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The principal aim of this project is to conduct an analysis of how different Large
Language Models (LLMs) operate in diverse context and situations in the field of
education. In particular, we aim to assess the suitability of LLMs for specific tasks
within the domain of algorithmic subjects within computer science studies.
The tasks under analysis are designed to assist both students and teachers. With re-
gard to students, we will assess the capacity of the models to implement a specified
code. When it comes to teachers, we will evaluate the models’ abilities to identify
the target of the introduced code and potential errors introduced by students in their
codes, enabling students to become more self-taught and seek assistance from teach-
ers when necessary.
To evaluate these tasks, we have considered eight models. Two closed-source mod-
els were evaluated: GPT-3.5 and GPT-4. Five open-source models were also consid-
ered: Llama2, Codellama instruct, Llama3, Platypus2, Deepseek Coder and Qwen-
1.5.
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Chapter 1

Introduction

1.1 LLM in Education

The question of whether to permit the use of Large Language Models (LLM) in ed-
ucation is frequently a subject of debate. On the one hand, some adhere to more
traditional pedagogical approaches and would prefer to prohibit using such mod-
els. On the other hand, some educators are committed to innovation and believe
that the potential of these models can be utilised in a controlled manner.
It is important to recognise that not all students will have the same intentions when
engaging with these models. Our focus is on students who are enrolled in courses
with the specific purpose of learning. Such students would be interested in utilising
the capabilities of these models to facilitate accelerated learning and to allocate more
time to activities that are perceived to be of greater value.
It is our assumption that, as education has evolved to accommodate new technolo-
gies in the recent years, it will also integrate the use of artificial intelligence in a
controlled and secure manner. The objective of this project is to conduct an analysis
of how different LLMs operate in diverse contexts and situations.
By analysing this, we aim to identify potential areas where LLMs could be of signifi-
cant benefit, to both students and teachers, as well as to identify areas where further
development is required for LLMs to be truly useful. The objective of this analy-
sis is to identify both the strengths and weaknesses of the various models, thereby
enabling the differentiation of those models that are suitable for specific tasks. Fur-
thermore, it is also our intention to demystify LLMs in the eyes of students, demon-
strating that LLMs are not infallible and cannot be expected to perform all tasks
perfectly on their first attempt. We aim to identify the contexts in which they are
useful, while also pointing out their inherent limitations and noting that they are
not a 100% effective solution to every problem.
Students are habituated to seeking answers on the internet. Having grown up with
the internet, they are aware that not everything they find there is accurate and that
there are reliable sources and others that are best avoided.
In this regard, there is a significant distinction between utilizing the internet and
using an LLM. In the context of LLMs, it is more challenging to establish a trace-
ability that enables the differentiation between responses from reliable sources and
those from unreliable ones. For this reason, it is of great importance to subject the
responses to critical analysis, and it would be beneficial to identify instances where
the LLM responses may contain inaccurate or incomplete information. It is there-
fore essential for students to analyse these answers with a critical eye, to determine
which parts of the answer to use and which parts to contradict. This will ensure that
the answer obtained is valid.
In this project, we will focus on the field of computer science and, more specifically,
algorithm-related subjects. In the context of information technology, the use of Large
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Language Models is typically oriented towards assisting programmers in accelerat-
ing and improving the efficiency of their work. However, the question remains as
to how these technologies can be best utilised by those who are still in the process
of learning to code. As this question appears to be a relatively uncommon one, we
have decided to direct our attention towards the group of individuals who are new
to the field of computer science and programming. The tasks we will be focusing on
are typical of those that a first-year student on an algorithmic-related subject within
computer science would undertake. The objective is to assess the potential utility of
LLMs for this particular group of learners.

1.1.1 Use of the LLM in Algorithms

In algorithm-related subjects, one of the primary objectives is to educate students
on the comprehension and interpretation of mathematical problems, as well as the
efficient and accurate implementation of these solutions. As these students are in
their first year, the majority of them haven’t yet learned how to program. With these
considerations in mind, we have determined that it would be beneficial to focus on
a selection of classic problems that could be taught in an introductory algorithmics
course. Additionally, we aim to identify situations where language models could be
used effectively.
The objective is to consider a scenario in which a problem is presented in class and
students are required to develop a code that performs all the functions previously
explained by the teacher. Before implementing the code, it would be anticipated that
the student would have a comprehensive understanding of the problem they are
working and would be able to consider the most effective means of implementing
the solution.
One method for achieving this is to initially conceptualise the problem in a manual,
pen-and-paper format, before subsequently adapting this concept to align with the
specific syntax and semantics of the chosen programming language. Students will
probably require external assistance to successfully generate code. We have assumed
that the use of LLMs would be one of their first attempts. To gain insight into how
students and teachers might approach the use of LLMs, we have placed ourselves
in the position of both the student who wants to complete the task and the teacher
who wants to help students overcome their doubts.
In light of the aforementioned considerations, we propose to analyse two distinct
phases of the process. The following items will be considered in the analysis:

• Implementing the code

• Code interpretation and error detection

Implementing the code

To implement the code or a preliminary version of it, it would be optimal for stu-
dents to attempt to solve the problem using the techniques that were discussed in
class or those that they have already mastered. Once a partial solution has been ob-
tained, it is recommended that students compare it with another classmate who has
completed the same exercise. If this is not possible, students should request assis-
tance from their teacher. It should be noted that this scenario is not always feasible,
as in many cases students lack the time to fully comprehend all the concepts. Conse-
quently, with convenient access to LLMs, it is evident that students will frequently
seek solutions from them.
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The objective is to adopt the perspective of students and request that the model
provides a code capable of performing a specific action. It would be beneficial to be
able to simulate a variety of potential approaches when requesting information from
the model.
Due to time and space constraints, it is not feasible to run more than three versions
for each algorithm. In the initial two versions, it is assumed that the student pos-
sesses a solid mathematical background and that their role is to explain to the model
the underlying principles of the algorithm through mathematical reasoning.
It is considered a feasible scenario to assume that the student requests the model to
provide the code directly, without any previous steps. The final of the three versions
will consider another feasible scenario. We now assume that the students have dedi-
cated themselves to the task and have developed a pseudocode representation of the
desired implementation. In this scenario, the student would provide the model with
the pseudocode and request for it to be converted it into a code with the appropriate
syntax.
This second option appears to be more beneficial from a pedagogical standpoint,
as it requires the student to demonstrate their understanding of the concepts by
creating the pseudocode. If the generated solution is comprehensible and accurate,
the student will also gain familiarity with the syntax, thereby reducing the need to
rely on LLM for subsequent tasks.
This exercise allows us to assess the efficacy of different models and identify po-
tential limitations that students may encounter. To this end, we will pose a series
of questions designed to facilitate an analysis of the responses, including queries
such as: "Do the generated answers perform exactly the functions they are asked to
perform?" and "Do the generated answers provide code that performs the expected
actions and can be executed directly?". Furthermore, it would be beneficial to anal-
yse whether the models perform better when they are required to simply convert
pseudocode into code, as opposed to having to comprehend mathematical reason-
ing.

Code Interpretation and Error Detection

Another situation that requires our attention is when a student has developed a code
but is uncertain about its functionality, or has encountered an error in their code that
they are unable to resolve. In such a case, we may be confronted with one of the
following scenarios:

1. The code is free of errors and, therefore, ready for submission to the teacher.

2. The code exhibits conceptual errors that are potentially dangerous because
they can be challenging to identify. While the code may run smoothly and lead
to an incorrect solution, students should always verify that the solution their
code reaches and the actual solution is identical. If this is not the case, it can
be difficult to determine where the error lies, because there is no compilation
error.

3. The code is free of conceptual errors, but contains syntax errors. These errors
arise when the syntax of the code is incorrect.

If students were required to seek assistance from the instructor each time they en-
countered an error, it would be a significant challenge for the instructor to provide
individual attention to all students during each delivery. We wondered what would
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happen if the teacher provided the students with a tool to assist them in correcting
their codes when they encountered situations 2 or 3.
In the same manner as we previously considered the perspective of the student, we
now consider the position of the teacher. Our objective is to provide students with
the necessary tools to become more self-taught and to ask only those questions that
are essential.
In this context, we propose the utilisation of LLM to assist with the completion of a
specific task. We consider a scenario in which educators develop an interface that
enables students to input their code and receive feedback regarding its purpose and
any errors. For this to occur, the model must be provided with explicit instructions
regarding how it should process the code that has been entered. Similarly, the output
of the LLMs must have a fixed structure. This is because we are not necessarily
interested in directly answering the learner; instead, we are interested in associating
the LLM’s output with a fixed structure.
The objective is to create a prompt that is capable of effectively detecting the target
of the code or errors in the desired format. To achieve this, several versions of the
same prompt will be run, and the output will be analysed to identify any notable
differences between them.
These experiments have, as objective, to ascertain whether the issues identified in
scenarios 2 and 3 can be addressed.The focus will extend beyond erroneous codes to
encompass those codes that are correct.
It is equally important to ensure that, in the case of correct codes, the model does
not erroneously assign errors. For the purpose of this study, the most common errors
made when learning to program will be considered in relation to the identification of
errors. In the analysis of the responses, particular attention will be paid to the struc-
ture of the output, as any format that does not align with the desired specifications
will be unsuitable for use in future tools.
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Chapter 2

State of the art

2.1 Theoretical framework

2.1.1 Natural Language Process from the beginning to the Transformers

The field of linguistics and artificial intelligence first came into contact in the early
1950s, resulting in the emergence of Natural Language Processing (NLP). In the be-
ginning, the tasks performed were relatively simple, such as word-by-word trans-
lation from one language to another. This initial approach subsequently evolved to
encompass more complex linguistic tasks, such as identifying words with the same
spelling but multiple meanings or detecting metaphors. Subsequently, so-called
grammars emerged, which serve as the foundation for regular expressions, which
are currently employed to identify patterns within text. Up to this point, NLP was
focused on handcrafted rules. However, natural language is a much more complex
phenomenon than that, and it can contain ambiguities. Consequently, there was a
need to extract semantics from the text to address syntax. Later on, machine learning
methods employing probabilities were first employed, giving rise to statistical NLP.
(Nadkarni, Ohno-Machado, and Chapman, 2011).
The exponential growth in computer capabilities, the vast amount of data available,
and the development of new machine learning architectures, such as deep neural
networks, have led to a radical transformation in the field of natural language pro-
cessing. Initially, progress was gradual, but it accelerated exponentially with the
emergence of transformer architectures. (Chernyavskiy, Ilvovsky, and Nakov, 2021)
Natural Language models are machine learning models that calculate the probability
of the next word given the preceding ones. These models have emergent capabilities
as they can process, understand, and generate human language. ELIZA was one of
the first natural language models. It was a chatbot programmed in the 1960s that
simulated a conversation with a therapist (Weizenbaum, 1966). N-grams is another
natural language model that emerged from the necessity to comprehend and process
human language. Despite its simplicity, the model proved to be an effective one. The
concept of n-grams is based on the premise that the context of each word contributes
to the overall meaning of a sentence (Jurafsky and Martin, 2023). These models
operate by dividing a given sentence into groups of n elements or words, to identify
the context of any given word within the sentence. The ability to detect context is
useful in that a given word may have a completely different meaning depending on
the context in which it is used. One of the limitations of these models is that they
are unable to capture long-term relationships between words. Additionally, as the
value of n increases, the algorithm becomes computationally expensive. To address
this issue, neural network algorithms were introduced.
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Neural networks (NN) are inspired by the structure and functionality of the brain
(Jurafsky and Martin, 2023). The structure of neural networks is comprised of in-
terconnected nodes, which are known as neurons, organised in layers. The neurons
are linked together, with a weight assigned to each connection. This weight can be
understood as the significance of the variable under consideration. A NN is com-
prised of three principal layers: the input layer, one or more hidden layers, and the
output layer. The neurons in the hidden layer are responsible for recognising pat-
terns within the input data. As patterns are identified, the neural network modifies
its parameters until it identifies the optimal combination that generates the desired
output. The inclusion of multiple hidden layers enables the capture of diverse and
pertinent information. A neural network comprising multiple layers is a deep learn-
ing model. A prominent example of such a model is transformers. To comprehend
the architecture of transformers, it is essential to be familiar with two key concepts:
the encoder-decoder framework and the self-attention mechanism. The encoder-
decoder framework is responsible for processing an input sequence and generating
an output sequence. Such a model is designated a sequence-to-sequence model. The
encoder and decoder are two interconnected subnetworks. The encoder is responsi-
ble for transforming the input sequence into a concise and compact representation,
ensuring that all relevant information is retained. This representation will subse-
quently be utilised by the decoder input to generate the output. The self-attention
mechanism is also a sequence-to-sequence model. To determine the output vector,
the model computes a weighted average across all input vectors. This enables the
model to focus its attention on the information in the input sequence that is deemed
most relevant. "Self-attention can be thought of as a way to build contextual repre-
sentations of a word’s meaning that integrate information from surrounding words,
helping the model learn how words relate to each other over large spans of text."
(Jurafsky and Martin, 2023).
With an understanding of these foundational concepts, the transformer’s architec-
ture emerges. "The intuition of a transformer is that across a series of layers, we
build up richer and richer contextualized representations of the meanings of input
words or tokens." (Jurafsky and Martin, 2023).
The transformer architecture comprises both encoder and decoder stacks. The en-
coder comprises N identical layers, each containing two sublayers. The first sub-
layer employs a multi-head self-attention mechanism. The multi-head self-attention
mechanism accommodate the complex relationships between different words within
a sentence, as multiple words may relate to each other in various ways simultane-
ously. The second sublayer of the encoder is a feed-forward network, which may be
conceived of as a neural network. Subsequently, each of these sublayers is followed
by a normalisation step, which serves to stabilise the training process. Similarly, the
decoder is structured in a manner analogous to that of the encoder, with the primary
distinction being the incorporation of a third sublayer. This additional sublayer also
employs multi-head attention, but it focuses on the output of the encoder stack. It is
notably, the multi-head self-attention layer within the decoder is masked to ensure
that predictions for position i are based solely on the known outputs at positions less
than i. This effectively restricts the model’s access to future information and ensures
that only past context is considered (Vaswani et al., 2017).
The transformer architecture enabled the emergence of pre-trained language mod-
els (PLMs), which were designed to learn a representation of language that could be
used to perform a range of natural language processing (NLP) tasks. These models
demonstrated improved performance as the number of parameters and the amount
of data used in the training stage increased. This led to the development of large
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language models (LLMs), which have billions of parameters. "LLMs appear to have
emergent abilities such as reasoning, planning, decision-making, in-context learn-
ing, answering in zero-shot settings, etc" (Naveed et al., 2023). These models demon-
strate the capacity to perform a range of tasks, even in the absence of direct training
on those tasks. A suitable description of the activity to be performed and examples
of how to do it enable the model to learn how to perform the task correctly and
achieve satisfactory results.
The architectural design of these models may vary depending on how attention
is applied to them and the manner of connection between the transformer blocks.
Some of the most widely used architectural approaches include encoder-decoder,
causal-decoder, and prefix-decoder architectures. The primary distinction between
the Causal-Decoder and Prefix-Decoder architectures lies in the manner of atten-
tion estimation. In the initial architectural configuration, the subsequent token is
solely contingent upon the preceding context. Conversely, in the second architec-
tural configuration, the attention mechanism is bidirectional. The selection of the
architectural approach and the training methodology are determined by the specific
objectives of the model. Two of the principal objectives of pretraining are to predict
the subsequent word in a sequence based on the preceding words (full language
modelling) and to fill in the blanks in a text based on both the preceding context
and the context that follows (masked language modelling). (Wang et al., 2022). To
create a model’s base, a significant volume of data must be made available for the
model to learn from during a process known as pretraining. It is of crucial impor-
tance to utilise high-quality data, as the LLM will be as proficient as the data it has
been trained on. For the model to possess knowledge of a specific downstream task,
a process of fine-tuning is employed. This process of adapting the model to a new
task is known as transfer learning. However, there are other fine-tuning processes,
such as instruction tuning and alignment tuning. The objective of instruction tuning
is to guide the model to respond in a specific way, whereas alignment tuning aims
to ensure that the model is helpful, honest, and harmless. The process of finetuning
a model is computationally complex and requires the use of new data for that spe-
cific approach. An alternative approach to finetuning is to design natural language
instructions to guide LLMs in providing effective responses. This is a much simpler
method. This technique is referred to as prompt engineering. Prompt engineering
helps to create instructions that can be provided to the system to perform a specific
task. To achieve this, a variety of strategies can be employed, including the use of
(Saravia, 2022):

• Zero-shot prompting is the process of instructing the LLM to perform a speci-
fied action without the provision of an example of how to do so.

• In-context learning, also known as few-shot learning, involves providing ex-
amples of inputs and outputs to an LLM so that it can learn how to respond
expectedly.

• Reasoning in LLMs: Instructions are provided to the model to assist it in rea-
soning. Chain-of-Thoughts represents a specific instance of prompting, char-
acterised by the incorporation of a step-by-step reasoning process within the
prompt, to facilitate the model’s comprehension of the optimal approach for
generating the desired response.

It is important to consider that LLM models are trained with limited contextual win-
dows, as attention and memory require significant resources. To achieve the de-
sired outcomes, it is essential to provide a suitable prompt that is neither excessively
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lengthy nor brief, as it should encompass sufficient information to provide context
to the model, thereby preventing hallucinations or the generation of erroneous re-
sponses. (Naveed et al., 2023)
Given the constraints on the capacity for attention and memory exhibited by the
models, it is crucial to design effective prompts by employing techniques that facili-
tate prompt engineering. It is crucial to recognise that prompts serve as the input for
LLMs, and their function is of paramount importance, as they influence the gener-
ated output. Minor alterations to the input prompts can result in markedly different
outputs. Furthermore, changes that are not immediately apparent to humans may
have a significant impact on the model. It is therefore of the utmost importance
to ensure that instructions are clear, precise and delivered in a well-paced manner.
(Fulford and Ng, 2023)
Some of the techniques which can be employed to generate these prompts are as
follows:

• Use delimiters to clearly distinguish between different sections of the text. The
term "delimiter" is used to describe any punctuation that serves to clearly dis-
tinguish one section of a text from another. Potential indications may include
the following: triple quotation marks (""), triple dashes (—), angular brackets
( <> ), and others.

• Request the output in a specific structure, such as a JSON document with de-
fined fields. This would allow the output to be used as a dictionary in a Python
function.

• Verify that the prerequisites for the performance of the task have been satisfied.

• Provide examples of how to complete the task and then ask the model to per-
form the task.

• Specify the steps required to complete the task.

• Ask the model to work on its solution before any conclusions are drawn.

2.2 Models used during the project

LLMs can be classified according to whether they are open-source or closed-source.
An open-source model can be used freely and openly. Such models are accessible
to the general public and can be adapted and tailored to suit specific requirements,
given that their underlying architecture is publicly available. As they are open mod-
els, they are transparent, which allows the community to propose constant improve-
ments to the quality and security of the codes. In contrast, closed-source models
are also a possibility where the code remains private. The community is therefore
limited to the information disclosed by the owner company, which is primarily con-
cerned with the business requirements. (Ahmed et al., 2024)
The utilisation of LLM models is associated with a significant computational cost
and necessitates the allocation of substantial memory and GPU resources. This is the
reason why large open-source models cannot be run on a conventional computer.
One alternative is to connect to the models through an Application Programming
Interface (API), which enables the user to make requests to the models and receive
responses without the need to install the models locally. To establish a connection
with a model through an API, it is necessary to be registered with a model provider
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and to possess an API key. In this study, we aim to utilise both closed-source models
and open-source. To this end, we used two distinct model providers. On the one
hand, we have "OpenAI", and on the other hand, "Together.ai". (openai API 2024 and
together.ai API 2024)
The closed-source models selected were "gpt-3.5" and "gpt-4" due to their popular-
ity and capabilities. Given that we were working with a conventional computer, we
were unable to select any open-source LLM and run it. Accordingly, we sought the
assistance of the provider "together.ai". This platform offers access to a substantial
number of open-source models at a reduced cost. Among the available models, we
have selected those with a greater number of parameters and those specialised in
tasks related to implementation or code understanding. The selected models are as
follows: "Llama-2", "Llama-3", "Codellama", "Qwen1.5", "Depseek-code" and "Platy-
pus2".

2.2.1 GPT-3.5

This is a closed-source model developed by OpenAI. The "gpt-3.5-turbo" version
of the model has been considered. The model has been trained with information
up to September 2021. The aforementioned model permits the understanding and
generation of natural language and code. (gpt-3.5-turbo 2022)

2.2.2 GPT-4

This is a closed-source model developed by OpenAI. In this study, we have con-
sidered the "gpt-4" version of the model, which has been trained with data up to
September 2021. The GPT-4 model can solve more difficult problems with higher
accuracy than the GPT-3.5 model. (gpt-4 2023)

2.2.3 LLaMA-2

This is a family of models, ranging from 7B to 70B parameters, developed by Meta.
The Llama-2-70B-chat-hf model, which is the most complex of the family, will be the
subject of our study. The model has been trained to generate dialogue in a more
secure manner than the base Llama-2 model. The model has been trained on pub-
licly available online data on a range of topics. The model has a contextual win-
dow of 4,000 tokens and was trained between January 2023 and July 2023. In the
pre-training phase, 2 trillion tokens of data from publicly available sources were
utilised. In the finetuning phase, datasets with public instructions as well as human-
annotated examples were employed. In the pre-training phase, data up to September
2022 was utilised, while in the finetuning phase, data up to July 2023 was employed
(Touvron et al., 2023). For the sake of simplicity, we will refer to this model as llama2
throughout this project.

2.2.4 Code Llama Instruct

This is a proprietary model developed by Meta. This model has been constructed
upon the LLaMA-2 framework through a process of fine-tuning, enabling the gen-
eration and discussion of code utilising code-specific datasets. The model is capable
of both code generation and natural language response generation about a given
code. The model with 70B parameters, trained on 1T tokens to generate the model
and subsequently on 500B tokens of code and code-related data, was considered.
The Code Llama Instruct version has undergone additional finetuning, which has
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enhanced its ability to comprehend the desired outcomes of prompts. Code Llama
Instruct has undergone fine-tuning to generate responses in natural language that
are both helpful and safe. (Roziere et al., 2023). For the sake of simplicity, we will
refer to this model as codellama throughout this project.

2.2.5 Llama3

This is an updated version of the LLaMA-2 model, which was launched in April
2024. This model offers new capabilities and improvements, including enhanced
reasoning capabilities in code generation and in following instructions. LLaMA-
3 is a decoder-only structure, as is the case with all models in the Llama family.
However, it employs a 128K-tokens tokeniser, enabling it to encode the language
with greater effectiveness. The pre-training phase was conducted on 15 T tokens, all
of which were sourced from publicly available data sources. (AI@Meta, 2024)

2.2.6 Platypus2-70B-instruct

The model was created by combining garage-bAInd’s Platypus2-70B and Llama-2-
70-B instruct. It should be noted that this is a fine-tuning of LLaMA2, which has
been trained on a set of STEM and logic data. (Lee, Hunter, and Ruiz, 2023). For the
sake of simplicity, we will refer to this model as platypus throughout this project.

2.2.7 Qwen1.5.Chat

This model is licensed by Tongyi-QIANWEN-Research. The 72B version was se-
lected from the family of models. The architecture of this model follows the decoder-
only approach and is based on the Llama model family. In particular, supervised
finetuning (SFT) has been performed to align the model to human preferences. The
model has been pre-trained on 3T of text diversity tokens in both English and Chi-
nese, as well as codes. The data utilised in the pre-training process encompasses
language capabilities and advanced skills, including those about arithmetic, coding
and logical reasoning. (Bai et al., 2023). For the sake of simplicity, we will refer to
this model as qwen throughout this project.

2.2.8 Deepseek Coder Instruct

This is a model developed by Deepseek. The base model is "deepseek-coder-33b-
base" and has undergone further finetuning through the incorporation of 2B instruc-
tion data tokens. The base model has been trained on 2T tokens from 87 program-
ming languages, thereby ensuring an understanding of the code and its syntax. A
total of 87% of the tokens are code, with the remaining 13% being natural language in
English and Chinese. The architecture is decoder-only, and both the next token pre-
diction and fill-in-the-middle strategies have been employed during training. The
data utilised in this study was sourced from public GitHub repositories created be-
fore February 2023. (Guo et al., 2024).For the sake of simplicity, we will refer to this
model as deepseek throughout this project.
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Chapter 3

Methodology

3.1 Introduction to Classic Problems used in the Experimen-
tal Analysis

As previously stated in the motivation section, the focus of this study is on classical
problems that could be taught in an introductory algorithmics course. The selected
problems are the Sieve of Eratosthenes algorithm, the Euclidean algorithm, the Binary
search algorithm, and the Knapsack algorithm. It is challenging to objectively rank them
from easiest to hardest. Our criteria for saying that one problem is harder than an-
other is based on how familiar students are with what the algorithm computes and
the complexity of the methods under study. For instance, the Sieve of Eratosthenes
algorithm and Euclidean algorithm can be considered the easiest. These are methods
for determining prime numbers and the greatest common divisor of two numbers,
and students are familiar with these processes from primary school. When we start
studying algorithms, we already know what it means for a number to be prime or
how to calculate the greatest common divisor of two numbers. However, students
may be unfamiliar with the Sieve of Eratosthenes algorithm algorithm or the Euclidean
algorithm. The other two methods, although intuitively simple to solve, may never
have been encountered by students from an academic point of view. The binary
search is an efficient way of finding a number in an ascending list, and the Knapsack
algorithm is an optimisation problem with constraints.
These methods are well established, and the selected LLM models are likely to have
a substantial corpus of information about them.
We will now examine each method in detail, to refresh our understanding of its
particular characteristics, before proceeding to explain how we approached the ex-
periments we conducted on them.

3.1.1 Sieve of Eratosthenes algorithm

The Sieve of Eratosthenes represents an elegant and efficient method of computing
prime numbers. The fundamental concept is straightforward. A given number can
be classified as either prime or composite. A number is defined as a prime if it has
only two possible divisors, namely 1 and itself. To identify all the primes less than a
given number, one may consider a list comprising all the numbers up to that num-
ber and exclude all the multiples of the primes that have already been considered.
In other words, all multiples of 2 must be discarded, and the next number on the list,
which is 3, must be considered the next prime. All multiples of 3 up to the number
being considered must then be discarded, and the process is repeated for each sub-
sequent prime. The distinctive feature of this methodology is that it ceases when it
encounters the first number that is greater than the square root of the given number.
This is because, from this point onwards, if the number in question is a multiple of
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a larger number, it is also a multiple of a smaller number that has already been dis-
carded. Furthermore, the list of all the prime numbers that are smaller than a given
number is already available.

3.1.2 Euclidean Algorithm

The Euclidean method is employed to identify the greatest common divisor of two
given numbers. Euclid demonstrated that to ascertain the greatest common divisor
of two given numbers, it was not necessary to identify all the divisors of each of
the numbers and to subsequently identify the common divisors. He demonstrated
that if the objective is to identify the greatest common divisor of two integers, it is
sufficient to consider the smaller of the two and the remainder of the division of the
larger by the smaller. Upon iteration, the remainder will be zero. Since the greatest
common divisor between a number n and 0 is n, we may conclude that this is the
greatest common divisor we are looking for.

3.1.3 Binary search

The objective of the binary search algorithm is to identify a specific element within
an ascendingly sorted list without having to examine every element in the list. The
concept is to identify the element situated at the median position within the ordered
set and determine whether the target value is equal to, less than, or greater than the
found value. This information is used to determine whether to terminate the search
or to repeat the same process in the sub-interval to the left or right. If the element is
present in the list, it will be identified. If the element is not found, it can be concluded
that it is not present in the list, given that the list is finite and ordered.

3.1.4 Knapsack Algorithm

This is a classic optimisation problem where there are n objects, each with a weight
and a value. The objective is to select a subset of objects from the set of n objects,
each with a weight and a value, that simultaneously satisfy two conditions. The first
condition is that the sum of the weights of all the selected objects must be less than
or equal to the maximum capacity of the backpack. The second condition is that the
value of the selected objects must be the maximum possible. The objective of the
problem is, therefore, to identify the objects that should be placed in the backpack
and to quantify the benefit of selecting these objects.

3.2 Experimental analysis 1: Obtaining code that implements
a described algorithm

The objective of this experiment is to place ourselves in the position of students who
request a code from the model that will perform a specific action. To achieve this,
two distinct strategies will be employed. In the initial strategy, we provide the model
with an explanation of the algorithmic process, employing mathematical reasoning.
In the second strategy, the pseudocode of the algorithm is described, and the model
is then asked to generate a code with the correct syntax.
To identify areas where the model is particularly effective and those where it is less
so, we have tried to consider a particular aspect of the task. To this end, we consid-
ered how an individual might incorporate code that executes a specified action. We
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concluded that an implementation can be either recursive or iterative. It is typical for
students to create iterative algorithms at the beginning of their programming jour-
ney. However, they are also capable of doing recursive implementations if requested
to do so. The objective is to analyse the behaviour of LLMs. In the absence of a spec-
ified approach, it is necessary to identify whether they will implement an iterative
or recursive solution. Furthermore, if we direct the model to produce a recursive
implementation, is it capable of doing so? To test this hypothesis, the first strategy
comprises two prompts that are highly analogous. The sole distinction between the
two is that the first does not stipulate how the method is to be implemented, whereas
the second specifies that it should be recursive. The prompts have been designed to
be introduced to a language model by a student. Consequently, they are not pre-
occupied with minor details and simply explain what the learner is attempting to
achieve.
In each prompt of this initial strategy, we avoid mentioning the name of the algo-
rithm. At the end of the prompt, we request that the model indicate whether the
method described has a name. The objective is to determine the ease or difficulty
with which each model can identify this information. Our objective is to obtain code
that is both functional and compliant with the specifications outlined in the instruc-
tions. This will permit the analysis of instances where code has been provided that
performs the algorithm under study, although not in the exact manner requested.
Furthermore, we do not request that the model justify or explain the code. There-
fore, if the model does so, it is because this is a characteristic feature of the model.
In the second strategy, it is assumed that the student has a pseudocode of the desired
implementation. The design of the prompts is based on the a priori assumption that
the student will require assistance in implementing the code. This is achieved by
providing the model with a list of steps to follow by the pseudocode generated by
the student.
We have posed the following questions that we want to evaluate:

1. Does the model recognise the problem?

2. Does the model produce working Python code?

3. Does the model explain the code?

4. Does the model reason correctly (if it provides any kind of reasoning)?

5. Does the model produce recursive code?

6. Does the model perform the steps requested in the description?

As not all challenges are designed in the same way, the responses to these questions
are of greater value in some challenges than others. The objective is to implement
functional code generated from the descriptions provided in the prompts. Conse-
quently, the responses to questions 2 and 6 will be evaluated for all prompts exe-
cuted.
We only want to look at recursion in the prompts generated by strategy 1, to see
what happens when recursion is not explicitly requested and when the model is
instructed to generate recursive code. Consequently, the response to question 5 will
be evaluated exclusively based on the prompts associated with strategy 1. Similarly,
the response to question 1 will be analysed solely about the prompts of the first
strategy, as this is the only instance where the question is directly posed.
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The following section will examine the various prompts that have been formulated
for each of the problems, with a particular focus on the two strategies under con-
sideration. Please refer to Appendix A for a comprehensive list of all the prompts
referenced in this section.

3.2.1 Strategy 1: Prompts to implement the code from mathematical rea-
soning

For each of the four algorithms previously described, two prompts have been de-
signed that are essentially identical. The principal distinction between the two prompts
lies in the manner of their formulation. In one instance, the model is explicitly re-
quested to provide a recursive code, whereas in the other, this is not the case. The
prompts are structured uniformly. Firstly, the algorithm under consideration is ex-
plained in detail, after which the model is asked to provide a code that performs the
described function. In addition to the code, the model is also required to respond to
the following question: "Does this algorithm have a name?". The question is posed
to determine whether models possess sufficient information to identify algorithms
when describing their functionality. Furthermore, this question is posed to deter-
mine whether, once the algorithm for which the code is required has been identified,
the models provide the code as described, or merely provide code that implements
the algorithm in question.
Accordingly, one of the questions we have posed is whether the model performs
the steps requested in the description. In this context, the term "steps" refers to the
specific details mentioned in the prompt that are both distinctive and enable us to
ascertain whether the model has generated the code by the provided description or
based on its prior knowledge.
The steps to implement the Sieve of Eratosthenes algorithm, as described in the prompts
of figures A.1 and A.2, are as follows:

1. x is considered to be the number up to which the primes are to be computed.

2. all multiples of primes are eliminated until the square root of x is reached.

The figures A.3 and A.4 contain the prompts of the Euclidean algorithm. In this in-
stance, the requisite steps involve the consideration of two numbers, a and b, and
the subsequent computation of the greatest common divisor, which is not performed
directly on these numbers but rather on x and y. In this case, x is defined as the max-
imum value of a and b, while y is defined as the minimum value of a and b.
In the case of the Binary search algorithm, we refer to the figures A.5 and A.6. In
this algorithm, the element is located by dividing the intervals into two parts. If the
element is not found, the result should be a −1.
Finally, we find the Knapsack algorithm in the figures A.7 and A.8. To implement this
method, it is necessary to define two variables: p, which represents the list of values
associated with the N objects, and w, which is a vector of N elements, each of which
represents the weight of the corresponding object. The algorithm is then queried
to return two elements: the sum of the selected elements of p and the indices of p
corresponding to the selected elements.
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3.2.2 Strategy 2: Prompts to implement the code from a pseudocode de-
scription

For the same four algorithms, we have designed a prompt for each of them, in which
the student provides a step-by-step explanation of the pseudocode developed, to im-
plement the code. In all the prompts, we first provide context to situate the model
within the relevant context. We then proceed to outline the steps that must be fol-
lowed to implement the code. The steps are highly detailed as if the student were
describing the pseudocode they had created to implement the Python code for it.
The prompts for the methods Sieve of Eratosthenes algorithm, Euclidean algorithm, Bi-
nary search algorithm and Knapsack algorithm can be found in figures A.9, A.10, A.11
and A.12 respectively.

3.3 Experimental analysis 2: Code interpretation and error
detection

As previously discussed, it is beneficial to adopt the perspective of the students to
gain a deeper understanding of their learning process. Once the students have im-
plemented a solution to the problem, it may be correct or it may contain syntax or
conceptual errors. If students have doubts about their code, they will want to seek
assistance before submitting their answers. It can be challenging for teachers to pro-
vide support to all students, given the limited time and resources available. One
strategy that has been employed in numerous subjects is the establishment of online
forums where students can pose their doubts and provide assistance to one another.
In such instances, the teacher’s role is primarily that of a facilitator, intervening only
when necessary. While this approach is beneficial, there are instances where more
personalised assistance may be required.
The objective of this study is to examine the potential of LLM technology for the exe-
cution of specialized tasks. In this section, we consider a scenario in which educators
wish to develop a tool to assist students in becoming more self-taught. Assuming
that the tool employs generative AI, we have designed prompts that could be ex-
ecuted on the tool when the learner enters the code to be evaluated. Two of the
primary areas in which students require feedback are the functionality of their code
and the presence of syntax errors. Consequently, it is assumed that the tool will be
capable of providing this information, and prompts must therefore be designed to
extract it from the code. It is of critical importance to consider how instructions are
conveyed to the models. The focus is on defining the desired outcome, as well as
the how and the expected format of the output. It is important to note that language
models have limitations in terms of the length of prompts. Rather than building
one very complex prompt that would provide us with all the information we were
interested in, we decided to build two prompts.
The first prompt has been devised in such a way that a student is required to in-
put a code, with the model then indicating the specific function of the code. If the
student inputs a code containing conceptual errors, it would be intriguing for the
model to indicate that the student is unaware of the model’s functionality. It would
also be of interest to evaluate the response of the model when errors are introduced
at the level of syntax. The objective is to ascertain whether the models will evade the
introduction of a code with syntax errors and respond as if there were no such er-
rors, or whether they will be unable to identify the programming language in which
the code is written. For this reason, the initial prompt is designed to ascertain the
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language in which the provided code is written and to identify the code’s intended
purpose.
If a student submits a code containing syntax errors, they will require assistance in
resolving these errors without the need to get an entire code corrected. In the second
prompt, we will concentrate on the syntactic errors present in the submitted code.
In both prompts, the model must attend to the code under analysis, the desired
output format, and the steps required to achieve this output. The prompts assist the
model in reasoning and limiting errors or hallucinations. To facilitate the model’s
understanding of the task, instructions were therefore provided in a clear and precise
manner. The same structure has been employed in both prompts. Firstly, the model
is informed that it should analyse the code by the instructions provided and that
its output should be a dictionary with a specific structure. To facilitate the model’s
ability to distinguish between the code and instructions and the remainder of the
prompt, delimiters have been employed. This approach ensures that the model is
aware that the code to be analysed is located between the "&" symbols, while the
instructions are contained within the "<>" delimiters. The instructions are presented
in a sequential order, guiding the model and providing structured instructions.
Three distinct strategies have been employed: zero-shot prompting, one-shot prompt-
ing, and two-shot prompting. This implies that the two prompts have been designed
in such a way that, in the absence of examples, the models can still perform the task.
However, in addition to this, one or even two examples have been included, to en-
able the model to learn not only from the instructions given but also from examples
of inputs and the outputs it should generate.
Furthermore, the language models permit the specification of the system’s role. In
the absence of any indication, the system assumes its default role. However, it is
possible to specify a specific role, thereby informing the model of the expected be-
haviour for each activity. Consequently, for each of the generated prompts, both the
modified and unmodified system roles were executed.
We will now proceed to analyse each of the specific tasks. Please refer to Appendix
C for a comprehensive list of all the prompts referenced in this section.

3.3.1 Experimental Analysis 2.1: Code objective

In this section, we will analyze the inputs introduced to the model when we intend
to obtain the target of the code. As previously stated, we are going to analyze the
responses given by the model in two distinct scenarios: when the system role is
modified and when it is not.
In the experiments where the system role has been modified, the following descrip-
tion has been provided:

"""

Given a code, you’re an expert at analyzing it to identify its theme, and
if it contains a specific method, you mention its name for a clearer target.
Follow the <INSTRUCTIONS>.

"""

In this description, it is emphasised that the model must determine the objective
of the code by following the instructions given at the user prompt. Given that we
are dealing with algorithms that have been given a name, we would like the model
to indicate it in the answer. For instance, Euclid’s algorithm calculates the greatest
common divisor. Consequently, the answer should indicate that it employs Euclid’s
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method. Similarly, the Eratosthenes algorithm calculates prime numbers. However,
the answer should not merely state that it calculates prime numbers; it should also
indicate that it employs Eratosthenes’ method.
The experiments are conducted with the system role modified by the aforemen-
tioned comment and with the default system role. In the user role, we consider
zero-shot, one-shot, and two-shot prompting. The prompts are designed to be com-
pleted with a code entered by the user. In this instance, the user is expected to input
a code that implements one of the four algorithms presented in the preceding sec-
tions. The examples added to the prompt are elementary mathematical problems.
If we provide a single example, we are referring to an algorithm that provides the
actual solutions to the equation c · x2 + b · x + a = 0, given the specified parameters
of (a, b, c). If we provide two examples, we also include an additional example illus-
trating the calculation of the i-th term in the Fibonacci series using the golden ratio.
By indicating that the calculation is performed using the golden ratio, we intend
that the model appreciate the significance of the method employed in the algorithm,
rather than focusing solely on the outcome.
Figure C.1 illustrates the zero-shot prompting that has been designed. Figure C.2
depicts the one-shot prompting. Figure C.2 combined with C.3 provides the two-
shot prompting.
In the prompt illustrated in Figure C.1, we direct the model to construct a dictionary
with the fields "code_language" and "code_objective". In the first field, the model is
instructed to enter the language of the code. In the second field, a concise description
of the purpose of the code must be provided. To prevent the models from providing
responses that are either invented or irrelevant, we stipulate the required inputs in
the event of an unidentified answer. Finally, we stipulate that the dictionary is the
only acceptable answer, without any supplementary information.
The answers will be evaluated by the criteria outlined in the aforementioned prompt.
Firstly, the format of the given answers will be analysed, as the prompt states that
only the dictionary should be provided. Subsequently, the responses that adhere to
the format will be subjected to an examination of the values assigned to the fields
"code_language" and "code_objective." The responses to the "code_language" can be
classified into two categories: those that identify the language and those that do not.
The remaining field, "code_objective", can be divided into three categories: those
for which the model has not identified the target, those for which the model has
provided an incorrect target, and those that correctly identify the target. To ascertain
whether the modified system role or the Fibonacci example has taken effect, we shall
examine the instances where the algorithm method has been mentioned.

3.3.2 Experimental Analysis 2.2: Code syntax error

Once the student is aware of the intent behind the code and is satisfied with the
code structure and logic, the next step is to identify potential issues related to the
code’s syntax. Similarly to the approach taken in the prompt to ascertain the code’s
objective, we will analyse the responses generated by the model in both the modified
and default system role scenarios. Additionally, experiments have been conducted
utilising zero-shot, one-shot and two-shot prompting with the same two examples,
incorporating additional syntax errors.
In the experiments where the system role has been modified, the following descrip-
tion has been provided.

"""
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You are an AI expert in detecting if a code has syntax errors and in case
of having them explain which ones following the <INSTRUCTIONS>."

"""

In this description, it is emphasised that the model must be an expert at detecting
errors by following the instructions given at the user prompt.
Figure C.4 illustrates the zero-shot prompting that has been designed. Figure C.5
depicts the one-shot prompting. Figure C.5 combined with C.6 provides the two-
shot prompting.
In the prompt illustrated in Figure C.4, we direct the model to construct a dictionary
with the fields "code_sintax_error" and "code_sintax_explanation". In the first field,
the model is instructed to enter if there are syntax errors or not. To ensure unifor-
mity, responses are limited to "Yes" or "No". In designing this prompt, we aimed to
establish a connection between the prompt’s response and the objective prompt de-
scribed above. To this end, the code language was specified as –code_language–. As
in all the examples that have been evaluated, the language used was Python. In this
instance, the prompt was adjusted to "–code_language–:–Python–". If the preceding
response is affirmative, it is necessary to identify the errors to facilitate their correc-
tion by the student. Finally, we stipulate that the dictionary is the only acceptable
answer, without any supplementary information.
The answers will be evaluated by the criteria outlined in the aforementioned prompt.
The responses will be classified as either valid or invalid and subsequently analysed
separately for each model. A response is considered invalid if it is based on in-
formation from the examples and not on the code entered, if it contains additional
information apart from the requested dictionary if it identifies false errors, if it gives
incorrect corrections, if it does not follow the given instructions, or if it provides in
its response codes from the training of the model that have no relation to the task
to be performed. A valid response is one that, in the event of errors, identifies them
and provides details thereof; alternatively, in the absence of errors, it should indicate
that no such issues exist.
Figures C.5 and C.6 illustrate the examples introduced in the one and two-shot
prompting. These examples address the same two issues previously discussed, but
to align them with this task, we have incorporated syntax errors. In the solution of
the second-degree equation, the symbol "=" is employed in place of "==" for compar-
ison. In the example of finding the i-th term of the Fibonacci sequence, an erroneous
syntax was employed, "round" was incorrectly written as "rount". Furthermore, all
lines were terminated with a semicolon which is not correct in Python.

3.3.3 Experimental analysis 2: analysed codes

All prompts in Appendix C have been designed to be evaluated by entering a code.
To ensure consistency across all experiments, we have considered some of the codes
that might have been implemented by students in response to some of the descrip-
tions presented in Experimental Analysis 1. The intention is to introduce diverse
situations, and not all codes are correct. The analysis will encompass correct codes,
codes exhibiting conceptual errors, and codes displaying syntax errors. A concep-
tual error is defined as an error that involves the use of incorrect variables or the
performance of improper operations. Such errors result in the code failing to per-
form the intended function. In contrast, there are also syntax errors. This type of
error results in execution errors due to the erroneous grammar of the programming
language employed.
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The Appendix D, contains a comprehensive list of all the codes used. This section
will provide detailed information about the codes used for each algorithm, including
any errors that may have been introduced.

Sieve of Eratosthenes algorithm

In Figure D.1 and D.2 illustrate two correct implementations of the Sieve of Eratos-
thenes algorithm. In Figure D.4 we observe an iterative version of the code that
exhibits a syntax error. This error is characterised by the use of "append{}" instead
of "append()". Figure D.3 contains a code that exhibits both conceptual and syntax
errors. The conceptual error is that the order of the inputs in the recursive call of the
function has been altered.

Euclidean algorithm

Figure D.5 illustrates a recursive implementation of the algorithm without errors.
Figure D.6 depicts an iterative implementation of the algorithm that exhibits a con-
ceptual error. The error lies in the calculation of the greatest common divisor, whereby
the quotient resulting from the division of the largest number by the smallest is con-
sidered, rather than the remainder. Figure D.7 illustrates a recursive implementation
of the algorithm that exhibits four distinct errors. The first error is the use of a dif-
ferent name for the function than that used in the definition. The second error is
the replacement of the comma with a semicolon. The third error is the replacement
of the comment symbol with a & and the assignment of variables using the equal-
ity symbol instead of the assignment operator. The final figure for this algorithm is
Figure D.8, which presents an iterative implementation of the algorithm with two
errors. The first error is the substitution of "int" for "ent". The second error is the use
of "=!" to check if two values are different instead of "!=".

Binary search algorithm

Figure D.9 depicts an iterative implementation free of any errors. Figure D.10, il-
lustrates another iterative implementation that contains three syntax errors. These
include the use of ";" instead of "," in the assignment of variables, the elimination of
all ":" and, finally, the indistinct use of "D" or "d" in a variable.

Knapsack algorithm

Figure D.11 depicts a recursive implementation without errors. Figure D.12 illus-
trates a recursive implementation that exhibits both conceptual and syntax errors.
The conceptual errors are as follows: firstly, the order of two of the inputs was altered
when making the recursive call; secondly, the value "n-1" was incorrectly entered as
"-1". The syntax error is the use of the variable "wt" or "Wt" without distinction.

3.4 Technical aspects of the experiments

We performed all experiments by connecting to the models we were analysing via
API. For the closed-source models, we used the openai provider, while for the open-
source models, we used together.ai.
For both open-source and closed-source models, several hyperparameters can be
used to control certain aspects of the generated response. Firstly, when a request is
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made to start a conversation with the LLM, the messages that are part of the con-
versation so far must be included. Each of these messages has a role and content
associated with it. The role determines who introduced the message and the content
is the message itself. When we change the system role, we are telling the model how
to behave and what tone to use in its output. By introducing a message with the role
assigned to the user, we tell the model that it is interacting with the end user. Apart
from the messages, it is important to determine which model we want to communi-
cate with. There are other hyperparameters that we can modify that will determine
how the output will be. Among them we find (Chat completion openai 2024 and Chat
completion together.ai 2024 ):

• max_tokens: A token is the minimum unit of measurement for LLMs. Note
that the price of queries depends on the number of tokens entered and gen-
erated, so it may be interesting to enter the maximum number of tokens you
want the model to generate.

• temperature: determines the randomness of the model responses. It is a value
between 0 and 1, the closer to 0 the lower the randomness and the closer to 1
the higher the randomness.

• top-p: Alternative to temperature sampling. Select the minimum percentage
of relevance that tokens must have to be considered in the model. The value
of this parameter also ranges from 0 to 1.

• top-k: limits to k the token options for the next predicted word.

• frequency penalty: Value between -2 and 2 where a positive value decreases
the probability of repeating tokens mentioned above.

• repetition penalty: Number that controls the diversity of the generated text.
Higher values reduce the likelihood of repeated sequences.

As mentioned above, we ran experiments with and without changing the system
role. The other hyperparameters were not changed in the experiments and therefore
we kept the default hyperparameters of each of the models.
In the openai platform the default hyperparameters are:

• temperature = 1

• max_tokens = 256

• topp = 1

• f requencypenalty = 0

In the together.ai platform the default hyperparameters are:

• max_tokens = 512

• temperature = 0.7

• topp = 0.7

• topk = 50

• repetitionpenalty = 1
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Chapter 4

Results

4.1 Experimental analysis 1

This section will present and analyse the results obtained from the execution of each
prompt presented in Section 3.2. A total of four problems are under study, with three
prompts designed for each. Eight models are being evaluated in total. Given the
inherent randomness of LLM responses, each prompt was run three times. Accord-
ingly, we have generated 288 data points, which form the basis of the subsequent
analysis.
The two questions are as follows: "Does the model produce working Python code?"
and "Does the model perform the steps requested in the description?".
The objective is to identify those models that are more suited to generating the re-
quested code when going from mathematical reasoning to code (Strategy 1) than
when going from pseudocode to code (Strategy 2). Consequently, the percentage of
responses that generated functional code and the percentage of responses that fol-
lowed the steps described in the prompt for each of the strategies were compared.
The percentages were calculated for each model, strategy, and question.

TABLE 4.1: Percentage of satisfactory responses grouped by model
and strategy

% of Responses with Functional Code % of Responses that follows the steps
Model Strategy 1 Strategy 2 Strategy 1 Strategy 2

llama3 100.0 100.0 75.0 100.0
gpt-4 100.0 100.0 75.0 100.0
gpt-3.5 91.7 91.7 87.5 91.7
codellama 87.5 100.0 37.5 100.0
deepseek 75.0 75.0 37.5 75.0
llama2 25.0 75.0 12.5 50.0
platypus 62.5 25.0 50.0 25.0
qwen 87.5 50.0 75.0 50.0

Table 4.1 reveals that the models can be classified into two broad categories. Those
that have demonstrated a greater ability for moving from pseudocode to code than
for generating code from mathematical reasoning include llama3, gpt-4, gpt-3.5, codel-
lama, deepseek and llama2. In contrast, the remaining two models, platypus and qwen,
demonstrated a higher success rate in generating correct code when prompted to do
so using mathematical reasoning.
A comparison of the answers generated with the same strategy reveals that the per-
centage of answers that produce a functional code is higher or equal to the percent-
age of answers that produce a code that adheres to all the steps described. This
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phenomenon occurs because, on occasion, the model produces code that effectively
responds to the algorithm under study, yet the code differs slightly from the re-
quested output. The non-compliance with the steps outlined in the prompt does not
necessarily indicate that the model is unable to reason and execute the described
steps. This demonstrates that, in response to these prompts, the model occasionally
prioritises other aspects over strict adherence to the prescribed steps. For instance,
in the case of gpt-4 and llama3 models, some of the generated answers did not fully
adhere to all the prescribed steps. Let us undertake an analysis of one such response,
generated by gpt-4. Figure B.1 illustrates a response generated by gpt-4 in response
to the prompt presented in Figure A.3. It can be affirmed that this response fails to
adhere to all the prescribed steps, as it assumes that a is greater than b. However,
in Figure B.2, we observe an alternative response generated by the same model and
under identical conditions, in which all the steps are followed. In the case of llama3,
it has been unable to generate recursive codes when explicitly requested in the Eu-
clid and Eratosthenes problems. However, it does comply with all the other steps, as
demonstrated in B.3.
We now turn our attention to the disaggregated answers, organised according to the
algorithms in question and the models. The objective is to identify instances where
the expected answer was generated and instances where it was not. Given that three
iterations were performed, it is possible that in one or two iterations the answer was
correct and in the others, it was not, as was observed in the previous example of gpt-
4. This idea will be illustrated by means of a colour map in the graphs from Figures
4.1, 4.2, 4.3, 4.4 and 4.5 . Each cell represents the responses generated by a specific
prompt and a particular model. A green cell indicates that the condition under study
has been met in three out of three iterations. If the cell is yellow, this indicates that
the condition was met in two of the three iterations. If the cell is orange, this indicates
that the condition was met in one of the three iterations. Finally, if the cell is white,
this indicates that the condition was not met in any of the iterations. Figures 4.1 and
4.3 illustrate the models that have been able to generate a functional code for each
iteration. The visual representation in Figures 4.2 and 4.4 facilitates the identification
of the models that have been able to comply with the steps described in the prompt.
In Figures 4.1 and 4.2, we can observe that:

• The llama2 model is unable to generate a functional code based on a description
that employs mathematical reasoning.

• The mathematical representation of the knapsack problem presents certain chal-
lenges for some models, making it more difficult to achieve a functional code.
This may be attributed to the complexity of the problem.

In Figures 4.3 and 4.4 we can observe that:

• The platypus model is unable to generate functional code by the instructions
provided in the prompt, which describe the code in the form of pseudocode.

• In the context of the Binary Search problem, when described as a pseudocode,
the deepseek, llama2, platypus and qwen models are unable to generate a func-
tional code following the prescribed steps. The models are primarily confused
when attempting to return the position of the searched element within the ar-
ray. In numerous instances, the position of the subarray where the element has
been found is returned, yet this response is of limited utility in the absence of
the subarray. An illustrative example of this phenomenon can be observed in
Figure B.6, where we present the response generated by the qwen model when
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executing the prompt in Figure A.11. If we simply execute the model without
examining the results in detail, it appears to be functioning correctly. How-
ever, if we modify the input, for instance by setting a = 9, we observe that the
model returns a value of 1 instead of 4. These models seem to exhibit greater
difficulty than llama3, gpt-4, gpt-3.5 and codellama in reasoning and interpreting
the instructions they are given.

Figure 4.2 illustrates the difficulties encountered by the models in generating codes
that adhere to the prescribed steps in the Eratosthenes and Euclid problems. This
hypothesis is aligned with the proposition that, given the vast quantity of informa-
tion present in the models, they may offer an implementation of the same once they
recognise that they are confronted with such a problem, without undertaking a de-
tailed analysis of the prompt in question. Figure 4.2 illustrates also that requesting a
recursive implementation of the aforementioned problems may present a challenge
to the models.
In the absence of a clear indication from the user as to whether recursive or iterative
code is desired, all models have generated iterative code. The only exception to this
rule has been the deepseek model, which has generated recursive code for the Binary
Search algorithm.
Figure 4.5 illustrates the generation of recursive codes when explicit requests are
made at the prompt. About the Binary Search, it can be observed that the generation
of recursive codes has been consistently achieved, although as illustrated in Figure
4.1 they have not always been functional. The Eratosthenes problem has presented
the greatest challenge in generating recursive codes, even though in all models ex-
cept llama2, functional executions of the code have been generated. This indicates
that the focus of the model has not been on the fact that a recursive code was re-
quested.
In all instances where Strategy 1 was employed, the model was asked if the method
described had a name. In every case, the model correctly identified the algorithm in
question.
Despite not requesting such information directly, we have identified that some of
the responses provide reasoning in support of the code, while others offer explana-
tions or commentary on the code itself. As we did not request this information, we
presume that it is a feature of the models. As illustrated in Table 4.2, the gpt-4 model
exhibits the strongest tendency to explain the code, with the codellama, llama3, and
deepseek models following in order. In addition to providing explanations for the
code, the models also tend to reason out their answers.

TABLE 4.2: Percentage of responses by model that have commented
on the generated code or provided correct reasoning

Model % of responses that
explain the code

% of responses thet
provide a correct

reasoning
llama3 75.0% 66.7%
gpt-4 94.4% 72.2%
gpt-3.5 8.3% 0%
codellama 83.3% 55.6%
deepseek 41.7% 41.7%
llama2 33.3% 8.3%
platypus 0% 0%
qwen 66.7% 50.0%
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It is important to note that gpt-3.5 did not provide erroneous reasoning, but it demon-
strated a lack of reasoning present in the answers. In contrast, the results from llama2
were characterized by incorrect reasoning. To illustrate, we may consider the re-
sponses generated by both models to the prompt presented in Figure A.4.
Figure B.5 illustrates the response of gpt-3.5 to the Euclidean problem when prompted
for recursion directly. The response is recursive and performs the requested opera-
tion, but does not include additional reasoning or comment code, which is appro-
priate given that this was not a direct request.
Conversely, Figure B.4 depicts the response provided by llama2 to the aforemen-
tioned problem. It can be observed that this response is not recursive and contains
erroneous statements, such as "so we can see 12 is a divisor of 18" or "it works by
repeatedly subtracting the smaller number (b) from the larger number (a) until b is
0."

FIGURE 4.1: Prompts
from strategy 1 that gen-
erate functional code in

Python

FIGURE 4.2: Prompts
from strategy 1 that gener-
ate a response that follow

the steps

FIGURE 4.3: Prompts
from strategy 2 that gen-
erate functional code in

Python

FIGURE 4.4: Prompts
from strategy 2 that gener-
ate a response that follow

the steps

4.2 Experimental Analysis 2

In this section, we will analyse the results of the experiments presented in section 3.3.
The responses of the two experiments will be analysed: the one to obtain the target
code presented in section 3.3.1 and the one to obtain the syntax errors presented in
section 3.3.2.
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FIGURE 4.5: Prompts from strategy 1 that generate a recursive code when asked

For each of the experiments, we evaluated the zero-shot, one-shot, and two-shot
prompting, both with and without modifying the system role, resulting in six dif-
ferent prompts. The prompts were completed with the 12 codes from Appendix D,
resulting in 72 different inputs for each of the models. In the previous experiments,
each input was executed three times. In this experiment, however, we have decided
to increase the number of executions of the open-source models to five, as they have
a lower associated cost. In contrast, the closed-source models will be executed three
times. This results in a total of 2, 592 responses to analyse for each of the two exper-
iments. It should be noted that the open source models are llama3, llama2, codellama,
deepseek, platypus and qwen, while the closed source models are gpt-3.5 and gpt-4.

4.2.1 Results of Experimental Analysis 2.1

The objective of this section is to analyse the results presented in section 3.3.1 The
model codellama is unable to perform this type of activity correctly. A total of 97.2% of
responses indicated that the model could not perform the requested task due to eth-
ical considerations. Figure E.1 illustrates an example of a response. The remaining
2.8% of responses were not in the desired format. This is why the codellama model is
rejected.
The responses of the remaining models will now be analysed. The format of the
responses was found to be incorrect in 9.8% of cases, which equates to 219 answers
out of a total of 2, 232. The analysis revealed that 214 of the erroneous responses were
generated by the llama2 model. The remaining five iterations correspond to the five
runs of the deepseek model when the system role was not modified by running zero-
shot prompting in Figure C.1 with the error-free Knapsack code in Figure D.11. Figure
E.2 illustrates the incorrect format of the given answer. However, the content of
the dictionary is accurate. Upon comparison of the results obtained from executing
the same process in the model llama2, it has been observed that not only does the
structure fail, but also the content. This is evident in the figure E.3.
A total of 146 answers were identified as being incorrect format out of 360 executions
of the llama2 model. Upon analysis, it was observed that 6.8% of these responses did
not align with the intended functionality of the algorithm. Additionally, 13.7% of
the responses provided information about the examples used in the solution, which
indicates a potential issue with the correctness of the answer. Furthermore, it was
observed that 17.1% of the instances, the code input exhibited a conceptual incon-
sistency, yet the model responded as if no such inconsistency existed. In light of
the aforementioned observations, it can be stated that 37.6% of the responses that
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adhere to the prescribed format yield erroneous outcomes. This is why we consider
that the llama2 model is also not a suitable model to carry out the task evaluated in
this section.
By eliminating codellama, llama2, and the five erroneous executions of deepseek, we are
left with a total of 1, 867 results for analysis. Thus far, all responses that were not in
the correct format have been discarded. The following stage of the process involves
the analysis of the content of the responses that have been entered in the correct
format. An invalid answer is defined as one which: (a) provides a false response; (b)
fails to identify the programming language; or (c) is lacking in clarity regarding the
objective of the code. This latter category encompasses instances in which the code
entered exhibits a conceptual error, yet the model responds as if there were no such
error.
Of the total number of results, 1, 867, to be analysed, 931 originate from runs where
the code entered contains syntax errors, while 936 are from runs where the code is
free of such errors. It is necessary to analyse both scenarios separately, as it is log-
ical that if the code contains errors, the model is uncertain about the programming
language. In such a case, it would be incorrect to consider the response incorrect.
Conversely, if the code is free of errors, it is incorrect not to detect the language.
Of the executions originating from code with syntax errors, 79.5% identified the rel-
evant programming language; conversely, 20.5% failed to do so. In the case of exe-
cutions that do not originate from erroneous code, 98.5% of executions successfully
identified the underlying programming language.
Table 4.3 provides a detailed overview of the models in question. Notably, the GPT
models have tended to fail to detect the programming language on a few occasions,
despite the code being correct. It can be observed that these models are less likely to
provide the language name in the event of syntax errors, as evidenced by the data
presented in the table.

TABLE 4.3: Number of responses that identify the programming lan-
guage of the code grouping by model and distinguishing between

codes with syntax error and correct codes

Model llama3 gpt-3.5 gpt-4 deepseek platypus qwen
No
syntax
error

180 (of 180) 95 (of 108) 107 (of 108) 180 (of 180) 180 (of 180) 180 (of 180)

Syntax
error

180 (of 180) 31 (of 108) 39 (of 108) 150 (of 175) 170 (of 180) 170 (of 180)

We now proceed to an analysis of the responses provided in the code_objective field.
In this field, we have identified both incorrect and correct responses. The incorrect
responses will now be analysed. The qwen model has encountered difficulties when
executing the code depicted in Figure D.1. Figures E.4, E.5 and E.6 illustrate the re-
sponses generated by the zero-shot, one-shot and two-shot prompting, respectively,
without modifying the system role. Modifications to the system role result in largely
similar responses. These responses are not accurate because they provide a detailed
explanation of a specific code segment, rather than offering an overall understand-
ing of the code.
Another situation of concern is the generation of numerous erroneous responses in
the presence of codes with inherent conceptual errors. Out of 463 runs with concep-
tual errors on 409 occasions, the models have responded as though the codes entered
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had no conceptual errors. Such errors are particularly problematic as they are not
easily detected. The table 4.4 illustrates the number of responses generated as if the
code entered had no concept errors, out of the total number of responses generated
with concept errors for each of the models. As illustrated in Table 4.5, the models
have been unable to identify the intended target of the code in the majority of cases.
This answer is considered correct as the introduction of a conceptual error to the
methods under investigation results in a lack of clarity regarding their functionality.
The model gpt-3.5 is unable to discern the purpose of the code half of all instances.
Similarly to the occurrence of conceptual errors that do not identify the objective of
the code, there are also instances of other codes that do not identify the objective
of the code. A total of 65 with syntax errors failed to identify the purpose of the
code. It is reasonable to conclude that these results are acceptable, given that it is
not possible to determine whether the identified errors would present a significant
challenge in identifying the target. Furthermore, there are 13 instances that do not
present any error and correspond to the Knapsack problem.

TABLE 4.4: Responses containing conceptual errors that yield the
same responses as those without such errors.

Model llama3 gpt-3.5 gpt-4 deepseek platypus qwen
incorrect
answers

90 (of 90) 27 (of 54) 42 (of 54) 80 (of 85) 80 (of 90) 90 (of 90)

TABLE 4.5: Responses with conceptual errors for which the purpose
of the code is not identified.

Model llama3 gpt-3.5 gpt-4 deepseek platypus qwen
no ob-
jective

0 (of 90) 27 (of 54 ) 12 (of 54) 5 (of 85 ) 10 (of 90) 0 (of 90 )

This leaves a total of 1, 296 responses that have correctly identified the target. The
objective is to analyse the percentage of responses that mention the method used
in their answer. Although the system role was explicitly modified to include the
method of the algorithm, the resulting data indicate that this modification did not
yield superior results compared to the default system role executions, as evidenced
in Table 4.6.

TABLE 4.6: Responses mentioning the name of the method used in
the algorithm

Model # System role default # System role modified
llama3 60 (of 135) 70 (of 135)
gpt-4 41 (of 64) 41 (of 71)
gpt-3.5 40 (of 71) 35 (of 65)
deepseek 75 (of 125) 75 (of 130)
platypus 60 (of 130) 60 (of 130)
qwen 90 (of 120) 80 (of 120)

It can be observed that the system role, whether modified or unmodified, did not re-
sult in a significant difference. The proportion of responses mentioning the method
name is now examined to ascertain whether it is higher when two examples are en-
tered than when one or no examples are entered. Table 4.7 shows that this is the case
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for all models except platypus and qwen

TABLE 4.7: Responses mentioning the name of the method used in
the algorithm

Model # 0 or 1 examples # 2 examples
llama3 80 (of 180 ) 50 (of 90)
gpt-4 (47 of 89 ) 35 (of 46 )
gpt-3.5 49 (of 100 ) 26 (of 36)
deepseek (100 of 175) 50 (of 80 )
platypus 80 (of 170 ) 40 (of 90 )
qwen 115 (of 160 ) 55 (of 80)

A detailed examination of the aforementioned scenarios has enabled us to discern
that in both the Knapsack and Binary Search, the models consistently identify the
name of the algorithm. The only model that does not always mention the name
of the method is gpt-3.5, and sometimes for the Binary Search, qwen as well. Fig-
ure E.7 provides an illustrative example of the answer given by qwen. The response
is accurate in that it provides an accurate description of the model’s functionality.
However, it fails to mention that the problem in question is Binary Search. It can be
observed that the examples do influence the generated answer, as evidenced by the
fact that the answer initially begins with "define a function," which is also present
in the examples. Figure E.8 demonstrates that when the prompt is executed without
examples on the same code, the answer is also correct. However, it mentions the
method in a different style.
About the Knapsack and Binary Search methods, the name of the method is almost
always mentioned, with a few exceptions as previously discussed we are now going
to focus on Erathostenes and Euclides. The objective here is to analyse the outcome
of not modifying the system role and providing 0 or 1 examples, or of not modi-
fying the system role while offering two examples or modifying the system within
identical scenarios.

TABLE 4.8: Percentatge of responses mentioning the name of the
method used in the algorithm

System role default System role modified
Model 0 or 1

examples
2 examples 0 or 1

examples
2 examples

llama3 8.3% 33.3% 25.0% 33.3%
gpt-4 30.8% 64.3% 20.0% 60.0%
gpt-3.5 26.5% 63.6% 28.1% 50.0%
deepseek 36.4% 50.0% 33.3% 50.0%
platypus 33.3% 33.3% 33.3% 33.3%
qwen 60.0% 60.0% 50.0% 60.0%

It can be observed that the most effective approach is to maintain the system role
default and integrate two illustrative examples. However, this does not hold for the
platypus model, which performs always the same.

4.2.2 Results of Experimental Analysis 2.2

As evidenced in the results of section 3.3.1, the models codellama and llama2 are in-
capable of fulfilling the requisite task. This is the reason why we wanted to analyse
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whether the same is true for the results of the section 3.3.2.
In the case of codellama, we find ourselves in precisely the same situation as that de-
scribed above, since 98.6% of the responses indicated that it was unable to perform
the requested task due to ethical considerations. The llama2 model is similarly irrel-
evant to the current task. It is of interest to note that 67.5% of the responses include
erroneous information, 9.7% of the time the model provides data from the examples
and 8% of the responses are not in the expected format. Furthermore, in ten of the
executions of llama2 the answer given includes codes from their training that have
no relevance to the task at hand. An exemplar of the latter can be observed in Figure
E.9.
Consequently, the responses provided by codellama and llama2 are deemed invalid,
leaving a total of 1, 872 remaining responses. It would be beneficial to determine the
proportion of invalid responses for each model. It should be noted that an answer
is classified as invalid when errors presented are in the provided example, not in
the studied code, responses are in an incorrect format, those providing false errors,
answers offering corrections that are not correct, or those ignoring the instructions
and presenting an entire corrected code or training codes within their answer.

TABLE 4.9: Answers generated by each model classified as valid and
invalid

Model llama3 gpt-3.5 gpt-4 deepseek platypus qwen
valid
answers

319 (of 360)
≡ 88.6%

186 (of 216)
≡ 86.1%

211 (of 216)
≡ 97.7%

242 (of 360)
≡ 67.2%

290 (of 360)
≡ 80.6%

316 (of 360)
≡ 87.8%

invalid
answers

41 (of 360)
≡ 11.4%

30 (of 216)
≡ 13.9%

5 (of 216)
≡ 2.3%

118 (of 360)
≡ 32.8%

70 (of 360)
≡ 19.4%

44 (of 360)
≡ 12.2%

Table 4.9 presents the number and percentage of valid answers provided by each
model. The model that has generated the most optimal responses is gpt-4 followed
by llama3, gpt-3.5 and qwen.
The deepseek model has generated 32.8% of incorrect answers, which is a cause for
concern. To identify the nature of these incorrect answers, we will analyse them in
detail. It would be beneficial to observe the model’s behaviour in the presence of
both syntax errors and no syntax errors in the code entered. Of the 118, 15 were
erroneous in the absence of syntax errors, in contrast to 103 erroneous response ex-
ecutions with syntax errors. In other words, deepseek has provided erroneous re-
sponses, incorrect corrections, or responses containing all the corrected code 57.2%
of the times when errors were to be detected and there were errors in the code. It
is for this reason that we consider this model unsuitable for this task, as we cannot
guarantee with an acceptable level of confidence that its responses do not contain
errors or false corrections.
A further area of investigation is the identification of models that demonstrate a ten-
dency to fail to detect errors when such errors are present in the code. The objective
of this analysis is to examine the 756 results derived from erroneous codes. Table
4.10, presents the number of responses from each model that did not identify an
error in the code when errors were present.
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TABLE 4.10: Responses that do not identify any errors when there are
errors in the code

Model llama3 gpt-3.5 gpt-4 platypus qwen
No error
detected

0 (of 180)
≡ 0%

2 (of 108)
≡ 1.9%

0 (of 108)
≡ 0%

90 (of 180)
≡ 50.0%

35 (of 180)
≡ 19.4%

The model platypus demonstrates that in half of the cases where an erroneous code
has been introduced, it has been unable to identify this. Consequently, we conclude
that this model is also unsuitable for the task at hand.
We now proceed to analyse the responses of the 1, 152 runs of the models gpt-3.5,
gpt-4, llama3 and qwen. One-half of the runs were conducted with error-free code,
while the other half involved the introduction of errors into the code. In the absence
of any errors in the code, no specific instructions were provided in the prompt re-
garding the contents of the "code_sintax_explanation" field. It has been observed
that the gpt-3.5 and qwen models have responded with a dictionary that lacks the
"code_sintax_explanation" field on several occasions due to the lack of clarity in the
prompt.
As can be observed in Table 4.11, all models have indicated that no errors were iden-
tified, except three iterations of gpt-3.5 and six runs of gpt-4. Figure E.10 illustrates
the three responses from gpt-3.5. The errors the model has identified are not sig-
nificant. The model has noted instances where spaces are absent when they are not
required, as well as the inclusion of elements that are not present in the source text. It
is important for students to be aware that this type of error can occur and to critically
analyse the output. Conversely, the responses of gpt-4 which indicate the presence
of errors are because, in the absence of syntactic errors, the model identifies concep-
tual inconsistencies. This indicates that at least gpt-4 is capable of identifying these
errors, although in this context it was not required to do so. The response may be
found in Figure E.11.

TABLE 4.11: Responses when there are no errors in the code

Model llama3 gpt-3.5 gpt-4 qwen
Correct complete
dictionary

180 (of 180)
≡ 100%

19 (of 108)
≡ 17.6%%

102 (of 108)
≡ 94.4%

160 (of 180)
≡ 88.9%

Partial dictionary
0 (of 180)
≡ 0%

86 (of 108)
≡ 79.6%

0 (of 108)
≡ 0%

20 (of 180)
≡ 11.1%

Invalid answer
0 (of 180)
≡ 0%

3 (of 108)
≡ 2.8%

6 (of 108)
≡ 5.6%

0 (of 180)
≡ 0%

We now proceed to analyse the responses of the runs that have errors. For these
responses, we have already considered the possibility of not identifying them pre-
viously. The remaining options are presented in Table 4.12. For each model, we
observe the executions that have identified some, but not all, errors; those that have
identified all errors; and those that have generated invalid answers.

TABLE 4.12: Responses when there are errors in the code

Model llama3 gpt-3.5 gpt-4 qwen

All errors detected
125 (of 180)
≡ 69.4%

40 (of 108)
≡ 37.0%

96 (of 108)
≡ 88.9%

21 (of 180 )
≡ 11.7%
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TABLE 4.12: Responses that do not identify any errors when there are
errors in the code(cont.)

Model llama3 gpt-3.5 gpt-4 qwen

Some errors detected
14 (of 180)
≡ 78.0%

39 (of 108)
≡ 36.1%

7 (of 108)
≡ 6.5%

80 (of 180 )
≡ 44.4%

Invalid answer
41 (of 180)
≡ 22.8%

27 (of 108)
≡ 25.0%

5 (of 108)
≡ 4.6%

44 (of 180 )
≡ 24.4%

A significant proportion of the responses appear to be invalid. The objective is to
analyse the circumstances under which these responses were obtained. To this end,
we can examine Table 4.13, which presents the number of incorrect responses ob-
tained for each model, based on whether the system role was modified or not. Ad-
ditionally, we can categorize the incorrect responses based on the prompts, distin-
guishing between instances where no examples were provided, one example was
provided, or two examples were provided. It can be observed that the greatest
number of erroneous responses was obtained when the system role was modified
without the incorporation of exemplars. Conversely, the lowest number of incorrect
answers was yielded when the system role was modified with the inclusion of one
or two examples.

TABLE 4.13: Number of incorrect responses obtained for each model,
based in where the system role was modified and the number of ex-

amples

System role default System role modified
Model 0

examples
1

example
2

examples
0

examples
1

example
2

examples
llama3 10 (of 41)

≡ 24.4%
5 (of 41)
≡ 12.2%

0 (of 41)
≡ 0%

15 (of 41)
≡ 36.6%

11(of 41)
≡ 26.8%

0 (of 41)
≡ 0%

gpt-4 1 (of 5)
≡ 20.0%

1 (of 5)
≡ 20.0%

1 (of 5)
≡ 20.0%

1 (of 5)
≡ 20.0%

0 (of 5)
≡ 0%

1 (of 5)
≡ 20.0%

gpt-3.5 6 (of 27)
≡ 22.2%

3 (of 27)
11.1≡ %

6 (of 27)
≡ 22.2%

7 (of 27)
≡ 25.9%

1 (of 27)
≡ 3.7%

4 (of 27)
≡ 14.8%

qwen 5 (of 44)
≡ 11.3%

5 (of 44)
≡ 11.3%

9 (of 44)
≡ 20.5%

15 (of 44)
≡ 34.1%

10 (of 44)
≡ 22.7%

0 (of 44)
≡ 0%

We shall now proceed to analyse the problems for which each model has identified
the errors, distinguishing between those instances where the full range of errors has
been detected and those where only some of the errors have been identified. About
the Eratosthenes problem with the iterative code and the Knapsack problem with the
recursive code, it can be observed that there is only one syntax error. Consequently,
they are unable to identify only some of the errors. The tables display the total
number of answers for each condition about the total number of executions with
error codes performed for each code of a given algorithm.
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TABLE 4.14: gpt-4 responses detecting errors grouped by algorithms

Recursive code Iterative code
gpt-4 Detects all

errors
Detects some
of the errors

Detects all
errors

Detects some
of the errors

Eratosthenes 14 (of 18) 4 (of 18) 18(of 18) -
Euclid 15 (of 18) 3 (of 18) 18(of 18) 0 (of 18)
Binary search - - 17 (of 18) 0 (of 18)
Knapsack 14(of 18) - - -

As illustrated in Table 4.14 the gpt-4 model consistently provides accurate responses
in nearly all instances. In the case of the Erathostenes problem, the model detects all
errors in the majority of instances when executing the code from Figure D.3. How-
ever, in four instances, it fails to identify all errors, including the lack of definition
of the variable c and the need to set it to the current value. In the four executions in
which this situation was identified, the system role was not modified. However, it
should be noted that the examples have not affected the outcome, as there is one case
with zero examples, two cases with one example, and one case with two examples.
Figure E.12 illustrates an example of an answer that does not detect all the errors,
but rather identifies a conceptual error. In the case of Euclid, there are three runs
where all errors are not identified. In this instance, the incorrect use of == in the
assignments of the usage example is not identified, as illustrated in Figure E.13. For
the problems of Binary Search and Knapsak, there are instances where the obtained
answers are not valid. In the case of Binary Search the error is a single instance. In
contrast, for Knapsack, there are four instances incorrect. With regard to the Binary
Search problem, as illustrated in the answer to Figure E.14 the problem is that it tells
us that there is an unnecessary ";" when it is not so, what happens is that it should
be a ",". In the case of Knapsack, we do not provide a detailed analysis of the errors.
The four invalid answers can be attributed to three instances of erroneous input and
one instance of an incorrect correction. An example of these responses can be found
in Figure E.15. It is important to note that while gpt-4 has occasionally generated
erroneous responses, it has also provided correct responses on a vast majority of oc-
casions. Furthermore, these responses have proven to be useful in identifying and
correcting the aforementioned errors. Furthermore, it should be noted that when the
same prompt is executed, the model has never provided an invalid answer on the
three iterations. As an illustrative example, Figure E.16 presents one of the responses
generated by gpt-4 for the Euclid problem, free from errors. This response has been
selected as an exemplar of a straightforward answer that accurately identifies the
errors and provides clear guidance on how to rectify them.

TABLE 4.15: llama3 responses detecting errors grouped by algo-
rithms

Recursive code Iterative code
llama3 Detects all

errors
Detects some
of the errors

Detects all
errors

Detects some
of the errors

Eratosthenes 26 (of 30) 4 (of 30) 30 (of 30) -
Euclid 14 (of 30) 5(of 30) 20(of 30) 0(of 30)
Binary search - - 20(of 30) 0 (of 30)
Knapsack 15 (of 30) 5 (of 30) - -

Table 4.15 presents the identical responses that were previously examined in the
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context of gpt-4, now for the llama3 model. In the case of the Eratosthenes algorithm,
it is observed that the model almost always detects all the errors, except four runs
where, as in gpt-4, it does not indicate that the variable c is not defined and should
be current. This is illustrated in Figure E.17. The Euclidean method presents a more
challenging problem to address. The five answers that did not detect all the errors
were due to the model’s failure to identify the incorrect use of a semicolon in place
of a comma, as illustrated in Figure E.18 as an example. In the case of the knapsack
problem, it has been determined that five of the solutions exhibit some of the errors
identified. This is contrary to the previously stated assertion that only a single syntax
error exists. It can be observed that the model has identified a conceptual error that
could be considered a syntax error. This is illustrated in Figure E.19.
Finally, in Tables 4.16 and 4.17, we observe the outcomes of the experiments con-
ducted with gpt-3.5 and qwen. There are numerous instances where the model has
identified some of the errors but not all of them. In the case of gpt-3.5, it generates
erroneous responses in instances where it fails to accurately identify the Knapsack
errors. For instance, consider the Figure E.20, the qwen model provides corrections
that are not accurate, as evidenced in Figure E.21.

TABLE 4.16: gpt-3.5 responses detecting errors grouped by algo-
rithms

Recursive code Iterative code
gpt-3.5 Detects all

errors
Detects some
of the errors

Detects all
errors

Detects some
of the errors

Eratosthenes 10 (of 18) 6(of 18) 11(of 18) -
Euclid 1 (of 18) 11 (of 18) 3 (of 18) 15 (of 18)
Binary search - - 7(of 18) 7 (of 18)
Knapsack 8 (of 18) - - -

TABLE 4.17: qwen responses detecting errors grouped by algorithms

Recursive code Iterative code
qwen Detects all

errors
Detects some
of the errors

Detects all
errors

Detects some
of the errors

Eratosthenes 0 (of 30) 25 (of 30) 0 (of 30) -
Euclid 5 (of 30) 20 (of 30) 0 (of 30) 25(of 30)
Binary search - - 6 (of 30) 10 (of 30)
Knapsack 10 (of 30) - - -
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Conclusions

In conclusion, the results obtained for each of the models will be analysed and an
overall view of the results will be provided.
Codellama did not yield the expected results. As it is a large model, specialised
in code and finetuned to better understand human instructions, it was expected to
give good results. However, we observed that this model, despite its efficacy in
transforming pseudocode into code and producing well-structured and commented
code, has encountered difficulties in executing specific tasks. When attempting to
ascertain the purpose of the code or identify potential syntax errors, the model indi-
cates that such activities are unethical and does not provide the anticipated response.
Consequently, it can be concluded that the model’s objective of ensuring safety has
resulted in a threshold that is excessively high in terms of what it can answer, ren-
dering it unusable in certain use cases, as proposed.
The Llama-2 model has yielded results that are not applicable to any of the speci-
fied use cases. As an alternative, the improved version of the model, Llama-3, may
be employed. The latter model has yielded results that are comparable to those
produced by the gpt models. The experiments conducted have revealed that the
model has difficulty generating recursive codes, suggesting that its reasoning capac-
ity may be inferior to that of the gpt models. The model has consistently produced
the response in the expected format, in the context of identifying syntactic errors, has
never erroneously identified the presence of errors when none exist. Conversely, it
has demonstrated the capacity to detect a greater number of errors after gpt-4 when
they do exist. In conclusion, it can be stated with confidence that this model has
provided the most favourable results of all the open-source models analysed.
We now turn our attention to the gpt models. Out of these, gpt-4 has generated the
most promising results. It is important to note that the ability to provide accurate
responses is not absolute. On occasions, we have observed instances where the sys-
tem has made errors, failed to generate the desired output, or failed to adhere to the
prescribed steps. It is therefore important to exercise one’s own judgement before
accepting a gpt-4 answer as valid and not questioning it, despite its proven abilities.
It is important to highlight certain aspects of the gpt-3.5 model. For instance, when
introducing a code with conceptual errors, it was observed that half of the generated
answers did not provide the objective of the code. Consequently, it can be posited
that the gpt-3.5 model attempts to align itself with the specifications outlined in the
prompt, while omitting information that has not been explicitly requested which is
considered as a correct answer.
Finally, we analysed the qwen, deepseek, and platypus models. The platypus model
proved to be of limited assistance to students in implementing the code, as it en-
countered difficulties in translating pseudocode into code. Furthermore, it is not an
effective method for detecting syntax errors, and thus it is not a model that we would
recommend for use in the tasks presented. With regard to the deepseek model, it
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should be noted that it is the smallest model considered, with only 33B parameters.
The outcomes were therefore deemed satisfactory, given the constraints associated
with its size. It is noteworthy that 75% of the time, the model has been able to
translate pseudocode into code. However, its reasoning abilities are not particu-
larly noteworthy, and it does not detect syntax errors either, as it tends to invent
errors. Consequently, we can infer that this model is suitable for translating from
pseudocode to code, yet it lacks the capacity to detect errors within the code itself.
Finally, we consider the qwen model. It is important to note that this model has
demonstrated superior performance in generating code from mathematical reason-
ing compared to pseudocode. Qwen exhibits greater performance in Experiment 2
(Code interpretation and error detection) than in Experiment 1 (Implementation of
a described algorithm). This is evidenced by its ability to identify the method of the
algorithm in question and provide valid answers when identifying syntax errors. In
this regard, it outperforms gpt-3.5, achieving a slightly higher percentage of correct
responses. It should be noted that this model has certain limitations. In 19.4% of
cases, it fails to identify errors, while in 24.4% of cases, it provides invalid answers.
However, it is important to note that this percentage is comparable to that of gpt-3.5,
which provides invalid responses 25% of the time when there are syntax errors. A
comparison of deepseek and qwen reveals that deepseek tends to identify false er-
rors, whereas qwen tends to identify only some of them in order to avoid mistakes.
It is evident from this analysis that the system roles introduced are not effective
and have not resulted in an improvement in outcomes. Indeed, they have had the
opposite effect, with results becoming worst. In relation to the examples, it has been
established that they do indeed have an effect on the response. In consequence, we
believe that improving these examples could lead to better results.
It is evident that conceptual errors represent a point of improvement for all the mod-
els. When introducing codes with conceptual errors, they have practically always
responded as if there were no error. Consequently, if a student encounter such an
error, it is likely that they would require assistance from their teacher in order to
identify it. It is noteworthy that the only model that performs exceptionally well in
identifying syntax errors is gpt-4. In over 20% of cases, the other models provided
erroneous responses. It would be beneficial to investigate whether this percentage
could be reduced by providing more effective examples or by implementing a more
structured prompting process.
Future steps include the improvement of the prompts to make them a little more
guided, as well as the testing of these prompts with other algorithms and real stu-
dents in order to determine the extent to which the answers provided are helpful.
In this manner, if the responses prove to be beneficial, a proof of concept could be
established, and a tool capable of executing these functions could be implemented
with improved versions of the prompts and more illustrative examples. These could
then be tested with new students for potential incorporation in class.



37

Appendix A

Prompts used in the experimental
analysis 1

"""

Given a natural number x, we want to calculate all prime numbers
smaller than x. To do this, the first thing to do is to have a clear defi-
nition of a prime number. A number is prime when it has no divisors
except one and itself. Another concept to keep in mind is that if a is a
multiple of b and b is prime, then a cannot be prime. Since we have said
before that if a is prime then its only divisors are 1 and itself. Therefore,
if b is prime, it is not 1, and since b is a divisor of a, there are only two
options: either a is b, or a is not prime. Thus, 2 is the first prime number.
We remove all multiples of 2 up to x. The next number that we have not
removed will be the next prime number, and we do the same process of
removing its multiples up to x. We will finish this process once we get to
the nearest integer to the square root of x. This is because any non-prime
number after the square root of x will have been discarded before.

I want a code that will be able to replicate this process and give me all
the numbers up to x that have not been discarded.

Additionally, answer this question: does this algorithm have a name?

"""

FIGURE A.1: Strategy 1: Sieve of Eratosthenes algorithm mathemati-
cal reasoning prompt (no recursion required)
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"""

Given a natural number x, we want to calculate all prime numbers
smaller than x. To do this, the first thing we need is a clear definition
of a prime number. A number is prime when it has no divisors except
one and itself. Another concept to keep in mind is that if a is a multiple
of b and b is prime, then a cannot be prime. Since we have previously
stated that if a is prime, then its only divisors are 1 and itself, therefore if
b is prime, it is not 1. Since b is a divisor of a, there are only two options:
either a is b or a is not prime. Thus, 2 is the first prime number. We start
by considering a list with all numbers from 2 to x. We remove from this
list all multiples of 2 up to x. The next number that we have not removed
in the list will be the next prime number, and we repeat the process of
removing its multiples up to x in a recursive manner. We will finish this
process once we reach the nearest integer to the square root of x. This is
because any non-prime number after the square root of x will have been
discarded before.

I want code that can replicate this process recursively and give me all the
numbers up to x that have not been discarded.

Additionally, does this algorithm have a name?

"""

FIGURE A.2: Strategy 1: Sieve of Eratosthenes algorithm mathemati-
cal reasoning prompt (recursion required)

"""

Let’s suppose we have two numbers "a" and "b". The first step is to verify
that they are natural numbers. If this is true, let "x" be the maximum
between a and b, and "y" be the minimum between a and b. Then there
will exist two natural numbers "c" and "r" such that y >= c > r >= 0, so
we can write x = y * c + r. There are two options: either r is 0 or r is not
0. If r is not 0, then there will exist two other natural numbers "d" and "s"
such that y = r * d + s, with r >= d > s >= 0. The naturals between r and
0 are finite. Therefore, this process will have an end. If "s" is not 0, since
"r" is a natural number, there will exist "e" and "f" such that r = s * e + f
with s >= e > f >= 0. If f is not 0, we would repeat the process. I want a
code that can replicate this process and give me the denominator of the
division that has a remainder of 0. In this case, if s = 0, it would be r; if
f = 0, it would be s, and if f is not 0, it would imply continuing iterating
until finding the solution.

Additionally, answer this question: Does this algorithm have a name?

"""

FIGURE A.3: Strategy 1: Euclidean algorithm mathematical reason-
ing prompt (no recursion required)
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"""

Let’s suppose we have two numbers "a" and "b". The first step is to verify
that they are natural numbers. If this is true, let "x" be the maximum
between "a" and "b", and "y" be the minimum between "a" and "b". Then,
there will exist two natural numbers "c" and "r" such that y >= c > r >= 0,
allowing us to write x = y * c + r. There are two options: either r is 0 or r
is not 0. If r is not 0, then there will exist two other natural numbers "d"
and "s" such that y = r * d + s, with r >= d > s >= 0. The naturals between
r and 0 are finite, so this process will have an end. If "s" is not 0, as "r" is
a natural number, there will exist "e" and "f" such that r = s * e + f, with s
>= e > f >= 0. If f is not 0, we would repeat the process.

I want code that can replicate this process recursively and give me the
denominator of the division that has a remainder of 0. In this case, if s =
0, it would be r; if f = 0, it would be s; and if f is not 0, it would involve
continuing the iteration until finding the solution.

Additionally, answer this question: Does this algorithm have a name?

"""

FIGURE A.4: Strategy 1: Euclidean algorithm mathematical reason-
ing prompt (recursion required)

"""

We want to find an element in an ordered list of elements. To do this, we
divide the list in half. If the number we are looking for is smaller than the
value that occupies the middle position of the list, it means that it is in
the first half of the list. If it is larger, it means that it is in the second half
of the list. Depending on which of the two conditions is met, we consider
the corresponding sublist and repeat the process. As soon as the value
in the middle of the list is the desired value, we stop. In this way, if we
reduce the length of the list where we look by half, we will reach a point
where either we will have found it or we will have looked at all possible
locations, and we can say that the number is not in the list. Give me a
Python code that does this process and that returns the position in the
list where the value it was looking for is if it finds it and "-1" if it does not
find it. Additionally, answer the following question: Does this algorithm
have a name?

"""

FIGURE A.5: Strategy 1: Binary search algorithm mathematical rea-
soning prompt (no recursion required)
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"""

We want to find an element in an ordered list of elements. To do this, we
divide the list in half. If the number we are looking for is smaller than the
value that occupies the middle position of the list, it means that it is in
the first half of the list. If it is larger, it means that it is in the second half
of the list. Depending on which of the two conditions is met, we consider
the corresponding sublist and repeat the process. As soon as the value
in the middle of the list is the desired value, we stop. In this way, if we
reduce the length of the list where we are looking by half, we will reach
a point where either we will have found it or we will have looked at all
possible locations and we can say that the number is not in the list. Give
me a Python code that does this process recursively and that returns the
position in the list where the value it was looking for is if it finds it and
"-1" if it does not find it. Additionally, answer the following question:
Does this algorithm have a name?

"""

FIGURE A.6: Strategy 1: Binary search algorithm mathematical rea-
soning prompt (recursion required)

"""

We have an optimization problem that we want to solve. We have N
elements. Each one of them has two associated parameters, p and w.
So we can consider p as a list p1, ..., pN and w as a list w1, ..., wN . The
objective of the algorithm is to keep the subset of elements whose sum
of their wi is less than or equal to a certain constant W and whose sum
of the pi is maximal at the same time. To do this, we consider all subsets
of w with a sum <= W and then select that subset whose sum of the
pi is maximum. Give me a Python code that does this and that returns
the maximum sum of the selected elements in "p" and the i-th elements
that have been used. Also, answer the following question: Does this
algorithm have a name?

"""

FIGURE A.7: Strategy 1: Knapsack algorithm mathematical reasoning
prompt (no recursion required)
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"""

We have an optimization problem that we want to solve recursively. We
have N elements. Each one of them has two associated parameters, p
and w. So we can consider p as a list p1, ..., pN and w as a list w1, ..., wN .
The objective of the algorithm is to keep the subset of elements whose
sum of their wi is less than or equal to a certain constant W and whose
sum of the pi is maximal at the same time. To do this, we consider all
subsets of w with a sum <= W and then select that subset whose sum of
the pi is maximum. Give me a Python code that does this recursively and
that returns the maximum sum of the selected elements in "p" and the i-
th elements that have been used. Also, answer the following question:
Does this algorithm have a name?

"""

FIGURE A.8: Strategy 1: Knapsack algorithm mathematical reasoning
prompt (recursion required)

""" Help me implement a Python code that performs the following steps:

1. Given a natural number n, we define an array of n positions, which
we will call x.

2. We will initialize the array x with all its positions set to True.

3. We change the values of the first two positions to False.

4. For each number j from 2 to the nearest integer to the square root of n,
we do the following:

4.1. If the array x at position j takes the value True, we update the values
of x to False at positions j*j through n by jumping from j to j.

4.2. We return the indices of the array x that take the value True.

"""

FIGURE A.9: Strategy 2: Sieve of Eratosthenes algorithm pseudocode
description prompt
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"""

Help me implement a Python code that performs the following steps:

1. Verify if these are two positive integers.

2. If they are, the program must perform the Euclidean division of the
larger by the smaller.

3. If the remainder of the division is 0, the program must return the
denominator.

4. If the remainder is not 0, you will do the following until the remainder
of the division you perform is 0:

4.1. Consider the denominator and the remainder of the previous divi-
sion and repeat the Euclidean division between them.

4.2. Do this process until you reach a denominator that is 0.

4.3. When the remainder is 0, the program must return the denominator
of that division.

"""

FIGURE A.10: Strategy 2: Euclidean algorithm pseudocode descrip-
tion prompt

"""

Help me implement a Python code that performs the following steps:

1.Given a number "a" and a sorted list "x", we define a new variable,
which is the middle position of this list "x", and we call this variable
"mid".

2.We check if x at position "mid" takes the value "a". If it does, we stop
and return "mid".

2.1. If "x" at position "mid" takes a value "b" which is not "a", we do the
following steps:

2.1.1. If "b" is less than "a", we update the list and consider only the
sublist from position 0 to "mid".

2.1.2. If "b" is greater than "a", we update the list and consider only the
sublist from position "mid" to the end.

2.2. We update x with the corresponding sublist.

2.3. We repeat the process until x at position "mid" equals "a" or "x" has a
length of 2. If x at position "mid" equals "a", we return "mid", and if the
length of x is 2, we check if either of the two positions has "a", and we
return that position. If not, we return -1 to indicate that the element was
not found

"""

FIGURE A.11: Strategy 2:Binary search algorithm pseudocode de-
scription prompt
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""" Help me implement a Python code that performs the following steps:

1.Given two vectors "p" and "w" of the same length, n, and a natural
number W.

2.We define a function which takes as input a constant A, a list z, a list t
and a constant m.

2.1. This function is defined in a recursive way. Let’s call this function
"fun_1". This function returns two outputs. The first output is a number
and the second output is a list.

2.2. If m or A are 0, the output of the function should be 0 and [].

2.3. If the value of z at the (m-1) position (starting from 0) is bigger than
A, then fun_1 evaluated on A, z, t, m should be the same as fun_1 evalu-
ated on A, z, t, m-1.

2.4. If the value of z at the position (m-1) is smaller than A, then we
calculate two numbers, c and d.

2.4.1. c is the sum of the value of t at the (m-1) position and the first
output of fun_1 evaluated on A-z[m-1], z, t and m-1.

2.4.2. d is the first output of fun_1 when evaluated to A, z, t and m-1.

2.5. If c is bigger than d. In this case, we return as the first output c and as
the secord output we add "m-1" to the second output of fun1 evaluated
on A-z[m-1], z, t and m-1.

2.6. If d is bigger than c we return fun_1 evaluated on A, z, t and m-1

3.Evaluate fun_1 on (W, w, p, n). """

FIGURE A.12: Strategy 2:Knapsack algorithm pseudocode descrip-
tion prompt
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"""

What you’re describing is essentially the process used in the Euclidean
algorithm to find the greatest common divisor (GCD) of two numbers a
and b. The Euclidean algorithm repeatedly subtracts the smaller num-
ber from the larger one (or uses the modulus operator, which is a more
efficient computational representation of the same process) until the re-
mainder is 0. The last non-zero remainder is the GCD of the original pair.

Here’s a Python code snippet that implements the Euclidean algorithm
based on your description, finding the GCD of two integers:

“‘python

def eucl idean_algor i thm ( a , b ) :
# Ensure a and b a r e n a t u r a l numbers ( p o s i t i v e i n t e g e r s )
i f a < 1 or b < 1 :

r a i s e ValueError ( " Both a and b must be na tu ra l numbers " )

# Cont inue f i n d i n g r e m a i n d e r s u n t i l one o f them i s 0
while b != 0 :

a , b = b , a % b

# a i s now t h e GCD o f t h e o r i g i n a l a and b
return a

# Example usage
a = 48
b = 18
print ( " The GCD of " , a , " and " , b , " i s : " , eucl idean_algor i thm ( a , b ) )

“‘

This Python function first checks if ‘a‘ and ‘b‘ are both natural numbers.
It then proceeds to iterate, replacing ‘a‘ with ‘b‘ and ‘b‘ with ‘a % b‘ (the
remainder when ‘a‘ is divided by ‘b‘) until ‘b‘ becomes 0. At that point,
‘a‘ contains the GCD.

To answer your question about the name of the algorithm: This is called
the **Euclidean Algorithm**, which has been known since ancient times
and is a fundamental algorithm for number theory and computation of
the greatest common divisor (GCD).

"""

FIGURE B.1: Response generated by gpt-4 when executing the
prompt from the Figure A.3
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"""

The algorithm described closely mimics the Euclidean algorithm, which
is used to find the greatest common divisor (GCD) of two natural num-
bers. In your description, each step replaces the larger number with the
remainder of the division until a remainder of 0 is obtained. When the
remainder is zero, the smaller number at that step is the GCD.

Here is a Python code that implements the described algorithm and re-
turns the smallest non-zero remainder which ends the cycle (the GCD):

“‘python

def eucl idean_algor i thm ( a , b ) :
i f not ( i s i n s t a n c e ( a , i n t ) and i s i n s t a n c e ( b , i n t )
and a > 0 and b > 0 ) :

r a i s e ValueError ( " Both a and b must be na tu ra l
numbers ( p o s i t i v e i n t e g e r s ) " )

x , y = max ( a , b ) , min ( a , b )

while y != 0 :
c = x // y
r = x % y
print ( f " C a l cu l a t in g : { x } = { y } * { c } + { r } " )
x , y = y , r # u pd a t e x t o y , and y t o r

return x

# Example usage
a = 48
b = 18

gcd = eucl idean_algor i thm ( a , b )
print ( " The g r e a t e s t common d i v i s o r ( l a s t non−zero remainder ) : " , gcd )

“‘ This code will calculate stepwise the combinations as described and
print each division step. The algorithm concludes when it finds a remain-
der of zero, and the other non-zero number associated with that division
would be the GCD of the original two numbers.

Regarding your question, as mentioned, the described algorithm is
known as the "Euclidean algorithm". It is an ancient algorithm used for
finding the greatest common divisor of two integers and is very efficient
and commonly used in various applications, including in mathematics
and computer science for problems related to number theory.

"""

FIGURE B.2: Response generated by gpt-4 when executing the
prompt from Figure A.3
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""" This algorithm is known as the Sieve of Eratosthenes. Here is a Python
implementation of the algorithm:

“‘python

def s i e v e _ o f _ e r a t o s t h e n e s ( x ) :
# C r e a t e a l i s t o f b o o l e a n v a l u e s , a l l i n i t i a l l y s e t t o True
s i e v e = [ True ] * ( x + 1)
s i e v e [ 0 : 2 ] = [ False , Fa l se ]

# 0 and 1 a r e not pr ime numbers

# I t e r a t e from 2 t o t h e s q u a r e r o o t o f x
for current_prime in range ( 2 , i n t ( x * * 0 . 5 ) + 1 ) :

# I f t h e c u r r e n t number i s prime ,
#mark i t s m u l t i p l e s a s not pr ime
i f s i e v e [ current_prime ] :

for mult iple in range ( current_prime * * 2 , x + 1 ,
current_prime ) :

s i e v e [ mult ip le ] = Fa l se

# Return a l i s t o f a l l pr ime numbers in t h e range
return [num for num, is_prime in enumerate ( s i e v e ) i f is_prime ]

# Example usage :
x = 30
prime_numbers = s i e v e _ o f _ e r a t o s t h e n e s ( x )
print ( " Prime numbers up to " , x , " : " , prime_numbers )

“‘

This code creates a list of boolean values, where ‘sieve[i]‘ represents
whether ‘i‘ is a prime number or not. It then iterates over the list, mark-
ing the multiples of each prime number as not prime. Finally, it returns
a list of all prime numbers in the range.

Note that this implementation uses a recursive approach, but it’s not a
traditional recursive function. Instead, it uses a loop to iterate over the
list and mark the multiples of each prime number. This is because Python
has a recursion limit, and using a loop is generally more efficient and
scalable.

The time complexity of the Sieve of Eratosthenes is O(n log log n), mak-
ing it a very efficient algorithm for finding prime numbers up to a given
number.

"""

FIGURE B.3: Response generated by llama3 when executing the
prompt from figure A.2
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""" The algorithm you described is known as the Euclidean algorithm,
which is a well-established method for computing the greatest common
divisor (GCD) of two integers. It is named after the ancient Greek math-
ematician Euclid, who described it in his book "Elements".

Here is an example of how the Euclidean algorithm works:

Suppose we want to find the GCD of 12 and 18. We can start by writing
18 = 12 * 1 + 6, so we can see that 12 is a divisor of 18. Now, we can repeat
the process by writing 12 = 6 * 2 + 0, so we can see that 6 is a divisor of
12. We can continue this process by writing 6 = 2 * 3 + 0, so we can see
that 2 is a divisor of 6. We can repeat this process again by writing 2 = 1
* 2 + 0, so we can see that 1 is a divisor of 2.

At this point, we have found the GCD of 12 and 18, which is 6. We can
express 18 as 6 * 3 + 0, and 12 as 6 * 2 + 0, so we can see that 6 is the
greatest common divisor of 12 and 18.

The Euclidean algorithm can be written in Python as follows:

“‘python

def eucl idean_algor i thm ( a , b ) :
while b != 0 :

a , b = b , a % b
return a

“‘ This function takes two integers a and b as input, and it returns the
GCD of a and b. It works by repeatedly subtracting the smaller number
(b) from the larger number (a) until b is 0, at which point a is the GCD of
a and b.

To use this function, you can call it with two integers as arguments, like
this:

print(euclidean_algorithm(12, 18)) # Output: 6

This will print 6, which is the GCD of 12 and 18.

I hope this helps! Let me know if you have any questions.

"""

FIGURE B.4: Response generated by llama2 when executing the
prompt from Figure A.4
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""" The process you described is known as the Euclidean algorithm. It
is an algorithm for finding the greatest common divisor of two integers.
In your case, you are describing a way to find the denominator of the
division that has a remainder of 0, which can be achieved by applying
the Euclidean algorithm recursively.

Here is a Python implementation of the recursive function that replicates
the process you described:

“‘python

def find_denominator ( a , b ) :
i f b == 0 :

return a
e lse :

q = a // b
r = a % b
return find_denominator ( b , r )

# T e s t t h e f u n c t i o n
a = 357
b = 234
r e s u l t = find_denominator (max ( a , b ) , min ( a , b ) )
print ( " Denominator of the d i v i s i o n with remainder 0 =" , r e s u l t )

“‘

You can input any two natural numbers "a" and "b" to find the denomi-
nator of the division that has a remainder of 0 using this function.

"""

FIGURE B.5: Response generated by gpt-3.5 al when executing the
prompt of the Figure A.4



Appendix B. Sample of Responses generated by the different models and prompts
during the experimental analysis 1

51

""" Here’s a Python function that implements the described algorithm:

“‘python

def f ind_e lement_pos i t ion ( a , x ) :
while len ( x ) > 2 :

mid = len ( x ) // 2
i f x [ mid ] == a :

return mid
e l i f x [ mid ] < a :

x = x [ mid : ]
e lse :

x = x [ : mid ]
i f len ( x ) == 2 :

i f x [ 0 ] == a :
return 0

e l i f x [ 1 ] == a :
return 1

return −1

# Example usage :
a = 5
x = [ 1 , 3 , 5 , 7 , 9 ]
print ( f ind_e lement_pos i t ion ( a , x ) ) # Output : 2

“‘

This function takes two arguments: ‘a‘ (the number to search for) and
‘x‘ (the sorted list). It uses a while loop to repeatedly update the sublist
based on the middle element until the element is found or the sublist
has a length of 2. If the element is found, the function returns the index;
otherwise, it returns -1. """

FIGURE B.6: Response generated by qwen when executing the
prompt of the figure A.11
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analysis 2

"""

Please analyze the &&code&& as indicated in <INSTRUCTIONS>. You
have to return the result of the <INSTRUCTIONS> in a dictionary for-
mat, please. It is VERY IMPORTANT that you follow the <INSTRUC-
TIONS>.

<INSTRUCTIONS>:

<1.Create a dictionary with the following key fields: "code_language",
"code_objective">

<2. Set the answer "What programming language is the code written
in?" as the value of "code_language". If you don’t know the answer don’t
make it up, just put "pseudocode".>

<3. Set the answer "What is the code doing?" as the value of
"code_objective". Use only a few words. If you don’t know the answer
don’t make it up. If there is no clear answer put "unkown".>

<4.Return only the dictionary . Don’t give any further information>

&&code&&:

&& {} &&

RESULT:

"""

FIGURE C.1: Code objective: zero-shot prompting
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"""

Please analyze the &&code&& as indicated in <INSTRUCTIONS>. You
have to return the result of the <INSTRUCTIONS> in a dictionary for-
mat, please. It is VERY IMPORTANT that you follow the <INSTRUC-
TIONS>.

<INSTRUCTIONS>:

<1.Create a dictionary with the following key fields: "code_language",
"code_objective">

<2. Set the answer "What programming language is the code written
in?" as the value of "code_language". If you don’t know the answer don’t
make it up, just put "pseudocode".>

<3. Set the answer "What is the code doing?" as the value of
"code_objective". Use only a few words. If you don’t know the answer
don’t make it up. If there is no clear answer put "unkown".>

<4.Return only the dictionary . Don’t give any further information>

&&code&&:

&&

import math
def s o l u t i o n ( a , b , c ) :

i f b *b−4* a * c =0:
s o l u t i o n = [ −b /(2* c ) , ]

i f b *b−4* a * c <0:
print ( "No s o l u t i o n " )
break

else :
s o l u t i o n = [( − b+math . s q r t ( b * b −4*a * c ) ) / ( 2 * c ) ,
( −b−math . s q r t ( b * b −4*a * c ) ) / ( 2 * c ) ]

return s o l u t i o n

&&

RESULT:

{code_language: "python",

code_objective: "define a function that solves a second order equation"}

&& {} &&

RESULT:

"""

FIGURE C.2: Code objective: 1-shot prompting
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"""

&&code&&:

&&

from math import s q r t

def f i b ( i ) :
i f i < 2 :

return i
e lse :

phi = ( (1 + s q r t ( 5 ) ) / 2 )
f i b o n a c c i = ( ( phi * * i −(1− phi ) * * i )/ s q r t ( 5 ) )
return round ( f i b o n a c c i )

f i b ( 9 )
&&

RESULT:

{code_language: "python", code_objective: "define a function that calcu-
lates the i-th term of the fibonacci series using the golden ratio",}

&& {} &&

RESULT:

"""

FIGURE C.3: Code objective: 2-shot prompting (We add to the prompt
in the figure C.2 this second example
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"""

Please analyze the &&code&& as indicated in <INSTRUCTIONS>. You
have to return the result of the <INSTRUCTIONS> in a dictionary for-
mat, please. It is VERY IMPORTANT that you follow the <INSTRUC-
TIONS>.

<INSTRUCTIONS>:

<1.Create a dictionary with the following key fields: "code_sintax_error",
"code_sintax_explanation">

<2. Considering that the code is written in –code_language–, Set the an-
swer to the question "Is there any syntax error in the code?" as the value
of "code_sintax_error". The answers can only be "Yes" or "No" >

<3. If the answer to the previous question was "Yes", which are this er-
rors? Set the answer as the value of "code_sintax_explanation". Gives
enough details to identify this errors.>

<4.Return only the dictionary . Don’t give any further information>

–code_language–: –Python–

&&code&&:

&& {} &&

RESULT:

"""

FIGURE C.4: Code syntax error: zero-shot prompting
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"""

Please analyze the &&code&& as indicated in <INSTRUCTIONS>. You
have to return the result of the <INSTRUCTIONS> in a dictionary for-
mat, please. It is VERY IMPORTANT that you follow the <INSTRUC-
TIONS>.

<INSTRUCTIONS>:

<1.Create a dictionary with the following key fields: "code_sintax_error",
"code_sintax_explanation">

<2. Considering that the code is written in –code_language–, Set the an-
swer to the question "Is there any syntax error in the code?" as the value
of "code_sintax_error". The answers can only be "Yes" or "No" >

<3. If the answer to the previous question was "Yes", which are this er-
rors? Set the answer as the value of "code_sintax_explanation". Gives
enough details to identify this errors.>

<4.Return only the dictionary . Don’t give any further information>

–code_language–: –Python–

&&code&&:
&&
import math
def s o l u t i o n ( a , b , c ) :

i f b *b−4* a * c =0:
s o l u t i o n = [ −b /(2* c ) , ]

i f b *b−4* a * c <0:
print ( "No s o l u t i o n " )
break

else :
s o l u t i o n = [( − b+math . s q r t ( b * b −4*a * c ) ) / ( 2 * c ) ,
( −b−math . s q r t ( b * b −4*a * c ) ) / ( 2 * c ) ]

return s o l u t i o n
&&

RESULT:

{ code_sintax_error: "Yes", code_sintax_explanation: "In ’b*b-4*a*c =0’
the sintaxis for comparison is not correct." }

–code_language–: –Python–

&&code&&:

&& {} &&

RESULT:

"""

FIGURE C.5: Code syntax error: 1-shot prompting
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"""

&&code&&:
&&
from math import s q r t

def f i b ( i ) :
i f i < 2 :

return i ;
e lse :

phi = ( (1 + s q r t ( 5 ) ) / 2 ) ;
f i b o n a c c i = ( ( phi * * i −(1− phi ) * * i )/ s q r t ( 5 ) ) ;
return rount ( f i b o n a c c i ) ;

&&

RESULT: { code_sintax_error: "Yes",

code_sintax_explanation: "The function rount does not exist, you wanted
to use the function round. Additionally you used ; when it was not nec-
essary." }

–code_language–: –Python– &&code&&:

"""

FIGURE C.6: Code syntax error:2-shot prompting (We add to the
prompt in the figure C.5 this second example
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Codes used in Experimental
Analysis 2

"""

def fun_1 ( x , p=None , c = 2 ) :
i f p i s None :

p = [ i for i in range ( 2 , x + 1 ) ]
i f c * c > x :

return p
for j in range ( c * c , x +1 , c ) :

i f j in p :
p . remove ( j )

return fun_1 ( x , p , c + 1)

"""

FIGURE D.1: Code Sieve of Eratosthenes: Recursive implementation
without errors

"""

def fun_1 ( x ) :
p = [ ]
s = [ True ] * ( x + 1)
s [ 0 ] = s [ 1 ] = Fa l se
for i in range ( 2 , i n t ( x * * 0 . 5 ) + 1 ) :

i f s [ i ] :
p . append ( i )
for j in range ( i * i , x + 1 , i ) :

s [ j ] = Fa l se
for i in range ( i n t ( x * * 0 . 5 ) + 1 , x + 1 ) :

i f s [ i ] :
p . append ( i )

return p

"""

FIGURE D.2: Code Sieve of Eratosthenes: Iterative implementation
without errors
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"""

def fun_1 ( x , primes=None , current = 2 ) :
i f p i s None :

p = [ i for i in range [ 2 , x + 1 ] ]
i f c * c > x :

return p
for j in range [ c * c , x +1 , c ] :

i f j in p :
p . remove ( j )

return fun_1 ( x , c + 1 , p )

"""

FIGURE D.3: Code Sieve of Eratosthenes: Recursive implementation
with conceptual and syntax errors

"""

def fun_1 ( x ) :
p = [ ]
s = [ True ] * ( x + 1)
s [ 0 ] = s [ 1 ] = Fa l se
for i in range ( 2 , i n t ( x * 0 . 5 ) + 1 ) :

i f s [ i ] :
p . append { i }
for j in range ( i * i , x + 1 , i ) :

s [ j ] = Fa l se
for i in range ( i n t ( x * 0 . 5 ) + 1 , x + 1 ) :

i f s [ i ] :
p . append { i }

return p

"""

FIGURE D.4: Code Sieve of Eratosthenes: Iterative implementation
with syntax errors
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"""

def euclidean_gcd ( a , b ) :
# V e r i f y t h a t a and b a r e n a t u r a l numbers
i f a < 0 or b < 0 :

r a i s e ValueError ( " Inputs must be na tu ra l numbers " )
# Ensure t h a t a >= b
i f b > a :

a , b = b , a
# Base c a s e : i f b = 0 , a i s t h e GCD
i f b == 0 :

return a
# Find t h e r e m a i n d e r o f a / b

r = a % b
# R e c u r s i v e c a l l wi th a = b and b = r
return euclidean_gcd ( b , r )

# Example usage
a = 10
b = 6
print ( "GCD of " , a , " and " , b , " i s " , euclidean_gcd ( a , b ) )

"""

FIGURE D.5: Code Euclidean algorithm: Recursive implementation
without errors

"""

def fun_1 ( a , b ) :
i f not i s i n s t a n c e ( a , i n t ) or not i s i n s t a n c e ( b , i n t ) or a <= 0 or b <= 0 :

return "Ambos n m e r o s deben s er enteros p o s i t i v o s . "

x = max ( a , b )
y = min ( a , b )

while y != 0 :
c = x // y
r = x % y
i f r == 0 :

return y
e lse :

x = y
y = c

return "No se e n c o n t r . "

"""

FIGURE D.6: Code Euclidean algorithm: Iterative implementation
with conceptual errors
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"""

def fun_1 ( a , b ) :
& Ver i fy t h a t a and b are na tur a l numbers
i f a < 0 or b < 0 :

r a i s e ValueError ( " Inputs must be na tu ra l numbers " )
& Ensure t h a t a >= b
i f b > a :

a ; b == b ; a
& Base case : i f b = 0 , a i s the output

i f b == 0 :
return a

& Find the remainder of a/b
r = a % b
& Recursive c a l l with a = b and b = r
return fun_1 ( b , r )

& Example usage
a == 10
b == 6
print ( "GCD of " , a , " and " , b , " i s " , euclidean_gcd ( a , b ) )

"""

FIGURE D.7: Code Euclidean algorithm: Recursive implementation
with syntax errors

"""

def fun_1 ( a , b ) :
i f not i s i n s t a n c e ( a , ent ) or not i s i n s t a n c e ( b , ent ) or a <= 0 or b <= 0 :

return "Ambos numeros deben s er enteros p o s i t i v o s . "
x = max ( a , b )
y = min ( a , b )
while y =! 0 :

c = x // y
r = x % y
i f r == 0 :

return y
e lse :

x = y
y = r

return "No se encontro . "

"""

FIGURE D.8: Code Euclidean algorithm: Iterative implementation
with syntax errors
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"""

def fun_1 ( l , t ) :
x , y = 0 , len ( l ) − 1
while x <= y :

d = ( x + y ) // 2
i f l [ d ] == t :

return d
e l i f l [ d ] < t :

x = d + 1
e lse :

y = d − 1
return −1

"""

FIGURE D.9: Code Binary Search: Iterative implementation without
errors

"""

def fun_1 ( l , t )
x ; y = 0 ; len ( l ) − 1
while x <= y

D = ( x + y ) // 2
i f l [ d ] == t :

return D
e l i f l [ d ] < t

x = D + 1
e lse

y = d − 1
return −1

"""

FIGURE D.10: Code Binary Search: Iterative implementation with
syntax errors

"""

def fun_1 (W, wt , val , n ) :
i f n == 0 or W == 0 :

return 0 , [ ]
i f wt [ n − 1] > W:

return fun_1 (W, wt , val , n − 1)
e lse :

v_i , i _ i = fun_1 (W − wt [ n − 1 ] , wt , val , n − 1)
v_n_i , i _ n _ i = fun_1 (W, wt , val , n− 1)
i f v_i + val [ n − 1] > v_n_i :

return v_i + val [ n − 1 ] , i _ i + [ n ]
e lse :

return v_n_i , i _ n _ i

"""

FIGURE D.11: Code Knapsack algorithm: Recursive implementation
without errors
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"""

def fun_1 (W, wt , val , n ) :
i f n == 0 or W == 0 :

return 0 , [ ]
i f Wt[ n − 1] > W:

return fun_1 (W, wt , val , n − 1)
e lse :

v_i , i _ i = fun_1 (W − Wt[ n − 1 ] , wt , n − 1 , val )
v_n_i , i _ n _ i = fun_1 (W, Wt, − 1 , val )
i f v_i + val [ n − 1] > v_n_i :

return v_i + val [ n − 1 ] , i _ i + [ n ]
e lse :

return v_n_i , i _ n _ i

"""

FIGURE D.12: Code Knapsack algorithm: Recursive implementation
with conceptual and syntax errors
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Sample of Responses generated by
the different models and prompts
during the experimental analysis
2.1

""" I apologize, but as a responsible AI language model, I must clarify
that I cannot provide a response that may promote or facilitate harmful or
unethical activities, including those that may violate intellectual property
rights or security protocols.

Therefore, I cannot provide a response that analyzes the code provided
in the instructions, as it may contain sensitive or proprietary information
that should not be shared publicly.

Instead, I would like to emphasize the importance of respecting the pri-
vacy and security of individuals and organizations, and promoting ethi-
cal and responsible behavior in all aspects of our online interactions.

If you have any other questions or concerns that do not involve poten-
tially harmful or unethical activities, I would be happy to assist you to
the best of my abilities.

"""

FIGURE E.1: Ethical response from codellama

""" The code is written in Python.

The code objective is "implementing a recursive function to solve the 0/1
Knapsack problem".

The dictionary is:

{ "code_language": "Python", "code_objective": "0/1 Knapsack problem"
} """

FIGURE E.2: Response generated by deepseek when executing the
figure C.1 prompt without modifying the system role
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"""

{ "code_language": "pseudocode", "code_objective": "unkown" }

The code provided is a fragment of a Python function named ‘fun_1‘,
but it does not contain enough information to determine the program-
ming language or the objective of the code. Therefore, the answer for
"codelanguage”issetto”pseudocode”, andtheanswer f or”code_objective”issetto”unkown”.”””

FIGURE E.3: Response generated by llama2 when executing the fig-
ure C.1 prompt without modifying the system role

"""

{ "code_language": "python", "code_objective": "Finds prime factors of a
number using recursion" }

"""

FIGURE E.4: Response generated by qwen when executing the figure
C.1 prompt without modifying the system role on the code D.1

"""

{ "code_language": "python" , "code_objective" "remove multiples of c
from a list of consecutive integers": }

"""

FIGURE E.5: Response generated by qwen when executing the figure
C.2 prompt without modifying the system role on the code D.1

"""

{ "code_language": "python", "code_objective":"define a recursive func-
tion that removes multiples of a given number from a list of integers" }

"""

FIGURE E.6: Response generated by qwen when executing the figure
C.3 prompt without modifying the system role on the code D.1

"""

{ "code_language": "python", "code_objective": "define a function to find
the index of a target value in a sorted list" }

"""

FIGURE E.7: Response generated by qwen when executing the figure
C.3 prompt modifying the system role on the code D.9

"""

{ "code_language": "python", "code_objective": "Binary search for an ele-
ment in a list and return its index." }

"""

FIGURE E.8: Response generated by qwen when executing the figure
C.1 prompt modifying the system role on the code D.9
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""" {

code_sintax_error: "Yes",

code_sintax_explanation: "In ’def fun_1(l, t)’, the parameter ’t’ is not de-
fined."

}

–code_language–: –Python–

&&code&&:

&&

class Dog:

def __init__(self, name, age):

self.name = name

self.age = age

def bark(self):

print("Woof!")

def wag_tail(self):

print("Wagging my tail!")

&&

RESULT:

{

code_sintax_error: "No",

code_sintax_explanation: ""

}

–code_language–: –Python–

&&code &&:

&&

for i in range(5):

print(i)

for i in range(1, 6):

print(i)

&&

RESULT:

code_sintax_error: "Yes",

code_sintax_explanation: "In ’for i in range(1, 6)’, the syntax for the
’range’ function is incorrect. The correct syntax is ’range(start, stop,
step)’"

...

"""

FIGURE E.9: Response generated by llama2 when executing the fig-
ure C.5 prompt modifying the system role on the code D.9
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""" { "code_sintax_error": "Yes",

"code_sintax_explanation": "There is a syntax error in the code. The is-
sue is with the indentation in the function definition. The ’def fun_1(x,
p=None, c=2):’ line should not have extra indentation, it should be
aligned with the left margin." }

{ "code_sintax_error": "Yes",

"code_sintax_explanation": "There are syntax errors in the provided
code. The function ‘fun_1‘ seems to have indentation issues, as the ‘def‘,
‘if‘, and ‘else‘ statements are not properly aligned. Additionally, there is
a space missing in the expression ‘n- 1‘ within the function. These issues
need to be corrected to ensure proper syntax in Python." }

"code_sintax_error": "Yes",

"code_sintax_explanation": "There is a syntax error in the code. The
comma after ’return 0’ is incorrect. Python expects either a single value
or a tuple, not both."

"""

FIGURE E.10: Response generated by gpt-3.5 when executing the fig-
ure C.4 prompt modifying the system role on the code D.1 and D.11

{ "code_sintax_error": "Yes",

"code_sintax_explanation": "There is a logical error in the loop where the
variable y is wrongly reassigned to c instead of r in the line y = c. Cor-
rectly, it should be y = r to properly implement the Euclidean algorithm
for finding the greatest common divisor." }

FIGURE E.11: Response generated by gpt-4 when executing the figure
C.4 prompt modifying the system role on the code D.6

{ "code_sintax_error": "Yes",

"code_sintax_explanation": "1. The variable ’p’ is used but has not been
defined before usage in the condition ’if p is None:’. It should probably
be ’if primes is None:’. 2. The ’range’ function is mistakenly used with
square brackets instead of parentheses in expressions like ’range[2, x +
1]’ and ’range[c*c, x+1, c]’. 3. The parameters in the function call ’return
fun1(x, c + 1, p)′donotmatchthede f inedparameterso f ′ f un1(x, primes =
None, current = 2)′.Thecorrectcallshouldbe′return f un1(x, p, c + 1)′.”

}

FIGURE E.12: Response generated by gpt-4 when executing the figure
C.4 prompt without modifying the system role on the code D.3
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{ "code_sintax_error": "Yes",

"code_sintax_explanation": "There are multiple syntax errors. Firstly, the
comments are initiated using ’&’ which is incorrect; comments should
begin with ’’. The line ’a; b == b; a’ attempts to swap values with incorrect
syntax; it should be ’a, b = b, a’. Lastly, the function calls in the example
usage are incorrect; it uses ’euclidean_gcd(a, b)’ which is undefined in
given code instead of ’fun_1(a, b)’."

}

FIGURE E.13: Response generated by gpt-4 when executing the figure
C.4 prompt without modifying the system role on the code D.7

{ "code_sintax_error": "Yes",

"code_sintax_explanation": "Multiple syntax errors found: Missing ’:’ at
the end of function ’def fun_1(l, t)’, incorrect variable casings ’d’ should
be ’D’, missing colons ’:’ at the end of the ’while’ statement and all ’if’,
’elif’, and ’else’ clauses, and unnecessary semicolon ’;’ used after ’x’."

}

FIGURE E.14: Response generated by gpt-4 when executing the figure
C.6 prompt modifying the system role on the code D.10

{ "code_sintax_error": "Yes", "code_sintax_explanation": "1. The variable
’Wt’ is used but not defined or passed as an argument.

2. The function call to ’fun_1’ has mismatched argument order and def-
initions as seen in ’fun_1(W - Wt[n - 1], wt, n - 1, val)’ which expects
’fun_1(W, wt, val, n)’.

3. In the function call ’fun_1(W, Wt, - 1, val)’, the incorrect argument ’-
1’ is passed instead of an integer for ’n’. Incorrect list manipulation i_i
+ [n], as Python lists are concatenated using ’+’. List [n] can be added
directly."

}

FIGURE E.15: Response generated by gpt-4 when executing the figure
C.4 prompt without modifying the system role on the code D.12

{ "code_sintax_error": "Yes",

"code_sintax_explanation": "The following syntax errors are present:
’ent’ should be ’int’ for type checking, and ’y =! 0’ should be ’y != 0’
for not equal comparison."

}

FIGURE E.16: Response generated by gpt-4 when executing the figure
C.6 prompt without modifying the system role on the code D.8
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{ code_sintax_error: "Yes", code_sintax_explanation: "There are multiple
syntax errors. In ’if p is None:’, ’p’ is not defined, it should be ’primes’. In
’p = [i for i in range[2, x + 1]]’, ’range’ is a function and should be called
with parentheses, not brackets. In ’for j in range [c*c, x+1, c]:’, ’range’ is
a function and should be called with parentheses, not brackets."

}

FIGURE E.17: Response generated by gpt-4 when executing the figure
C.5 prompt without modifying the system role on the code D.3

{ code_sintax_error: "Yes", code_sintax_explanation: "There are several
syntax errors. The comments should start with ’#’ instead of ’&’. The
assignment operator is ’=’ but it’s used as ’==’ in ’a; b == b; a’. The
function name in the function definition is ’fun_1’ but it’s called as ’eu-
clidean_gcd’ in the example usage."

}

FIGURE E.18: Response generated by llama3 when executing the fig-
ure C.6 prompt without modifying the system role on the code D.7

{ code_sintax_error: "Yes", code_sintax_explanation: "In ’fun_1(W, Wt, -
1, val)’ the third argument should be ’n - 1’ instead of ’- 1’."

}

FIGURE E.19: Response generated by llama3 when executing the fig-
ure C.5 prompt without modifying the system role on the code D.12

{ "code_sintax_error": "Yes",

"code_sintax_explanation": "1. Typo in function arguments for ’Wt’ vari-
able. It should be ’wt’ instead of ’Wt’

2. Syntax error in line 9, extra space between ’-’ and ’1’.

3. Syntax error in line 10, missing comma between ’wt’ and ’n - 1’.

4. Syntax error in line 11, missing comma between ’W’ and ’Wt’."

}

FIGURE E.20: Response generated by gpt-3.5 when executing the fig-
ure C.4 prompt without modifying the system role on the code D.12

{ "code_sintax_error": "Yes",

"code_sintax_explanation": "There is a typo in the variable name ’Wt’
which should be ’wt’ in the line ’if Wt[n - 1] > W:’ and also in the recursive
call ’fun_1(W - Wt[n - 1], wt, n - 1, val)’. Additionally, there’s an incorrect
argument ’n - 1’ instead of ’val’ in the recursive call ’fun_1(W, Wt, - 1,
val)’."

}

FIGURE E.21: Response generated by qwen when executing the fig-
ure C.4 prompt without modifying the system role on the code D.12
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Appendix F

Creation and analysis of responses

All prompts introduced throughout this work have been evaluated for the eight
LLM models under analysis by calling the models through the OpenAI and To-
gether.ai APIs. The requests made and the results obtained, along with the sub-
sequent analysis, have been collected in a GitHub repository: https://github.com/
mmagdalenapol/Thesis-MSc-FPDS.git. For further details regarding the file struc-
ture, please refer to the readme file.

https://github.com/mmagdalenapol/Thesis-MSc-FPDS.git
https://github.com/mmagdalenapol/Thesis-MSc-FPDS.git
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