity. Gallus et al. (2008) 
defined nine morphologies (Fig. 2). Three of them are of the 
cellular type: isolated cells (ICs); clusters of cells (CCs), and 
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Fig. 2. Schematic drawings of the systems for each of the nine storm morphologies, grouped in 
three general morphological types. Cellular type: IC, isolated cells; CC, cluster of cells; BL, broken 
line of cells. Non-linear type: NL, non-linear convective system. Linear type: NS, squall line with no 
stratiform precipitation; TS, trailing stratiform precipitation; PS, parallel stratiform precipitation; 
LS, leading stratiform precipitation; BE, bow echo. Storm motion is left to right in all cases. Adapted 
from Gallus et al. (2008). 

 
broken lines (BLs). Five morphologies are of linear type: squall 
line with no stratiform precipitation (NSs), trailing stratiform 
squall lines (TSs), parallel stratiform squall lines (PSs), leading 
stratiform squall lines (LSs), and bow echoes (BEs). Finally, one 
last type is defined as non-linear convective morphology (NL). 

 
Storm tracking 
Among other applications, SMC radar data feed an operational 
thunderstorm tracking system (see Rigo et al. 2008, 2010 and del 
Moral et al. 2020 for details). The SMC storm tracking algo- 
rithm is a local adaptation of the well-known SCIT algorithm 
(Storm Cell Identification and Tracking Algorithm; Johnson 
et al. 1998). A detected storm cell is tracked in successive radar 
images (6-min time span), allowing a time history of the cell 
displacement to be derived. The characteristics of these cell 
objects describe the storm structure and their attributes are 
computed from the volumetric radar data. Storm attributes 
include cell reflectivity (average and maximum), echo tops 
height (12 and35 dBZ), and Vertically Integrated Liquid (VIL). 
The EchoTops product refers to the maximum height of radar 
echoes with a reflectivity equal to or higher than a given 
reflectivity threshold. The EchoTops-12 product can be taken as 
an indicator of the altitude of the thunderstorm top boundary 
(e.g. Rosenfeld et al. 1993; Yuter and Houze 1995), whereas 
EchoTops-35 is a proxy for the maximum convective intensity 
of precipitation (e.g. Vincent et al. 2003; Yang and King 2010; 
Liu et al. 2012; Salvador et al. 2020). Further, the VIL content, 
obtained by vertical integration of radar reflectivity (Greene and 
Clark 1972), may be more representative of the amount of 
rainfall estimated to reach the ground compared with the max- 
imum reflectivity. High values of VIL generally indicate a very 
dense column of water or ice present in the storm (Metzger and 
Nuss 2013) and have shown a statistically significant correlation 
with lightning intensity (Steiger et al. 2007). 

Finally, the CG flash rate was calculated for thunderstorm 
cell objects in a 6-min time bin framework corresponding to 
the time span of the tracking algorithm. Three categories of 
intensity were considered (Rigo et al. 2010): weak (,2 CG 

flashes min-1), moderate (2–10 CG flashes min-1) and intense 
(. 10 CG flashes min-1). 

Results 
Characteristics of lightning that ignites wildfires 
Since LLS does not detect the LCC component, flash multi- 
plicity, polarity and peak current of the return stroke were used 
as proxies for wildfire ignition likelihood. Table 1 presents a 
comparison between the MPCs and the whole population of 
lightning recorded over Catalonia for the period of study. 
Although there is 7% more CG in the MPCs compared with the 
whole dataset, the MPC sample has almost 3/4 of CG. As 
expected, peak currents were higher in positive than in negative 
MPCs. Regarding multiplicity, and in spite of displaying similar 
peak currents, CG flashes that ignite wildfires had almost three 
CG strokes per flash, higher than the average (1.7). On the other 
hand, MPC CG flashes had a lower average peak current and a 
higher multiplicity (1.9) compared with the average (1.3). All in 
all, from the above numbers, no substantial differences can be 
clearly established between MPCs and average population 
characteristics. The small differences found can be due to 
the huge difference in the number of samples, the figures for the 
small LIW sample not being statistically significant. In fact, the 
probability of a discharge causing a fire owing to the peak 
current, through Bayes’ theorem, showed that probabilities were 
very low among all the range of peak currents. 

Therefore, all kind of lightning can be at the origin of an LIW. 
Ignition is either started by negative and positive CG flashes, as 
well as by a wide range of first-stroke peak currents in both 
polarities. Despite the reported differences, from a practical 
point of view, no lightning can be discarded as the ignition 
source of an LIW by analysing its LLS-measured attributes. 

 
Characteristics of the parent storms 
First, the 371 storms resulting from the LIW–thunderstorm 
matching, through MPC identification, were analysed in terms 
of morphology, trajectory, speed, covered distance and duration. 
Second, the analysis focused on the time of occurrence of the 
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MPC in relation to the storm life cycle. The timing of the LIW 
was compared with the phase of the LIW-PT, as well as radar- 
derived parameters for the MPC like reflectivity (Z), EchoTops 
and VIL. An example illustrating centroid tracking is shown in 
Fig. 3. The radar-derived 24-h accumulation of the quantitative 
estimated precipitation (Trapero et al. 2009) is overlaid on the 
tracking centroids of the LIW parent cell for the 2 October 2016 

 

 
Table 1. Average statistics for all cloud-to-ground flashes recorded in 
Catalonia (SMC-LLS) in 2012–2018 and for most probable candidates 

(MPCs) of wildfire ignition 
Flash polarities and peak currents refer to the first stroke of each flash. 
Multiplicity is the average number of strokes per CG flash. The percentage 

of single-stroke flashes is also reported 

LIW. This episode was first detected at 1130 UTC (Universal 
Time Coordinated) and had a duration of almost 2 h, travelling 
,30 km. Derived tracking cell centroids (whose colour symbols 
represent time progress with darkening grey shading) show how 
the LIW-PT followed a rather straight path, the LIW occurring 
practically at the end of the lifecycle (1319 UTC). The flaming 
LIW was observed at 1355 UTC (shown as a red star). Under- 
lying rainfall throughout the episode shows lower accumula- 
tions at the end of the episode, coinciding with the location of the 
lightning ignition (shown as a red diamond). 

All LIW-PTs were classified through visual inspection of 
radar CAPPI sequences, according to the storm morphology of 
Gallus et al. (2008). It is worth noting the difficulty of the 
classification process, given that the convective system may 
exhibit changing morphologies throughout its lifetime. Follow- 

    ing the recommendations of Duda and Gallus (2010), the 
dominant morphology was considered to represent the whole 
episode. The contribution of each morphology to the total 
sample of LIW-PTs is shown in Fig. 4a. The three most common 
systems (NL, CC and IC) account for 3/4 of the sample. The 
largest single contributor is the NL category, constituting almost 
half of the sample. In part, this may be due to the fact that the 
cases that are difficult to classify generally end up in this 
category. Regarding broad morphological types (cellular, linear 
and non-linear), non-linear systems account for the greatest 
portion of all LIW-PTs in the dataset (47%), followed by cellular 
systems (38%) and linear systems (15%). 

Average (median) CG peak current 
Negative (kA) –16.6 (–11.6) –17.7 (–12.8) 

  Positive (kA) þ33.4 (þ20.3) þ23.6 (þ13.3) 

As no previous reference for this storm morphology classifi- 
cation existed in the study region, the LIW frequency distribu- 
tion was compared with the classification of Duda and Gallus 

 
 

 
 

Fig. 3. Example of the lifecycle of a lightning-ignited wildfire parent thunderstorm, which took place on 
2 October 2016. The storm evolution is represented through the 6-min radar-derived centroids produced by 
the tracking algorithm. The storm evolved from west to east, starting at 1130 UTC and travelling ,30 km 
in 2 h approximately. The most probable candidate for the ignition (red diamond) occurred at the very end 
of the storm (1319 UTC); the lightning-ignited wildfire was reported at 1355 UTC (shown as a red star). 
Storm evolution is overlayed onto the 24 h radar-derived rainfall accumulation (in mm) and the shadowed 
digital elevation model (grey levels). 

Rainfall (in mm) 

1130 UTC 
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1324 UTC 

0 5 10 km 

 All flashes MPC 

Sample 393 423 371 
Polarity   

Negative (%) 85 77 
Positive (%) 15 23 

Multiplicity (strokes per CG flash)   

Negative (%) 1.7 2.9 
Positive (%) 1.3 1.9 

Single-stroke CG flashes   

Negative (%) 59 39 
Positive (%) 77 43 
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However, in terms of duration, one should keep in mind that a 
time interval of approximately 10–15 min should be added both 
before and after the start and end timestamps from the tracking 
system. For the purposes of characterising the LIW-PT distri- 
bution of thunderstorm initiation, including or excluding this 
extra time and consequent covered distance will not signifi- 
cantly impact the results. 

Visual analysis of the set of trajectories displayed in Fig. 5 
reveals some of the local thunderstorm patterns. For example, 
storms initiated in the Iberian System mountain range (not 
shown, SW of the map) typically reach Catalonia from the SW 
and have a SW-to-NE bearing (e.g. Rigo et al. 2010). These 
SW-to-NE tracks generally present linear trajectories, asso- 
ciated with long-lived thunderstorms that last more than 1 h 
(del Moral et al. 2018). Thunderstorms in the Pyrenees 
(northern part) are clearly constrained by the local orography, 
as they usually follow valleys at a lower speed (closer 
centroids), compared with the rest. The messy central part 
of the map has a less clear pattern. Once all those SW–NE are 
removed (not shown), another local pattern can be seen: 
inland convection that travels NW to SE to finally reach the 
coastline. All in all, LIW-PT trajectories are not different 
from climatological ones. 

The frequency distribution of the distances travelled by the 
LIW-PTs is plotted in Fig. 6a. As observed, 80% of the LIW-PTs 
covered distances between 10 and 80 km (median 37 km). To 

Present work Duda and Gallus 2010 cover such distances, they needed 72 min on average, half of 
them lasting less than 66 min (Fig. 6b). Only 15% lasted more 

Fig. 4. (a) Percentage contribution of each morphology to the total number 
of LIW. Shading corresponds to general morphological type: linear (light 
grey), cellular (medium grey) and non-linear (dark grey). Numbers indicate 
the percentage of events that occurred for each morphology. (b) Percentage 
of systems from each morphology, comparing the present work (dark grey) 
with Duda and Gallus (2010) (light grey). 

 
 

(2010) for the Midwestern United States and Central Great 
Plains (Fig. 4b). Rankings of the three topmost-productive 
systems are the same in both datasets (NL, CC and IC), although 
there are substantial disparities in the percentages. It is worth 
pointing out that LIW episodes in which the SMC tracking 
system failed to detect or track the thunderstorm system resulted 
in NL systems when manually classified through the CAPPI 
sequences. Yet this may be a significant result of the morphol- 
ogy analysis: the higher percentage of NL systems suggests that 
LIW-PTs tend to be non-organised systems (difficult to track) 
dominated by cellular morphologies, and surrounded by strati- 
form areas bearing a larger number of CG strokes under 
moderate reflectivity regions (less ground-reaching precipita- 
tion at the ignition location), the related ignitions having a 
higher probability of survival and arrival. 

 
Storm tracks 
Time and location coordinates of LIW-PT starting and ending 
spots are derived from the SMC thunderstorm tracking algo- 
rithm (Fig. 5). The first point on a track represents the time and 
location of the first storm centroid, which in general is not the 
storm initiation spot. Since the starting point is irrelevant for 
the present study, no backward extrapolation is needed. 

than 2 h. Average velocity was 10.5 m s-1, and 80% of the LIW- 
PTs had velocities in the range of 4–17 m s-1 (Fig. 6c). Fig. 6d 
presents the LIW time of occurrence relative to the phase of the 
storm. Note that LIW timings along the LIW-PT lifecycle are 
normalised by the maximum duration of the LIW-PT. By doing 
so, occurrence can be analysed in relative terms. Fig. 6d shows 
that, although LIWs are slightly more probable in the second 
half of the storm, they can occur at any stage. Whereas 
thunderstorm cells in the maturity phase tend to present the 
bulk of CG flashes closely related to the high reflectivity cores, 
as the storm begins to decay, precipitation becomes more 
scattered spatially, and so does the distribution of CG strokes, 
hence decreasing the likelihood of spatial coincidence (e.g. 
Brown et al. 2002; Hall 2008). Mazur et al. (1986) observed 
that, during dissipation, lightning activity tends to spread 
outside the convective core. 

Rigo et al. (2010) described the thunderstorm life cycle for 
ordinary thunderstorms in the present area of study. The dissi- 
pation phase, which covers approximately the last 20% timespan 
of the storm, only accounts for 10% of the CG lightning. 
Applying an analogy to the current case studies, the last bin of 
the normalised duration constituting the dissipation stage 
(Fig. 6d) would contain 10% of the lightning activity of the 
whole lifecycle, while encompassing more than 20% of LIW 
cases. Therefore, the probability of LIW per CG flash is doubled 
during this phase. 

Radar characteristics 
Keeping in mind that most CG flashes occurs within the rain 
shaft of a thunderstorm (e.g. Che`ze and Sauvageot 1997; 
Petersen and Rutledge 1998; Molinie et al. 1999; Soula and 
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Fig. 5. Path of the LIW-PTs during the analysed period (2012–2018). The storm evolution, derived from 
the tracking algorithm, is represented through the 6-min radar-derived centroids. Colour ramp 
(blue – green – yellow) show storm evolution and duration. The base layer corresponds to the shadowed 
digital elevation model (grey levels). 

 
Chauzy 2001; Pineda et al. 2007; Liu et al. 2012) and that only a 
small fraction strike outside the main core, the reflectivity 
associated with the MPCs was studied in detail. To do so, all 
lightning coordinates were analysed to resolve the maximum 
associated reflectivity. Results are presented in Fig. 7, in which 
the maximum reflectivity distribution of the MPC sample is 
compared with that of the rest of lightning that took place during 
the LIW-PT. In general, MPCs were related to lower values of 
maximum reflectivity. As many as half of the MPCs were out- 
side regions of high reflectivity (below 36 dBZ), whereas the 
median for all CG flashes is at 42 dBZ. MPCs above 48 dBZ only 
comprise 5%, compared with 17% of all CG strokes. This sug- 
gests an increased probability of dry lightning being associated 
with air mass thunderstorms as precipitation is more likely to be 
within areas of high reflectivity. These results, similar to Hall’s 
(2008), suggest that ignitions that survive and turn into flaming 
wildfires typically occur near the perimeter of the rain shaft. 

Another approach for analysing the relationship of the LIWs 
with their parent storms is through radar products like EchoTops 
and VIL. Regarding the EchoTops-35 product, Fig. 8 shows 
LIW-related production areas of the thunderstorm to be of lesser 
intensity, compared with the frequency distribution of associ- 
ated reflectivity for the whole CG activity. Besides, VIL values 
at the ignition location (Fig. 9) are below 5 mm in more than 
90% of the cases, and below 2 mm in 60% of the cases. Such VIL 
magnitudes are sufficiently low to suggest that the precipitation 

reaching the ground, if any, is minimal and that the majority of 
the LIW can be related to ‘dry lightning’. 

 
CG flash rate 
The CG flash rate for the whole life cycle of the LIW-PTs had an 
average of 1.2 CG flash min-1, therefore being of weak intensity 
most of the time, according to the categorisation of Rigo et al. 
(2010). A shown in Fig. 10, maximum flash rates per storm 
throughout the whole lifecycle were between 1.2 and 5.5 CG 
min-1 (interquartile distance in MAX boxplot) and very few 
6-min time bins had strong intensity (.10 CG min-1). On the 
other hand, the 6-min bins containing the MPCs had intensities 
slightly larger than the median (Fig. 10). Concerning the 
intensity of the lightning activity at the moment of the LIW 
ignition, in one third of the episodes the MPC occurred when the 
flash rate was at its maximum. In 64% of the cases, the flash rate 
was above the lifecycle average. At the other end, in 13% of the 
episodes the MPC occurred when the activity was very low 
(below 10% of the thunderstorm maximum), which tends to 
occur at the very beginning or the later end of the storm. 

 
Discussion 
Method uncertainties 
As pointed out by Moris et al. (2020), there are no datasets that 
unambiguously relate igniting lightning to the corresponding 
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Fig. 6.  Frequency distributions for (a) thunderstorm distance travelled (km); (b) thunderstorm duration (min); 
(c) thunderstorm velocity (m s-1); and (d) LIW time of occurrence through the thunderstorm normalised 
duration (%). 
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Fig. 7. Frequency plot and cumulative distribution of the maximum reflectivity (dBZ) associated 
with the most probable candidate (MPC) sample and the rest of cloud-to-ground lightning (All CG). 

 
wildfires. From the original dataset of LIW cases considered, 22 
had no lightning match-up (5.6% of the initial sample). Indeed, 
the process of pairing a lightning-initiated event with a lightning 
flash has some uncertainties. 

Despite continuous improvements of LLSs and fire data- 
bases, the identification with absolute certainty of the individual 
CG lightning that triggered an ignition remains a challenge. On 
the one hand, the DE of LLSs, although having improved with 

time (e.g. Cummins and Murphy 2009; Nag et al. 2015; Schulz 
et al. 2016; Murphy et al. 2021), is still not 100%, since not all 
CG flashes are recorded. For instance, it is possible that the CG 
flash producing the LIW was not detected, especially if the peak 
amplitude was weak (Cummins and Murphy 2009; Nag et al. 
2015). Regarding the SMC-LLS, validation field campaigns 
showed the DE for CG flashes to be of the order of 85–90% 
(Pineda and Montanya` 2009). The minimum detectable CG peak 
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Fig. 8. Frequency plot and cumulative distribution of the EchoTops-35 associated with the most probable 
candidate (MPC) sample and the rest of cloud-to-ground lightning (All CG). 
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Fig. 9. Frequency plot and cumulative distribution of Vertical Integrated Liquid (VIL) content, the equivalent 
liquid amount of a given reflectivity column, associated with the most probable candidate (MPC) sample and the rest 
of cloud-to-ground lightning (All CG). 

 
current ranged from 3 to 7 kA, as the system loses sensitivity 

when the distance to the centre of the network increases (March 
et al. 2014). Another constraint should be added regarding 

CG, as small positive events (,10 kA) can actually be strong 
cloud pulses, and tend to be dismissed (Cummins et al. 2006). 
Still, a filter based on a peak current threshold will also remove 
small positives that are actually CG strokes (e.g. Cummins and 
Murphy 2009). 

On the other hand, in terms of locational accuracy (LA), the 
geographical coordinates assigned to each CG stroke by the LLS 
correspond to the centre of a confidence ellipse (i.e. an area 
around the reported location within which there is a 50% 
probability that the CG stroke occurred; Cummins and Murphy 

2009; Nag et al. 2015). Consequently, the actual coordinates of 
the strike at the ground are not known; thus, the assignment of a 
specific lightning strike to a specific ignition point is not 
unambiguous, especially in lightning-rich storms, where various 
candidates (and confidence ellipse areas) can be found in the 
vicinity of the ignition point. In the study area, the average value 
of the length of the major axis of the 50% confidence ellipse was 
of 0.90 km for 2012 and 2013 and slightly better (between 0.70 
and 0.80 km) for the period 2014–2018. 

Regarding the wildfire database, as the wildfire community 
is unsure exactly how long LIWs can smoulder, uncertainties 
include the possibility that the fire event was human-related but 
misclassified as lightning-related (MacNamara et al. 2020; 
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Fig. 10. Boxplot of CG flash rates: LIW-PT lifecycle average (AVE), on 
the 6-min bin containing the MPC that ignited the wildfire (LIW), and 
maximum attained by the LIW-PTs (MAX). Boxes represent the interquar- 
tile range between Q25 and Q75, with a solid line indicating the median 
value. Whiskers indicate the lower and upper limits of the 1.5 interquartile 
range; the notch represents the 95% confidence interval of the median. 

 

 
Schultz et al. 2019). In relation to the present study, the SPIF 
wildfire database is regarded as a high-quality source for fire 
reports, since field investigation of the causes of a forest fire is 
carried out by trained personnel. The Corps of Rural Agents, 
among other tasks, assist firemen in forest fires, investigating 
the causes and effects of the fire, using standard methods based 
on physical evidence and public procedure. So, in the present 
case study, the missing match-ups can be mostly attributed to 
methodological constraints leading to undetected lightning. 

Finally, the holdover time between ignition and arrival 
hampers the precise identification of the igniting lightning 
individual stroke, introducing uncertainty into the MPC assig- 
nation process (e.g. Dowdy and Mills 2012; Pineda and Rigo 
2017; Schultz et al. 2019; Moris et al. 2020). The passage of 
different storms during previous hours (or even previous days) 
over the area of the wildfire can mask holdover fires that were 
ignited before the last storm crossing. 

 
Lightning ignition efficiency 
Bearing in mind that there are ,57 000 CG flashes per year in 
Catalonia, (SMC-LLS, average 2005–2020) and that the recor- 
ded LIWs are 56 per year (SPIF, average 2012–2018), the 
lightning ignition efficiency in Catalonia is ,1/1000. Although 
thunderstorms produce a lot more lightning ignitions (CG fla- 
shes with LCC are estimated to be between 25 and 65 per 100), 
only a few survive to eventually reach a flaming stage. There- 
fore, the ability to identify potential ignition candidates among 
the huge CG lightning annual population would be of great value 
to forest protection agencies. 

Lightning attributes gathered by LLS about CG flashes like 
multiplicity, stroke polarity or peak current are not relevant in 
identifying the ignition likelihood of a particular CG flash. 
Comparison of the MPC sample with the whole dataset 

(Table 1) showed no significant differences, like in Pineda 
et al. (2014) who analysed a different period for the same study 
region. Other studies in the Alps (Mu¨ller and Vacik 2017; Moris 
et al. 2020) and in the USA (Schultz et al. 2019; MacNamara 
et al. 2020) also concluded that such attributes of fire starters are 
not substantially different from the rest of lightning. Still, there 
is higher proportion of CG among MPCs, also reported by 
those studies, which is attributable to the fact that LCC is more 
frequent in CG flashes than in negative ones (Anderson 2002; 
Saba et al. 2010; Pineda et al. 2014). Nonetheless, the MPC 
sample is dominated by CG. As in Moris et al. (2020), these 
negative MPCs have a multiplicity above the average. Shindo 
and Uman (1989) showed that the multiplicity of negative 
flashes is positively correlated with the occurrence of LCC. 

Given that CG lightning attributes are useless in identifying 
potential ignition candidates, other meteorological variables 
should be included in the decision-making process while pre- 
paring for days with multiple ignitions, routeing detection flight 
paths, and locating ignitions and potential holdover fires 
(Anderson 2002; Reid et al. 2010). 

According to MacNamara et al. (2020), current United States 
Forest Service (USFS) metrics rely on the ground flash density 
(GFD, number of CG flashes per km2) to set the probability of 
LIW occurrence: the larger the GFD, the greater probability of 
LIW to occur (Sopko et al. 2016). However, literature does not 
describe how GFD can be useful as a metric for wildfire 
prediction. In contrast, research suggests the greatest GFD to 
be spatially collocated with the highest rain rates (e.g. Che`ze and 
Sauvageot 1997; Petersen and Rutledge 1998; Molinie et al. 
1999; Soula and Chauzy 2001; Pineda et al. 2007; Liu et al. 
2012). Although the probability of ignitions is directly related to 
the GFD, a lightning ignition must overcome a complex process 
to eventually become a wildfire. 

Forest fuel characteristics, especially moisture (which in turn 
is a function of the moisture in the environment), determine 
whether ignition will eventually survive or not (Flannigan and 
Wotton 1991; Meisner et al. 1993; Matthews 2014; Duff et al. 
2017). In this regard, Pineda and Rigo (2017) explored, for the 
same study region, the relationship between lightning-ignited 
wildfires and precipitation. They showed that most LIW were 
related to dry lightning, as 25% of the MPCs had no associated 
precipitation at all, 40% had less than 2 mm of precipitation and 
90% had less than 10 mm. Whereas daily rainfall accumulations 
used in Pineda and Rigo (2017) did not allow inferring the 
timing of the igniting lightning in relation to the different 
thunderstorm phases, the present results have shown that the 
probability of LIW per CG flash is doubled during the decaying 
phase of the storm (last 20% of the life-cycle). 

Characteristics of LIW-PTs 
Generally speaking, lightning starts in the leading edge of the 
developing storm (e.g. Mazur et al. 1986), moves close to high- 
reflectivity precipitation cores during maturity (e.g. Larjavaara 
2005; Hall 2007), and spreads further into the radar cell in the 
decaying stages (e.g. Toracinta et al. 1996; Brown et al. 2002). 
With regard to lightning counts, Rigo et al. (2010) showed that, 
in the same study region, these concentrate in the maturity phase 
(80–90%), being scarce during development (5–10%) and dis- 
sipation (10–15%). Therefore, although Fig. 6d shows a rather 
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uniform distribution of the MPCs throughout the lifecycle, in 
relative terms there are more ignitions per lightning stroke at the 
developing and decaying stages. This could be useful informa- 
tion for predicting or anticipating natural wildfire ignitions. 

Observations by Kera¨nen (1929), Kitterman (1980) and 
Granstro¨m (1993) suggested that isolated afternoon storms are 
more likely to generate a fire than storms associated with frontal 
systems. Similarly, Flannigan and Wotton (1991) found LIWs to 
be more common in thunderstorm systems composed of many 
small cells, compared with those with a few large cells. In this 
regard, Larjavaara (2005) and Hall (2008) suggested that smal- 
ler cells would produce scattered, lower-intensity precipitation, 
decreasing the likelihood that precipitation would either extin- 
guish the fire or provide enough moisture to inhibit ignition. 
Further, Hall (2008) also pointed out that lightning most likely to 
cause fires occurs on the margins of storms, where precipitation 
reaching the ground is low or even non-existent. Consequently, 
the fact that storms with smaller areas have a proportionally 
larger perimeter than storms over large areas makes the proba- 
bility of ignition higher on days when there are many small 
storms than on days with fewer but more extensive storms 
(Flannigan and Wotton 1991). The results of the present study 
have shown radar reflectivity values associated with MPCs to be 
below average, located outside regions of high reflectivity 
(below 36 dBZ), and mostly in non-linear (47%) and cellular 
systems (38%), morphological types that favour the occurrence 
of lightning on the margins of the thunderstorms’ cores. 

Thunderstorm distance travelled was estimated through 
storm track centroids. Most storms (60%) travelled between 
10 and 45 km and few exceeded 100 km. This result seems to 
contradict Larjavaara (2005) who suggested that CG strikes 
from storms travelling further than 10 km are less likely to cause 
an ignition. It also differs from the results of Hall (2008), which 
indicated that two thirds of fire-causing thunderstorms travelled 
further than 50 km. However, geographical aspects may hamper 
this comparison. Orography is a leading mechanism in the 
spatial distribution of rainfall (e.g. Sotillo et al. 2003; Llasat 
et al. 2021) and also plays an important role in the development 
and evolution of thunderstorms in the study region (e.g. del 
Moral et al. 2020). In terms of duration, most of the LIW-PTs 
(96%) lasted less than 3 h, the median being 66 min. Keeping in 
mind geographical constraints, such duration results may be 
only comparable with those in Rigo et al. (2010), since the study 
region is the same. Rigo et al. (2010) found longer durations, 
which may indicate the LIW-PTs to be relatively shorter when 
related to the local climatology. In this regard, it is interesting to 
point out that Rigo et al. (2010) linked the duration of thunder- 
storms with the CG flash rate: the longer the duration, the higher 
the flash rate. This is reflected in the low flash rate of the LIW- 
PTs, with an average of 1.2 CG flash min-1, therefore displaying 
a weak intensity most of the time (according to the categories in 
Rigo et al. 2010). Larjavaara (2005) suggested that the proba- 
bility of ignition is below average in storms lasting more than 
40 min, which would correspond to the isolated afternoon 
storms suggested in past research (e.g. Kera¨nen 1929; Kitterman 
1980; Granstro¨m 1993). In our study, storm durations below 
42 min represent one quarter of the sample approximately. 

Analysis of the phase of the storm during which the MPC 
occurred reveals that, although ignitions may occur at any 

moment of the lifecycle, the probability of LIW per CG flash 
is higher during dissipation (last 20%) (Fig. 6d). This result does 
not match those of Hall (2008), who reported 93% of ignitions to 
occur in the first third of the storm lifecycle. Still, both results 
have in common that the probability of ignition is higher when 
both the rainfall and the flash rate are lowest, either in the 
developing phase or during dissipation. On the other hand, 
results also indicate that in one third of the episodes, the MPC 
occurred when the flash rate was at its maximum. Larjavaara 
(2005) suggested that the probability of ignition is lower during 
the maturity phase because that is when more precipitation is 
present and, despite more discharges, rain does not allow them 
to reach ignition point. In the present study, the MPCs occurred 
when activity was below 10% of the thunderstorm maximum 
only in 13% of the episodes, either at the very beginning or the 
end of the storm. In fact, the majority of MPCs occurred when 
the flash rate was above the lifecycle average; therefore, the 
lower precipitation associated with the MPCs is related to other 
factors, like the outer regions of the thunderstorm systems. 

Besides a high rain intensity, heavy precipitation is also 
determined by the duration of rainfall: slow movement of the 
storm favours a longer duration of high rain intensities (e.g. 
Doswell 2001). In this regard, Rorig and Ferguson (2002) and 
Larjavaara (2005) suggested that the probability of ignition 
survival may increase in rapid storms. However, results dis- 
played in Fig. 6c showed a wide range of storm speeds; thus, the 
storm speed does not seem to characterise LIW-PTs in the study 
region. The average speed of the analysed LIW-PTs was ,10 m 
s-1, higher than that estimated by Hall (2008) for Arizona and 
New Mexico in the US (average 6.4 m s-1). However, the 
different orography of these two regions may hamper a direct 
comparison. 

Fire management implications 
A better scientific understanding of the thunderstorms that cause 
lightning wildfires will help improve early firefighting respon- 
ses. Models used for the prepositioning and deployment of 
firefighting brigades on the first dispatch can benefit from the 
results of this work. In fact, in southern European countries, the 
few fires that escape initial attack account for most of the burned 
area (Rodrigues et al. 2019). Simultaneous active fires, some- 
times with a lightning origin, may hinder the chance of success 
in this initial attack (Costafreda-Aumedes et al. 2016; Rodrigues 
et al. 2019). 

The suppression model remains the universal response to 
wildfire occurrence, the goal being to deploy all resources 
available to extinguish wildfires as quickly as possible 
(Pezzatti et al. 2013; Duff and Tolhurst 2015; Tedim et al. 
2020). Over the past decades, these ‘zero-tolerance’ firefight- 
ing policies applied in central and southern EU countries have 
resulted in fuel accumulation, increasing the probability of 
potentially large and severe wildfires (namely the extinction 
paradox) (Minnich 1983; Castellnou and Miralles 2010; 
Brotons et al. 2013). Moreover, the strategy of reducing losses only 
by fire suppression has proved to be largely ineffective during 
extreme fire weather conditions (e.g. Alcasena et al. 2019). 
Based on the need to undertake a shift from fire suppression to 
fire management (e.g. Plana 2004), prescribed burning has 
been reintroduced to reduce fuel loads and diminish the risk of 
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high-intensity fires (e.g. Castellnou et al. 2010; Moritz et al. 
2014). In this context, the role that lightning plays in the 
maintenance and evolution of forest ecosystems should be 
reviewed. Actually, LIW has always been part of Mediterranean 
ecosystems, as Mediterranean species are adapted to natural fire 
regimes with high recurrence and low intensity (Terradas 1996). 
Therefore, LIWs should be considered part of the new approach 
based on tolerating fire regimes with low-intensity fires. In fact, 
LIWs have already been allowed to burn under prescribed 
conditions in some national parks of the USA (van Wagtendonk 
et al. 2007). While considering the inclusion of LIWs in a 
broader fire management strategy in fire-prone southern Euro- 
pean regions, there is a need to improve our current knowledge 
on the natural wildfire processes in Mediterranean ecosystems. 
In this regard, the wildfire management strategy developed by 
Alcasena et al. (2019) for Catalonia already identifies suitable 
areas for natural fire re-introduction, where LIWs pose a 
minimal risk to property and could positively contribute to 
fire-adapted ecosystem conservation (Barnett et al. 2016; Riley 
et al. 2018). 

 
Conclusions 
Although thunderstorms produce ,57 000 CG flashes each year 
in Catalonia, only 1 in 1000 end up as a wildland fire. Therefore, 
the ability to identify potential ignition candidates among the 
huge lightning annual population would be of great value to fire 
weather forecasters. In this regard, lightning characteristics like 
polarity, peak current and multiplicity have proved to be of little 
value. Adding weather radar data to the systematic analysis of 
LIWs can help to gain a better understanding on the character- 
istics of the thunderstorms that ignite wildland fires. Relevant 
characteristics found in the present work are summarised in the 
following: 

Most probable ignition candidates are lightning associated 
with radar reflectivity values below the average, located 
outside regions of high reflectivity (below 36 dBZ), mostly 
in non-linear systems (47%) and cellular thunderstorms 
(38%). These morphological types favour the occurrence 
of lightning on convective core margins (cellular type) and 
on adjacent stratiform regions (non-linear type), where 
precipitation reaching the ground is low or even non- 
existent (dry lightning). Under such conditions, the related 
lightning ignitions will have a higher probability of survival 
and arrival. 
LIW-PT life span analysis shows no typical distance covered, 
duration or velocity, while these characteristics appear to be 
more influenced by local thunderstorm patterns, related to 
dominant flows and local orography. Still, LIW-PTs are 
typically of low intensity, the CG flash rate being below 
average. Most successful ignitions, those turning into flaming 
wildfires, occur during the maturity phase, when the flash rate 
is the highest. The probability of ignition is slightly higher 
during the second half of the life cycle, presumably because 
precipitation becomes more spatially scattered, and so does 
the distribution of lightning. In terms of relative frequency, 
ignitions per lightning strike are higher during the decaying 
phase, which encompasses 10% of lightning but 20% of 
the LIW. 
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