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Perturbed nuclear matter studied within density functional theory with a finite number of particles
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Nuclear matter is studied within the density functional theory framework. Our method employs a finite number
of nucleons in a box subject to periodic boundary conditions, in order to simulate infinite matter and study its
response to an external static potential. We detail both the theoretical formalism and its computational imple-
mentation for pure neutron matter and symmetric nuclear matter with Skyrme-like energy density functionals
(EDFs). The implementation of spin-orbit, in particular, is carefully discussed. Our method is applied to the
problem of the static response of nuclear matter and the impact of the perturbation on the energies, densities, and
level structure of the system is investigated. Our work is a crucial step in our program of ab initio based nuclear
EDFs [Phys. Rev. C 104, 024315 (2021)] as it paves the way towards the goal of constraining the EDF surface
terms on ab initio calculations.
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I. INTRODUCTION

Nuclear matter, an ideal infinite system made of strongly
interacting nucleons, is currently subject to intense study from
multiple perspectives, due to its connections to the nuclear
physics of finite nuclei [1–3], the astrophysics of neutron stars
and gravitational waves [4–6], and the physics of cold Fermi
gases [7,8].

Nuclear matter has been studied theoretically both within
ab initio theory and density functional theory (DFT). In short,
ab initio or first-principle methods aim at finding an exact or
systematically improvable solution to the many-body problem
starting from a Hamiltonian that describes the interactions
among the constituent nucleons [9–11]. DFT, on the other
hand, maps the many-particle problem to a single-particle
(s.p.) self-consistent (s.c.) problem that is based on the con-
cept of an energy density functional (EDF), i.e., on expressing
the total energy of a generic system as a functional of its
(generalized) densities [12–14]. DFT is in principle an exact
theory, but the EDF which are currently used rely heavily on
phenomenology [13].

The equation of state (EOS), i.e., (at zero temperature)
the energy per particle as a function of the neutron and pro-
ton densities, is the fundamental ground state (g.s.) property
of homogeneous matter and has been the main target of
most works, see the reviews in Refs. [1,5,15]. Another line
of research has focused on inhomogeneous nuclear matter
[8], motivated by the fact that the inner crust of neutron
stars is not uniform [4] and by the attractive possibility of
constraining specific terms of the nuclear EDFs (see, e.g.,
Refs. [16–19]). Neutron and neutron-proton drops, i.e., nu-
clear matter confined by an external trap, have been studied,
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e.g., in Refs. [16,20–22]. The problem of the response of
nuclear matter subject to a weak periodic perturbation has
also been tackled. The dynamical response function has
been determined for rather general EDFs numerically [23]
and analytically (see Refs. [24,25] and references therein).
Recently, Gezerlis and collaborators [26–28], extending tech-
niques used for the electron gas [29–31] and cold atoms [32],
have attacked the problem of the neutron matter static re-
sponse ab initio with the auxiliary field diffusion Monte Carlo
(AFDMC) method [33,34].

While the EOS and the static and dynamic response can
be studied directly in the thermodynamic limit (TL) in the
framework of DFT [1,24], most ab initio methods simulate
infinite matter by employing a finite number of particles (see,
e.g., Refs. [9,35–39]). In fact, they are limited to few tens
of fermions at most, which implies that ab initio results are
affected by finite-size (FS) effects. In this context, developing
a finite-A DFT formalism for nuclear matter is important for
two reasons. First, very large numbers of particles can be
studied in DFT due to its low computational cost and thus
a playground for understanding and handling FS effects is
provided. For example, Gezerlis et al. have presented a DFT
method for perturbed neutron matter in Ref. [40] and used it
in Ref. [28] to extrapolate their N = 66 AFDMC simulations
[27] to the TL. Second, the finite-A DFT approach is instru-
mental in our program of constructing ab initio based EDFs
started in Ref. [41], since it paves the way to matching ab
initio and DFT calculations with the same number of particles
in a consistent manner. The EOS of uniform matter has al-
ready been employed in a local density approximation scheme
[23,41] to link the EDF to microscopic theory. Full-fledged
EDFs, however, must incorporate surface terms that can act
exclusively in nonuniform systems. Perturbed nuclear matter,
in this respect, is a promising candidate for setting constraints
on the EDF surface contribution (see, e.g., Refs. [8,32,42]).
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This work is devoted to a detailed description of the solu-
tion of the DFT problem for nuclear matter under the effect of
an external perturbation for Skyrme-like EDFs. Our approach,
which represents an extension of that of Ref. [40], is based on
simulating nuclear matter using a finite number of nucleons
in a box on which periodic boundary conditions are imposed.
The formalism for pure neutron matter (PNM) and symmetric
nuclear matter (SNM), together with its numerical implemen-
tation, are presented; a careful analysis of the treatment of
spin-orbit is provided. The static response problem is then
tackled with this method and the effect of the perturbation
on the energies, densities, and level structure of the system
is investigated.

This paper is structured as follows. Section II is devoted to
a detailed description to the finite-A nuclear DFT formalism
and to its numerical implementation. Section III reviews the
theory of the static response of homogeneous matter. Results
are presented in Sec. IV. Lastly, Sec. V summarizes our work
and presents future developments.

II. NUCLEAR DFT FORMALISM

A. Overview of nuclear DFT

We give a brief overview of nuclear DFT [12,13]. De-
tails are given in our previous work Ref. [41] and references
therein.

We consider quasilocal (or Skyrme-like) EDF models [12]
for time-reversal-invariant systems, such as spin-saturated nu-
clear matter, and neglect pairing. We adopt the Kohn-Sham
(KS) scheme [14], in which a representation in terms of s.p.
orbitals ψ j (x) is introduced and the kinetic energy term is
equal to that of a noninteracting Fermi system. Then, the total
energy of a generic system is written as a functional of number
density ρt (x), kinetic density τt (x), and spin-orbit density
Jt (x) (see Appendix A 3 for their definitions) with t = 0, 1 la-
beling isoscalar (ρ0 = ρn + ρp) and isovector (ρ1 = ρn − ρp)
quantities, and has the following structure:

E =
∫

dx E (x) = Ekin + Epot + Eext, (1)

which comprises the kinetic energy, a nuclear potential energy
term, and possibly an external potential contribution,

Ekin =
∫

dx Ekin(x) =
∫

dx
h̄2

2m
τ0(x), (2)

Epot =
∫

dr Epot (x), (3)

Eext =
∑
t=0,1

∫
dx ρt (x)vt (x). (4)

Throughout this work Epot has the form [41]

Epot (x) =
∑
t=0,1

⎛
⎝∑

γ

(cγ ,0 + cγ ,1β
2)ργ+1

0 + Cτ
t ρtτt

+ C�ρ
t ρt�ρt + CJ

t J2
t + C∇J

t ρt∇ · Jt

⎞
⎠ (5)

with β = ρ1/ρ0 being the isospin asymmetry. The KS-DFT
equations are found by minimizing the EDF with respect to
the s.p. orbitals ψ∗

j (x) and read for protons and neutrons (q =
n, p) [12][

−∇ · h̄2

2m∗
q (x)

∇ + Uq(x) + vq(x)

+ Wq(x) · (−i)(∇ × σ )

]
ψ j (x) = ε jψ j (x), (6)

where the fields entering the equations are defined as

Uq = δE

δρq
,

h̄2

2m∗
q

= δE

δτq
, Wq = δE

δJq
. (7)

m∗
q (x), Uq(x), and Wq(x) are called effective mass, mean field,

and spin-orbit potential, respectively.

B. Infinite nuclear matter

Nuclear matter is an infinite system of nucleons that inter-
act through the strong interaction only [1,43]. In the following
we concentrate on zero-temperature and spin-unpolarized
matter. Moreover, we limit ourselves to the limiting cases
of SNM (ρn = ρp = ρ0/2) and PNM (ρp = 0, ρn = ρ0),
although extensions are straightforward. The fundamental
quantity that characterizes homogeneous matter is the EOS
e(ρ, β ) = E (ρ, β )/A, where E is the total energy of the sys-
tem and e the energy per nucleon. We also remind that in
homogeneous matter both the gradients of the density and the
spin-orbit density vanish [41].

Some theoretical approaches attack nuclear matter directly
in the TL. These include nuclear DFT [1,24] and, e.g., self-
consistent Green’s functions [44]. Most ab initio methods,
though, simulate infinite matter by using a finite number of
particles (see, e.g., Refs. [35,36,39]). Among them is AFDMC
[34], that has been used extensively not only for the nuclear
matter EOS, but also for inhomogeneous matter, namely neu-
tron drops [16], as well as for neutron matter response [27].
DFT, too, can be formulated with a finite nucleon number, as
proposed in Ref. [40]. The standard technique adopted in most
studies [34,35] involves considering A fermions enclosed in a
cubic box of size L and volume � = L3 and imposing periodic
boundary conditions (PBCs) on the wave function. The cell
size is chosen such as the density of the system is a fixed and
constant ρ0 = A/�. In this framework, the TL corresponds to
the limit in which both A and L go to infinity while keeping
ρ0 fixed [43]. The free gas (FG), that is the starting point
for studying interacting matter, is described in terms of s.p.
plane waves orbitals eik·x/

√
� with wave number k and ki-

netic energy h̄2k2

2m . As a consequence of PBCs, the momenta
k are quantized, i.e., k = 2π

L n where n is a three-component
vector of integer numbers. Since the energy depends on k2

and thus on n2, a “momentum space” shell structure emerges,
with different energy levels being labeled by n2 and being
degenerate. The first few momentum space “magic numbers”
are given by A/g = 1, 7, 19, 27, 33, etc. [35], where g is
spin/isospin degeneracy (2 for spin-saturated PNM, 4 for for
spin-saturated SNM). Typically, the number of fermions in a
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calculation is selected so as to correspond to a shell closure
of the FG in both homogeneous and perturbed matter. As we
discuss below, this choice is fundamental when calculating the
EOS with finite-A methods.

C. Solution of DFT in a periodic box

We discuss in detail the solution of the DFT problem for
a finite number of nucleons enclosed in a cubic box with
PBCs. We focus on spin-saturated PNM and SNM, which
are the most important cases for nuclei and neutron stars [1].
Moreover, SNM and PNM can be treated as two-component
(spin up/down) fermionic systems in a unified way. The case
of asymmetric matter (ρn �= ρp, N �= Z) would require some
limited extensions of the formalism and is left for future
studies. From now on, for the sake of simplicity in the notation
the isospin labels (q or t) are suppressed. Our method extends
the one introduced in Ref. [40], which was limited to PNM
and neglected spin-orbit terms.

We consider an external potential v(z) that is a function of
the z coordinate only. Thus, translational invariance is broken
in the z direction, but still holds in the xy plane. In order to
respect PBCs, v(z) must be periodic as well. Moreover, we
adopt the spin- and isospin-independent sinusoidal potential

v(z) = 2vq cos (qz) (8)

with q being an integer multiple of qmin = 2π/L. The s.p.
wave functions (in two-spinor notation), then, have the fol-
lowing structure:

ψn,λ(x) = eikxx

√
L

eikyy

√
L

(
φn,λ(z,↑)

φn,λ(z,↓)

)
(9)

PBCs imply that kx and ky are quantized in units of 2π/L,
i.e., kx = 2π

L nx and ky = 2π
L ny, and φn,λ(z) is periodic, i.e.,

φn,λ(z + L) = φn,λ(z). The states are labeled by the three in-
teger numbers n, plus a spin quantum number λ = ±1 whose
precise meaning will be discussed below.

The general DFT equations (6) are now specialized to
our case. We first note that the fields are functions of the
z coordinate only: m∗ = m∗(z), U = U (z) and W = W (z)ẑ.
(The detailed expressions of the EDF and the fields are re-
ported in Appendix A 1.) For later convenience, we define the
transverse momentum as

knxny = kxx̂ + kyŷ = 2π

L
(nxx̂ + nyŷ) (10)

having magnitude

knxny =
√

k2
x + k2

y = 2π

L

√
n2

x + n2
y . (11)

Now, we discuss the spin-orbit term of Eq. (6) with the help
of ∂ψn,λ

∂x = ikxψn,λ and ∂ψn,λ

∂y = ikyψn,λ:

W(x) · (−i)(∇ × σ )ψn,λ(x)

= W (z)(−i)(∂xσy − ∂yσx )ψn,λ(x)

= W (z)(kxσy − kyσx )ψn,λ(x)

= W (z)Knx,nyψn,λ(x). (12)

In the last equality, we have introduced the spin matrix
Knx,ny = kxσy − kyσx, which reads explicitly as

Knx,ny =
(

0 −i(kx + iky)

i(kx − iky) 0

)
. (13)

Since Knx,ny is not diagonal, it is clear that the states ψn,λ

cannot be eigenstates of σz. While one possibility would be
to solve the coupled DFT equation for the spin-up and -down
components, a better choice is to take the ψ’s to be eigenstates
of Knx,ny , as suggested in Ref. [45]. It is easy to verify that
Knx,ny has eigenvalues ±knxny . Thus we impose

Knx,nyψn,λ(x) = λknxnyψn,λ(x), (14)

where λ = ±1. Importantly, since Knx,ny is independent of
the position, Eq. (14) implies that the orbitals (9) can be
decomposed into the product of a single spatial orbital and
a constant spinor, namely,

ψn,λ(x) = eikxx

√
L

eikyy

√
L

φn,λ(z) χnx,ny,λ. (15)

The spinors χnx,ny,λ satisfy

Knx,nyχnx,ny,λ = λknxnyχnx,ny,λ, (16)

where

χnx,ny,λ = 1√
2

(
1

λeiφ

)
. (17)

In the last expression, the angle φ is given by φ =
arctan(ny/nx ).

Physically, the states ψn,λ have a definite spin projection in
the direction of the transverse momentum (10), which is not
fixed but depends on the numbers nx, ny. The label λ thus can
be interpreted as a spin projection or helicity quantum number.

The kinetic term can be manipulated along the same
lines and is discussed in Appendix A 2. Finally, applying
Eqs. (A11), (12), and (14) to Eq. (6), we find the following
one-dimensional equations for the spatial orbital φn,λ(z):

− d

dz

(
h̄2

2m∗(z)
φ′

n,λ(z)

)

+
(

U (z) + v(z) + λknxnyW (z) + h̄2

2m∗(z)
k2

nxny

)
φn,λ(z)

= εn,λφn,λ(z). (18)

These are s.p. state-dependent Schrödinger equations that
must be solved self-consistently due the density-dependence
of the fields. For a given set of quantum numbers nx, ny and λ,
nz labels the eigensolutions ordered by increasing s.p. energies
ε. The z coordinate is restricted to the symmetric interval
[− L

2 , L
2 ].

We note that due to time-reversal invariance, that holds if
we consider the spin-independent potential (8), the eigenval-
ues εn,+1 and εn,−1 are degenerate, while in general λ = ±1
spatial orbitals are different. In the special case of homoge-
neous matter [v = 0 and ρ(z) = ρ0], though, the spin-orbit
field W (z) vanishes [see Eq. (A8)], and thus the equations for
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the spin-orbit partners λ = ±1 are identical and so are the
orbitals, namely φn,+1 = φn,−1. As a consequence, the spin-
orbit density vanishes too [Eq. (A14)] and thus uniform matter
is insensitive to spin-orbit. In passing, we also observe that
the energy of a spin-saturated and closed-shell system is in-
variant when the sign of the spin-orbit coefficient is flipped,
C∇J −→ −C∇J . Indeed, the effect of this transformation is
that of swapping the λ = 1 and λ = −1 states in Eq. (18)
and, if an equal number of spin states is occupied, all the
densities, including J (z), remain unchanged, and so does the
total energy.

We shall describe how the Schrödinger equation (18) is
solved, how the many-particle g.s. of the system is con-
structed, and how the s.c. loop is dealt with. Due to the
intrinsic periodicity of the systems under study, expanding
Eq. (18) in the plane waves basis (see, e.g., Refs. [14,46])
allows to solve the problem very efficiently. A few tens
of plane waves are typically enough to find converged re-
sults even for moderately strong perturbations; by contrast,
the finite-difference approach used in Ref. [40] requires a
mesh of several hundreds points at least and a much more
time-consuming diagonalization. The orbitals are Fourier-
expanded as φ(z) = 1√

L

∑
k ckeikz, where again k = 2π

L n and
the Schrödinger equation is recast into matrix form, namely,∑

k′
(h̃n,λ)k,k′ck′ = εn,λck, (19)

where (h̃n,λ)k,k′ is the Hamiltonian matrix in the plane waves
basis and is derived in Appendix A 4.

Nuclear DFT is based on an independent-particle picture
and the many-particle g.s. configuration is found by occu-
pying the first A energy levels of the system. In order to
determine them, Eqs. (18) are solved for several different
combinations (nx, ny), and separately for the two spin states
λ [40]. Then, the solutions are collated and the lowest-energy
states are filled up with A/2 spin-up and A/2 spin-down par-
ticles. (The discussion is limited to spin-saturated system.)
Energy levels are degenerate, since nx and ny only enter
Eq. (18) in the combination knxny ∝ n2

x + n2
y , so that inverting

the sign of nx, ny or both, or exchanging the two numbers,
leaves the equation invariant. Such degeneracy gnx,ny can be
exploited to reduce the computational load of the method,
since we can restrict ourselves to the pairs (nx, ny) with 0 �
nx � ny � nmax. It is good practice to choose at first a large
value for nmax, though the following argument, which general-
izes that of Ref. [40], allows to stop the search over the (nx, ny)
pairs sooner. Indeed, we observe that knxny enters Eq. (18) in

the combination λknxnyW (z) + h̄2

2m∗(z) k
2
nxny

. This contribution is
positive when knxny satisfies the inequality

knxny > k̄nxny = max
z

(
−λ

2m∗(z)W (z)

h̄2

)
. (20)

Then, provided that knxny > k̄nxny , the lowest eigenvalue of
Eqs. (18) increases as knxny increases. Now, while one is
iterating over the combinations (nx, ny) (which must have
been sorted according to increasing values of n2

x + n2
y), and

separately for λ = +1 and −1, one checks whether the lowest
eigenvalue εnx,ny,0,λ is greater than the energy of the first A/2

lowest-energy states found so far. In that case, the cycle can
be stopped, since we are guaranteed by Eq. (20) that the
many-nucleon g.s. does not receive contributions from higher
n2

x + n2
y .

Once the occupied orbitals and the corresponding s.p. en-
ergies have been found, the total energy and the densities
(Appendix A 3) of the system are computed.

The total energy is evaluated in two ways, i.e., as an inte-
gral of the energy density,

E = L2
∫ L/2

−L/2
dzE (z), (21)

and by means of

E = 1

2

⎛
⎝T +

∑
j

ε j

⎞
⎠ + Erea. (22)

The rearrangement energy Erea and the energy density E (z) are
given in Appendix A 1. The expressions (21) and (22) must
match when they are evaluated on the g.s. and this provides
a strong check on the correctness of the method and on its
convergence to the exact g.s.

A crucial aspect of DFT is that the potential is itself a
functional of the densities. Therefore, a s.c. solution to the
problem must be looked for [12]. At each iteration i of the s.c.
loop, the densities are determined for the current values of the
fields, as described above. Then new fields are generated by
linearly mixing the old fields with the ones evaluated on the
newly obtained densities ρ (i) [47], namely,

U (i+i) = αU (i) + (1 − α)U [ρ (i)] (23)

and similar relations for W and h̄/(2m∗). α is a mixing pa-
rameter; in order to achieve convergence, it is safe to be rather
conservative, e.g., we choose α = 0.8–0.9 at the beginning
and then gradually decrease it as iterations go by. At the
beginning (i = 0), the densities are initialized at the uniform
matter values ρ(z) = ρ0, τ (z) = 3

5ρ0q2
F , and J (z) = 0 and the

fields are determined accordingly.
The s.c. procedure is stopped if two conditions are met: the

energies between iterations i and i − 1 and, at the same time,
the two formulas (22) and (21) for the energy at iteration i,
agree within a chosen tolerance. Thresholds of the order of
0.1–1 keV per nucleon can be obtained usually in few tens
of iterations. Combining linear mixing and two convergence
conditions makes our approach rather robust.

III. THEORY OF THE STATIC RESPONSE

The theory of the response of homogeneous matter to an
external static perturbation is summarized. In-depth discus-
sions can be found in Refs. [30,48,49].

Consider a system with uniform g.s. density ρ0, described
either by a Hamiltonian Ĥ or an EDF. A static potential
v(x) coupled to the total density is then turned on. v(x) is
periodic so as to respect the PBCs. The density and energy
of the g.s. of the perturbed system are called ρv (x) and E [v],
respectively. If the external potential is weak enough, its effect
can be treated perturbatively (see, e.g., Refs. [43,48]). The
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density fluctuation induced by v(x), in particular, is linear in
the external potential and is written as follows:

δρ(x) = ρv (x) − ρ0 =
∫

dx′χ (x, x′)v(x′). (24)

The static response function χ (x, x′) has been introduced and
we stress that it depends exclusively on the properties of the
unperturbed system. The response of homogeneous matter,
in particular, is a function only of x − x′, i.e., χ (x, x′) =
χ (x − x′).

While a generic periodic function v(x) is a superposition
of plane waves, in the following we consider without loss of
generality a monochromatic potential oscillating at a given
wave number q, namely,

v(x) = vqeiq·x + c.c. = 2vq cos (q · x). (25)

Thus the density fluctuation induced by the perturbation (25)
is monochromatic too and is given by

δρ(x) = 2ρq cos (q · x), (26)

where the amplitude ρq is linear in vq, i.e.,

ρq = χ (q)vq (27)

and χ (q) is the Fourier transform of χ (x, x′), see Eq. (B6).
The energy of the perturbed system, instead, is quadratic in the
external potential. In Appendix B, we derive that the energy
per particle is given by [30]

δev = ev − e0 = χ (q)

ρ0
v2

q . (28)

The formalism we have outlined is valid both in the TL and
in finite systems, and both for DFT and for Hamiltonian-based
methods. The question is now how to compute the response
function in practice. For generalized Skyrme EDFs [24] and
Gogny and Nakada EDFs [25], for example, the response in
the TL can be determined analytically (Appendix C). An al-
ternative for studying χ (q) is provided by exploiting Eq. (27)
or (28). The strategy to determine χ (q) for a uniform system
at a given density ρ0, and with a given particle number, is
the following. For a given (quantized) momentum q, multiple
calculations of the g.s. of the perturbed system are performed
for different values of the strength vq of the external potential
(25). Then χ (q) can be extracted from the amplitude of the
density fluctuations [Eq. (27)] or from the energies [Eq. (28)]
as a function of vq, for sufficiently small vq. This strategy
has been applied in several contexts, e.g., Refs. [27,30,50,51],
and provides a relatively straightforward way to determine the
static response function numerically.

In the following, we will extract χ (q) by interpolating
energies with the more general formula [27,50]:

δev = ev − e0 = χ (q)

ρ0
v2

q + C4v
4
q (29)

which takes into account higher-order contributions. In Ap-
pendix D, we discuss the extraction of χ (q) from the fit of
density fluctuations via Eq. (27). Therein, we also show and
explain why very close results are found by means of the two
techniques.

Second-order perturbation theory, or equivalently the spec-
tral representation of the dynamical density response χ (q, ω),
can be employed to derive a formula that relates χ (q) to
the excited states of the homogeneous system [43,48]. For
the case of the spin- and isospin-saturated A-fermion FG, the
response χ0,A at zero temperature is given by [48,50]

χ0,A(q) = −4mg

h̄2�

∑
k occ

1

(k + q)2 − k2
, (30)

where the sum extends over the occupied momentum states
and terms with vanishing denominator are can be safely ne-
glected. Consistently with the assumptions of Sec. II, we
write k = 2π

L n and take q quantized and parallel to the z
direction, i.e., q = qẑ = 2π

L p ẑ, with p integer. Then Eq. (30)
is expressed as

χ0,A(q) = − mg

Lπ2h̄2

∑
n occ

1

p2 + 2pnz
. (31)

This formula is straightforward to evaluate: we determine the
occupied states of the A-particle FG g.s. once and then, for
each value of q, we simply perform a sum over these states.
In the TL, nk = θ (qF − k), 1

�

∑
k −→ ∫

dk
(2π )3 [43] and the

static response becomes the well-known Lindhard function at
zero-frequency [52]

χ0(q) = −g
mqF

2(h̄π )2
f

(
q

2qF

)
, (32)

f (k) = 1

2

(
1 + 1 − k2

2k
log

∣∣∣∣1 + k

1 − k

∣∣∣∣
)

. (33)

IV. RESULTS

The method described in Sec. II is applied to calculate the
EOS and the static response. The popular SLy4 EDF [53] is
used when not stated otherwise, and examples of perturbed
matter calculations are typically performed at a reference den-
sity of ρ0= 0.16 fm−3. DFT energies are converged within
a tolerance of 1 keV per nucleon. Perturbation strengths are
measured in units of the Fermi energy of the corresponding
system (vq/EF ). We plot the static response function in the
form −χ (q)/ρ0 (in MeV−1), which is everywhere positive.
Momenta are reported either in units of the Fermi momentum
(q/qF ) or as integer multiples of the minimum allowed mo-
menta (qmin = 2π/L).

A. EOS

As a first application, the EOS is studied in both SNM
(Fig. 1) and PNM (Fig. 2). The TL EOS is shown as a solid
line, while calculations with A = 132, 16676 nucleons and
N = 66, 8338 neutrons, respectively, are reported as symbols.
Multiples of 33 particles are commonly used in infinite matter
studies, because the kinetic energy per particle of FG made of
33g particles is rather close to TL FG energy (see Ref. [27],
Fig. 1). As a prototypical large-A system, we use a number
of nucleons equal to 4169 times the spin/isospin degeneracy
g, which corresponds to filling up all the momentum shells of
the FG up to n2 = n2

x + n2
y + n2

z = 100. Moreover, the insets
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FIG. 1. SNM EOS computed with the SLy4 EDF in the TL (line)
and with a finite number of particles (symbols). Inset: relative differ-
ence (in percentage) between the finite-A and TL EOS as a function
of the density.

in Figs. 1 and 2 show the relative difference (in percentage)
between the finite-A and TL EOS as a function of the density
(�e/|e| = (eA − eT L )/|eT L|). Indeed, the results of the large-
A calculations turn out to be practically indistinguishable from
the TL curve and provide a strong check on the correctness
of numerical calculations. It can also be appreciated that the
N = 66 and A = 132 EOS give energies rather close to the
TL EOS. Discrepancies amount to no more than 2% in PNM
over the considered range of densities. In SNM they remain
within 2% up to ρ = 0.26 fm−3, then they display a tendency
to grow as the density further increases. At twice the satura-
tion density, the difference has increased to roughly 6%. We
suggest that the larger FS effects in SNM compared to PNM
are a consequence of the stronger interactions in SNM. That
is, choosing A = 33g allows to approximate the TL kinetic
energy effectively at all densities, but some FS effects on
the potential energy persist and manifest themselves mostly
in the highly correlated SNM in the high density region.

FIG. 2. Same as Fig. 1, but for PNM.

FIG. 3. Dashed lines: free response function −χ0,N (q)/ρ0 in
PNM at ρ0 = 0.16 fm−3 as a function of q/qF for different numbers
of neutrons. Full line: response in the TL (Lindhard function).

Nonetheless, the special usefulness of the “magic numbers”
N = 66 and A = 132 is overall confirmed also for DFT calcu-
lations.

B. Free response

A second study concentrates on the static response of the
FG. The exact formula for χ0,N [Eq. (30)] is applied in Fig. 3
for different numbers of neutrons and compared to the TL
response (32). FS effects are rather strong at small or mod-
erate momenta and manifest themselves as a non-monotonic
behavior of χ0,N (q) at finite N , while the TL response function
is strictly decreasing in magnitude. For q > 2qF , instead, the
oscillations tend to disappear and the curves match rather well
for all particle numbers. This qualitative change of behavior is
due to geometric reasons, see, e.g., the calculation of χ0(q) in
Ref. [43]: essentially, for q > 2qF any occupied momentum
state can be scattered from the g.s. (the Fermi sphere) to an
empty state and thus shell effects, that strongly affect the re-
sults at small q, are ineffective. The special role of q = 2qF is
also signalled by the fact that the TL Lindhard function (32) is
nonanalytical at that point. Moreover, we note that the conver-
gence to the TL as N is increased is relatively slow and mild
oscillations continue to persist up to very large N . Then, the
free response is computed numerically and compared to the
analytical results. In particular, the FG response is determined
by solving the Mathieu problem [27], i.e., the independent-
particle problem of fermions subject to the external potential
(8) (with the EDF potential terms turned off), for different mo-
menta q and for strengths vq/EF between 0.01 and 0.1 (with a
step of 0.01). Then the energy differences δev are interpolated
with the quartic formula (29) at each q. In Fig. 4, a comparison
is drawn in the case of PNM with N = 66 neutrons between
the exact response (filled squares) and the values obtained
through the fitting procedure (empty diamonds). An almost
perfect agreement is obtained, with a modest discrepancy only
at the lowest momentum (q/qF ≈ 0.5). In order to better un-
derstand this deviation, in Fig. 5 we consider the ratio between
the energy variation δev and the square of the perturbation
strength vq as a function of vq/EF . The exact response is
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FIG. 4. Static response −χ0,N(q)/ρ0 of the FG as a function of
q/qF in PNM at a density ρ0 = 0.16 fm−3. The exact response (filled
squares) and the response determined by a fit to the Mathieu energies
(empty diamonds) are shown for N = 66 neutrons. For comparison,
the TL response (Lindhard function) is also plotted.

shown as a hollow symbol at vq = 0. If linear response theory
were exact, at least in a certain range of small vq, the ratio
δev/v

2
q would be constant. This is indeed verified for q/qmin >

1 over the whole interval considered, but at q/qmin = 1 a
slight underestimation of the response is observed at all finite
perturbations. This highlights that modest nonlinear (fourth-
order) contributions are present in the behavior of the system.
Importantly, though, the ratio correctly converges to the exact
response [δev/v

2
q −→ χ0,N(q)/ρ0] as vq −→ 0.

C. Perturbed nuclear matter

Perturbed matter is now studied with the SLy4 EDF.
First, a preliminary analysis of the convergence of the

FIG. 5. Ratio between the energy variation −δev and the square
of the perturbation strength vq for the first four allowed moments
(q/qmin between 1 and 4) for the same system as Fig. 4. Hollow
symbols at vq = 0 represent the exact value of −χ0,N (q)/ρ0. Dashed
lines are guide to the eye.

FIG. 6. Energy per particle of PNM with N = 66 at ρ0 =
0.16 fm−3 obtained with the SLy4 EDF as a function of the number of
plane waves. Results are shown for the lowest momentum (q = qmin)
for two different strengths of the external potential.

calculations with respect to the number of plane waves in-
cluded in the basis is presented. Figure 6, which reports
calculations performed with N = 66 neutrons (density ρ0 =
0.16 fm−3) at q/qmin = 1 for a small (vq/EF = 0.1) and a
moderate (vq/EF = 0.25) perturbation strengths, shows that
in this case as few as eight plane waves are sufficient to
find energies converged within 0.1 keV or less. As a general
rule, though, the number of plane waves required increases
as a function of the momentum q of the perturbation and in
practice we have found that a basis of 40 waves always yields
converged results for 66 or 132 nucleons. When thousands of
particles are considered, we raise the cutoff to 60 plane waves.
Calculations remain very fast (few seconds) even on a single
processor. Then, the densities ρ(z) as well as their Fourier
components of PNM are shown in Figs. 7 and 8, respectively,

FIG. 7. Densities ρ(z) as a function of z/L in PNM (N = 66
neutrons) at a reference density ρ0 = 0.16 fm−3 (dashed horizontal
line). Densities for three perturbations, differing in strength and
momentum (see legend), are shown as symbols.
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FIG. 8. Fourier components ρq of the density fluctuations in the
same cases as Fig. 7.

for three perturbations that differ in strength and periodicity
(q/qmin = 1 with strengths vq/EF = 0.1, 0.25, and q/qmin =
2 with vq/EF = 0.1). From the real space representation, one
can appreciate that densities closely resemble cosine function
that oscillate around the unperturbed density with the same
periodicity as that of the external perturbation [see Eq. (26)].
The Fourier analysis confirms that the response is essentially
harmonic, as in all cases a single component at momentum q
is clearly dominant with rather modest contributions beyond
the linear regime. For completeness, the real-space densities
(Fig. 9) and their Fourier components (Fig. 10) at reference
density ρ0 = 0.16 fm−3 are reported for SNM (A = 132) too.
From a qualitative point of view, the behavior of SNM is the
same as that of PNM, and also the magnitude of the density
fluctuation is very similar.

So far, we have always used particle numbers that corre-
spond to a shell closure of the free Fermi gas and implicitly
assumed that they are magic numbers for the perturbed system
as well. This hypothesis proves true in general for weak po-
tentials. Actually, its violation is a sign that the picture itself of
a small perturbation of the homogeneous system is breaking

FIG. 9. Same as Fig. 7, but for SNM with A = 132.

FIG. 10. Same as Fig. 8, but for SNM with A = 132.

down. In Fig. 11 the neutron level scheme of N = 66 PNM
(same case as Fig. 7) is shown at two different perturbation
strengths (both with momentum q/qmin = 1). We remind that
the λ = ±1 energy eigenvalues are degenerate and we plot
the s.p. energies only for λ = +1. The quantum numbers n =
(nx, ny, nz ) (0 � nx � ny), and the number of nucleons cor-
responding to shell closures, are reported next to each level.
Among the latter, magic numbers of the FG are circled. In the
case of the weaker potential, the effect of the perturbation is
to partially lift the degeneracy of the free gas levels (as well
as to lower the s.p. energies), as can be seen from the triplets
or doublets of neighboring levels. The overall structure of the
homogeneous system, though, is preserved and indeed all the
FG magic numbers up to 33 are found in the perturbed system
too. A markedly different picture appears for the stronger
perturbation, where the level ordering of the FG is severely
altered. One consequence is that a shell closure is found not
for 33 nucleons but for 35. We suggest that the sudden changes
in the slope of the energy as a function of the perturbation

FIG. 11. Level structure of N = 66 PNM. Two perturbation
strengths (at momentum q/qmin = 1) are shown. The quantum num-
bers n = (nx, ny, nz ) of each level and the number of particles up to
that shell are reported. Momentum-shell magic numbers of the FG
are circled.
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FIG. 12. Static response of SNM at ρ0 = 0.16 fm−3 obtained
with the SLy4 EDF. The solid line represents the TL response, while
symbols denote calculations for a finite number of particles (A = 132
and 16676).

mentioned in Ref. [40] may be a side-effect of such ‘shell-
opening’ effects. The key message is that care must be taken
when studying perturbed finite-A matter and not only global
properties (energy, density), but also the shell structure must
be looked at. For example, we warn that, if DFT or Mathieu
orbitals are used to construct a reference state for quantum
Monte Carlo [27,54], it is crucial to check that it be a closed-
shell state, before embarking on expensive calculations.

Next, the static response function is discussed. The TL
response of nuclear EDFs is known exactly [24] (Appendix C)
and is now compared to the finite-A calculations in both SNM
(Fig. 12) and PNM (Fig. 13). The numerical response func-
tions for the large-A system are in very good agreement with
the analytical predictions. The convergence to the TL is thus
verified and we can appreciate by comparing to Fig. 3 that it
is definitely faster (as a function of the number of nucleons)
in the interacting (DFT) system than for the FG. The small-A

FIG. 13. Same as Fig. 12, but for PNM. Calculations are per-
formed with N = 66 and 8338 neutrons (symbols) and in the TL.

FIG. 14. SNM static response obtained in the TL and for A =
132 nucleons with the full SLy4 EDF and SLy4 with spin-orbit terms
neglected (‘no spin-orbit’ in the legend).

response, instead, is characterized by a non-monotonic behav-
ior that is reminiscent of that of the free response, with marked
fluctuations with respect to the TL function for q < 2qF .
Lastly, we would like to understand the impact of the spin-
orbit terms on the static response. Spin-orbit was neglected
in Ref. [40] and its inclusion is one of the novelties of our
work. The response computed with the full SLy4 EDF and
for SLy4 with spin-orbit neglected, i.e., with C∇J set to zero,
is reported for SNM (Fig. 14) and PNM (Fig. 15) both in
the TL and for the usual A = 132 and N = 66 numbers of
particles, respectively. One can appreciate that for the SLy4
EDF spin-orbit has the main effect of lowering the magnitude
of χ (q) at all momenta, both in the TL and in the finite
systems and, while in SNM it constitutes a small correction,
in PNM it is a significant effect. While the qualitative picture
of Ref. [40] is not altered in a fundamental way, quantitative
results may change noticeably. In particular, it is important
to incorporate spin-orbit terms if one aims at constraining the
EDF parameters using ab initio information. It must be noted,

FIG. 15. Same as Fig. 14, but for PNM with N = 66 neutrons.
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FIG. 16. TL static response in SNM at density ρ0 = 0.16 fm−3

obtained with three different EDFs, both with (solid line) and without
(dashed line) spin-orbit terms.

however, that the importance of the spin-orbit terms on the
response is dependent on the adopted EDF, as it is apparent in
the TL. A systematic analysis is outside the scope of this work,
and for the purpose of demonstrating our previous assertion
we show the TL response in SNM (Fig. 16) and PNM (Fig. 17)
for three representative Skyrme models (SLy4 [53], SkM*
[55], SkI3 [56]). While SLy4 and SkM* predict qualitatively
similar response functions, SkI3 is markedly different in two
respects. First, the PNM response is smaller by a factor of 2
compared to the other EDFs. The SNM response is compara-
ble in all cases, as the isoscalar coefficients that determine the
SNM response are more tightly constrained than the isovec-
tor ones that enter the PNM response [13] (Appendix A 1
and C). PNM properties can differ significantly according to
the EDF, as we comment also in Appendix E. Second, in SLy4
and SkM* the spin-orbit term has a qualitative impact on the
PNM response. In the SkI3, instead, it represents only a small
quantitative correction in both PNM and SNM. To understand
this, in Table I we have reported the isoscalar and isovector

FIG. 17. Same as Fig. 16, but for PNM.

TABLE I. Spin-orbit coefficients for the SLy4, SkM*, and SkI3
EDFs. All the parameters are measured in MeV fm5.

EDF C∇J
0 C∇J

1 C∇J
nm

SLy4 −92.25 −30.75 −123
SkM* −97.50 −32.5 −130
SkI3 −94.13 0 −94.13

spin-orbit coefficients, as well as the PNM coefficient C∇J
nm =

C∇J
0 + C∇J

1 (Appendix A 1), for the three EDFs. Also, we note
that the spin-orbit parameter enters the TL response quadrat-
ically in the denominator of Eq. (C11), where Xso ∝ C∇J .
Then, we observe that all the three EDFs considered have
roughly equal isoscalar spin-orbit coefficients. However, in
SLy4 and SkM* |C∇J

nm | > |C∇J
0 |, while in SkI3 C∇J

nm = C∇J
0 .

This may help explain why spin-orbit impacts PNM more
strongly than SNM for the first two models.

V. CONCLUSIONS AND PERSPECTIVES

To sum up, in this work we have studied nuclear matter
under the effect of an external potential within the DFT frame-
work. Our approach is based on simulating nuclear matter
with a finite number of nucleons enclosed in a box and subject
to PBCs, and the theoretical formalism and numerical imple-
mentation have been presented in detail for PNM and SNM
for Skyrme-like EDFs. We have discussed carefully how to
treat spin-orbit terms and, in particular, we have shown that,
although in the presence of spin-orbit the DFT orbitals are not
eigenstates of the spin projection operator, single-component
equations can still be derived. Then, the problem of the re-
sponse of nuclear matter to static density perturbations has
been analyzed with our technique.

Our method has been validated successfully by compar-
ing the numerical results with analytical formulas for the
EDF EOS, the free gas response (both for finite-A and TL
systems) and the TL EDF response. The power of DFT is
demonstrated by the fact that systems of thousands of parti-
cles can be computed in an extremely fast and reliable way,
and the convergence to the thermodynamic limit has been
verified numerically. Moreover, the validity of linear response
for weak perturbations, as well as deviations occurring for
stronger external potentials have been investigated by looking
at energies, densities, and level structures. We point out that
the momentum space magic numbers of uniform matter do
not necessarily correspond to shell closures of the perturbed
system. Therefore, care must be taken when the finite-A DFT
approach is used in conjunction with ab initio, for example
when DFT or Mathieu orbitals [27] are used as a reference
state in quantum Monte Carlo. Moreover, in the case of the
popular SLy4 EDF we have found that spin-orbit contributes
significantly to the PNM response, and to a lesser extent to the
SNM response. In future studies of inhomogeneous matter,
therefore, spin-orbit terms should be incorporated. We should
mention, however, that the impact of spin-orbit terms on the
response is dependent on the chosen EDF, though a detailed
study is outside the scope of this work.
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This work represents an intermediate step in the program of
developing ab initio–based EDFs started in Ref. [41]. Indeed,
inhomogeneous systems are to be studied in order to gain in-
formation about the gradient terms of the EDF. Our efforts are
currently devoted to the ab initio response of both SNM and
PNM, aiming at constraining the nuclear EDF by matching
DFT and ab initio results. In particular, our strategy involves
tuning the EDF parameters on the ab initio energies obtained
with the same number of particles so to keep FS effects under
control. Results will be presented in a forthcoming publication
[57].

Moreover, while here we have focused on PNM and SNM
and presented results for density perturbations only, the for-
malism can be easily extended to isospin-asymmetric matter,
as well as (introducing time-odd densities in the theory [12])
to spin-polarized matter and to spin/isospin perturbations.
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APPENDIX A: DETAILS ON NUCLEAR EDFs

Further details on the EDF and the mean fields are pro-
vided. In this work we focus on PNM and SNM, that can be
treated as two-component (spin up/down) fermionic systems.
We adopt the convention for which Cτ stands for Cτ

0 in SNM
and Cτ

nm = Cτ
0 + Cτ

1 in PNM, and likewise for C�ρ , C∇J , and
the cγ coefficients.

1. EDFs

The expression of the EDF E under the assumptions of
Sec. II is the following:

E (z) = Ekin(z) + Ebulk (z) + Cτ ρ(z)τ (z)

+ C�ρρ(z)ρ ′′(z) − C∇Jρ ′(z)Jz(z) (A1)

with

Ekin(z) = h̄2

2m
τ (z), (A2)

Ebulk (z) =
∑

γ

cγ ργ+1(z). (A3)

The rearrangement term was computed in Ref. [41] and is
given by

Erea = L2
∫

dz
∑

γ

(
1 − γ

2

)
cγ ργ+1(z). (A4)

The expressions for the mean field, effective mass, and spin-
orbit potential are also shown:

h̄2

2m∗(z)
= h̄2

2m
+ Cτ ρ(z), (A5)

U (z) = U bulk (z) + Cτ τ (z) + 2C�ρρ ′′(z) + C∇JJ ′
z(z)

(A6)

with

U bulk =
∑

γ

cγ (γ + 1)ργ (z), (A7)

and lastly

Wz(z) = −C∇Jρ ′(z). (A8)

2. Kinetic term

We derive the kinetic term of Eq. (18). First, the gradient
and the Laplacian of ψn,λ [Eq. (15)] are reported:

∇ψn,λ(x) = ikxψn,λ(x)x̂ + ikyψn,λ(x)ŷ

+ 1

L
ei(kxx+kyy)χnx,ny,λφ

′
n,λ(z)ẑ, (A9)

∇2ψn,λ(x) = −(
k2

x + k2
y

)
ψn,λ(x)

+ 1

L
ei(kxx+kyy)χnx,ny,λφ

′′
n,λ(z). (A10)

Using these expressions, we elaborate on −∇ · ( h̄2

2m(z)∇ψn,λ)
as follows:

− ∇ ·
(

h̄2

2m∗(z)
∇ψn,λ(x)

)

= − h̄2

2m∗(z)
∇2ψn,λ(x) − d

dz

(
h̄2

2m∗(z)

)
∂ψn,λ

∂z

= 1

L
ei(kxx+kyy)χnx,ny,λ

×
[
− d

dz

(
h̄2

2m∗(z)
φ′

n,λ(z)

)
+ h̄2

2m∗(z)
k2

nxny
φn,λ(z)

]
.

(A11)

The constant spinor χ and the exponential appear in all terms
in Eq. (6), thus they can be simplified and drop out of the the
final equations (18).

3. Densities as a function of the orbitals

Number density, kinetic density, and spin-orbit density
may be computed from their definitions as functions of the
occupied orbitals [12] applied to the wave functions (15).
Equations (A9) and (A10) are also used to find

ρ(z) =
∑

j

|ψ j (x)|2 = 1

L2

∑
n,λ

|φn,λ(z)|2, (A12)

τ (z) =
∑

j

|∇ψ j (x)|2

= 1

L2

∑
n,λ

(|φ′
n,λ|2 + k2

nxny
|φn,λ|2

)
, (A13)

Jz(z) =
∑

j

ψ∗
j (x)(−i)(∇ × σ )3ψ j (x)

=
∑
n,λ

ψ∗
n,λ(x)Kψn,λ(x)

= 1

L2

∑
n,λ

λknxny |φn,λ(z)|2, (A14)
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where only the z component of J does not vanish and Eq. (16)
has been used.

4. Hamiltonian in the plane waves basis

We derive the Hamiltonian matrix in the plane waves ba-
sis (h̃n,λ)k,k′ [Eq. (19)]. We start from the real space DFT
equations (18) and Fourier-expand the orbitals as φ(z) =

1√
L

∑
k′ ck′eik′z. Then, we project on the k plane wave by

multiplying by e−ikz/
√

L and integrating over z for −L/2 �
z � L/2. The multiplicative terms are simple to treat and one
easily finds the Fourier transform

Ũ (k − k′) = 1

L

∫ L/2

−L/2
dz e−i(k−k′ )z

×
(

U (z) + v(z) + λknxnyW (z) + h̄2

2m∗(z)
k2

nxny

)
.

(A15)

The derivative term is slightly more involved and is discussed
in detail. We simplify the notation by defining B(z) = h̄2

2m∗(z)
and dropping the subscripts n, λ and move on to compute

1√
L

∫ L/2

−L/2
dze−ikz

[
− d

dz

(
B(z)φ′(z)

)]
. (A16)

An integration by parts, followed by inserting φ′(z) =
i√
L

∑
k′ k′ck′eik′z, gives

1√
L

∫
dzB(z)φ′(z)

d

dz
e−ikz

= −i
k√
L

∫
dz B(z)φ′(z)e−ikz

= k
∑

k′
k′ck′

1

L

∫
dzB(z)e−i(k−k′ )z

= k
∑

k′
B̃(k − k′)k′ck′ , (A17)

where

B̃(k − k′) = 1

L

∫ L/2

−L/2
dz e−i(k−k′ )z h̄2

2m∗(z)
. (A18)

In case effective mass terms are absent, m∗(z) = m, B̃(k − k′)
is simply equal to h̄2

2m δk,k′ and one recovers in h̃k,k′ the usual

kinetic term h̄2

2m k2. Summing the B̃ and Ũ terms, one finds the
Hamiltonian matrix

h̃k,k′ = kB̃(k − k′)k′ + Ũ (k − k′). (A19)

APPENDIX B: DETAILS ON THE STATIC
RESPONSE THEORY

Further details on the static response theory are given
in what follows, and in particular the key equation (28) is
derived. The starting point is the formula for the density fluc-
tuation (24), using which χ can be expressed as the functional

derivative

χ (x, x′) = δρv (x)

δv(x′)

∣∣∣∣∣
v=0

. (B1)

We now want to prove that the dependence of the energy
on the perturbation is instead quadratic. Indeed, this can be
verified by first expanding E [v] (understood as a functional of
v) around the unperturbed system v = 0, namely [30],

E [v] − E [0] =
∫

dx
δE

δv(x)

∣∣∣∣∣
v=0

v(x) + 1

2

∫
dx

∫
dx′

× δ2E

δv(x) δv(x′)

∣∣∣∣∣
v=0

v(x)v(x′). (B2)

Then, we notice that δE
δv(x) = ρv (x) as the external potential

enters E [v] the energy with the term
∫

dxv(x)ρ(x) and thus

δE
δv(x) |v=0 = ρ0. Differentiating the energy twice and inserting
Eq. (B1), moreover, we find

δ2E [v]

δv(x) δv(x′)
= δρv (x)

δv(x′)
= χ (x, x′). (B3)

Therefore, Eq. (B2) can be recast as [30]

E [v] − E [0] =
∫

dxv(x)ρ0 + 1

2

∫
dx

∫
dx′

× χ (x, x′)v(x)v(x′), (B4)

and we immediately see that the first-order term vanishes,
v being periodic. (A more general argument is presented in
Ref. [48]). We also remind that the homogeneous matter re-
sponse depends only on x − x′ due to translational invariance,
i.e., χ (x, x′) = χ (x − x′).

Then one can transform Eq. (B4) to momentum space
inserting the Fourier expansions

δρ(x) =
∑

k

ρkeik·x, v(x) =
∑

k

vkeik·x, (B5)

χ (x − x′) = 1

�

∑
k

χ (k)eik·(x−x′ ). (B6)

Then

E [v] − E [0] = �

2

∑
k

vkχ (k)v−k. (B7)

If the monochromatic potential (25) is considered in place of
a generic perturbation, and if the relations ρ0 = A/� and χ =
χ (|q|) that hold for uniform matter are employed, we find that
the energy per particle of the perturbed system is given by [30]

δev = ev − e0 = χ (q)

ρ0
v2

q . (B8)

Similarly, it follows from Eq. (B5) that only the k = ±q
components are nonvanishing and

ρq = χ (q)vq. (B9)
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APPENDIX C: EDF RESPONSE IN THE
THERMODYNAMIC LIMIT

The dynamic response of a large class of generalized
Skyrme EDFs has been determined in the thermodynamic
limit analytically in Ref. [24] and references therein. We sum-
marize the main formulas here for the case of PNM and SNM.
A slightly different notation is also introduced.

First, for later convenience we define Kbulk as

Kbulk =
∑

γ

cγ γ (γ + 1)ργ−1. (C1)

Then, the following W functions are defined as in Ref. [24]:

W1(q)/g = Kbulk −
(

2C�ρ + Cτ

2

)
q2, (C2)

W2/g = Cτ , (C3)

Wso/g = C∇J . (C4)

W2 is a constant proportional to Cτ , while W1 mixes the Cτ and
Cδ coefficients and carries a momentum dependence through
q2. Lastly, Wso is a spin-orbit constant.

Now, we introduce adimensional functions X and insert
them into χ (q) (eq. (67), Ref. [24]). With k = q/2qF , we
define ρ̃ as ρ in SNM and 2ρ in PNM. With this trick, the
expressions for SNM [58] and PNM [59] are identical. The X

functions are derived from the corresponding W functions by
means of

X1 = m∗c2

(h̄c)2
ρ̃

W1(q)

q2
F

, (C5)

X2 = m∗c2

(h̄c)2
ρ̃W2, (C6)

Xso = m∗c2

(h̄c)2
ρ̃Wso. (C7)

We further elaborate on X1 by splitting it as the sum or a
bulk and a momentum-dependent contribution

X1(k) = Xbulk + Xsurf (k) (C8)

with

Xbulk = g
m∗c2

(h̄c)2

ρ̃

q2
F

Kbulk, (C9)

Xsurf (k) = −4g

(
2C�ρ + Cτ

2

)
m∗c2

(h̄c)2
ρ̃k2. (C10)

Finally, by using χ (q) = −ρ 2m−1(q)/A, with m−1 being the
inverse energy-weighted sum rule of the strength function, and
collecting some constant factors, one ends up with following
formula for the TL response of a nuclear EDF:

χ (q) = −3
m∗c2

(h̄c)2

ρ

q2
F

f (k)

[(
1 + 3

8
X2

)2

+ 3

4
(X1(k) + X2(1 − k2)) f (k)

− 3

64
X 2

2

(
2 + 26

3
k2 + (1 − k2) f (k)

)
f (k) − 3

8
k2 f (k)X 2

so(1 + 3(1 − k2) f (k))

]−1

(C11)

with f (k) defined in Eq. (33).

APPENDIX D: STATIC RESPONSE FROM DENSITY
AND ENERGY FITS

The static response can be extracted either from the ener-
gies or the densities of the perturbed system. In the results
presented in Sec. IV, χ (q) was obtained by energy changes.
In this Appendix, we discuss fits of the density changes and
show evidence that the two techniques give close outcomes.

In the linear response regime, the relation (27) holds and
relates the Fourier component of the density fluctuation of
the same momentum q as that of the external potential. If
nonlinear effects come into play, also higher-order harmonics
are excited [60]. In order to extract χ (q), calculations are

performed at a given momentum q for several strengths vq and
the corresponding densities δρ(z) are Fourier-transformed,
i.e.,

ρk = 1

L

∫
dz δρ(z)e−ikz. (D1)

Then, the component with k = q is selected. Other harmonics
would be related to nonlinear contributions and do not involve
the function χ (q), as discussed in Ref. [60]. Finally, a linear
fit to the amplitudes ρq as a function of vq is performed.

We have studied the case of PNM with N = 66 neutrons at
a reference density ρ0 = 0.16 fm−3 for the SLy4 EDF. Calcu-
lations for vq/EF between 0.01 and 0.1 have been performed.

TABLE II. Infinite nuclear matter coefficients L, K0, and Ksym (in MeV) and CSR −χ (0)/ρ (in MeV−1) in SNM and PNM for three EDFs.
The coefficients are taken from Ref. [61].

EDF L K0 Ksym −χ (0)/ρ (SNM) −χ (0)/ρ (PNM)

SLy4 45.94 229.91 −119.73 0.0391 0.0233
SkM* 45.78 216.61 −155.94 0.0415 0.0268
SkI3 100.53 258.19 73.04 0.0348 0.00963
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FIG. 18. Density amplitudes ρq as a function of the perturbation
strength vq/EF in PNM (N = 66 neutrons) at a reference density
ρ0 = 0.16 fm−3 for the SLy4 EDF for different moments q/qmin.
Markers: results of the DFT calculations. Dashed lines: linear fits
to the data points.

In Fig. 18 the density amplitudes ρq are shown as a function
of the perturbation strength for different momenta as mark-
ers. Dashed lines represent linear fits to the data. A distinct
linear trend of the amplitudes can be noted in all cases, with
some fluctuations appearing only for q/qmin = 1. Indeed, the
response is strongest at q/qmin = 1 (about two times stronger
than for q/qmin = 2, see Figs. 13 and 19). As a consequence,
nonlinear effects are expected to play a relevant role in this
case even for moderate perturbation strengths. In Fig. 18,
in particular, they manifest themselves in mild deviations of
the amplitudes from the linear trend. These deviations are
also similar to those observed in the energies per particle for
q/qmin = 1 in the FG case (Fig. 5).

In Fig. 19 we compare the response function extracted from
fits to the density (triangles) and to the energy (circles). In the
inset, the relative discrepancy between the two fits, i.e.,

�χ

χ
= −χEnergy + χDensity

(χEnergy + χDensity )/2
, (D2)

is shown. It can be appreciated that it remains within a modest
5% and, with the exception of the first allowed momentum
2π/L, is much smaller for the momenta below 3kF . We
conclude that the two ways to extract the response function
essentially agree.

APPENDIX E: COMPRESSIBILITY SUM RULE

The compressibility sum rule (CSR), which has been
discussed in detail in Refs. [28,40], relates the static

FIG. 19. Static response function −χ (q)/ρ0 extracted from fits
to the energies (circles) and densities (triangles) of the perturbed
system. The TL response is also shown for comparison. Inset: rel-
ative difference (in percentage) between the response function from
density fits and energy fits (�χ/|χ |).

response at zero momentum to the properties of unperturbed
matter

− 1

χ (0)
= 1

ρ

∂P

∂ρ
= ∂2e

∂2ρ
(ρe). (E1)

Here, we relate the CSR to the infinite matter parameters of
an EDF, namely, L, K0, and Ksym (see Refs. [1,61] and below).
First, we write

− 1

χ (0)/ρ
= 2ρ

∂e

∂ρ
+ ρ2 ∂2e

∂2ρ
. (E2)

Then, we use ∂e
∂ρ

= 0 and K0 = 9ρ2 ∂2e
∂2ρ

in SNM, and L =
3ρ ∂e

∂ρ
and KPNM = K0 + Ksym = 9ρ2 ∂2e

∂2ρ
in PNM. Finally,

− 1

χ (0)/ρ
= K0

9
(SNM), (E3)

− 1

χ (0)/ρ
= 2

3
L + K0 + Ksym

9
(PNM). (E4)

In Table II we report the nuclear matter coefficients, taken
from Ref. [61], and calculate the corresponding zero-
momentum responses for the three representative EDFs
discussed in Sec. IV C. One can note that SNM values are
consistent, while in SkI3 the PNM response is smaller by a
value of 2 from that of the other two EDFs. This can be traced
to SkI3 having a positive Ksym coefficient and a slope L twice
as large as that of SLy4 and SkM*.
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