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Abstract: Device-independent quantum key distribution (DIQKD) is the pinnacle of secure com-
munication over an untrusted channel. Its security is based solely on the classical data observed by
the honest parties attempting to establish a shared secret key. Despite DIQKD’s unrivalled secu-
rity, real-world implementations are subject to noise, which limits its effective range. Traditionally,
DIQKD has been based on measurements performed on an entangled pair of qubits. In this work,
we explore the use of higher-dimensional systems as a way to improve its resilience to noise. To
do this, we consider convex-combination attacks, which provide easy-to-compute upper bounds on
DIQKD key rates. Our results show that using higher-dimensional states only provides a small
improvement in resilience to noise, which may not justify the added experimental complexity.

I. INTRODUCTION

Cryptography is the study of secure communication. It
aims to establish protocols that allow two honest parties
(Alice and Bob) to exchange messages without an eaves-
dropper (Eve) being able to access them. During the
twentieth century, with the development of long-distance
communication, the need arose for a method of sharing
secret information without physically meeting with the
other party. The RSA (Rivest-Shamir-Adleman) public-
key cryptosystem [1] was meant to solve this problem
by having the recipient hold two large prime numbers
and publicly announce their product. The product can
then be used by anyone to encrypt a message, but the
prime factors are needed to decrypt it. An eavesdropper
therefore has to factor the product in order to decode the
message. The security of this kind of protocol, which is
used to this day, is based on the fact that factoring the
product of two large prime numbers is a computationally
hard problem. Nonetheless, as computational power in-
creases and new technologies such as quantum computing
emerge, this could soon change [2].

Quantum key distribution (QKD) offers a solution to
this problem. In each round of a QKD protocol, Alice
and Bob share a quantum system and perform measure-
ments on it in order to generate a secret key known only
by them. This key can then be used to encode a mes-
sage. With QKD, the probability of Eve guessing the
key does not depend on her computational power. In-
stead, the security of these protocols is based on the laws
of physics. These guarantee that any attempt at eaves-
dropping will introduce errors and be detected by the
honest parties [3]. In QKD, the underlying assumption is
that the physical apparatus employed precisely conforms
to its theoretical description based on quantum mechan-
ics. This can be difficult to verify, and a small deviation
can allow an eavesdropper to compromise the protocol.

Device-independent quantum key distribution (DIQKD)
aims to remove all assumptions about the physical im-
plementation of the protocol by basing its security solely
on the observed correlations between the outcomes of Al-
ice and Bob’s measurements.

The key ingredient that makes DIQKD possible is a
large violation of a Bell inequality. The simplest Bell in-
equality involves two parties (Alice and Bob), who are
far apart and perform measurements on some appara-
tus. They can choose between two measurement set-
tings indexed by x, y ∈ {1, 2}, and they each get one
of two outcomes indexed by a, b ∈ {1, 2}. By doing this,
they can find the probability distribution pAB(a, b|x, y).
If their observed correlations come from a common
source, then the joint probabilities can be expressed as
plocAB(a, b|x, y) =

∫
λ
p(λ)pA(a|λ, x)pB(b|λ, y)dλ. Such dis-

tributions are called local. A Bell inequality is a lin-
ear combination I =

∑
a,b,x,y ca,b,x,ypAB(a, b|x, y), which

we refer to as the Bell expression, along with the max-
imum value of I that can be achieved by a local dis-
tribution, which we call the local bound and label Cb.
When giving a Bell inequality we write I ≤ Cb. In the
scenario described with two settings and outcomes there
is only one relevant Bell inequality, which is the CHSH
inequality [4]. The CHSH expression is I := E(a1, b1) −
E(a1, b2)+E(a2, b1)+E(a2, b2), where E(ax, by) = p(a =
b|x, y) − p(a ̸= b|x, y). Its local bound is 2. However, if
measurements are performed on a shared quantum sys-
tem, the maximum value of I increases to 2

√
2. This can

be generalised to a larger number of parties, measure-
ments, and outcomes, and shows that the correlations
observed by performing measurements on a multipartite
quantum system can be non-local.

Interestingly, if we assume that quantum mechanics
is valid, the maximum violation of some Bell inequalities
can only be achieved by certain states and measurements.
This allows for self-testing. In other words, just by study-
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ing the statistics of an experiment, one can characterise
the physical system and measurements being used [5].
For QKD protocols using these states and measurements,
no assumptions about their implementation are required,
which makes them device-independent.

In any experimental implementation of DIQKD, there
is always some noise that scales with distance. This lim-
its the maximum observable Bell violation and can com-
promise the security of the protocol. There have been
many studies on establishing how much noise is tolera-
ble [6, 7], and experimental implementations have been
demonstrated by Nadlinger et al. [8] and Zhang et al.
[9]. However, robustness of DIQKD to noise must be im-
proved in order to scale it up to longer distances. One
way to do this is to explore higher-dimensional states,
since most protocols are based on qubits.

The security of a QKD protocol is quantified by its key
rate r, which is the number of secure key bits generated
per round of the protocol. Traditionally, QKD is per-
formed by having Alice and Bob share an entangled pair
of qubits, which are two-level quantum systems. How-
ever, in this work we use more general d-level quantum
systems, which we refer to as qudits. For this reason, we
will use logarithms base d instead of base 2 when calcu-
lating the key rate. Hence, its value will be given in d-its
rather than bits. Additionally, in this work we focus on
the asymptotic key rate (hereafter simply referred to as
the key rate), for which the number of protocol rounds
goes to infinity. In general, we want to find the minimum
experimental requirements for the key rate to be positive
and, in particular, the maximum amount of noise tol-
erable. To calculate the key rate, we must assume that
the most powerful possible eavesdropper exploits any im-
perfections in the protocol due to noise. Even though
significant progress has been made on this front during
the last decade [10], such security proofs are difficult to
perform and yield experimental requirements that can
be lowered when considering more accurate characteri-
sations of Eve’s power. An alternative approach is to
consider a specific attack on the protocol. This provides
an upper bound on the key rate and hence a lower bound
on the experimental requirements. In this paper we focus
on the latter approach. We consider the attack proposed
by  Lukanowski et al. [7] and generalise it to protocols us-
ing higher-dimensional states to find an upper bound on
their key rate and answer the question of whether they
offer a significant advantage.

II. SCENARIO

In each round of the protocols we consider, Alice per-
forms a measurement according to a random variable X,
indexed by x ∈ {1, . . . ,mA}. We call x the measurement
setting. She then obtains an outcome a ∈ {1, . . . , nA},
corresponding to a random variable A. Similarly, Bob
performs a measurement according to a random variable
Y , indexed by y ∈ {1, . . . ,mB}, and obtains an outcome
b ∈ {1, . . . , nB}, corresponding to a random variable B.

After a certain number of rounds, the honest parties
publicly announce some of their settings and outcomes.
This allows them to determine pobsAB(a, b|x, y). They can
then distil a shared secret key through two kinds of public
discussion, referred to as privacy amplification (PA) and
error correction (EC). This communication can be either
one-way (e.g. from Alice to Bob) or two-way. In this
work, we only consider one-way communication.

From here on, we take the number of outcomes nA and
nB to be equal to the dimension d of Alice and Bob’s
shared system. We also set mA = 2 and mB = 3. The
measurements corresponding to x, y ∈ {1, 2} are chosen
so as to maximise the violation of a Bell inequality. Bob’s
extra setting y = 3 is chosen to maximise the correlation
of his outcomes with Alice’s when she chooses x = 2.
We refer to the pair (x∗, y∗) = (2, 3) as the key settings.
The rounds in which these settings are chosen are used
to generate the shared secret key. In our focus on the
asymptotic key rate, we operate under the assumption
that the key settings are selected with a probability ap-
proaching certainty, that is, almost surely or with a prob-
ability of 1. This approach maximises the key rate, while
simultaneously enabling Alice and Bob to accurately de-
termine the complete probability distribution, a process
facilitated by the infinite number of rounds.

III. THE CONVEX-COMBINATION ATTACK

As stated before, we can consider a specific attack in
order to obtain an upper bound on the key rate. An at-
tack can broadly be defined as a method used by Eve to
intercept the secret key. We consider individual attacks,
in which Eve holds a higher-dimensional state involving
Alice, Bob and herself such that the correlation observed
by Alice and Bob is recovered on average. At the end of
each round, Eve records an instance of a random vari-
able E based on a measurement she performs on this
state, the outcome of which is correlated with Alice’s and
Bob’s. This is fully described by a tripartite correlation
pABE(a, b, e|x, y) involving Eve that must satisfy∑

e

pABE(a, b, e|x, y) = pobsAB(a, b|x, y) ∀x, y. (1)

For any such attack, the following expression provides
an upper bound on the key rate [11, 12]

r ≤ H(A|E, x = x∗)−H(A|B, x = x∗, y = y∗) =: rub
(2)

where H(A|E, x = x∗) is the conditional entropy of Al-
ice’s outcomes given Eve’s, andH(A|B, x = x∗, y = y∗) is
the conditional entropy of Alice’s outcomes given Bob’s.
Henceforth, we omit the measurement settings, which we
take to be the key settings. H(Y |X) can be understood
as X’s ignorance of Y ’s outcomes. We refer to H(A|E)
as the PA-term, and to H(A|B) as the EC-term. On the
one hand, the PA-term can be interpreted as the number
of bits per round available to Alice after she compresses
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her outcomes so that they are no longer correlated with
Eve’s. On the other hand, the EC-term can be seen as
the number of bits that Alice must publicly announce to
ensure that Bob has a key that perfectly matches hers.

Specifically, we consider convex-combination (CC) at-
tacks [7]. These are individual attacks in which Eve dis-
tributes, in each round, either a local bipartite correla-
tion pLAB with probability qL, or a non-local one pNL

AB
with probability qNL = 1 − qL. These must satisfy

qLpLAB(a, b|x, y) + qNLpNL
AB (a, b|x, y) = pobsAB(a, b|x, y)

(3)
∀a, b, x, y. Since the space of local correlations L is
a polytope, each local correlation pLAB(a, b|x, y) within
it can be decomposed as a convex combination of its

vertices p
L,(i)
AB , which are local deterministic strategies.

That is, pLAB(a, b|x, y) =
∑

i γip
L,(i)
AB (a, b|x, y) with γi ∈

[0, 1]∀i. Therefore, in each round, Eve can distribute the

deterministic strategy p
L,(i)
AB with probability qLi = γiq

L.
By keeping track of which deterministic strategies she
distributes, she gains perfect knowledge of Alice’s and
Bob’s outcomes in the local rounds. On the contrary,
we make the overpessimistic assumption that Eve has no
knowledge of the outcomes in the non-local rounds. If
she did, this would only improve the attack and lead to
a tighter upper bound on the key rate [7].

Eve’s goal can be expressed in terms of the following
linear optimisation problem [7]:

Find a vector q := (qL, qNL)

that maximises qL ≡ (1, 1, . . . , 1, 0) · q
subject to (1, 1, . . . , 1) · q = 1

0 ≤ q ≤ 1

q · (pL
AB, p

NL
AB ) = pobsAB

(4)

where pL
AB = {pL,(i)

AB }i is the set of all local deterministic
strategies, pNL

AB is the chosen non-local correlation, and
pobsAB is the observed correlation.

Geometrically, once pNL
AB is fixed, this corresponds to

finding the point along the segment connecting pNL
AB and

pobsAB that lies on the boundary of L, as shown in Fig. 1.
As noted above, certain non-local correlations uniquely

identify a state and measurements. Nevertheless, if there
is some amount of noise, pobsAB inevitably deviates from
this behaviour. We account for noise by using the finite
visibility model [7]. In this model, we assume that Alice
and Bob succeed in sharing the intended state with prob-
ability V ∈ [0, 1], and that otherwise their outcomes are
uniformly random. If pidealAB is the noise-free correlation
they intend to share, then the correlation they observe is

pobsAB(a, b|x, y) = V pidealAB (a, b|x, y) +
1 − V

d2
(5)

where d is the dimension of their shared quantum system.
In this work, we assume that the non-local correlation

used by Eve is the same as the noise-free correlation used

FIG. 1. Diagram of the local set of correlations L, which is
a polytope, and the quantum set Q, which contains L. Eve
distributes a combination of a local correlation pLAB ∈ L and
a non-local one pNL

AB ∈ Q \ L, resulting in pobsAB . Therefore,
pLAB must lie on the segment connecting pNL

AB and pobsAB . To
maximise the local weight, pLAB must be as close as possible
to pobsAB , that is, on the boundary of L.

by Alice and Bob, i.e. pNL
AB = pidealAB . We do this in order

to find an upper bound on the key rate in the full range of
visibilities V ∈ [0, 1]. If Eve were to use a non-local corre-
lation different from Alice and Bob’s, then in the limit of
V → 1 the CC attack would become unfeasible. In par-
ticular, we consider two non-local correlations, which are
those that maximally violate the inequalities introduced
by Salavrakos et al. [13] and Collins et al. [14], respec-
tively. We refer to the latter as the CGLMP-inequality.

Salavrakos’ inequality is tailored to be maximally
violated by the maximally entangled state |ψmax⟩ =

(1/
√
d)

∑d
q=1 |qq⟩ when using optimal measurements,

which we refer to as the CGLMP-optimal measurements
[13]. These measurements also lead to the maximal vio-
lation of the CGLMP-inequality by this state [14]. How-
ever, a larger violation can be achieved by another state,
which we refer to as the CGLMP state [15].

IV. UPPER BOUNDS

As mentioned previously, our goal is to find the point
along the segment connecting pNL

AB and pobsAB that lies on
the boundary of L. To identify non-locality, we use the
CGLMP-inequality, since it coincides with a facet of the
local polytope [16]. This inequality is expressed as [14]

Id =

[d/2]−1∑
k=0

(
1 − 2k

d− 1

){
p(A1 = B1 + k)

+ p(B1 = A2 + k + 1) + p(A2 = B2 + k)

+ p(B2 = A1 + k) − p(A1 = B1 − k − 1)

− p(B1 = A2 − k) − p(A2 = B2 − k − 1)

− p(B2 = A1 − k − 1)
}
≤ 2 =: Cb

(6)
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where

p(Ax = By + k) :=

d∑
j=1

pAB(j, j + k mod d|x, y). (7)

First, we consider the maximally entangled state
|ψmax⟩ as the noise-free quantum state, and the CGLMP-
optimal measurements. These measurements lead to the
maximal value of Id achievable by this state, which we
write as Imax

d , and for which there is an explicit expres-
sion (see Appendix VII A for details).

For the CC attack to work, Eq. (3) must be sat-
isfied. Furthermore, in the finite visibility scenario,
pobsAB(a, b|x, y) takes the form given in Eq. (5). By com-
bining these expressions, we get

pLAB(a, b|x, y) = Ṽ pNL
AB (a, b|x, y) +

1 − Ṽ

d2
(8)

where Ṽ :=
(
V − (1 − qL)

)
/qL. Note that Ṽ ∈ [0, 1].

Hence, maximising qL corresponds to maximising Ṽ such
that pLAB(a, b|x, y) is local. The result of this maximisa-
tion is the local visibility V L. The local weight is thus

qL =
1 − V

1 − V L (9)

if V ≥ V L and qL = 1 otherwise. We show in Appendix
VII A that ILd = Ṽ INL

d . By setting ILd = Cb in this

expression, we get Ṽ = Cb/I
max
d . Hence, if the proba-

bility distribution obtained by setting Ṽ = Cb/I
max
d in

Eq. (9) is local, then this value of Ṽ must be maximal,
since any larger value would imply a Bell inequality vio-
lation. We can verify that this probability distribution is
local by checking that it can be decomposed as a convex-
combination of deterministic strategies. We do this via
linear programming up to d = 10. We conjecture that
this is true ∀d ≥ 2, and hence V L = Cb/I

max
d ∀d ≥ 2.

This allows us to determine the maximum local weight
using Eq. (9). Since the conditional entropy H(A|E) is
1 in the non-local rounds and 0 in the local rounds, the
PA-term is H(A|E) = 1−qL. Computing the conditional
Shannon entropy for pobsAB gives us the EC-term

H(A|B) = −1 + (d− 1)V

d
logd (1 + (d− 1)V )

− (d− 1)(1 − V )

d
logd (1 − V ) + 1. (10)

By subtracting these two terms, we get the following up-
per bound on the key rate:

rub =
1 + (d− 1)V

d
logd (1 + (d− 1)V )

+
(d− 1)(1 − V )

d
logd (1 − V ) − 1 − V

1 − 2/Imax
d

.

(11)
In the case of the CGLMP state, we use linear pro-

gramming to solve the problem described in Eq. (4) in

order to find the local weight qL. To do this, we first
need to find pNL

AB . To this end, we define the Bell op-

erator B̂d corresponding to the CGLMP-inequality de-
fined in Eq. (6), where we use the measurements that
achieve the best known violation of this inequality [13].
We then optimise the phases of these measurements to
maximise the largest eigenvalue of B̂d, and use the associ-
ated eigenstate as the non-local state (which is precisely
the CGLMP state). Finally, we find the probabilities
pNL
AB corresponding to these optimal measurements. Once
pNL
AB is known, we can calculate the EC-term H(A|B) for

a given visibility and find the local weight qL via linear
programming, which allows us to calculate the PA-term,
which is H(A|E) = 1 − qL as previously stated. As be-
fore, the difference of these two terms provides an upper
bound on the key rate.

V. RESULTS AND DISCUSSION

The upper bounds obtained for both the maximally en-
tangled state and the CGLMP state are very close. With
the CGLMP state, they are marginally lower and there-
fore the resilience to noise is slightly worse (see Fig. 2).
This is due to a larger EC-term, since Alice’s and Bob’s
outcomes are less correlated than when using the maxi-
mally entangled state. This leads to an overall decrease
in the key rate (see Figs. 5 and 6 in Appendix VII B for
further details).

0.815 0.82 0.825
-0.03

0.03

Maximally entangled state

CGLMP state

0.75 0.80 0.85 0.90 0.95 1.00
-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

FIG. 2. CC-based upper bounds on the key rate in terms
of the visibility for the maximally entangled and CGLMP
states for dimension d = 3. For V >∼ 0.805, the upper bound
is higher with the maximally entangled state. The critical
visibilities at which rub = 0 are 0.82043 for the maximally
entangled state and 0.82101 for the CGLMP state.

The value of V at which rub = 0, known as the criti-
cal visibility Vcrit, is a useful quantity for measuring re-
silience to noise. For V ≤ Vcrit, no secure communica-
tion is possible. Hence, it is desirable to have a low Vcrit.
For the maximally entangled state, we can calculate Vcrit
for any dimension d using Eq. (2) (see Fig. 3). For
the CGLMP state, we computed Vcrit numerically up to
d = 8 (see Table I in Appendix VII B).
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FIG. 3. Critical visibility Vcrit obtained by means of Eq. (11)
as a function of the dimension d for protocols using the max-
imally entangled state. The critical visibility is 0.8300 for
d = 2 and decreases with d. Eventually, as d → ∞, Vcrit

would reach a plateau around 0.7539.

Finally, we can study the asymptotic behaviour of rub
from Eq. (11) as d→ ∞. By taking the limit, we find

r∞ub := lim
d→∞

rub =
(2 − π2/(16 Catalan))V − 1

1 − π2/(16 Catalan)
(12)

where we used that limd→∞ Imax
d = 32Catalan/π2 ≃

2.970 where Catalan ≃ 0.9159 is Catalan’s constant
[14]. By setting r∞ub = 0 and solving for V we find
the critical visibility as d → ∞, which is V∞

crit = 1/(2 −
π2/(16 Catalan)) ≃ 0.7539. Since Iobsd = V Imax

d , we have

Icrit,∞d = V∞
critI

max
d ≃ 2.239. Therefore, if Iobsd

<∼ 2.239,
no key exchange is possible for protocols using the max-
imally entangled state.

VI. CONCLUSIONS

We have shown that increasing the dimension of the
shared quantum system in DIQKD protocols provides
a small increase of the upper bounds on the key rates,
which implies there could be a slight reduction in the vis-
ibility requirements of such protocols. Nonetheless, these
improvements may not justify the added challenges as-
sociated with using higher-dimensional states, since the
critical visibility reaches a plateau as d→ ∞ around 0.75.

This work could be extended by examining variations
of the protocol we have presented. For example, it may be
worth studying the use of more general non-local states.
The effect of different preprocessing schemes on Alice’s
classical data—such as noisy preprocessing [17]—as well
as two-way communication between Alice and Bob, could
also be considered. Finally, in this work we have focused
on the asymptotic key rate, with the number of protocol
rounds going to infinity. It may also be worth studying
the finite case to see if an improvement is achieved by
increasing the dimension. For systems with dimension
greater than 2, the gap between the lower and upper
bounds on the key rate remains to be closed. This could
be achieved by broadening our focus to coherent (or gen-
eral) attacks in which Eve has a quantum memory which
allows her to process the intercepted qudits collectively.
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UB advisor, Dr. Antoni Garćıa Santiago, for his guid-
ance, advice, and comments. I appreciate everyone at
the QIT group at ICFO for welcoming me, especially Dr.
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VII. APPENDIX

A. Analytical derivation of the upper bound on the
key rate using the maximally entangled state

The maximal value of the CGLMP expression Id given
in Eq. (6) achievable by the maximally entangled state
|ψmax⟩ is [14]

Imax
d = 4d

[d/2]−1∑
k=0

(
1 − 2k

d− 1

)
(fd(k) − fd(−(k + 1))) ,

(13)
where fd(k) := 1/(2d3 sin2[π(k + 1/4)/d]).

Using Eqs. (7) and (8), we find that

pL(Ax = By + k) =
1 − Ṽ

d
+ Ṽ pNL(Ax = By + k). (14)

By substituting this into Eq. (6), we find that ILd =

Ṽ INL
d . Similarly, we can see that Iobsd = V INL

d . This
allows us to see that V L = Cb/I

max
d , as explained in IV.

When using the maximally entangled state, the prob-
abilities pNL

AB (a, b|x, y) only depend on x, y, and the dif-
ferences between the outcomes a and b modulo d [13].
If Alice and Bob use the same measurement parame-
ters for the key settings, then pAB(a, b|x∗, y∗) = δa,b/d.
With this in mind, we can calculate the EC-term H(A|B)
and the PA-term H(A|E). The conditional entropy of Y
given X is defined as H(Y |X) =

∑
x∈X p(x)H(Y |X =

x), where H(X) = −
∑

x∈X p(x) logd p(x) is the Shan-
non entropy. First, the EC-term can be written as

H(A|B) =

d∑
b=1

pobsB (b)H

{
pobsAB(1, b)

pobsB (b)
, . . . ,

pobsAB(d, b)

pobsB (b)

}
(15)

where all probabilities are for the key settings. Since
pobsAB(a, b) = V pNL

AB (a, b) + (1 − V )/d2 only depends on
the difference between the outcomes a and b modulo d,
and since pobsB (b) = 1/d ∀b,

H(A|B) = H

{
V +

1 − V

d
,

1 − V

d
, . . . ,

1 − V

d

}
= −1 + (d− 1)V

d
logd (1 + (d− 1)V )

− (d− 1)(1 − V )

d
logd (1 − V ) + 1.

(16)

For the PA-term, since Eve has perfect knowledge
of Alice’s outcomes in the local rounds and has no
knowledge of the outcomes of the non-local rounds, we
have H(A|E,L) = 0 and H(A|E,NL) = 1. Hence,
H(A|E) = qNL = 1 − qL. Using Eq. (9) and the fact
that V L = Cb/I

max
d = 2/Imax

d , we get

H(A|E) = 1 − 1 − V

1 − 2/Imax
d

(17)

if V ≥ V L and H(A|E) = 0 otherwise.

B. Additional figures and tables

In this section we present a few additional figures and
tables. Fig. 4 shows a schematic of a DIQKD protocol,
while Figs. 5 and 6 show the PA and EC-terms used
for the calculation of the upper bounds, respectively. Fi-
nally, Table I shows the critical visibilities for dimensions
ranging from 2 to 8, both for the maximally entangled
and CGLMP states.

FIG. 4. Schematic of a DIQKD protocol in which Alice (Bob)
has mA (mB) settings and nA (nB) outcomes.
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FIG. 5. PA-term in the CC-based upper bound on the key
rate in terms of the visibility when using the maximally en-
tangled and CGLMP states for dimension d = 3. For V close
to 1 the values are very close to each other in both cases.

Vcrit

d Maximally entangled state CGLMP state
2 0.82999 0.82999
3 0.82043 0.82101
4 0.81464 0.81550
5 0.81064 0.81165
6 0.80766 0.80874
7 0.80532 0.80644
8 0.80341 0.80455

TABLE I. Critical visibilities for dimensions ranging from 2
to 8 when using a mixture of local deterministic strategies
and the maximally entangled state or the CGLMP state.

Treball de Fi de Grau 6 Barcelona, January 2024
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FIG. 6. EC-term in the CC-based upper bound on the key
rate in terms of the visibility when using the maximally en-
tangled and CGLMP states for dimension d = 3. For V close
to 1, the value of the EC-term is significantly larger with the
CGLMP state. This is due to the fact that the outcomes are
less correlated with the CGLMP state as opposed to the max-
imally entangled state. Therefore, more error correction will
be needed when using the CGLMP state.

C. GitHub repository

The MATLAB script we used to obtain the results pre-
sented in this paper is available on GitHub at https:
//github.com/neilps2000/DIQKD-CC-UB. The main
script is qudit CC UB.m, which allows us to calculate
an upper bound on the key rate and the critical visi-
bility when using the maximally entangled state or the
CGLMP state. The script test locality.m allows us
to verify that the correlations obtained with the finite
visibility model using the maximally entangled state are
local when the visibility is V = Cb/I

max
d , where Cb is the

local bound of the CGLMP-inequality and Imax
d is the

maximal violation of this inequality by the maximally
entangled state for dimension d.
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