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Abstract: This study delves into the dynamics of living neuronal networks using a microelectrode
arrays (MEAs) system. Through analysis of the neuronal activity of an in vitro neuronal network,
we explored the short– and long–term effects of electrical stimulation on the network’s functional
connectivity, which was quantified through cross-correlation in combination with analyses from
graph theory. Spatial coarse–sampling of the data revealed a complex relationship between electrode
density and network properties, emphasizing the need to examine with care contradictory results in
studies with MEAs. Our findings show the intricate interplay between stimulation, plasticity and
resilience to damage in neuronal cultures.

I. INTRODUCTION

The study of neuronal cultures in the framework of
complex systems and network science has become an ac-
tive research field in recent years. One of the most inter-
esting questions is spontaneous activity, i.e. the capacity
of neurons to activate by themselves thanks to noise and
fluctuations, and the rich relationship between sponta-
neous activity, network connectivity and plasticity [1].
The latter refers to the capacity of neurons to alter their
connections to increase or decrease their activity, depend-
ing on information processing needs.

In this context, two main experimental approaches are
employed to extract information about neuronal activ-
ity: calcium imaging and electrodes [2]. Calcium imaging
uses fluorescent dyes to detect neuronal activity (action
potentials or spikes), offering superior spatial resolution,
with great detail of individual neuronal positions, but
the time resolution is very poor, limited by the dye ki-
netics. Electrodes, by contrast, excel in time resolution,
offering precise data associated to the electrical signals
of neuronal spikes. However, electrodes are metallic and
opaque, which impedes the detection of neuronal posi-
tions. Additionally, MEAs enable noninvasive extracel-
lular recordings and localized electrical stimulation in the
same setup, serving as a valuable tool for studying con-
nectivity and its changes upon stimulation.

This project focuses on the analysis of data acquired
from recordings of a cortical primary culture grown on
an MEA system. The primary objective of this work is
to serve as a proof of concept for the effects of stimula-
tion on neuronal network dynamics. Through our analy-
sis we aim to characterize the functional connectivity of
the system upon different stimulation schemes, quantify
the main properties of the network, and understand the
changes it undergoes. We also aim to study how data
sampling influences results and how this can be related
to the electrode density of MEAs.
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II. MATERIALS AND METHODS

A. Multielectrode array chip

We analyzed data obtained from the recordings of a
cortical rat primary culture grown on the MEA system,
used in Dr. Soriano’s Laboratory, from the Swiss com-
pany 3Brain. This system comprises a high–density mi-
croelectrode array (HD-MEA) chip featuring 4096 elec-
trodes arranged in a 64 × 64 grid, covering an area of
3.84 × 3.84 mm2 [Fig. 1(a)]. Each electrode measures
21 × 21 µm2, therefore it can concurrently capture the
signals of up to three neurons touching the electrode, in
addition to weaker activity from neighbouring neurons.
The system allows to record spontaneous activity con-

currently on its 4096 sites. For that, it has a resolution of
10 µA and a temporal resolution of 10 µs, which provides
a high degree of precision in capturing neuronal events,
which usually take place in the millisecond scale. This is
a great advantage over calcium imaging recordings, which
have a resolution of 10− 20 ms. The 3Brain system also
enables electrical stimulation on any of the microelec-
trodes. The spikes of each electrode were extracted using
the 3Brain software BrainWave 5 [Fig. 1(b)].
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FIG. 1: 3Brain HD-MEA chip. (a) Picture of the chip and
its electronics prior to using it to culture neurons, which are
placed on the central squared area. The top pins are the
interface with a computer. (b) A snapshot of neuronal activity
in the chip, with 64 × 64 active sites, visualized with the
BrainWave 5 software from 3Brain. Bright yellow spots are
active electrodes.

mailto:cpinerme7@alumnes.ub.edu


Collective phenomena in neuronal cultures recorded with MEAs Carmen Piñero Meǵıas

B. Stimulation setup

The protocol used to obtain the electrodes’ spikes data
consisted of three main phases, termed 1, 2 and 3, as
shown in Fig. 2(a). Each phase included a 5–minute
recording of spontaneous activity. Phase 1 was also used
to make a selection of the channels that had high activity.
Stimulation was then applied on the selected channels,
consisting of a fast train of 10 biphasic pulses, applied
with a frequency of 20 Hz. Each electrical pulse had an
amplitude of 5 µA, and a width of 100 µs. These trains
were delivered every 10 s, 20 times in total (about 3.5
min).
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FIG. 2: Stimulation setup and data analysis. (a) Stimulation
protocol used on neuronal cultures grown on the 3Brain MEA
system. (b) Raster plot of spontaneous activity for phase 1 for
all electrodes. (c) Representative trains of activity for phase
1 considering only 2 electrodes. Here, bars represent neuronal
spikes in a time window of 0.01 s. Each pair of trains is used
to compute the pairwise correlation matrix.

C. Data analysis

For clarity, sometimes we will use ‘neuron’ when de-
scribing the results, although all data comes from elec-
trodes that may contain the signal of multiple neurons.

Data processing involved first the extraction of spikes.
In either phase, a raster plot of activity was created, as
depicted in Fig. 2(b). This plot represents the detected
spikes, i.e., the activity of the culture.

To study the connectivity of the system, we applied the
following method: a ‘train’ was assigned to each neuron,
which consisted of an array comprising binary values (0
or 1), denoting whether the neuron had fired (1) or not
(0) within a time window of 0.01 s [Fig. 2(c)]. This value
was selected to align with the maximum time resolution
of the MEA system. The pairwise correlation matrix was
then computed. This matrix provides insights into the
interdependencies between pairs of electrodes, allowing
us to study functional connectivity of the network [3].

Each element rxy of the matrix was computed as

rxy =

∑
(xi − x̄)(yi − ȳ)√∑

(xi − x̄)2
∑

(yi − ȳ)2
, (1)

where xi represents each value of the train corresponding
to electrode x and x̄ is the average of all the train values
of electrode x. Similarly, yi and ȳ refer to the values
and average of the train corresponding to electrode y,
respectively. The summation goes over all the values of
the train. If two neurons frequently spike in the same
time window, as pictured in Fig. 2(c), they are considered
strongly correlated and the matrix element rxy ≃ 1. This
indicates a strong functional connection between the two
neurons.
The pairwise correlation matrix was binarized using

a threshold of 0.4, i.e., all entries rxy < 0.4 were set
to 0, and otherwise to 1, shaping a connectivity matrix
Axy. This was done to remove noise–related activity and
maintain only the strongest connections. Subsequently,
the next network measures were computed:
• Average connectivity ⟨k⟩. It was computed as the

total number of connections over the total number of
electrodes N , i.e., ⟨k⟩ =

∑
x,y Axy/N .

• Global efficiency GE . It varies between 0 and 1 and
informs about the easiness of information propagation
across the whole network [4]. The higher the density
of connections in the network, the easier it is for the
system to globally communicate and the higher GE . It
was calculated through the function efficiency wei(),
which uses Dijkstra’s algorithm to calculate the shortest
path length d(x, y) between all possible pairs of nodes.
Then, GE is given by:

GE =
1

N(N − 1)

∑
1≤x,y≤N

1

d(x, y)
. (2)

• Modularity Q. It varies between 0 and 1 and depicts
the presence of modules or communities in the network.
Communities are formed by nodes that are more densely
connected between each other than with the rest of
the network. High Q values imply stronger community
structure [5]. The identification of communities within
the network was achieved through the Matlab function
community louvain(), which employs a recursive algo-
rithm to assign neurons onto modules. For clarity of
visualization, the matrix A of functional connections was
reordered to highlight communities along the diagonal.

In addition to the functional analysis, we performed a
spatial coarse–sampling of the data, conceptually repre-
senting how data would be if, instead of 4096 electrodes,
we would have had 1/4 of them, and so on. A script in
Python was used to sample the data from each time win-
dow in the neuron trains into grids of varying sizes n×n,
where n = 2, 4, 8 and 16, leading to a down–sampling
of the system to 1024, 256, 64 and 16 total electrodes,
respectively. For each sample, a centre of the grid was
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Q = 0.74 GE = 0.01 <k> = 4.8 Q = 0.60 GE = 0.13 <k> = 49.6 Q = 0.71 GE = 0.09 <k> = 14.1

FIG. 3: Culture’s connectivity for each phase of the experiment. (a) Connectivity matrices for phases 1, 2 and 3 respectively.
(b) Graph representation of connectivity for the same phases. Circular objects are active electrodes, and their diameter is
proportional to their connectivity. The different colors indicate the communities where the electrodes belong to.

designated, and the spikes of neighbouring points (which
are 0 or 1) were weighted according to their distance to
the centre, resulting in the new value. This process was
systematically applied to all time windows. Finally, the
whole analysis package was repeated to obtain the corre-
sponding connectivity matrices and network descriptors.

III. RESULTS AND DISCUSSION

A. Functional connectivity

Once the connectivity matrices of each experiment
phase are obtained, we can compare them. Fig. 3 shows
the differences in the system before (phase 1) and af-
ter (phase 2) stimulation. We observed that, immedi-
ately following stimulation, the connectivity of the net-
work substantially increases, as appreciated both visually
(higher density of points in the matrix of phase 2) and
in the average connectivity ⟨k⟩. New connections emerge
and the whole system is visibly richer, i.e., the network
has become much more integrated, as indicated by the
decrease in modularity Q. Global efficiency GE increases
too after stimulation, indicating that the flow of infor-
mation across the network is potentiated.

One hour after stimulation, in phase 3, the system
has notably reduced its connections, tending towards its
pre-stimulation state. However, some connections estab-
lished during phase 2 persist, evident in both connectiv-
ity matrices and graphs, as seen in Fig. 3(a) and 3(b),
respectively. Both GE and ⟨k⟩ decrease, yet they do not
fully return to their original values at phase 1. A similar

behaviour is observed in Q. This evidences the presence
of plasticity mechanisms but also some kind of resilience
against modifications in the network.
If we look at the graphs, we see that the main com-

munities of the network are maintained throughout the
different experimental phases. This also demonstrates a
certain degree of robustness of the system against im-
mediate modifications. On the other hand, communities
also undergo alterations and some of them become more
important after stimulation (grey and yellow communi-
ties in phases 2 and 3), while others reduce their size
(purple and green communities in phase 3).
The observed persistence of altered connections post-

stimulation implies enduring changes in the network’s
functional organization, emphasizing the lasting impact
of the applied stimulation on the system. This dynamic
shift suggests a manifestation of homeostatic plastic-
ity mechanisms, such as synaptic scaling, wherein the
strength of excitatory synapses is adjusted to compen-
sate for activity variations, driving functional reorgani-
zation and contributing to network–wide resilience. In-
deed, in the literature, recovered neuronal networks after
chemical–induced damage [6] show a decrease in the den-
sity of effective links, accompanied by an increase in the
average weights of retained links. This points to a rerout-
ing of information flow along fewer, yet stronger, paths,
as reflected in the GE in our system.

B. Coarse–sampling effects

We performed a coarse–sampling of the obtained data
[Fig. 4(a)] to evaluate if the system maintained its prop-
erties. We calculated the connectivity matrices, graphs
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FIG. 4: Impact of coarse–sampling. (a) Sketch of the coarse–
sampling operation for n = 2. (b)–(d) Evolution of the net-
work parameters over the experimental phases for different
coarse–sampling sizes.

and the main descriptors of the network for each phase
and each coarse–sampling size. The results for Q, GE

and ⟨k⟩, as shown in Fig. 4(b)-(d).
We can observe that the modularity Q changes sub-

stantially with the sampling size. For the original net-
work, we observed a significant decline of Q in phase
2, which was expected because the system is more inte-
grated and overall connected. This pattern is broken
when we examine the coarse–sampling results: Q in-
creases right after stimulation for all sizes. Additionally,
the initial and average values of Q throughout the differ-
ent phases decrease when sampling size increases. This
is expected because it is a consequence of this type of
sampling: correlation increases, resulting in a more con-
nected system, which is translated into a lower Q value.
Regarding average connectivity ⟨k⟩, an intriguing ef-

fect emerges. In the first phase, no correlation with sam-
pling size is observable. However, in the second phase,
larger sizes (lower total number of electrodes) correlate
with lower ⟨k⟩ values. This may initially seem surprising

given that we have seen the system becomes more in-
tegrated after coarse–sampling, but, if we study the ⟨k⟩
relative to the system size, we see that there is a rise
with size: each neuron is connected to a higher fraction
of total neurons. This manifests what we have previously
mentioned, namely that overall connectivity is increased
with coarse–sampling size.

While most cases show an increase in ⟨k⟩ after stim-
ulation, for 64 and 16 total electrodes, it actually de-
creases and the difference between phases is much more
subtle. This discrepancy suggests that the sample size
is too small in these cases, resulting in a loss of richness
of the system and implying the existence of a limit for
the maximum sampling size before losing critical infor-
mation.

Fig. 4(c) illustrates that global efficiency is lower in
all three phases for the original size, and it increases
with size, which is consistent with the idea that coarse–
sampling shapes a more integrated system.

We observed in the literature that the choice of sam-
pling technique to obtain neuronal data significantly in-
fluences the collective properties of the system. Tempo-
ral binning, thresholding and measurement overlap due
to electrode proximity introduce various types of bias,
adding correlations to the data. For the same parame-
ters and dynamic state, coarse–sampling generates larger
correlations than sub–sampling [7].

In our study we found big fluctuations depending on
size and the general behaviour between phases is not
consistently maintained. This interdependence between
coarse–sampling size and the resulting network parame-
ters suggests that network characterisation is intricately
linked to the density of electrodes in the MEA system,
which could indicate that the actual underlying dynamics
are being overshadowed.

We can compare the connectivity matrices and graphs
generated for different coarse–sampling sizes with the
original ones, for phase 2 of the experiment, as depicted
in Fig. 5. We observe that the main communities persist
across the various sampling sizes, and they become more
apparent when the grid size is increased, which corre-
sponds to a lower number of total electrodes (see n = 256
in Fig. 5(a)). As a consequence of the sampling, a sub-
stantial number of total connections are lost. However, in
the graphs, the colours representing the main communi-
ties are maintained. Some communities are more impor-
tant when size is increased and they expand, as observed
in the yellow and blue communities of Fig. 5(b). Never-
theless, there is a noticeable preservation of the overall
community distribution in the network.

These results suggest that even less dense MEAs could
serve for community identification effectively, however,
they may not be convenient for the characterisation of the
network’s properties, as demonstrated in our analysis.
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FIG. 5: Network connectivity in phase 2 of the experiment for each coarse–sampling size: 1024, 256 and 64 total electrodes
respectively. (a) Connectivity matrix for each size. (b) Corresponding graphs. Circular objects are active electrodes, and their
diameter is proportional to their connectivity. The different colours indicate the communities where the electrodes belong to.

IV. CONCLUSIONS

Our investigation into collective phenomena in neu-
ronal cultures, especially focused on functional connec-
tivity, has obtained insightful observations of the effects
of stimulation on the dynamics of neuronal networks.

By examining post–stimulation phases, we observed
enduring changes in the functional organization of the
network. This persistence of altered connections as well
as a certain resilience against perturbations highlights the
impact of applied electrical stimulation and suggests the
manifestation of homeostatic plasticity mechanisms. It
has already been shown that stimulation enables train-
ing and feedback responses of neuronal cultures, which
opens new avenues to the possibility of developing treat-
ments for certain neurological diseases or even artificial
intelligence capabilities in in vitro systems.
Our coarse–sampling analysis provided further in-

sights, emphasizing the interplay between electrode den-
sity and network properties. The fluctuating values of

network descriptors across different sampling sizes un-
derscore the sensitivity of network characterization to the
spatial arrangement of electrodes in MEA systems. No-
tably, the maintenance of main communities across vari-
ous sampling sizes suggests that, while electrode density
influences collective properties, it might not be as deci-
sive for community identification.

Our results, while offering contributions to the under-
standing of neuronal network dynamics, also emphasize
the need for caution when comparing data across studies
that utilize MEAs of different electrode densities. Fur-
ther studies are crucial for ensuring the reliability and
reproducibility of findings in MEA–based studies.
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