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Abstract

Previous work [3] has shown that V0
2, the theory of bounded arithmetic in Buss’ language

equipped with comprehension for boundedly definable sets, is consistent with the conjec-
ture NEXP ⊈ P/poly. That work entertains two different formalizations of the inclusion
NEXP ⊆ P/poly inside V0

2, termed α and β. Both formalizations are provably equivalent
in the standard model of arithmetic, by invoking the Easy Witness Lemma (EWL), a
technically deep modern result in complexity theory. While the implication β → α is
provable in V0

2, it is open whether V0
2 proves the converse implication α → β. Since this

converse implication can be interpreted as a formalization of the EWL, whether V0
2 proves

the equivalence of the two formalizations amounts to whether V0
2 proves (this formalization

of) the EWL.

In the present work, we make progress towards resolving this question in the positive.
More concretely, we show that V0

2+α does prove a suitable formalization of IP = PSPACE,
which is a central ingredient in the proof of the EWL. In the process of doing so, we
lay the foundations necessary to discuss exact counting of large sets and formalization of
interactive proofs in V0

2 and other second-order bounded arithmetics.
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Introduction

Meta-complexity

It is infamously hard to prove inclusions, equalities or inequalities between complexity

classes. Since the seminal works on computational complexity in the 1970s, and barring

a few surprising flagship results that can probably be counted without resorting to one’s

toes, many deceptively simple questions, querying the most fundamental properties of the

computational universe, remain not only unsolved by the existing incremental progress,

but in fact evidently far from any solution. The most famous of these is undoubtedly the

P vs NP problem. But there exist a truckload of other conjectures that are, in a sense,

even more egregiously unproven. Many inequalities between radically efficient and radi-

cally expensive classes of computations that, while strongly believed, we still don’t have

the mathematical tools to assert. For a famous example of this, at the time of writing of

this thesis, it is still open whether NEXP ⊆ P/poly: can any problem solved in exponen-

tial time by a non-deterministic Turing machine also be solved by polynomial-size circuits?

It is thus not surprising that in recent decades a sub-field has crystallized that jumps one

level up, and asks the question we’re all wondering about:

Why are complexity results so hard to prove?

Research in the meta-mathematics of complexity theory brings forth perspectives from

mathematical logic and proof theory to study why, and to what extent, such results are

infeasible, or even impossible, to prove from our working axioms. As an exemplification,
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an ultimate and ambitious goal from this field could be to show that P = NP is indepen-

dent of the axioms we use to formalize most of mathematics. But of course, it is entirely

plausible that human mathematicians’ failure is explained by way less fundamental and

bombastic reasons. And even if such ambitious consistency results did hold, while they

remain unattainable we must content ourselves with smaller wins.

Albeit here we’ll be focusing on this meta-theoretical direction, the recently popular field

termed meta-complexity also encompasses an alternative complimentary perspective. In-

stead of jumping a meta-level up by studying the complexity of the proofs we use to study

complexity, we could also introduce complexity one level down, and study the complexity

of problems that are themselves about complexity. One such example is the Minimum Cir-

cuit Size Problem (MCSP): given the input-output table of a Boolean function, what’s the

smallest Boolean circuit implementing it? The topic of this decision problem is the com-

plexity of a Boolean function. And of course, we can ask about the complexity of MCSP

itself. It is not surprising to find out that this complementary branch in fact presents

many interesting connections to the proof-theoretic side of meta-complexity.

Bounded arithmetics

One common tool in meta-complexity (and more generally proof complexity) is the use of

bounded arithmetics, an array of weak sub-theories of Peano Arithmetic through which to

study different notions of feasible reasoning. These theories, initiated by Parikh in 1971

and developed further by Buss in his 1986 dissertation, are characterized by restricting the

induction axiom of PA, so that we can only induct on formulas up to a certain complexity

(usually meaning amount of quantifiers).

The key useful feature of bounded arithmetics is their ability to characterize complexity

classes. Many results are of the following form: a function is provably total in a given the-

ory if and only if it belongs to a corresponding complexity class. This connection allows for
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a systematic study of complexity classes through proof-theoretic methods. For instance,

Buss’s first-order theories Si2 form a hierarchy that corresponds to the polynomial-time

hierarchy PH in complexity theory.

Another significant result in this field is Buss’s witnessing theorem, which establishes that

∀Σb
1 theorems of S12 are witnessed by polynomial-time functions. That is, the existential

witness making the Σb
1 formula true can be computed by a polynomial-time function.

Bridges have also been built between (first-order) bounded arithmetics and propositional

proof systems. This correspondence allows for the translation of proofs in bounded arith-

metic into short proofs in propositional systems, particularly useful for constructing effi-

cient proofs in propositional systems like Extended Frege.

This framework offers a structured approach to understanding relationships between com-

plexity classes and the limits of provability. By studying what can and cannot be proved

in various theories of bounded arithmetic, we gain insights into why certain complexity

results are challenging to establish, as is the agenda of meta-complexity.

While some of these results pertain to the exact length or complexity of proofs, in the

present work we put the focus on provability and consistency results, without regard for the

low-level details of the proofs involved. This is because we will be dealing with significantly

complex complexity-theoretic statements (like IP = PSPACE or the Easy Witness Lemma),

and correspondingly using a rather strong bounded arithmetic (the theory V0
2), such that

even results on provability are already of high interest, and advance the frontier of our

understanding.
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This work

The contents of this thesis are best understood as an extension of previous work in [3].

There, the authors showed that the second-order bounded arithmetic V0
2 is consistent with

the conjecture NEXP ⊈ P/poly. We will explain in more technical detail in Chapter 2, but

in short, the fact that this moderately strong theory doesn’t disprove the conjecture could

be understood as heuristic evidence in favor of the conjecture holding “in the real world”

(that is, the standard model of arithmetic).

In fact, it is not immediately obvious how to formalize a conjecture like NEXP ⊈ P/poly

in the language of bounded arithmetic, and this previous work [3] presents two different

formalizations ¬α and ¬β. In the standard model of arithmetic, we know they are both

equivalent. But we don’t know yet α↔ β can be proved inside V0
2. In fact, the statement

α↔ β is equivalent to the Easy Witness Lemma from [7] (in the form of Theorem 3.1 from

[15]), another deeply technical and very celebrated result of modern complexity theory.

The main motivation for our work is showing that indeed V0
2 proves α ↔ β (or equiva-

lently, the Easy Witness Lemma). This would be desirable for several different technical

reasons (see Section 2.2), but mainly, it would provide further evidence for the strength

of V0
2, and enable the transfer of certain previous results and existing tools to new settings.

In this work we make progress towards this longer term goal. A main ingredient of the

proof of the Easy Witness Lemma is IP = PSPACE [13], another famous and celebrated

result in modern complexity theory. The focus of this thesis is to show that V0
2 +α proves

(a suitable formalization of) this result.

In the process of doing so, we also lay the foundations for exact probabilistic reasoning

in V0
2 on exponentially-large event spaces (which really amounts to reasoning about the

sizes of exponential-size sets), and use these tools to formalize inside V0
2 the interactive



5

proof protocols involved in IP. Most of these techniques transfer to other second-order

bounded arithmetics. This is presented in Chapter 3, which is an independent technical

contribution not relying on α as an assumption.

The rest of the thesis is structured as follows. In Chapter 1, we present necessary prelim-

inaries on complexity classes, the proof of IP = PSPACE (that we will be reconstructing

inside V0
2), and bounded arithmetics. In Chapter 2, we contextualize in all necessary tech-

nical detail the previous results of [3], and discuss precisely the new results we are working

towards. In Chapter 3, we lay out the foundations for probabilistic reasoning inside V0
2

that we will need to work with IP = PSPACE. In Chapter 4, we present our formalization

of IP = PSPACE, and prove it inside V0
2, which is our main result.

A previous publication that was brought to our attention ([10]) already dealt with IP =

PSPACE in the context of bounded arithmetics. More concretely, one of its results is

that the theory S12 + 1-Exp (which is equivalent to V1
2, see [12][Theorem 5.5.16]) correctly

proves the basic properties of the Sumcheck Protocol, which is the central piece of the

proof of IP = PSPACE. Our results are indeed different: we are using V0
2 + α, and also

correspondingly need to use different techniques. Indeed, the main ingredient that makes

our result possible (already present in [3], and as highlighted in our proofs below) is using

α to turn a high-complexity induction (that would usually require V1
2 to perform) into a

low-complexity one (that V0
2 can perform).

We should also note that the theory V0
2 + α is not necessarily interesting by itself (since

indeed it is strongly believed that the conjecture NEXP ⊈ P/poly is true, and thus its

negation α is believed to be false), but rather as a useful jumping point from which to

prove certain collapses or unconditional results in V0
2, like α→ β.



6

Chapter 1

Preliminaries

1.1 Complexity classes

We assume basic familiarity with the Turing machine paradigm, and complexity classes of

computational problems. Let us begin by recapitulating the definitions of some complexity

classes that play a major role in this work. The first four are relatively straightforward.

Definition 1.1.1 (Polynomial Time). P is the class of decision problems that can be solved

by a deterministic Turing machine in polynomial time. Formally,

P =
⋃
k∈N

TIME(nk)

where TIME(f(n)) is the set of decision problems solvable by a deterministic Turing ma-

chine in O(f(n)) computational steps.

Definition 1.1.2 (Exponential Time). EXP is the class of decision problems that can be

solved by a deterministic Turing machine in exponential time. Formally,

EXP =
⋃
k∈N

TIME(2n
k
)

It is known that P ⊂ EXP, with the containment being strict.
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Definition 1.1.3 (Polynomial Space). PSPACE is the class of decision problems that

can be solved by a deterministic Turing machine using a polynomial amount of memory.

Formally,

PSPACE =
⋃
k∈N

SPACE(nk)

where SPACE(f(n)) is the set of decision problems solvable by a deterministic Turing

machine that only ever writes in the first O(f(n)) squares of its tape.

It is known that P ⊆ PSPACE ⊆ EXP.

Definition 1.1.4 (Non-deterministic Exponential Time). A non-deterministic Turing ma-

chine makes its computation depend on a random seed (of length polynomial on that of

the input), and accepts if any of the computational paths thus generated does. NEXP is

the class of decision problems that can be solved by a non-deterministic Turing machine

in exponential time. Formally,

NEXP =
⋃
k∈N

NTIME(2n
k
)

where NTIME(f(n)) is the set of decision problems solvable by a non-deterministic Turing

machine in O(f(n)) computational steps.

It is immediate from the definition that EXP ⊆ NEXP.

We now present two classes with slightly more complex definitions.

The first one, P/poly, identifies problems that can be solved by small Boolean circuits.

Definition 1.1.5 (Boolean circuit). A Boolean circuit is a labeled directed acyclic graph

where:

• Nodes with in-degree 0 are labeled as inputs.

• Nodes with in-degree greater than 0 are gates, labeled with one of three Boolean

operations: AND (in-degree 2), OR (in-degree 2), NOT (in-degree 1).
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• One node is labeled as the output.

The size of a circuit is the number of gates it contains. The depth of a circuit is the length

of the longest path from an input to the output.

Given a Boolean circuit C with n input nodes, and an input x of length n, the bit C(x) is

computed in the obvious way, by applying the Boolean operation with which each gate is

labeled to its inputs, and reading the output.

Definition 1.1.6 (Non-uniform Polynomial Size). P/poly is the class of decision problems

solvable by polynomial-sized Boolean circuits. Formally, a language L is in P/poly if there

exists a sequence of Boolean circuits {Cn}n∈N such that:

• For each n, Cn has n inputs and one output.

• There exists a polynomial p such that for all n, the size of Cn is at most p(n).

• For all strings x of length n, we have x ∈ L↔ Cn(x) = 1.

P/poly and similar classes are usually referred to as non-uniform, meaning that problem

inputs of different lengths are handled by different circuits (as opposed to using a single

Turing machine for all lengths). Because of this non-uniformity, P/poly doesn’t correspond

to our intuitive notion of efficient computation, despite being labeled as polynomial. For

example, it contains every undecidable unary language, which of course can’t be solved by

any one real-world machine, regardless of its computational strength.

The second class, IP, captures the problems that can be solved by an efficient trusted

reasoner with the help of a more powerful, but also untrusted, helper. More concretely,

the trusted reasoner will be a polynomial-time verifier V , and the untrusted one any

arbitrary prover function P (without regarding computational limitations). They will

engage in an interactive proof, exchanging messages back and forth, and V will be able to

employ randomization of its messages to keep P truthful.
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Definition 1.1.7 (Interactive Proof System). An interactive proof is an interaction be-

tween a (fixed throughout) non-deterministic machine V and a (fixed throughout) arbitrary

function P . The interaction proceeds in rounds, where in each round:

• The verifier V sends a message (question) to the prover, possibly depending on its

random seed.

• The prover P sends a response back to the verifier.

After a polynomially bounded (on the length of the problem input) number of rounds, the

verifier decides to accept or reject.

We say that a decision problem L is solved by the verifier V if:

1. Completeness: For every x ∈ L, there exists a prover function P such that V

accepts with probability at least 2/3.

2. Soundness: For every x /∈ L, and for every prover function P , V accepts with

probability at most 1/3.

Definition 1.1.8 (IP). IP is the class of languages solved by a polynomial verifier V .

IP is a powerful class, allowing for multiple rounds of interaction and a probabilistic veri-

fier. And yet, the verifier can only ever perform polynomial checks, which we would expect

to be a strong bottleneck.

But a surprising and important result in complexity theory is that IP = PSPACE. This

means that polynomial verifiers can verify any problem solvable in polynomial space, which

includes many problems believed to be much harder than those in P, or even NP (Non-

deterministic Polynomial Time).

Indeed, the result IP = PSPACE is a central element of this thesis (although the exact

reason for this will not be fully explained until Section 2.2). We turn now to its proof.
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1.2 IP = PSPACE

We present here a proof that IP = PSPACE, reconstructed mainly from [2].

Our main result (Theorem 4.1.2), informally stated, is that the bounded arithmetic V0
2

(defined below) can reproduce this proof, so familiarity with its details will be required.

Theorem 1.2.1 (Originally in [13]). IP = PSPACE

Proof. a

The hard inclusion: PSPACE ⊆ IP

A Quantified Boolean Formula is a Boolean formula (the matrix) preceded by an array of

Boolean quantifiers. Each quantifier is either existential ∃x or universal ∀x, bearing the

usual meanings, with x varying of course only between the two truth values 1 and 0. For

example,

∃x1∀x2x1 ∧ x2 ∧ x3

is a partly Quantified Boolean Formula, due to having x3 as a free variable, and will be

false for any value of x3. On the contrary,

∀x1∃x2x1 ∨ x2

is a fully Quantified Boolean Formula, due to having no free variables, and is true.

Consider the decision problem TQBF: for any Quantified Boolean Formula, determine

its truth value. This problem is PSPACE-complete, which means any PSPACE problem

reduces to it in polynomial time. This was shown by Stockmeyer ([14]) by, given an ar-

bitrary PSPACE machine, constructing a (fully) Quantified Boolean Formula whose truth

value is equivalent to the acceptance of the machine.

Since, as can be easily verified, the class IP is closed downwards under polynomial-time

reductions, by showing TQBF ∈ IP we will have shown that PSPACE ⊆ IP.
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We thus need to construct a verifier protocol that solves TQBF. For this we need the con-

cept of arithmetization. By arithmetizing a formula, we mean turning any Quantified

Boolean Formula φ into a polynomial A(φ), whose values on input a Boolean assignment

(that is, an assignment including only 0s and 1s), and computed in fields of high enough

characteristic, correspond with the truth values of the formula on the same Boolean as-

signment. As we will see later, this polynomial representation will allow our verifier to

more efficiently exploit the prover.

We arithmetize the Boolean connectors as follows:

x ∧ y ←→ X · Y

¬x←→ 1−X

x ∨ y ←→ 1− (1−X)(1− Y )

∃xφ(x)←→
∑

X∈{0,1}

A(φ)(X)

∀xφ(x)←→
∏

X∈{0,1}

A(φ)(X)

And thus, for example

∃x∀yx ∨ y ∨ ¬z ←→
∑

X∈{0,1}

∏
Y ∈{0,1}

1− (1−X)(1− Y )Z

which is a polynomial on the variable Z. Indeed, just like Quantified Boolean Formulas,

the quantified polynomials resulting from the arithmetization can be either partly or fully

quantified. a

It is easy to see that, for any φ(x̄) and input x̄, A(φ)(x̄) = 0 ↔ ¬φ(x̄). Although, when

we have φ(x̄), A(φ)(x̄) might take any value ≥ 1, due to the summations.

Since this transformation is computable in polynomial time, our verifier V can reduce the
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problem of deciding whether any given φ is true, to deciding a polynomial equality of the

form1

∑
X1∈{0,1}

∏
X2∈{0,1}

∑
X3∈{0,1}

· · ·
∏

Xn∈{0,1}

g(X1, . . . , Xn) = k (⋆)

Note, however, that what we can compute in polynomial time (from a formula φ) is the

polynomial expression with quantifiers still present (like (⋆)), and not the simplified ex-

pression of that same polynomial, once we have operated out all the sums and products

and expressed the result as an explicit sum of monomials (like, for example, X1 ·X3+4·X2,

without any quantifiers in sight).

Indeed, turning a quantified expression like (⋆) into an explicit sum of monomials is

PSPACE-hard, and in our protocol we will be taking advantage of the prover’s power

to compute the explicit expression.

We now propose a protocol to verify whether an expression like (⋆) holds.

It will be useful to perform all computations in a suitable prime field Fz (instead of the

integers). Evaluated over boolean assignments, the maximal possible value of our quanti-

fied polynomial is 2n, and if we choose z greater than that, we are sure that the evaluation

over Fz will coincide with the evaluation over the integers. So to start, the prover sends a

prime z ∈ (2n, 22n], and the verifier checks in polynomial time its primality. Then we can

start the protocol (where all computations are modulo z):

1By adding a polynomial number of dummy variables if necessary, we may assume that the quantifiers
alternate, the first one being a sum and last one a product, or vice versa. Here we describe the first case.
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Sumcheck protocol

V: If n = 1, check that g(1) + g(0) = k (or g(0) · g(1) = k if the last quantifier

was a product). If so accept, otherwise reject.

If n ≥ 2, ask P to send the coefficients (in Fz) of the following uni-variate

polynomial:

h(X1) :=
∏

X2∈{0,1}

∑
X3∈{0,1}

· · ·
∏

Xn∈{0,1}

g(X1, X2, . . . , Xn)

P: Sends the coefficients of some polynomial s(X1)

(if the prover is not “cheating”, we will have s(X1) = h(X1)).

V: Reject if s(0)+s(1) ̸= k (or s(0)·s(1) ̸= k if the first quantifier was a product).

Otherwise, pick a random r ∈ Fz. Compute k′ := s(r).

Recursively use the same protocol to check the new polynomial equality:

∏
X2∈{0,1}

∑
X3∈{0,1}

· · ·
∏

Xn∈{0,1}

g(r,X2, . . . , Xn) = k′

a

We now check the completeness and soundness of our protocol.

Completeness:

If the claim to prove (⋆) is true, the prover that always returns the coefficients of the true

polynomial h(X1) will always convince the verifier, since all its checks pass for the true

polynomial.

Soundness:

Assume the claim to prove is false. Say d is a bound on the degree of any polynomial

h(X1) during the whole procedure (we will come back later to what value d needs to take).
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We will prove that

Pr[V rejects] ≥ (1− d

z
)n (1)

If d is polynomial on n, since z is exponential on n, the right hand side will go to 1 for

large enough n, and in particular, be over 2
3 as required.

We will prove (1) by induction on n.

For n = 1, V simply evaluates the claim directly, and so rejects with probability 1 if the

claim is false.

Now assume the claim is true for polynomials of up to degree d and n− 1 variables.

If P returns the true polynomial h(X1), V will perform the corresponding check for h(0)+

h(1) = k (or h(0) ·h(1) = k if the first quantifier was a product), which will come out false

by assumption, and lead to immediate rejection. So assume the prover returns a different

s(X1).

Since the degree ≤ d non-zero polynomial s(X1)−h(X1) has at most d roots, there are at

most d values r in Fz with s(r) = h(r). Thus, when V picks a random r ∈ Fz,

Prr[s(r) ̸= h(r)] ≥ (1− d

z
)

If indeed s(r) ̸= h(r), then the prover is left with another false claim to prove. And by

induction hypothesis, it will fail with probability ≥ (1− d
z )

n−1. Thus

Pr[V rejects] ≥ (1− d

z
)n−1 · (1− d

z
) = (1− d

z
)n

finishing the induction.

The above approach is correct except for one tiny detail: the bound d on the degree of

the polynomials is not guaranteed to be as small as we need it to be. Indeed, since our

arithmetization includes products, the degree of the true polynomial could grow exponen-
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tially up to 2n. Such polynomials could have up to 2n coefficients, and thus the verifier

wouldn’t even be able to read them in time polynomial on n.

The fix for this is to change our arithmetization procedure slightly, by introducing a new

kind of quantifier: a linearization LXi .

We ultimately only care about the polynomial’s values on Boolean assignments. Since

0m = 0 and 1m = 1 for any m ≥ 1, we can take a polynomial g(X1, . . . , Xn) of arbitrarily

high degree, and transform it into one where a certain variable Xi is never raised to a

power greater than 1, while still agreeing with g on all inputs with Xi ∈ {0, 1}. Indeed,

this new polynomial can be defined simply as

LXi g(X1, . . . , Xn) := (1−Xi) · g(
i︷ ︸︸ ︷

X1, . . . , 0, . . . , Xn) +Xi · g(
i︷ ︸︸ ︷

X1, . . . , 1, . . . , Xn)

Notice that this new polynomial still has Xi as a free variable. We can apply this sequen-

tially for all variables. For example, we would turn

X3
1 ·X2 +X2

3 +X1 ·X2

into

2 ·X1 ·X2 +X3

The resulting polynomial will have degree at most n (from the maximal factor X1 ·. . .·Xn).

The way to correspondingly alter our arithmetization procedure to ensure a low d is as

follows. After each regular quantifier (which might have increased the polynomial degree

if it was a product), add one linearization quantifier LXi for each variable Xi that is free

in the matrix of the quantifier (at most n). For example, instead of

∑
X1∈{0,1}

∏
X2∈{0,1}

∑
X3∈{0,1}

g(X1, X2, X3)
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we would have

∑
X1∈{0,1}

LX1

∏
X2∈{0,1}

LX1LX2

∑
X3∈{0,1}

LX1LX2LX3g(X1, X2, X3)

The resulting quantified polynomial expression still has length polynomial in n.

Then, in our sumcheck protocol, we treat these “linearization” quantifiers the same way

we were treating the normal quantifiers. To prove (LX1 g(X1))(r1) = k, we ask the prover

to send the coefficients of the polynomial g(X1). Then, with whichever s(X1) the prover

sends, we execute the check for

(1− r1) · s(0) + r1 · s(1) = k

These incremental checks (as opposed to executing the linearization all at once) again

ensure the prover cannot lie too easily. The rest of the protocol functions as before.

The easy inclusion: IP ⊆ PSPACE

For this it is enough to see that, for any problem L ∈ IP and verifier V solving it, the

prover function maximizing V ’s acceptance probability is computable by a PSPACE ma-

chine. Indeed, if we have this, then for any L ∈ IP we can simply run the polynomial-time

(and -space) interaction between V and this optimal P (on all random seeds), obtain V ’s

probability of acceptance, and then accept if this probability is ≥ 2
3 or reject if it is ≤ 1

3 .

We now describe the PSPACE machine M that computes the optimal prover.

M takes a verifier V , a claim to prove (⋆), and a conversation history of messages (poly-

nomials) m̄ sent by the prover and random elements of Fz r̄ chosen by the verifier.

M returns both an optimal message m, and the probability p with which V will accept

(in the whole rest of the protocol) if it is sent.

To do this, M loops over all possible messages m and, for each, computes the probability p
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with which the conversation history m̄⌢m will be accepted. To compute p, M recursively

calls on itself to decide, for every possible immediately next random choice r ∈ Fz from

the verifier, the probability with which the history m̄⌢m with r̄⌢r is accepted, and then

averages across all these r. Finally, M chooses the m with highest such p, and returns m

and p.

This loop is possible in polynomial space by erasing and repurposing the same space to

compute each separate recursive call, since M only needs to keep stored the best (m, p)

pair seen until now (instead of all of the ones it has cycled through), and this pair (like

any polynomial sent at any point during the protocol) has polynomial length.

As it turns out, to reproduce this proof within V0
2 we will need to implement a small

change that makes z polynomial in n instead of exponential in n (see Theorem 4.1.2).

1.3 Bounded arithmetic

We assume basic familiarity with first-order logic and Peano Arithmetic (PA).

Bounded arithmetics (BAs) are weak fragments of PA, obtained by restricting PA’s in-

duction schema to formulas of a certain limited complexity.2 They are meant to capture

different classes of feasible computational strength. Our presentation is based on [6], [12]

and [5].

To start with, bounded arithmetics employ an extension of the language of PA:

Definition 1.3.1 (BA language). In addition to the symbols 0, S, +, · and ≤ from PA,

the language of bounded arithmetics includes:

• |x|, representing the length of x’s binary representation

• x#y, representing 2|x|·|y|, so that |x#y| = |x| · |y|+ 1

• MSP(x, i), representing ⌊x/2i⌋, i.e. the “most significant part”

2Strictly speaking, they are not fragments of PA due to their expanded language. But their restrictions
to the language of PA are, and it’s most useful to think of them through this lens.
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All BAs share a core set of axioms, called BASIC, which pins down the basic properties

of all these symbols, just like the non-induction axioms of PA. (The reader is advised to

only skim them at this point.)

Definition 1.3.2 (BASIC). The set of axioms BASIC contains the following axioms:

1. a ≤ b→ a ≤ b+ 1

2. a ̸= a+ 1

3. 0 ≤ a

4. (a ≤ b ∧ a ̸= b)→ a+ 1 ≤ b

5. a ̸= 0→ 2a ̸= 0

6. a ≤ b ∨ b ≤ a

7. (a ≤ b ∧ b ≤ a)→ a = b

8. (a ≤ b ∧ b ≤ c)→ a ≤ c

9. |0| = 0

10. a ̸= 0→ (|2a| = |a|+1∧|2a+1| = |a|+1)

11. |1| = 1

12. a ≤ b→ |a| ≤ |b|

13. |a#b| = |a| · |b|+ 1

14. 0#a = 1

15. a ̸= 0→ (1#(2a) = 2(1#a)∧1#(2a+1) =

2(1#a))

16. a#b = b#a

17. |a| = |b| → a#c = b#c

18. |a| = |b|+ |c| → a#d = (b#d) · (c#d)

19. a ≤ a+ b

20. (a < b∧ a ̸= b)→ (2a+ 1 ≤ 2b∧ 2a+ 1 ̸=

2b)

21. a+ b = b+ a

22. a+ 0 = a

23. a+ (b+ 1) = (a+ b) + 1

24. (a+ b) + c = a+ (b+ c)

25. a+ b ≤ a+ c→ b ≤ c

26. a · 0 = 0

27. a · (b+ 1) = a · b+ a

28. a · b = b · a

29. a · (b+ c) = (a · b) + (a · c)

30. 1 ≤ a→ ((a · b ≤ a · c) ≡ (b ≤ c))

31. a ̸= 0→ |a| = |[a/2]|+ 1

32. a = [(b/2)]↔ (2a = b ∨ 2a+ 1 = b)

In PA, any first-order variable is either quantified or not. But in BAs, we find intermediate

notions of quantification of different “strengths”, meant to capture the degree of feasibility

of a computation (as represented by a formula).

Definition 1.3.3 (Bounded quantifiers). a

• A bounded quantifier is of the form ∀x ≤ t or ∃x ≤ t, where t is a term (possibly

with free variables).
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• A sharply bounded quantifier is of the form ∀x ≤ |t| or ∃x ≤ |t|.

• A formula is bounded or sharply bounded when all of its quantifiers are such.

As we will see, bounded quantifiers are meant to capture polynomial computations, while

sharply bounded capture logarithmic ones (that is, polynomial on length).

Another piece of handy notation is writing n ∈ Log to mean n is sharply bounded by

some term t, which we might not want to make explicit at all times, or also n ∈ Log>1

excluding 0.

Definition 1.3.4 (First-order formula classes). a

• ∆b
0 = Σb

0 = Πb
0 is the class of sharply bounded formulas

• Σb
i+1 is the closure of Πb

i under existential bounded quantification and arbitrary

sharply bounded quantification, modulo prenex operations.

• Πb
i+1 is defined dually.

To define BAs of different strengths, there exist an array of axioms parameterized by the

complexity of the formulas they apply to.

Definition 1.3.5 (Induction and comprehension). For a class of formulas Φ, we define

the following axiom schemas for φ ∈ Φ:

• Induction,

Φ-IND: φ(0) ∧ (∀x)(φ(x)→ φ(x+ 1))→ (∀x)φ(x)

• Polynomial induction,

Φ-PIND: φ(0) ∧ (∀x)(φ(⌊1
2
x⌋)→ φ(x))→ (∀x)φ(x)

• Length induction,

Φ-LIND: φ(0) ∧ (∀x)(φ(x)→ φ(x+ 1))→ (∀x)φ(|x|)
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PIND requires a stronger assumption, in which an induction step adds 1 to the length of

x (instead of x itself), while LIND just provides a weaker consequent.

Definition 1.3.6 (First-order BAs). a

• Si2 : BASIC+Σb
i -PIND.

• Ti
2 : BASIC+Σb

i -IND.

• S2 =
⋃

i S
i
2 and T2 =

⋃
i T

i
2

There are several basic results on the inclusions between these theories, or also the equiv-

alences with other axioms (including minimization and replacement axioms). But we will

be working with a theory stronger than T2, so here we will gloss over these interesting

details of first-order BAs.

It is useful to think about these theories through their corresponding complexity classes.

Theorem 1.3.7 (Some corresponding complexity classes). a

• A function is provably total (and definable by a Σb
1 formula) in S12 iff it is in P.

• A function is provably total in T2 iff it is in PH (the polynomial hierarchy).

We will be working instead with second-order BAs, which introduce an additional class of

quantifiable variables: sets.

Definition 1.3.8 (Second-order BA language). To express second-order theories, we ex-

tend the BA language with a class of second-order variables (X, Y, Z, ...) and correspond-

ing quantifiers ∀2 and ∃2.

Definition 1.3.9 (Second-order formula classes). r

• Bounded second-order formulas are formulas of the second-order language all of

whose first order quantifiers are bounded.

• Σ1,b
0 formulas are bounded formulas without second-order quantifiers.
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• The classes of Σ1,b
i formulas and Π1,b

i formulas are classes of bounded formulas de-

fined analogously to the classes Σb
i and Πb

i , counting the number of alternations of

second-order quantifiers and not counting the first order quantifiers.

In the BAs we will use, second-order variables (sets) represent an exponential amount of

computation. This is because each set must have its elements bounded by a number term

t(x) guaranteed to exist (thus polynomial on x), and so the set can encode any number

up to 2t.

A useful mental model, then, is to think of variables or parameters as three-tiered depend-

ing on their size:

• we have logarithmically small numbers n ∈ Log (for which the number 2n is proven

to exist),

• arbitrary numbers x ∼ 2n (for which the existence of 2x is not guaranteed),

• and arbitrary sets X ∼ 2x ∼ 22
n
(each of whose elements is bounded by a number

x)

Definition 1.3.10 (Second-order BAs). a

• IΣ1,b
0 is the theory composed of

– BASIC

– the extensionality axiom for sets

– the axiom that all sets are bounded (that is, a term bounds all their elements)

– Σ1,b
0 -comprehension

• Vi
2 extends IΣ1,b

0 by the axiom scheme Σ1,b
i -IND.

We will be focusing on V0
2. Despite being second-order, this theory is not stronger than

T2 (when comparing them in the first-order language), since Σ1,b
0 − IND is nothing more

than Σb
i − IND for all i.

It is sometimes also useful to refer to the second-order analogue of a first-order theory
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(obtained simply by expressing it in the second-order language). We do this by appending

the symbol (α). For example, T2(α).

A less obvious axiom that has played a crucial role in the development of second-order

BAs, and also will in this work, is the Pigeon-Hole Principle. Several variants exist, but

we will focus on the following formalization.

Definition 1.3.11 (Pigeon-Hole Principle). The (functional) pigeon-hole principle PHP (x)

is the following Π1,b
1 -formula:

∀2X
(
∃y ≤ x+ 1 ∀z ≤ x¬⟨y, z⟩ ∈ X ∨

∃y ≤ x+ 1 ∃z ≤ x ∃z′ ≤ x
(
¬(z = z′) ∧ ⟨y, z⟩ ∈ X ∧ ⟨y, z′⟩ ∈ X

)
∨

∃y ≤ x+ 1 ∃y′ ≤ x+ 1 ∃z ≤ x
(
¬(y = y′) ∧ ⟨y, z⟩ ∈ X ∧ ⟨y′, z⟩ ∈ X

))

Intuitively, this long formula is just stating that any purported injection (coded by X)

from x + 1 into x fails in one of three ways: either it is not total, or it is not a function,

or it is not injective.

This principle is the object of one of the most celebrated lower bound results, termed the

gem theorem of proof complexity.

Theorem 1.3.12 (Gem Theorem, [1]). V0
2 does not prove PHP (x).

That is, V0
2 is not able to accurately compare the sizes of large sets (i.e., exponential in

n = |x|). This result is highly non-trivial and technical, and is the main ingredient of

some of our results below.
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Chapter 2

Previous results

2.1 Previous consistency results

The previous publication we’re building upon ([3]) showed the following main result. For

a suitable formalization of the statement that NEXP ̸⊆ P/poly in second-order bounded

arithmetic:

it is consistent with V0
2 that NEXP ⊈ P/poly.

This is interesting because V0
2 is a moderately strong theory, and we don’t actually know

whether NEXP ⊈ P/poly “in the real world” (the standard model of arithmetic). As per the

usual meta-complexity agenda, this result seems to provide evidence that NEXP ⊆ P/poly

is hard to prove (by showcasing that strong theories aren’t yet able to prove it), and thus

NEXP ⊈ P/poly more likely.

It is also notable that the result is unconditional, meaning it doesn’t assume any unproven

class inequality, as is the case with most previous consistency results.

This interesting and unconditional development was only made possible by the Gem The-

orem (1.3.12), which is technically deep and highly non-trivial.

In more detail, it is not immediately obvious how to formalize a statement like NEXP ⊈

P/poly inside a BA where exponentiation is not provably total. The authors presented

three main complementary formalizations, which also play a main role in this present
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work. To state them, we first define some useful notation.

Definition 2.1.1 (New formula classes).

• Σ̂1,b
1 is the class of ∃2Πb

1(α)-formulas, that is, those with the existential second-order

quantifier in prenex position followed by a Πb
1(α). [3]

• Σ1,b
1,s is the class of Σ

1,b
1 -formulas without free second-order parameters, the s standing

for “sentence”. Combining this with the previous definition, we also define Σ̂1,b
1,s as

the class of ∃2Πb
1(α)-formulas without free second-order parameters. And similarly

for Π1,b
1,s and Π̂1,b

1,s.

The definition of Σ1,b
i is standard, that of Σ̂1,b

1 was introduced for the results in [3], and

that of Σ1,b
1,s we introduce now for the purposes of this work.

Recall that, in our second-order BAs, second-order variables represent an object of ex-

ponential size, or an exponential amount of computation. Because of that, we can iden-

tify Σ1,b
1 formulas with NEXP problems: each such formula states the existence of an

exponential-size witness. In more technical detail, what we mean is that in the standard

model of arithmetic such formulas define exactly such problems. Restricting ourselves to

Σ̂1,b
1,s will further constrain the NEXP problems to be presented in the prenex form ∃2Πb

1(α)

(which we know is always possible in the standard model of arithmetic), and without ac-

cess to any oracles (external second-order parameters).

This identification straightforwardly motivates the first formalization of NEXP ⊈ P/poly.

Definition 2.1.2 (Definition 1 in [3]). The direct formalization of a NEXP problem φ ∈

Σ̂1,b
1,s being in P/poly is

αc
φ :≡ ∀n ∈ Log>1∃C ≤ 2n

c∀x < 2n(C(x)↔ φ(x))
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That is, for any length n which can be exponentiated, there exists a circuit C (of magnitude

exponential on n, thus size polynomial on n) such that for all inputs x of that length, C

solves the problem. The fixed numeral c determines the polynomial bound on the growth

of the circuits.

Then, the result capturing the consistency of NEXP ⊈ P/poly in V0
2 is as follows:

Theorem 2.1.3 (Direct formalization, Theorem 2 in [3]). h

There exists φ ∈ Σ̂1,b
1,s such that V0

2 + {¬αc
φ | c ∈ N} is consistent.

The infinite set of sentences {¬αc
φ | c ∈ N} states that, for any possible polynomial bound

nc, it is not the case that circuits exist with size growing below this bound that solve the

problem. That is, no polynomial bound at all works.

The main idea behind the proof of this result is not complicated, and we present it already.

Sketch of proof. Define φ(x) :≡ ¬PHP (x), which is (logically equivalent to) a Σ̂1,b
1,s for-

mula. Towards a contradiction, assume V0
2+{¬αc

φ | c ∈ N} inconsistent. By compactness,

there exists c ∈ N such that V0
2 ⊢ αc

φ.

We will show that V0
2 + αc

φ ⊢ PHP (x). Together with the above, this would imply

V0
2 ⊢ PHP (x), which is known to be false by the Gem Theorem (1.3.12).

First off, it can be easily seen that V0
2 proves PHP (x) is inductive, i.e.,

PHP (0) ∧ ∀u < x(PHP (u)→ PHP (u+ 1))

But, in V0
2, we can’t actually perform this induction, because PHP is a Π1,b

1 formula, and

we only have Σ1,b
0 induction available.

This is where αc
φ comes in. Thanks to our choice of φ, αc

φ gives us exactly a family of

circuits whose negation is equivalent to PHP : given any fixed length n (in particular

n := max{|x|, 2}), we get a circuit C with

∀u ≤ x(¬C(u)↔ PHP (u))
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By plugging ¬C(u) in place of PHP (u) as the inductive predicate above, the induction

no longer has any second-order quantifiers, and can thus be completed as a Σ1,b
0 induction,

which V0
2 has available.

Our new results will employ the same method: showing that a certain complex predicate

is inductive (although this proof is no longer straightforward), and then invoking an αc
φ

to actually perform the induction.

But before we can state what we will be proving, it is necessary to understand the two

alternative formalizations of NEXP ⊈ P/poly.

The second formalization, which is very similar in spirit to the first one, employs Turing

machines M (described by a fixed numeral) in place of formulas φ. Indeed, if we had a

suitable formula representing “Y is an accepting computation of the machine M on input

x”, we could replace the arbitrary Σ̂1,b
1,s formula φ in αc

φ by the standardized form

∃2Y “Y is an accepting computation of the machine M on input x”

where M is a fixed numeral.

The authors of [3] find such a formula, and show it satisfies certain desirable properties

that capture our intuitions about these machines. Mainly, V0
2 proves that each φ ∈ Σ̂1,b

1,s

is equivalent to such an M . And furthermore, the weak theory S12(α) can prove that this

M satisfies the bounds required of a NEXP machine (we call such machines explicit, in the

sense that they are recognized by a weak theory).

By using this well-behaved formula we can write the analogous αc
M , and of course the

consistency result now becomes that, for a certain NEXP machine M , V0
2+{¬αc

M | c ∈ N}

is consistent.

The third and final formalization takes more explaining, and is especially central to the

current work, as it underlies the connection with the Easy Witness Lemma.
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We might not be too happy with the fact that the above formalizations include second-

order existential quantifiers, given the fundamental limitations of V0
2 to construct such

objects. We’d be happier with a purely universal formulation, that only discusses the

existence of certain large sets conditional on the existence of other large sets. Notice

indeed that the complexity of αc
φ (and also αc

M ) is ∆1,b
2 , because φ is already Σ̂1,b

1,s.
1

Crucially, the authors of [3] notice that yet another formulation is possible (βc
M ) which

is completely universal, and of lower complexity Π1,b
1 . This re-formulation doesn’t follow

trivially, but rather again by a deep result of complexity theory: the Easy Witness Lemma.

Lemma 2.1.4 (Easy Witness Lemma, [7]). If NEXP ⊆ P/poly, then every NEXP machine

has polynomial-size witness circuits which, in addition, are oblivious.

A witness circuit for a NEXP machine M and input x is a circuit Dx such that, if M

accepts x, its truth table, tt(Dx), encodes an accepting computation of M on x.

An oblivious witness circuit for a machine M and input length n is a circuit D with at least

n inputs such that for every x of length n, if M accepts x, then the circuit Dx, obtained

by fixing the n first inputs of D to be the bits of x, is a witness circuit for M and x. The

qualifier oblivious refers to the fact that D depends only on the length of x, not on x itself.

This result is celebrated due to how surprising it is that the bits of arbitrary exponential-

size witnesses can be generated by polynomial-size circuits.

Thus, in αc
M , we can replace the statement about the existence of an accepting computation

(∃2Y ) by a claim that the small circuit D produces it, thus avoiding the ∃2:

Definition 2.1.5 (Definition 5 in [3]). The universal formalization of an explicit NEXP

1In fact, α is a Boolean combination of Σ1,b
1 formulas, and such formulas have better properties than

arbitrary ∆1,b
2 formulas. But this realization is not important for the current work.
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machine M being in P/poly and having an oblivious witness circuit is

βc
M :≡ ∀n∈Log>1 ∃C<2n

c ∃D<2n
c ∀x<2n ∀2Y

(C(x)=0 → ¬“Y is an accepting computation of M on x”) ∧

(C(x)=1 → “tt(Dx) is an accepting computation of M on x”)

That is, when the circuit C rejects x this is also the case for any witness Y (this implication

remains universal), but when C accepts x then D finds an accepting Y (this implication

is no longer existential).

Finally, the authors also prove the consistency of this new formalization:

Theorem 2.1.6 (Universal formalization, Theorem 7 in [3]). h

There exists M ∈ N such that V0
2 + {¬βc

M | c ∈ N} is consistent.

The proof of this last theorem is in fact immediate, because V0
2 straightforwardly proves

that {¬αc
M | c ∈ N} implies {¬βc

M | c ∈ N}. Strictly speaking, what we actually have

is that V0
2 (and even S12(α)) proves βc

M → αc
M . Thus, if V0

2 + {¬βc
M | c ∈ N} were not

consistent, by compactness we’d have V0
2 ⊢ βc

M and thus V0
2 ⊢ αc

M , which we already know

is not the case (Theorem 2.1.3).

In fact, the authors define a particular universal NEXP machine M0 for which this consis-

tency holds. And again prove desirable properties ofM0, like V
0
2 recognizing its universality

[3][Lemma 27].

The lower complexity of β is also exploited for some magnification results [3][Section 6]

that we won’t discuss here.

2.2 Towards new results

Despite its proof being immediate, the reason this last consistency result (2.1.6) is inter-

esting is that, in the real world, and thanks to the Easy Witness Lemma (2.1.4), the lower
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complexity statement β is equivalent to the direct formalization α.

But, while we do know V0
2 ⊢ βc

M0
→ αc

M0
, we don’t know whether V0

2 proves the other

implication. In the standard model, this other implication is simply a reformulation of the

Easy Witness Lemma: if the NEXP-complete problem is solved by a polynomial circuit

C, then there is also a polynomial circuit D providing the witnesses. More concretely, the

statement that holds in the standard model is not αc
M0
→ βc

M0
, but rather that for every

c, there is a c′ such that αc
M0
→ βc′

M0
, since the construction of D from C might increase

the polynomial bound c.

This is where the present work comes in: our main motivation is to show that, for any c,

there is a c′ such that V0
2 proves αc

M0
→ βc′

M0
. This would be interesting for a variety of

reasons:

• For one, it would further vindicate the strength of V0
2, given it proves such a modern

and deeply technical result. This would make the existing consistency results even

more interesting, and further solidify their formalizations as the correct ones (given

their equivalence).

• Additionally, it would transfer the magnification results of [3][Section 6] (only proved

for the β) to the equivalent α.

• Even more importantly, it would broaden our understanding of circuits and interac-

tive proofs in second-order BAs (which have been still barely studied). Variations on

and uses of the Easy Witness could allow for the construction of many more modern

tools inside these BAs.

The work here presented establishes intermediate results in the way to this final proof,

but doesn’t yet complete it.

The full proof (in PA) of the Easy Witness Lemma is quite involved, and we won’t present
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it here in full. The important aspect to know is the following: it employs IP = PSPACE as

a central piece. This thesis is mainly focused on that first step: formalizing and proving

IP = PSPACE in V0
2 + αc

M0
.
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Chapter 3

Exact probabilities in V02

To talk about IP inside V0
2, we will first need to discuss how to formalize probabilities in

BAs. Talking about probabilities is really talking about the sizes of sets. Indeed, by φ(r)

having a probability of p (expressed as a rational quotient) in the random seed r ∈ D, we

really mean that the amount of r ∈ D satisfying φ(r) is |D| · p.

If the intervening sets, like D, were small enough (polynomial instead of exponential),

we’d be able to get away with representing them as numbers (first-order variables) in V0
2.

But we will see that this is not possible for our use case, and thus we need actual sets

(second-order variables).

Instead of arbitrary finite sets of seeds D, we will focus on (and define probabilities for)

sets of the particular shape Dt := {r | r < t}, for a given bound t. We will also use the

notation

∃2F : a→ b (φ(F ))

as an abbreviation for the formula stating that there exists a second-order F which en-

codes a function with domain Da and image Db and satisfies φ(F ). More generally, in

what follows we identify t with Dt when the meaning is implicitly clear.
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As it turns out, certain straightforward definitions of probabilities won’t be enough for

our purposes, and we instead need an additional monotonicity constraint. We now present

these different approaches.

Definition 3.0.1 (Non-monotonic probabilities). a

We have two definitions of probability that don’t enforce monotonicity:

• Surjective:

Prr<t[φ(r)] ≤ p :≡ ∃2F : t · p→ t [∀r < t (φ(r)→ ∃x < t · p(F (x) = r))]

That is, the set of r < t with φ(r) is small enough to be covered by a surjective

function with domain t · p.

• Injective:

Prr<t[φ(r)] ≤ p :≡ ∃2G : t→ t · p[∀r, r′ < t(φ(r) ∧ φ(r′) ∧ r ̸= r′ → G(r) ̸= G(r′))]

That is, the set of r < t with φ(r) is small enough to be injectively embedded into

t · p.

In this and below definitions, the probability p always stands in for a rational number

(expressed through its numerator and denominator) with denominator t, such that t · p is

always well-defined (and similarly for situations in which p is multiplied by other terms).

Proposition 3.0.2. V0
2 proves the two definitions of non-monotonic probability equivalent.

Proof. Surjective ⇒ Injective:

Assume we have F : t · p → t satisfying the Surjective definition. We define G : t → t · p

as follows:

G(r) =


0 if ¬φ(r)

min{x < t · p : F (x) = r} if φ(r)
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The existence of G is guaranteed by Σ1,b
0 -comprehension. The totality of G comes from

the surjectivity of F , combined with the minimization principle for Σ1,b
0 formulas, which

we have available in V0
2 ([5][Theorem 20]). Functionality of G is due to the uniqueness

of the minimum. Injectivity of G on the set of r < t with φ(r) follows from F being a

function.

Injective ⇒ Surjective:

Assume we have G : t→ t · p satisfying the Injective definition. We define F : t · p→ t as

follows:

F (x) =


0 if ¬∃r ≤ t(G(r) = x)

min{r ≤ t : G(r) = x} if ∃r ≤ t(G(r) = x)

The existence of F is guaranteed by Σ1,b
0 -comprehension. Totality of F comes from the

minimization principle for Σ1,b
0 formulas. Functionality of F is due to the uniqueness of

the minimum. Surjectivity of F on the set of r < t with φ(r) follows from G being total

and functional.

Definition 3.0.3 (Monotonic probabilities). a

We have two definitions of probability that do enforce monotonicity:

• Surjective monotonic:

Prr<t[φ(r)] ≤ p :≡ ∃2F : t · p→ t [∀r < t (φ(r)→ ∃x < t · p(F (x) = r))]∧

[∀x, x′ < t · p(x < x′ → F (x) < F (x′))]

That is, we additionally require monotonicity.

• Injective monotonic:

Prr<t[φ(r)] ≤ p :≡ ∃2G : t→ t · p[∀r, r′ < t(φ(r) ∧ φ(r′) ∧ r < r′ → G(r) < G(r′))]

That is, we additionally require monotonicity.
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Finally, we have two definitions in terms of precise probabilities, instead of inequality ≤ p.

Definition 3.0.4 (Counting probabilities). a

We have two definitions of probability through direct counting:

• Counting:

Prr<t[φ(r)] = p :≡ ∃2C : t→ t+ 1

[C(0) = 1[φ(0)] ∧ ∀r < t (C(r + 1) = C(r) + 1[φ(r + 1)]) ∧

[C(t− 1) = t · p]

where 1 is the indicator function. That is, C goes over all the seeds in order, and

increases its value by one whenever it encounters one satisfying φ(r). Thus, C(i)

represents the exact number of seeds satisfying φ(r) for r ≤ i.

• Tree:

Represent our seeds in base b: r = r1 . . . rn with ri < b and n = logb(t).
1

Consider also the set of initial segments of such expressions:

S := {r1 . . . rk | k ≤ n, ri < b}.

With this notation at hand, we can define

Prr<t[φ(r)] = p :≡ ∃2T : S → S [∀r1 . . . rk ∈ S

(k = n→ T (r1 . . . rk) = 1(φ(r1 . . . rk)) ∧

(k < n→ T (r1 . . . rk) =
∑

rk+1<b

1

b
T (r1 . . . rkrk+1)] ∧ T (∅) = p

That is, at each leaf (complete random seed r) the label is 1 or 0 depending on

whether φ(r), and each branching (incomplete random seed) recursively computes

the fraction of its completions satisfying φ(r). At the root node (corresponding to

the empty prefix), we will obtain the exact probability.

1In fact, assume for convenience that t = bn exactly, so that our random seeds are exactly those
expressible in n digits in base b.
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Of course, we can recover the probabilistic inequality ≤ p from these precise definitions.

We can do so either through existential quantification

Prr<t[φ(r)] ≤ p :≡ ∃p′(Prr<t[φ(r)] = p′ ∧ p′ ≤ p)

or universal quantification

Prr<t[φ(r)] ≤ p :≡ ∀p′(Prr<t[φ(r)] = p′ → p′ ≤ p),

which we can choose between as it suits the situation.

As mentioned previously, ∃p′ and ∀p′ really stand in for the quantification of its numerator

(with denominator t).

We can also recover exact probabilities from the previous inequality formulations, by

defining

Prr<t[φ(r)] = p :≡ Prr<t[φ(r)] ≤ p ∧ ¬Prr<t[φ(r)] ≤ p− 1

t

a

The Counting and Tree definitions are, in a sense, monotonic by default: Counting counts

the seeds in order, and in Tree we can also recover the probability in an initial segment of

the random seeds by looking through the many labels available at the intermediate levels

of the tree. This is made precise by the following result.

Proposition 3.0.5. a

V0
2 proves the two monotonic and two counting definitions of probability all equivalent.

Proof. Surjective monotonic ⇔ Injective monotonic:

As in the proof of Proposition 3.0.2.

Surjective monotonic ⇒ Counting:

Assume we have F : t · p → t satisfying the Surjective monotonic definition. We define
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C : t→ t+ 1 as follows:

C(r) =


0 if ¬∃y < t · p(F (y) ≤ r)

max{y < t · p : F (y) ≤ r}+ 1 if ∃y < t · p(F (y) ≤ r)

Again the existence and properties of C follow from Σ1,b
0 -comprehension and the mini-

mization principle.

Counting ⇒ Surjective monotonic:

Assume we have C : t → t satisfying the Counting definition. We define F : t · p → t as

follows:

F (r) = min{y < t : C(y − 1) = r ∧ C(y) = r + 1}

(with the understanding that C(−1) := 0).

That is, we “spend” our rth domain element (to cover an element in the image) whenever

the value of C raises for the rth time.

Counting ⇒ Tree:

Assume we have C : t → t satisfying the Counting definition. We define T : S → S as

follows:

T (r1 . . . rk) =
C(r1 . . . rkb− 1 . . . b− 1)− C((r1 . . . rk0 . . . 0) − 1)

b(n−k)

(with the understanding that C(−1) := 0).

That is, we take the difference between the highest possible completion and the lowest

possible completion, which tells us how many completions satisfy φ, and then divide it by

the number of such completions to obtain a fraction. This expression (which is polynomial

to compute with access to oracle C) can be defined by a Σ1,b
0 formula.

Tree ⇒ Counting:

Assume we have T : S → S satisfying the Tree definition. We define C : t→ t as follows:

C(r) =
∑
{b(n−k) ·T (r1 . . . rk) | r1 . . . rk

n−k︷ ︸︸ ︷
b− 1 . . . b− 1 < r ∧ r1 . . . rk−1

n−k+1︷ ︸︸ ︷
b− 1 . . . b− 1 ≮ r}
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That is, we sum over all “maximally incomplete” random seeds that are completely below

r (meaning, any completion is below r), while also multiplying them by the amount of

completions they have (b(n−k)) to turn the fraction provided by T into a counting number.

We require them to be “maximally incomplete” to avoid double counting.

For example, if b = 2, n = 2 and r = 10 (in binary notation), then we will sum 2 · T (0)

(representing that both completions 00 and 01 are below r, and extracting from T how

many of them satisfy φ) with 1 · T (10) (simply consulting T on whether φ(10) to add it

to the count).

This way we require at most b · n queries to T , instead of the bn we would need if we

simply summed the value of T over all the leaves (complete random seeds). The latter

would require we use a witness with length exponential on n, and thus wouldn’t be Σ1,b
0

definable.

We now present the crucial property of our monotonic definition that will make our main

result possible. This averaging argument intuitively states that, if the average size of a

group of sets is low, then at least one of the sets must have correspondingly low size. This

will be what allows us to, assuming the existence of a prover fooling our verifier on a long

protocol, derive the existence of one for a slightly smaller protocol (ultimately leading us

to contradiction, since our verifier cannot be fooled in a 1-step protocol).

Lemma 3.0.6 (Averaging argument). V0
2 proves that

∀i ∈ Log>1∀t, p Pr(r,r′)<(t,i)[φ(r, r
′))] ≤ p → ∃r′ < i(Prr<t[φ(r, r

′)] ≤ p)

Proof. As per Proposition 3.0.5, we can see it just for the Counting definition of proba-
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bility. The antecedent thus explicitly reads

∃C : t · i→ t · i [C(0, 0) = 1[φ(0, 0)] ∧

∀r < t− 1,∀r′ < i (C(r + 1, r′) = C(r, r′) + 1[φ(r, r′)]) ∧

∀r′ < i (C(0, r′ + 1) = C(t− 1, r′) + 1[φ(t− 1, r′)]) ∧

C(t− 1, i− 1) ≤ t · i · p]

and the consequent

∃r′ < i ∃C ′ : t→ t [C ′(0) = 1[φ(0, 0)] ∧

∀r < t− 1 (C ′(r + 1) = C ′(r) + 1[φ(r, r′)]) ∧

C ′(t− 1) ≤ t · p]

We have from the definition of C that

C(t− 1, i− 1) =
∑
r′<i

(C(t− 1, r′ + 1)− C(t− 1, r′)) + C(t− 1, 0)

We will exploit the telescoping nature of this sum.

Let us see by induction on i ∈ Log>1 (and inside V0
2) that

∑
r′<i

f(r′) ≤ p · i ⇒ ∃r′ < i f(r′) ≤ p

For i = 1 it’s immediate. Assume it for i, and assume the antecedent
∑

r′<i+1 f(r
′) ≤ p · i.

Then we have ∑
r′<i

f(r′) + f(i) =
∑

r′<i+1

f(r′) ≤ p · (i+ 1) = p · i+ p

We know from the BASIC set of axioms that (for numbers a, b, c, d in Log),

a+ b ≤ c+ d→ a ≤ c ∨ b ≤ d
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Thus either
∑

r′<i f(r
′) ≤ p · i, in which case we are done by induction hypothesis, or

f(i) ≤ p, in which case we are done.

Thus we have that ∃r′ < i C(t − 1, r′ + 1) − C(t − 1, r′) ≤ t · p (including also among

those the degenerate case C(t− 1, 0)− 0). We can thus define, with Σ1,b
0 -comprehension,

C ′(r) := C(r, r′), where r′ is the minimum such satisfying the inequality. And it is

immediate from the properties of C and the existence of such an r′, that our constructed

C ′ is the required probabilistic witness.

We now show an additional property of the monotonic definition, which aligns with our

intuitions about how probabilities should behave: negating the inside formula also negates

the outside probability.

Proposition 3.0.7. V0
2 proves that Prr<t[φ(r)] = p⇒ Prr<t[¬φ(r)] = 1− p

Proof. Taking a witness C from the Counting definition, define

C ′(r) := r − C(r)

C ′ exists again by Σ1,b
0 comprehension, and easy to see it’s a witness for our consequent.

It intuitively seems like the set witnesses from the monotonic definitions include strictly

more information than the non-monotonic ones. Indeed, we believe that this intuition can

be made rigorous by showing that V0
2 does not prove them equivalent, but we don’t have a

proof of this yet. Hopefully a proof exists that, assuming this equivalence, derives PHP ,

which V0
2 famously does not prove (Theorem 1.3.12).

It might be possible to show in a similar way that our main result cannot be proved for

the non-monotonic definition.

In the above definitions, we could have used instead a fixed Turing machine (represented

by a fixed numeral) that, given φ and t, tries to construct the necessary witness of each

definition (and accepts if it does). For example, a machine counting through the random
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seeds one by one, as in Counting. But this wouldn’t lower the complexity of our definition

(or gain us anything else), since the computational witness (used to assert that “this fixed

machine accepts on this input”) would be set-sized again, and thus we would still employ

second-order quantification.

As written, a definition like Counting has complexity ∃2∀∃C(φ), where C(φ) is the com-

plexity of φ. This is undesirable, because in some places below we will need our formulas

to be Σ̂1,b
1,s, thus only with universal first-order quantifiers.

For example, an internal ∃ could arise due to the function C being expressed as a set,

and thus having to existentially quantify its output. That is, by defining C(r) = i as

∃(a1, a2) ∈ C(a1 = r ∧ a2 = i). But this quantifier in particular is easy to replace by a

universal one, by defining it instead as ∀(a1, a2) ∈ C(a1 = r → a2 = i).

A way less obviously replaceable ∃ appearing in our definitions is the one stating that a

certain function (like F or C) is total: ∀a1∃a2((a1, a2) ∈ F ). But fortunately we also have

a (slightly trickier) fix for this: codifying the function in binary instead. That is, instead

of F : a→ b, we will represent

F ′ : a× |b| → {0, 1}

where F ′(x, i) represents the ith binary bit of F (x). These kinds of binary functions can

be represented simply as the set of preimages of 1, that is, a subset S of a × |b|. Then,

F (x) = y can be defined as ∀i < |b| ((x, i) ∈ S ↔ bit(y, i) = 1), where bit is a fixed poly-

nomial function extracting the ith bit of y. This quantification is not only bounded, but

sharply bounded (due to using the length of b), and because of that doesn’t increase our

complexity (recall we only count first-order bounded quantifiers). And similarly, we don’t

need to make any statement about totality, since the subset representation immediately

makes the function total (if a pair doesn’t belong to the set, this simply indicates that the

corresponding bit is a 0).



41

We have brought up this complexity-reducing “trick” in the context of our probabilistic

definitions, but we also implicitly invoke it in some more places below, so that we can turn

some of the formulas presented (for readability) as Σ1,b
1,s formulas into Σ̂1,b

1,s formulas.

Finally, we highlight for future work that the approach and basic results of this sec-

tion could present interesting connections to existing work on Approximate counting by

Jeřábek [9]. While we have not sketched these connections in detail yet, and the approach

to and results about circuits there are different from ours, it would seem like those ap-

proximate definitions are a natural weakening of our non-monotonic functional definitions

(3.0.2), which allows to prove (weakened approximate versions of) interesting results like

the Averaging Argument without resorting to our monotonic and exact definitions. That

is, while we have sidestepped these limitations by resorting to our different definitions,

approximate counting does so by weakening them slightly. This leaves the door open for

proofs of (weakened approximate versions of) the results in this section, or even the main

results below, formalized now with that alternate definition of probabilities.
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Chapter 4

IP = PSPACE in V02 + α

4.1 Proving the hard inclusion

With these probabilistic grounds in place, we can formalize our statements of interest.

We start with the hard inclusion, PSPACE ⊆ IP.

Definition 4.1.1 (Encoding TQBF ∈ IP). The probabilistic formalization of the problem

TQBF being in IP (as witnessed by the verifier polynomial machine with numeral M) is

γM,t
TQBF :=∀n ∈ Log>1∀s < 2n

[(TQBF(s)→ ∃2P Prr<t(n)[accept(P,M, n, s, r)] ≥ 2/3) ∧

(¬TQBF(s)→ ∀2P Prr<t(n)[accept(P,M, n, s, r)] ≤ 1/3)]

where

• TQBF(s) is the predicate claiming that the quantified boolean formula encoded by s

is true. We can choose it to be provably ∆1,b
1 in V0

2, by representing it both as “there

is an (exponential on n, thus first-order) witness of the computation” and as “any

(exponential on n, thus first-order) witness of the computation ends in acceptance”,

whose equivalence can be proven by number induction.

• accept(P,M, n, s, r) is a formula (with second-order parameter P ) stating that the
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polynomial-time interactive protocol between the prover P and the polynomial verifier

M on input s < 2n and with random seed r results in acceptance. It can be chosen

(provably in V0
2) ∆

b
1(α), again by considering the existential and universal phrasings

of the polynomial (on n) computational witness.

• t(n) is a bounding term on the description length of the random seed.

The above is a ∆1,b
2 statement, because of the presence of both ∃2 and ∀2. This complexity

doesn’t prevent our proof from going through, since we don’t need to apply any compre-

hension or induction to this whole formula (only to its subformulas).

Notice, as we had mentioned above, that P couldn’t be coded by a first-order variable.

Indeed, P has a number of elements exponential on n (one for each different possibly query

from the verifier), each of length polynomial on n. This means its description (coded by

a number) has length exponential on n, and thus doesn’t provably exist in V0
2.

Without further ado, we state and prove our main result:

Theorem 4.1.2 (Proving TQBF ∈ IP). a

There is a numeral M and polynomial bounding term t such that, for any c,

V0
2 + αc

M0
⊢ γM,t

TQBF

Proof.

Most of the proof of IP = PSPACE remains structurally unchanged in our reproduction

inside V0
2, and thus we simply need to invoke various results to ensure the same reasoning

can be carried out. But we do need one small change to the original proof (as presented

above in Theorem 1.2) to make this possible.

As before, to each Quantified Boolean Formula will correspond an arithmetized multi-

linear polynomial, whose values we will calculate in an appropriate ring Fz. In the usual
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proof, this z is taken exponential in n. But this wouldn’t be enough for our purposes, be-

cause we need to invoke a result about polynomial roots (4.1.4) which requires z ∈ Log>1.

To make z smaller, we introduce one change into the arithmetization procedure. Say A(φ)

is the arithmetization of φ. Then, we arithmetize ∃Xiφ(X1, . . . , Xn) as

1−
∏

Xi∈{0,1}

(1−A(φ)(X1, . . . , Xn))

instead of
∑

Xi∈{0,1}A(φ)(X1, . . . , Xn). This ensures that the value taken by any polyno-

mial in our procedure (on inputs 0 and 1) is always 0 or 1 (notice this is also preserved

under linearization steps). This is also easily provable inside V0
2 by a number induction

on the construction of the arithmetized polynomial.

First, we note that this change still leaves the degree of our polynomials manageable.

Indeed, our new operator increases degrees exactly as much as a product already did,

and exactly like then the interspersed linearizations will be enough to keep this under a

constant.

Now, let’s see that this change allows us to pick a small z. Indeed, say d is a constant

bound on the degree of any one of our arithmetized polynomials on any one of its vari-

ables during the whole procedure. For example, we can choose d = 2n.1 In the soundness

direction, we will end up proving that the verifier has probability of rejecting at least

(1 − d
z )

n, and we want this to be ≥ 2
3 for large enough n. We also need z to be poly-

nomial in n, so that it is in Log>1. Choosing, for example, z = n4 satisfies both constraints.

Now that we know z, we can also fix our polynomial bound t(n) on the random seed. Since

each random choice from the verifier is selecting a member of Fz, and there are at most

1This is because in the matrix polynomial (when no operators have yet been applied) a variable can
have at most degree n. And after that, a product brings it up to 2n, but they are immediately followed
by a linearization that brings it down again to at most n.
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n2 such choices (one per quantifier, including linearizations), we can choose t(n) := zn
2
as

the bounding term.

Before going further, we first need to ensure our theory proves some basic facts about the

correspondence between satisfying assignments of (partly) Quantified Boolean Formulas

(that is, possibly with free variables), and the corresponding assignment of the arithme-

tized polynomial.

Lemma 4.1.3 (Manipulating arithmetized polynomials). a There are:

• A numeral A, encoding a Turing machine that turns the description of a (partly)

Quantified Boolean Formula into that of a (partly) quantified artihmetized polyno-

mial, as per the arithmetization procedure explained above.

• A numeral A′, encoding a Turing machine that turns the description of a (partly)

quantified artihmetized polynomial into the explicit expression of that polynomial

(without quantifiers). That is, implements all quantifiers and provides the resulting

expression.

• Numerals Ef and Ep encoding Turing machines that, given, respectively, the de-

scription of a Boolean Formula (without quantifiers) or an arithmetized polynomial

(without quantifiers) and a variable assignment, evaluate them (in the latter case,

modulo z).

• Numerals E′
f and E′

p encoding Turing machines that, given, respectively, the descrip-

tion of a (partly) Quantified Boolean Formula or a (partly) quantified arithmetized

polynomial and a variable assignment, evaluate them (in the latter case, modulo z).

such that V0
2 proves the following:

1. A, Ef and Ep are polynomial-time (in the specific sense of [3][Definition 18])

2. A′, E′
f and E′

p are non-deterministic exponential-time (again in the specific sense of

[3][Definition 18])
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3. Given the description of a Boolean Formula (without quantifiers) f and an assign-

ment a, Ef (f, a) = E′
f (f, a) = E′

p(A(f), a) = Ep(A
′(f), a). That is, all the different

methods for computing the result agree.

4. Given the description of a (partly) Quantified Boolean Formula f ′ and an assignment

a, E′
f (f, a) = E′

p(A(f), a) = Ep(A
′(f), a). That is, all the different methods for

computing the result agree.

5. Given the description of a formula f , the degree of A′(f) is linear in |f |.

Proof. a

1. These functions are clearly polynomial-time. It is a standard result in bounded

arithmetic that any polynomial-time function is a PV-function ([12][Lemma 5.3.3]).

And it is proven in our reference paper that any PV-function has a corresponding

polynomial-time machine, provingly in S12(α) ([3][Lemma 19]), and thus also in V0
2.

2. These functions can be defined by Σ1,b
1,s formulas. It is proven in our reference pa-

per that each such function has a corresponding NEXP-machine, provably in V0
2

([3][Lemma 26]).

3. By easy number induction on the construction of quantifier-free formulas, and notic-

ing that A(f) = A′(f).

4. The base case (without quantifiers) is the previous item. For induction steps, we

use Σ1,b
0 comprehension. For example, say we have our statement for f(a1, . . . , ak)

and need to see it for
∏

ak∈{0,1} f(a1, . . . , ak). Then, from the (second-order) com-

putational witnesses of our induction hypothesis we are able to straightforwardly

construct another one for this new formula with a Σ1,b
0 formula, stating “put both

computations in sequence and then add another short computation of the multipli-

cation of their outputs”.

5. By number induction on the number of quantifiers of the arithmetized polynomial,

noticing as in our reasoning before the Lemma that the starting degree is at most
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n, products can at most double it, and the linearizations between products bring it

back down to n.

In the rest of the proof, and to improve readability, we don’t include all details about how

our manipulations of polynomials can be straightforwardly reproduced inside V0
2, of which

the previous result was a first exemplification.

Soundness

We will show that

∀n ∈ Log>1¬∃s < 2n[¬TQBF(s) ∧ ∃2P Prr≤t(n)[accept(P,M, n, s, r)] > 1− (1− d

z
)n]

where d := n2 and z := n4. That is, there is no counterexample false Quantified Boolean

Formula s for which a prover P can convince the verifier with probability higher than

1 − (1 − d
z )

n. As per our reasoning in the usual proof, this will be enough, since the

expression 1− (1− d
z )

n gets arbitrarily close to 0 (and in particular, ≤ 1
3) for large enough

n.

Take a fixed n ∈ Log>1 for which we want to prove this. Fix d := n2 and z := n4, which

are thus constant from now on. Consider the induction hypothesis

IH(i) :≡ ¬∃s < 2n[quantifiers(s) ≤ i ∧

¬TQBF′(s) ∧ ∃2P Prr<t(i)[accept(P,M, n, s, r)] > 1− (1− d

z
)i]

for i ≤ n.

Here, TQBF′(s) is a variant of TQBF(s) that can take as inputs not only fully Quantified

Boolean Formulas (deciding their truth value), but also any expression of the form

g(ā) = k
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that take place during the sumcheck protocol, where g is a partly quantified polynomial,

ā is an assignment for its free variables in Fz, and k ∈ Fz is its alleged value (deciding

the truth of the equality). This whole expression is still coded by the single number s for

convenience.

This change is required for the induction to work, since at some points of the sumcheck

protocol we deal with such corresponding partly quantified polynomials, instead of fully

quantified ones. Of course, TQBF and TQBF′ coincide when considering a fully quantified

formula (and its corresponding quantified polynomial equality).

Also, quantifiers(s) is of course a Σ1,b
0 formula computing how many quantifiers (includ-

ing existential, universal and linearizing) the quantified polynomial has in the equality

coded by s. Indeed, this amount of quantifiers is exactly the length of the protocol started

by the expression s, which is the quantity we need to induct on.

IH(i) is a Σ1,b
1,s formula. Since we don’t have induction for formulas this complex available

on V0
2, it would seem like, even if we prove IH inductive, we won’t actually be able to

perform the induction. But here enters the most important technique making this result

possible (already pioneered in [3]): using α to turn this formula into an equivalent Σ1,b
0

formula, by turning its second-order set witness into a first-order number (a circuit) that

computes that set. And then, with Σ1,b
0 -induction available, we will be able to complete

the induction.

Thus, for any such i and within V0
2, let’s start by proving the induction step, ¬IH(i+1)→

¬IH(i). Indeed, assume a certain s and P witness ¬IH(i+ 1), that is, P tricks the veri-

fier often enough on input s. For simplicity, assume we also bundle the set witnesses for

¬TQBF(s) and for the probabilistic statement into the single variable P .

Consider this P . The first move from the prover will be to send some polynomial. We
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can construct, simply by Σ1,b
0 comprehension from this P , the restriction of the prover’s

strategy to any of the z possible elements of Fz that the verifier could randomly choose

immediately afterwards. Each one of them will be a prover for a protocol with one less

step (trying to prove a certain, different polynomial equality, with one less quantifier).

Similarly for the part of P that witnesses the probabilistic statement (the surjective func-

tion), and for the part which witnesses ¬TQBF(s)2.

The first step, as in the common proof of the interactive protocol, will be recognizing that

only a small number of the random elements of Fz that the verifier could choose at this

step would leave the prover trying to prove something true. That is, most restrictions of

P are still proving a false claim. This is the case because there are few inputs on which

the real polynomial and the sent polynomial coincide (due to them having low degree).

This result has already been formalized in the bounded arithmetics literature:

Lemma 4.1.4 (Lemma 4.3.6. of [8]). PV1 proves:

For every prime z ∈ Log, and every non-zero f ∈ Fz[X], f has at most deg(f) roots.

As usual, “at most deg(f) roots” really means that we are given a surjective function with

domain deg(f) covering the roots.

Since our theory extends PV1 ([12][Theorem 5.3.5]), a straightforward application of this

result shows that indeed at most d out of the t(i) = zi
2
random elements lead to a true

statement (in which, of course, the prover can always achieve perfect credibility by report-

ing the true polynomials).

Thus, at least a fraction (1− d
z ) of the restrictions have a new formula s′ for which we still

have ¬TQBF(s′).

We need to see that one of our restricted provers (from amongst the ones proving something

2Indeed, if we have hard-coded the right Turing machine to check for TQBF, the computation will route
through computing each sub-formula of the original formula s, and thus from a witness for the overall
computation we’ll easily extract a witness for each of these sub-computations
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false) is a set fooling the verifier, thus a counterexample to IH(i). We will do this through

the averaging argument (Lemma 3.0.6).

Say we restrict our reasoning to the immediately next random choices r′ < z for which the

statement to prove is false, of which there are at least (1− d
z ) · z. We can single these out

using the surjective function given to us by Lemma 4.1.4, so assume w.l.o.g. they form an

initial segment. We can thus rephrase our probabilistic hypothesis as

Pr(r,r′)<(t(i),(1− d
z
)·z)[¬accept(P,M, i+ 1, s, r⌢r′)] ≤

(1− d
z )

i

(1− d
z )

= (1− d

z
)i−1

And then, applying the Lemma, one of these r′ will need to satisfy

Prr<t(i)[¬accept(P,M, i+ 1, s, r⌢r′)] ≤ (1− d

z
)i−1

A counterexample set witness for IH(i) is then shown to exist by Σ1,b
0 -comprehension

(with P as a second-order parameter), by choosing the least r such that P ↾ r is a coun-

terexample, in case there’s several different restrictions satisfying the property.

We have thus shown IH(i) is inductive. It is also immediate that IH(0) holds, simply by

checking the case s = 0, showing through a short computation that M rejects3).

A priori we can’t induct on IH, due to its complexity. But we will simulate this induction

using αc
M0

, turning it into a Σ1,b
0 induction by transforming second-order witnesses into

circuits (first-order witnesses).

In more detail, IH is already Σ1,b
1,s. We can perform the usual trick of moving quantifiers

and encoding to make it Σ̂1,b
1,s. We are then able to use said Σ̂1,b

1,s formula to obtain an

equivalent NEXP machine MIH ([3][Lemma 26]), and then invoke the universality of the

NEXP machine M0 ([3][Lemma 27]) to turn the computational witness of MIH into a

circuit C. Using this circuit and in summary, we are able to define a Σ1,b
0 formula ϕ(i)

3Recognizing s as either a not well-formed polynomial, or the null polynomial, depending on how we
have defined our machines.
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such that

∀i ≤ n (ϕ(i)↔ IH(i))

By plugging this equivalent ϕ as the induction predicate instead of IH(i), we complete

the Σ1,b
0 induction.

Thus we have shown IH(n) for an arbitrary n ∈ Log>1, which was our goal.

Completeness

Since the proof of IP = PSPACE actually provides perfect completeness, instead of

TQBF(s)→ ∃2P Prr<t(n)[¬accept(P,M, n, s, b, r)] ≤ 1

3

we can prove the stronger

TQBF(s)→ ∃2P Prr<t(n)[¬accept(P,M, n, s, b, r)] ≤ 0

TQBF(s) provides a set computational witness W of the truth of s, and we will use it with

Σ1,b
0 -comprehension to construct the desired P .

This will look structurally different depending on how we have defined the computational

check of TQBF. But if we hard-code a machine performing it through arithmetization,

simplification and evaluation of polynomials, we can directly read off the correct polyno-

mials from W .

We are left to prove that this P has the required property. This is done by simulating

Σ̂1,b
1,s-induction, as we just did for the soundness implication. Indeed, we can express our

induction hypothesis (from the paragraph below) as a Σ̂1,b
1,s formula, turn its set witness

into a circuit coded by a number, and apply Σ1,b
0 -induction with such circuits.
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Assume one check of the interactive procedure rejects. In fact, assume it is the first step

at which any check rejects. If it is not the last step, we get a contradiction since the

true polynomials will satisfy the checked property of gi(ri) = gi+1(0) · gi+1(1) (seen inside

V0
2 also by a simulated Σ̂1,b

1,s induction). If it is the last step, in which M evaluates the

polynomial quantifier-free polynomial on an input assignment, we also get a contradiction

because M is proven to correctly evaluate polynomials.

With both the Soundness and the Completeness direction proven, this ends the proof of

the theorem.

What we have proven is (our formalization of) TQBF ∈ IP, and not yet PSPACE ⊆ IP:

we still need to show that V0
2 proves TQBF is PSPACE-complete. A rigorous proof of this

assertion is left for future work, but we expect it not to present any important obstacles,

by proceeding similarly to the proof in [3][Lemma 27] of a machine being NEXP-complete,

albeit invoking different polynomial machines (constructed from Πb
1-formulas) that reduce

any PSPACE machine to an instance of TQBF in the usual way.

4.2 Proving the easy inclusion

Now for IP ⊆ PSPACE.

Say witnessM (W,x, V, pM ) is a formula stating that the numeral M is a PSPACE machine

(in the specific sense of [3][Definition 18]), and that W is a second-order computational

witness to the fact that pM = M(x, V,∅,∅) (the reason for this specific type signature is

made clear below).

And say witnessPr(C, x, V, P, pP ) states that C is a counting set witness (as per Defini-

tion 3.0.3) to the fact that the probability of acceptance when the polynomial verifier V

interacts with the prover P on input x is pP .

We want to see the following:
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Theorem 4.2.1 (IP ⊆ PSPACE). There exists a numeral M such that V0
2 proves

∀n ∈ Log>1∀x < 2n∀V, pM , pP∀2P,C,W

[witnessM (W,x, V, pM ) ∧ witnessPr(C, x, V, P, pP )→ pP ≤ pM ]

That is, the prover implemented by the PSPACE machine M is optimal across all provers.

This is not the usual statement of IP ⊆ PSPACE (which would say “all problems solvable by

an interactive protocol are solvable by a PSPACE machine”), but rather isolates the hard

step, from which IP ⊆ PSPACE follows immediately by a series of Σ1,b
0 comprehensions.

Proof. Take a Σ1,b
0 formula describing the protocol of the PSPACE machine that computes

the optimal P , as described in the usual proof (1.2). Again invoking a previous result, we

have that T1
2(α) (and thus also V0

2) proves that a fixed numeral M is a PSPACE machine

implementing this protocol ([3][Lemma 20]).

Recall that this machine returns both an optimal message m (for the conversation history

as described in its input), and the probability p with which the verifier will accept after

said message. By construction (due to how M performs its sequential search), V0
2 proves

that, at each single step, the chosen m and attained p are optimal relative to the previous

values. That is:

M(x, V, (m1, . . . ,mk), (r1, ..., rk))1 = argmaxm′

∑
rk+1<z

1

z
M(x, V, (m1, . . . ,mk,m), (r1, ..., rk, r))2

M(x, V, (m1, . . . ,mk), (r1, ..., rk))2 = max
m′

∑
rk+1<z

1

z
M(x, V, (m1, . . . ,mk,m), (r1, ..., rk, r))2 (⋆)

But we still need to prove that the probability obtained by the whole procedure dominates

that achieved by any arbitrary prover P .

As earlier for the other inclusion, we will show V0
2 proves our target predicate is inductive

(on the length n of the protocol) thanks to the averaging argument (3.0.6), and then apply
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α on this Π1,b
1 formula (or equivalently its Σ1,b

1 dual) to actually reduce the induction to a

Σ1,b
0 induction.

Let’s first see the predicate is inductive. Define

IH(i) :≡ ∀x < 2i∀V, pM , pP∀2P,C,W

[witnessM (W,V, x, pM ) ∧ witnessPr(C, x, V, P, pP )→ pP ≤ pM ]

and assume ¬IH(i+ 1). Take its counterexample witnesses x, V, pM , pP , P, C,W .

Consider the first random choice the verifier needs to make in either protocol, which will

be r1 < z, where Fz is the ring where the polynomial computations will take place. As

per the definition of M ’s procedure, and particularly (⋆) above, we can split pM into the

probabilities of the protocol one step shorter:

pM =
∑
r1<z

pM,r1

Similarly and as in our previous proof, we can also separate pP :

pP =
∑
r1<z

C(t(i)− 1, r1)− C(t(i)− 1, r1 − 1)

(again understanding that C(t(i),−1) = 0).

We have that

pP =
∑
r1<z

C(t(i)− 1, r1)− C(t(i)− 1, r1 − 1) >
∑
r1<z

pM,r1 = pP

and thus ∑
r1<z

pPj − (C(i+ 1, 0)− C(i, 0)) > 0

We now use the averaging argument (3.0.6). More concretely (because of how our Lemma
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statement is written), we need to invoke it for the equivalent

1−
∑
r1<z

pPj − (C(i+ 1, 0)− C(i, 0)) ≤ 1− 1

t(i+ 1)

The Lemma implies there must exist some r1 with pPj − (C(i+1, 0)−C(i, 0)) > 0. Taking

the minimum such r1, and restricting P , C, and W in the obvious ways, we can construct

with Σ1,b
0 -comprehension the new witness counterexample showing ¬IH(i).

It is again immediate that IH(0) holds. And just as in our previous proofs (and invoking

the same previous results), we use an α to perform the induction and finish the proof.
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Conclusion and next steps

In this work, we have formalized and proved IP = PSPACE inside V0
2. In the process of

doing so, we have also laid out foundations for probabilistic reasoning inside V0
2, which

really amounts to a form of exact counting. We have developed other tools transferable

to different settings in bounded arithmetic, like altering the arithmetization procedure to

reduce the size of the prime field we need to operate on, and have also repurposed previous

techniques, like the use of α to make induction on complex formulas possible that already

appeared in [3].

The work here presented is a natural middle step rather, than conclusion, to a line of

work, and correspondingly there are many promising next steps available:

• The most important next step is to employ our result to build the whole proof of

the Easy Witness Lemma inside V0
2. We will need to replace the use of MIP = NEXP

present in the proof in [15] by that of IP = PSPACE. Other than that, it’s yet unclear

whether new ideas will be required or straightforward approaches will suffice.

• Although, of course, it is necessary before that to prove that TQBF is PSPACE-

complete inside V0
2 to fully complete the statement of IP = PSPACE. As we men-

tioned in Section 4.1, we expect this not to present any important obstacles, by pro-

ceeding similarly to the proof in [3][Lemma 27] of a machine being NEXP-complete.

• As mentioned in Chapter 3, we have some ideas to prove that the non-monotonic

definitions of probability cannot be shown equivalent to the monotonic ones in V0
2,

nor our main results proven for them, by deriving from these states of affairs a proof
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within V0
2 of PHP , which we know cannot exist.

• As mentioned also in Chapter 3, we would like to identify rigorously the connection

between our exact counting approach and that of approximate counting [9].

And more generally, second-order bounded arithmetics still lack an exhaustive treatment

of the kind first-order ones have received. It seems likely that many useful technical tools

remain to be discovered that would make possible future consistency results and other

exciting advances in proof complexity.
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