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Finite-size instabilities in finite-range forces
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It has been recently shown that some Gogny finite-range interactions suffer from finite-size instabilities in
coordinate-space calculations [Eur. Phys. J. A 55, 150 (2019)]. We confirm this finding by using the Hartree-Fock
(HF) method in the quasilocal approximation to finite-range forces. The use of the quasilocal approximation
substantially simplifies the calculations as compared with those including the exact exchange contribution to
the energy and HF fields. The quantity most affected by the finite-size instabilities in the coordinate-space
calculations is the spatial density at the origin that wildly oscillates as the HF iterative process proceeds. In
addition to the recent D1M∗ parametrization of the Gogny force, we find that the D1M parametrization also
shows this deficiency in several nuclei. We find that the harmonic-oscillator basis with its ultraviolet cutoff
provides converged results in a wide and realistic range of basis sizes. This result serves as a justification of the
numerous calculations with D1M and D1M∗ in finite nuclei that show no trace of instability.
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I. INTRODUCTION

In Ref. [1] we proposed a new parametrization of the
Gogny interaction, denoted D1M∗, aimed to obtain a stiffer
equation of state (EoS) of neutron-star matter. The goal was to
get maximum neutron-star masses of 2M�, in agreement with
recent astrophysical observations [2,3]. We were motivated
by the fact that this property is not achieved by any of the
standard Gogny forces of the D1 family [4]. We also wanted
to preserve the good description of binding energies [5] and
other observables [6] provided by the D1M force in Hartree-
Fock-Bogoliubov (HFB) and beyond-HFB calculations [6].
We recall that D1M was developed as an accurate Gogny HFB
nuclear-mass model, achieving a rms deviation with respect to
the known experimental masses below 800 keV [5,7]. In the
fit of D1M∗ [1], we modified the eight finite-range strength
parameters of the D1M force while keeping the other param-
eters at their nominal D1M values. Seven linear combinations
of these strength parameters, related to different properties
of symmetric nuclear matter, and the strength of the pairing
interaction in the S = 0, T = 1 channel were constrained to
maintain the same values as in D1M. The remaining combi-
nation was used to modify the slope of the symmetry energy
and, therefore, the stiffness of the neutron matter EoS. In this
way the prediction for the maximum neutron-star mass can
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be modified. Finally, the strength t3 of the density-dependent
term of the Gogny interaction was fine tuned to improve
the quality of the computed binding energies [1]. All of the
finite-nuclei calculations in Ref. [1] were carried out with
the HFBAXIAL code [8] using an approximate second-order
gradient method [9] to solve the HFB equations in a harmonic-
oscillator (HO) basis including up to 19 major oscillator shells
and the oscillator lengths adapted to the characteristic A1/6

length-scale dependence with mass number A. Actually, since
the seminal paper of Dechargé and Gogny [10], almost all
of the HFB calculations of spherical and deformed nuclei
with Gogny interactions have been performed in a HO basis,
including the calculations involved in the determination of the
parameters of the interactions. In particular, this is the case of
the D1M interaction [5], to which we compared our results.
The HO basis, though, is not optimal to observe finite-size
instabilities that may arise in coordinate-space calculations
on a mesh.

II. FINITE-SIZE INSTABILITY IN COORDINATE-SPACE
CALCULATIONS

In Ref. [11] and its preliminary version [12], it is found
that both the D1M∗ [1] and D1N [13] parametrizations of
the Gogny force are affected by spurious finite-size insta-
bilities in the S = 0, T = 1 channel. These instabilities are
detected through a fully antisymmetrized random-phase ap-
proximation (RPA) calculation of the nuclear matter response
functions based on the continued fraction technique [14]. This
method produces results which are very similar to those of the
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linear-response theory with the multipole decomposition
method for the Gogny interaction [15].

The procedure of Ref. [14] has been applied to the search
of instabilities in standard Gogny forces with or without tensor
terms. In agreement with the results of previous analyses for
Skyrme functionals [16,17], it was concluded in Refs. [11,12]
that the key quantity to detect spurious finite-size instabilities
is the nuclear matter critical density ρc, corresponding to
the lowest density at which the nuclear response at zero
transferred energy displays a pole. These finite-size instabil-
ities may develop unphysical results in some properties of
the nucleus, such as, for example, in the proton and neutron
densities, if ρc � 1.2 ρ0 � 0.20 fm−3 for a momentum trans-
fer of about 2.5 fm−1. This critical density may be reached
in HF calculations of some nuclei, such as, for example,
40Ca [16]. The instabilities of D1M∗ and D1N were pre-
dicted in nuclear matter [11,12,14] and their appearance in
coordinate-space calculations of spherical finite nuclei was
confirmed in Refs. [11,12] by using the FINRES4 computer
code [18]. As a consequence of the finite-size instabilities,
the neutron and proton density profiles of nuclei largely vary
from one iteration to the next in the iterative solution of the
nonlinear HFB equations, without reaching convergence [16].

The impact of finite-size instabilities in calculations with
the Skyrme energy-density functional has been discussed
thoroughly in the literature. In a recent review [19], the link
between finite-size instabilities and the existence of poles
at finite-momentum transfer in the linear response of ho-
mogeneous nuclear matter has been extensively discussed.
Instabilities also appear in certain Skyrme functionals in the
S = 0 channel in pure neutron matter and in heavy neutron
droplets [20] as well as in the spin channel when time-reversal
invariance is broken in the calculation (such as in the case of
odd-mass nuclei [21], time-dependent HF calculations [22],
high-spin states [23], or vibrational excited states [24]).

In Ref. [25] we commented on the main proposal of
Ref. [12] and provided initial information about the possible
impact of the finite-size instability of the D1M∗ force on
HFB calculations of observables like binding energies, neu-
tron and proton radii, and density profiles of finite nuclei using
a HO basis.

To independently confirm the results of Refs. [11,12] we
have performed HF calculations with Gogny forces on a spa-
tial mesh assuming spherical symmetry. To this end we use
the quasi-local approximation (QLA) for finite-range forces
described in Ref. [26]. In this approach the HF exchange
energy density is approximated by a quasilocal functional
obtained using the extended Thomas-Fermi (ETF) density
matrix [27], which is similar to the expansion for the density
matrix proposed by Negele and Vautherin [28] or by Campi
and Bouyssy [29]. In the ETF method the density matrix
is expanded in powers of h̄ with the h̄0 term given by the
density matrix in homogeneous matter (Slater approxima-
tion). To account for the inhomogeneities of the system we
add a corrective h̄2 contribution through second-order spatial
gradients of densities and effective masses as well as their
momentum derivatives computed at the Fermi surface [27].
Therefore, in the QLA, the energy density functional for
finite-range effective interactions becomes local and therefore
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FIG. 1. Solid lines show neutron density of 208Pb computed with
the D1M force with a HO basis with 12, 14, 16, 18, and 19 shells
(yellow, red, green, blue, and black curves, respectively). Dashed
lines show the same density obtained through a HF calculation on
a mesh in the quasilocal approach. Dash-dotted lines show the same
density extracted from Fig. 3 in Ref. [12] (HF calculation on a mesh
with the FINRES4 code [18]).

the HF equations in coordinate space take a form similar
to those of Skyrme forces [30]. In Refs. [26,31,32] it has
been shown that calculations in coordinate space using the
QLA provide results that are very close to the full HF val-
ues. To be more specific, our QLA results accurately agree
with those obtained using the FINRES4 code [18] used in
Refs. [11,12]. As an example of the agreement, we show in
Figs. 1 and 2 the 208Pb neutron and proton density profiles cal-
culated with the D1M interaction using both coordinate-space
codes, where the close agreement between the two methods is
clearly seen. From Figs. 1 and 2 we also learn that the mesh
calculations produce density profiles with more pronounced
oscillations near the center of the nucleus than the HO basis
calculations (also shown in these figures for comparison).
This is a first qualitative indication that spherical densities
calculated in a mesh may be more affected by the finite-size
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FIG. 2. The same as in Fig. 1 but for the proton density.
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FIG. 3. The same as in Fig. 1 but computed with the D1M∗ force.
The HF density is displayed for three different numbers of iterations.

instabilities than those computed with a HO basis. We also
find that mesh calculations with the QLA are well suited for
the analysis of instabilities in spherical nuclei in coordinate-
space calculations because these calculations predict the same
instabilities of finite nuclei reported in Refs. [11,12]. As an
example, Figs. 3 and 4 show the proton and neutron den-
sities of 208Pb calculated with the D1M∗ interaction and
obtained after a given number of iterations using the QLA.
Clearly, in this case the mesh-point density profiles display
a divergent behavior with increasing number of iterations,
while these densities are well behaved when computed in the
HO basis.

As discussed in Refs. [11,12] the instability is to be as-
sociated with the isovector channel of the interaction and its
existence in finite nuclei is linked to central densities close to
or in excess of a critical nuclear matter density ρc. However,
our finite-nuclei calculations indicate that the situation is a
bit more involved. For instance, we have found that there are
examples of nuclei with D1M∗, such as 16O, 100Sn, or the
very asymmetric 176Sn, that fully converge in the coordinate-
space calculation. This has been verified with both our QLA
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FIG. 4. The same as in Fig. 3 but for the proton density.

code and the FINRES4 code [33]. This result tells us that the
asymmetry of the nucleus is not a sufficient condition for
developing the finite-size instabilities and that there can be
other factors, such as the structure of the nucleus, which may
also play a role. This will be discussed below. On the other
hand, in consonance with Refs. [11,12], we find that all of
our mesh-point calculations with D1M∗ of N = Z nuclei with
the Coulomb interaction switched off are always fully stable.
This confirms the isovector nature of the instabilities since the
asymmetry between protons and neutrons is lifted in these
calculations. Nevertheless, it is a bit surprising that, in this
case, rounding errors are unable to drive the system towards
instability—see Ref. [16] for a similar discussion with Skyrme
functionals.

We have detected examples of finite-size instabilities in
the HF-QLA coordinate-space calculations in other Gogny
interactions, in addition to D1M∗ and D1N. We have scanned
on the order of 800 nuclei with the D1M parametrization
at the QLA level assuming spherical symmetry and with-
out including pairing correlations. We have found about 80
nuclei that become unstable (after a certain number of it-
erations), most of them with atomic number Z < 44. For
example, the nuclei 52Ca, 54Ca, 56Ca, 54Ti, 56Ti, 58Fe, 60Fe,
62Fe, 60Ni, and 62Ni diverge in the QLA-HF mesh calculations
with D1M. When the pairing interaction is switched on, no
significant changes are observed in this pattern. Instability
seems to be associated with combinations of proton and/or
neutron numbers around 34, 60, and 70 where s (l = 0) and
p (l = 1) orbitals are expected near the Fermi level.1 This
is an unexpected finding because the critical density ρc for
D1M is about 1.35ρ0 and therefore this interaction, according
to the nuclear matter criterion [11,12], should not develop
finite-size instabilities. These results clearly point out that
the criterion of Refs. [11,12] should be complemented with
finite-nuclei calculations for those interactions with ρc not
too far from 1.2ρ0. Those finite-nuclei calculations would be
of relevance especially in those regions where an s orbital
is expected to lie close to the Fermi level. The results also
point to the necessity to carry out calculations in a large
set of nuclei in order to detect the finite-size instabilities.
It is very common in the literature (see Ref. [17] as an
example) to consider just a handful of nuclei to assess the
stability of a given functional and this might prove to be
insufficient.

In the upper part of Table I we compare the binding en-
ergies of the nuclei 16O, 132Sn, and 208Pb calculated with the
D1M interaction using a HO basis [8], our QLA mesh code
and the FINRES4 mesh code [18]. We can see that the HF bind-
ing energies computed with FINRES4 are slightly more bound
than those provided by the HO basis, as can be expected. On
the other hand, the QLA results are in excellent agreement
with those obtained in full HF calculations using the HO basis
or the FINRES4 code, with differences less than 1% for all
considered nuclei. A similar situation is found for the nuclei

1Please notice that the position of single-particle orbitals is deter-
mined by the self-consistent procedure and therefore it may change
within a major shell.
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TABLE I. For the D1M and D1M∗ Gogny interactions, Hartree-
Fock binding energies obtained from the HO-basis calculation,
the coordinate-space quasilocal calculation (QLA) and the full
coordinate-space calculation (FINRES4) [33]. The percentage devi-
ation of the HO-basis energy from the coordinate-space energy is
shown in brackets. The Coulomb interaction is included in all the
calculations.

BHO (MeV) BQLA (MeV) B FINRES4 (MeV)

D1M
16O 128.02 127.02 (0.79%) 128.07 (0.04%)
132Sn 1102.57 1103.31 (0.07%) 1104.29 (0.16%)
208Pb 1636.08 1637.96 (0.11%) 1639.31 (0.20%)

D1M∗
16O 128.32 127.29 (0.81%) 128.58 (0.21%)
100Sn 827.98 824.71 (0.40%) 829.08 (0.13%)
176Sn 1146.15 1146.26 (0.01%) 1147.51 (0.12%)

16O, 100Sn, and 176Sn computed with the D1M∗ force, where
the corresponding binding energies are given in the lower
part of Table I. As mentioned above, these nuclei are found
to be stable with D1M∗ in coordinate space by independent
calculations performed with the QLA code and the FINRES4

code [33]. The agreement between the HO basis and mesh
results is again excellent in D1M∗ when the mesh calculations
converge, which further supports the reliability of using the
HO basis approach with D1M∗.

As we noticed in Ref. [25], we have found empirical evi-
dence that the appearance of the discussed instabilities in finite
nuclei may be directly related to the presence of s orbitals
in the neighborhood of the Fermi level. This is, for example,
the case in the nuclei 4He and 40Ca (protons and neutrons)
and 208Pb (protons) computed with D1M∗. The respective
Fermi levels correspond to 1s, 2s, and 3s orbitals, and the
three nuclei diverge in the mesh calculations. However, the
nuclei 16O, 100Sn, or 176Sn, for which the s orbitals are far
from the Fermi level, are stable with the same D1M∗ force. A
paradigmatic example is the case of the nuclei 22O and 24O.
In the HF mesh calculation with D1M∗, the neutron Fermi
level of 22O is placed at the 1d5/2 orbital and this nucleus is
stable, whereas the nucleus 24O has its neutron Fermi level in
the 2s1/2 orbital and the calculation of 24O becomes quickly
unstable after a few iterations. We have also considered the
case where pairing correlations are taken into account through
a HF + BCS mesh-point calculation within the QLA [31]
(notice that this differs from the pairing calculation for
open-shell nuclei of Ref. [11] performed at the HFB level).
Consistently with the previous discussion, the presence of s
energy levels in the single-particle spectrum considered for
the BCS space makes the calculation unstable when the s level
is close to the Fermi level. If the occupation of the s level is
small, i.e., this level is far from the Fermi level, the HF + BCS
calculations may be stable. The number of iterations required
for the instability to develop also seems to be correlated with
the relative position of the s levels with respect to the Fermi
energy [25]. Because only s wave functions do not vanish at
the origin, the conspicuous role played by the s orbitals in the

divergence of the results may have to do with the fact that the
instabilities in the nucleon densities develop at the center of
the nucleus (see, for instance, Figs. 3 and 4).

Let us finish this section by pointing out that the criterion
of Refs. [11,12,17] based on the response function in infi-
nite nuclear matter seems to require additional finite-nuclei
calculations to pinpoint the deficiencies of effective nuclear
interactions. In this respect, it would be worth extending the
analysis of Ref. [24], based on finding imaginary solutions
of the RPA in finite nuclei, to the present case involving
finite-range interactions. Finally, we would like to mention
that we have computed the isovector effective mass [16] for
several parametrizations of the D1 family of the Gogny force.
We have observed that these parametrizations appear to be
more prone to develop instabilities in the coordinate-space
calculations when the splitting of the neutron and proton
effective masses becomes small or negative. In the future,
we wish to explore further whether this and other signa-
tures may help to single out the critical combinations of the
coupling constants of the Gogny force that lead to the finite-
size instabilities.

III. HARMONIC OSCILLATOR BASIS AS AN
ULTRAVIOLET CUTOFF

The use of the harmonic-oscillator basis is almost manda-
tory in order to handle, for all the different kinds of
deformations one can find over the periodic table, the ex-
change and pairing fields present in finite-range forces. Hence,
we used a HO oscillator basis in the paper where D1M∗ was
proposed [1] to fine-tune the density-dependent strength so
as to improve the agreement of binding energies with ex-
perimental data. For those calculations we used a basis with
a number of shells depending on the region of the nuclear
chart. We computed the properties of more than 600 even-
even nuclei covering both deformed and spherical systems.
In these calculations with D1M∗ we did not observe any
convergence issue after the ≈30 000 HFB calculations. The
same stability has been confirmed in large-scale calculations
of fission properties of very neutron-rich superheavy nuclei
carried out recently [34] with the D1M∗ force. It has to be
mentioned that finite-nuclei calculations with some Skyrme
functionals show instabilities in the S = 1 channel in spite of
using a finite HO basis [21,24]. Whether this is the case with
finite-range forces requires further studies. We remark that, at
present, the conclusions of our work apply to the S = 0, T = 1
channel.

The stability of the calculations performed with the HO
basis could be related to its inherent ultraviolet (UV) cutoff.
It serves as a pragmatic strategy for problems related to high-
momentum components in the wave function in a way that
closely resembles other cutoffs used in pairing calculations
with zero-range forces—such as, for instance, the introduction
of an active window. On the other hand, mesh calculations
with the use of finite differences to evaluate derivatives are
more prone to suffer from the effect of those high-momentum
components. This difference between HO basis and mesh
calculations was already recognized in Refs. [11,12], where it
was argued that the use of a HO basis “strongly renormalizes

064314-4



FINITE-SIZE INSTABILITIES IN FINITE-RANGE … PHYSICAL REVIEW C 103, 064314 (2021)

the interaction and inhibits the development of instabilities.”
It was concluded in Refs. [11,12] that “the D1M∗ interac-
tion should only be used with the basis employed to fit its
parameters.” However, the latter statement, according to our
experience, only applies to the binding energy of the nucleus
(the variational quantity) and not to the rest of the observables.
Actually, we have found no significant changes in the value of
physical observables computed with D1M∗ as the HO basis
size is changed. This is the case for typical HO basis: we
have carried out calculations including 11, 13, 15, 17, 19,
and 20 full HO shells for some representative nuclei using
both D1M∗ and D1M. The range of nuclei considered in-
cludes deformed nuclei like 224Ra, 168Er, or 48Cr and spherical
nuclei like 16O, 40Ca, 56Ni, 100Sn, 132Sn, or 208Pb. Except
for the binding energy (which is the variational magnitude
and therefore always increases with increasing basis size), the
changes in the other observables (radii, quadrupole deforma-
tion, octupole deformation, excitation energy of the lowest
quasiparticle, etc.) are of the order of a few in a thousand when
going from the smallest to the largest basis. Interestingly, as
can be seen in Figs. 1–4, we notice that the convergence rate
with basis size of the density at the origin is rather slow and
requires a large number of shells both in D1M∗ and D1M,
and even in the case of the D1S [35] parametrization. It is
to be pointed out that the central density does not enter sig-
nificantly in most of the observables like radii or multipole
moments because the corresponding operators go to zero at
the origin. Also the energy, which should be more sensitive
through the strongly repulsive density-dependent part of the
interaction to the slow convergence rate of the central density,
shows a smooth behavior. On the other hand, in Ref. [36]
we studied fission properties of the uranium isotopes in-
cluding very-neutron-rich isotopes using, among others, the
parametrization D1N, which is known to show instabilities in
coordinate-space calculations [11,12]. In this case we used a
HO basis very different from the one used in the fit of D1N
to ground-state properties and never observed any significant
deviation in the shape and properties of the potential-
energy surfaces from those obtained with the D1S and D1M
parametrizations.

As additional evidence, we show in Fig. 5 the difference
in HFB energies �E when obtained with different number
of HO shells [�E = EHFB(N ) − EHFB(N ′)]. The results are
obtained and plotted as a function of the quadrupole defor-
mation parameter β2 for the nucleus 154Sm. To simplify the
discussion, the same oscillator lengths are used in the whole
deformation interval, and therefore the convergence of the rel-
ative energies is slower than in standard calculations. The two
sets of curves correspond to D1M (full) and D1M∗ (dotted)
and we observe that they almost coincide in all the cases.
All the results presented above constitute strong evidence that
there is an ample range of valid HO basis where the results are
converged and consistent.

Our approach is rather pragmatic because there is no
formal justification of its validity in a regularization-
renormalization framework. It would be very illuminating to
study the role of the HO basis from this perspective, but we
feel that such a study lies well beyond the scope of the present
paper. The UV and infrared properties of the HO basis have
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FIG. 5. Energy difference �E = EHFB(N ) − EHFB(N ′) between
the HFB energies computed with different number of HO shells and
plotted as a function of the quadrupole deformation parameter β2

for the nucleus 154Sm. The number of HO shells N and N ′ for each
curve is indicated as labels. Full (dotted) lines correspond to the D1M
(D1M∗) parametrizations.

been discussed recently in several studies, see, for instance,
Refs. [37–41].

At this point it is worth mentioning a difficulty of the HO
basis connected with the evaluation of matrix elements of
a two-body Gaussian interaction for large values of the HO
quantum numbers. The standard expressions [42–44] for those
matrix elements are given in terms of finite alternating-in-sign
sums. For large values of the HO quantum numbers, the terms
in the sums become very large and their differences exceed the
numerical accuracy of typical floating point numbers leading
to an unwanted loss of accuracy2 [44]. This effect starts to be
relevant for 22–24 HO shells and can easily turn a repulsive
matrix element into an attractive one. This is not a limiting
problem for the HO basis because calculations with the Gogny
force are in most of the applications well converged already
with 22 shells.3

Taking the previous considerations into account, it is now
possible to understand the results of Fig. 6 where the energy
difference with respect to a 16-shell calculation is shown as
a function of the number of shells for the nucleus 48Ca. This
figure is similar to Fig. 3 of Ref. [11]. We show results for
two oscillator lengths, one is b = 1.65 fm and corresponds
to the minimum of the HFB energy with 16 shells (red
curves). The other corresponds to b = 1.9 fm. In this case the
reference HFB energy at 16 shells is higher than the one for
b = 1.65 fm. This is the reason why, in the plot, the two sets
of curves do not converge at the same value of the binding
energy with 26 shells. We have tested that, with 26 shells,
the binding energies with different oscillator lengths coincide

2To understand the problem, let us imagine a calculation carried
out with 64-bit floating point arithmetic with 13 digit accuracy. If the
alternating sign sum involves terms which are 13 orders of magnitude
larger that the result of the sum, then the numerical error is of the
order of the sum.

3It is possible to reach 26 shells depending on the nucleus and the
oscillator lengths—a typical example is fission where 26 shells are
used in the z direction but with a large oscillator length.
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FIG. 6. For the nucleus 48Ca, difference in the total energy with
respect to the 16 shell calculation as a function of the number of
HO shells. Results for D1S (stars), D1M (bullets), and D1M∗ (open
circles) are shown for two different sets of oscillator lengths (b =
1.9 fm, black curves; b = 1.65 fm, red curves). Note the small range
of the vertical scale compared with the total energy of 48Ca. The two
sets of curves converge to different �E values at 26 shells because
the reference energy at 16 shells is higher for b = 1.9 fm than for
b = 1.65 fm; we have verified that, at 26 shells, the energies from
the two b values agree to within a few keV for each interaction.

at the level of a few keV for the three considered forces,
namely, D1S, D1M, and D1M∗. We see in Fig. 6 that the
D1S parametrization shows the fastest convergence of the
energy with the number of HO shells, for either b value. For
b = 1.65 fm we observe a peculiar behavior in the three
parametrizations at Nosc = 20 that could be a consequence
of the inaccurate evaluation of matrix elements. At Nosc = 22
D1M∗ shows a dip and at Nosc = 24 the HFB calculation does
not converge. We find that this lack of convergence should
not be attributed to the finite-size instabilities as suggested
in Ref. [11], but rather to the inaccurate evaluation of matrix
elements for large HO quantum numbers. The b = 1.9 fm cal-
culations seem much more stable and show in the three cases
a good convergence rate with Nosc. In D1M∗ the convergence
rate seems to be slower than for D1S and D1M. From the
above results, it is clear that a stable and consistent solution
to the problem of evaluating matrix elements of a finite-range
Gaussian interaction for large oscillator quantum numbers is
required.

In closing this section, we would like to mention also that
a study of the convergence of calculations with the number
of shells with Skyrme forces was carried out in Ref. [17].
In a spherical calculation and for contact forces they were
able to reach 60 shells. Because the HO basis is complete,
in the limit of an infinite number of shells, the HO results
should be equivalent to those on a mesh and therefore the
appearance of difficulties with 50 or 60 shells can be ex-
pected for interactions that present finite-size instabilities in
mesh-point calculations. For such a large number of shells the
ultraviolet cutoff is increased and the regularization property
of the HO basis is weakened. Another difference of Skyrme
calculations with the present case is that the expressions for

the matrix elements of contact interactions in a HO basis
differ from those obtained for Gaussian interactions and seem
to be less likely to suffer from the numerical instabilities
discussed above.

IV. SUMMARY AND CONCLUSIONS

Let us summarize our main findings:

(i) The QLA calculation for finite-range forces, with its
local treatment of the exchange term [26], represents
an efficient alternative method to signal the existence
of instabilities in discretized coordinate-space calcu-
lations.

(ii) Our results independently confirm those of
Refs. [11,12] pointing to a finite-size instability
in discretized coordinate-space calculations in the
D1M∗ and D1N Gogny interactions.

(iii) We find that, also in the D1M Gogny interaction, there
are several examples of nuclei that are unstable when
computed in mesh-point calculations. Bcause the crit-
ical density ρc of D1M is 1.35ρ0, this was a priori
unexpected from the nuclear matter analysis [11,12].

(iv) When the discretized coordinate-space calculation
converges, the numerical results obtained with
FINRES4, QLA, and a HO basis are consistent.

(v) The appearance of the instabilities seems to be con-
nected with the presence and occupancy of s orbitals
near the Fermi level.

(vi) The HO basis with its inherent UV cutoff provides
consistent results for the D1M∗ interaction compati-
ble with those obtained with D1S. There is an ample
range of HO basis sizes (from 8 up to 24) that can be
used in the calculations to accommodate different de-
formation regimes that produce essentially the same
values of nonvariational observables.

We conclude that the criterion proposed in Ref. [11] is not
always sufficient to signal the existence of instabilities (D1M
case) and finite-nuclei calculations in coordinate space may
be required whenever the nuclear matter critical density ρc

of the interaction takes a value close to (and greater than)
1.2ρ0. Finite-nuclei effects like the position of s orbitals rel-
ative to the Fermi level seem to be very relevant. The HO
basis acts as a UV cutoff that allows consistent calculations,
within the range of basis sizes considered, of finite nuclei with
D1M∗ and all the other interactions showing instabilities on
a mesh like D1N or D1M. It would be highly desirable to
extend the present analysis to a larger HO basis. It is also
to be mentioned that the present analysis does not deal with
instabilities in the spin channel. They will be addressed in
subsequent work.

Finally, let us note that calculations with D1M∗ are useful
to elucidate the role played by the slope of the symmetry
energy in determining nuclear structure properties.
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