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In recent studies of the proton-deuteron femtoscopic correlation function, the Lednicky approxi-
mation is employed to describe the wave function of the two-body system, but the results deviate
strongly from experimental data of the ALICE collaboration, and suggest the need for a full three-
body study. Considering these challenges, an alternative approach is proposed by solving the proper
wave function of the two-body Schrédinger equation, using a numerical program following the Nu-
merov algorithm. This simple model describes the ALICE data reasonably well.

I. INTRODUCTION

As its name suggests, femtoscopy is the discipline that
explores, at femtometer distances, the behavior of sub-
atomic particles and the forces that govern their interac-
tions [1]. Particle accelerators are used to collide them
at high energies, and highly sophisticated detectors are
employed to detect the particles generated from these col-
lisions. Projects such as ALICE, an international collab-
oration at CERN’s LHC, and STAR, from RHIC at BNL,
focus on the study of ion collisions and, recently, proton-
deuteron pairs have been measured [2]. The femtoscopic
analysis of the data involves calculating the wave func-
tion of the system, and approximation methods such as
the Lednicky model [3] for two-body type wave-functions,
have been employed. However, these wave functions and
their corresponding correlation functions differ substan-
tially from the experimental data of the ALICE collab-
oration (see the Appendix for details). Due to these re-
sults, it was advocated that a full three-body description
of the proton-deuteron scattering problem [4], which ac-
counts for the intrinsic structure of the deuteron, was
strictly necessary. The purpose of this work is to ex-
plore whether a two-body description of proton-deuteron
scattering, not relying on the wave function of the Led-
nicky model, can still provide a reasonable account of
the experimental correlation function. To this end, a
proton-deuteron two-body wave function will be obtained
by solving the Schrodinger equation with appropiate in-
teraction potentials. To address this problem, a compu-
tational procedure has been developed and implemented
in a Fortran code that determines numerically the two-
body wave function, from which the femtoscopic correla-
tion function is extracted and compared with the recent
experimental data of the ALICE collaboration.
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II. FORMALISM
A. 'Wave function of the proton-deuteron pair

We start our methodology by solving the two-body
time-independent Schrodinger equation for a Woods-
Saxon (WS) potential (Viys(r)),

hZ
2

where y is the reduced mass and E = h?k? /24 is the total
energy of the system in the center of mass frame. The
WS potential represents the strong interaction between
a proton and a deuteron,

VE(7) + Vivs (r)(7) = Ep(7) (1)

Vo

VWS(T) = 71+e(T—R)/a )

(2)

where Vj, a, and R are constants given in Table I and
taken from Ref. [5].

[ [Vo (MeV)[R (fm)[a (fm)]
J=1/2] 29.754 | 2.826 | 1.187
J=3/2| 18.115 | 2.837 |0.9655

TABLE I: Values from Ref. [5] for the potential depth, V5,
the size, R, and the surface thickness parameter, a, of WS-
type proton-deuteron potentials, fitted to reproduce the ex-
perimental phase-shifts in both total spin values J = 1/2 and
J=3/2.

Exploiting the rotational invariance of Viyg(r), we can
propose a separable wave function solution in the follow-
ing form,

¢(7‘79a¢’k) = Zq)l(ra kJ)lem(97¢> ’ (3)
Im

where ®,(r, k) is the radial wave function and Y;™(6, ¢)
represents the spherical harmonics. By introducing the
reduced wave function w;(r, k) as ®;(r, k) = w(r,k)/r,
we obtain the following equation that only depends on
the radial coordinate,

(j; YR —U®r) - l(l; 1)) wrk) =0  (4)
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where U(r) = 2uVivs(r)/h?, and [ is the orbital quantum
number. From now on, we will use natural units, namely
h=1and c=1.

The reduced radial wave function has been numerically
solved using the Numerov algorithm [6], a finite difference
method that calculates the shape of the wave function by
integrating step by step along a grid. For bound states,
for which the wave function is normalizable, a matching
point » = R,,, outside of the potential was chosen. A wave
function, ul*®(r), was computed from 7 = 0 until r =
R,,; and another wave function, uflght (r), was computed
in the reverse direction from a large value of r, say r =
10R,,, until r = R,,.

The bound state is determined by finding the bind-
ing energy Ey < 0 for which the function u;(r) and its
derivative u;(r) are continuous at R,,. Since we do not
know this energy at first, a bisection method is applied
starting with £ =0 and E = min(Viyg).

For continuum states, with positive energies, the nu-
merical solution is evolved beyond the matching point
R,,, where the Woods-Saxon potential will be close to
zero. In this case, one fixes the value of £ > 0 and the
Numerov algorithm is numerically performed by increas-
ing r. One does not require ul"ght(r). Asymptotically,
the wave function will almost resemble that of a free par-
ticle and it can be expressed in terms of spherical Bessel
(j1) and Neumann (n;) functions as follows [7]:

wy(r,k) = retdt (k) [cos 171 (kr) — sindyny(kr)],  (5)

where 0;(k) is a phase shift. For §;(k) = 0, the behavior
is that of a particle without any interaction. To extract
the value of the phase-shift we define a dimensionless
logarithmic derivative, incorporating the factor r, in the
following manner,

wo-fel o

which is applied at a sufficiently distant point R, in or-
der to neglect the effects of the strong potential. We have
chosen it to be 9 times the matching point, R = 9R,,.
By numerically computing this logarithmic derivative
with our solution, and making use of the asymptotic form
in Eq. (5), we can ultimately find the phase shift from:

_ kROO]l/(kRoo) — (ﬁl - 1).7l(kRoo)
kRoon)(kRx) — (81 — 1)ny(kRs)

tan &;(k) (7)
Finally, once the phase shift has been obtained, we can fix
the overall normalization constant of our wave function
by matching with the form in Eq. (5) at r = R.

Since both proton and deuteron carry electrical charge,
we need to account for electromagnetic effects. If we add
the Coulomb interaction to the Woods-Saxon potential,
the formalism needs to be changed. The numerical algo-
rithm to find the wave function only requires the replace-
ment

Vivs(r) = Virs(r) + = . (®)
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with o = 1/137. At r > R,,,, the Coulomb potential still
has significant effects, whereas the term corresponding to
the Woods-Saxon effect practically disappears. There-
fore, following the previous reasoning, a particle that
has been under the influence of a Woods-Saxon potential
with Coulomb effects will, at long distances, behaves like
a particle with only Coulomb effects but with an extra
phase shift relative to a non-interacting particle with the
strong force. Thus, the function ulc+s(r, k) for asymp-
totic long distances can be expressed as [§]

ud TS (r k) = ket [cos S E (s kr) — sin6,Gy (v kr)|

(9)
where v = pa/k, F; and G are, respectively, the reg-
ular and irregular Coulomb wave functions in [9] and
A =0, +06 is a global phase-shift that contains the
so-called Coulomb phase shift, o; = arg T'(1+1+47), and
a phase shift, 51, that represents the effect of the strong
interaction, not equal to the d; defined before for a pure
strong interaction case.

Continuing with the analogy of the strong interac-
tion case, we can calculate the dimensionless logarithmic
derivative of ulc'*'s(r7 k), exactly as defined in Eq. (6),
which has been numerically computed using the Numerov
algorithm. Comparing with the asymptotic expression of
Eq. (9), one can finally write the phase shift in this case
as

_ kRooFl/('YQ kRoo) - BIFZ(V; kRoo)

with R = 9R,,. Note also that we can normalize
the wave function by matching the numerically obtained
wave function with the expression of Eq. (9) at the radial
distance r = R..

tan &; (k) (10)

B. Femtoscopy correlation function

Once we have solved the Schrédinger equation, and we
have numerically calculated and properly normalized the
wave function, we proceed with the femtoscopic study of
the proton-deuteron system. We define the femtoscopy
correlation function as in Ref [1]:

C(k) = /S(T) ®(r, k)% dr | (11)

where the first term of the integrand describes the source
function that emits the particles, and the second term is
the two-body wave function. The experimental source
function is chosen by a Gaussian profile that depends
only on the relative distance r:

S(r) = (4mr8) ™2 exp (—4) L)

where ¢ is the radius parameter that defines the size of
the source.
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We first consider the strong interaction case only. Since
we are interested in the scattering at low-energies, the
modified wave function can be approximated as a plane
wave with only the s-wave term modified as follows,

5 (r, k) = €7 — jo(kr) + 5 (r, k) (13)

where ®5 (7, k) is the wave function containing the strong
interaction effects in s-wave. Replacing the wave function
appearing in the definition of the correlation function by
the above decomposition we obtain

us (7, k)

r

am=1+/sm[

2
—jg(kr)] dr . (14)

where u3 (7, k) is the reduced radial s-wave function that
has been numerically solved using the method explained
in the previous section.

We now derive the expression of the correlation func-
tion when Coulomb effects are also included. Following
the previous methodology, the wave function with strong
interaction plus Coulomb effects, ®©*5, is obtained from
the asymptotic complete Coulomb wave function, @?,
with the corresponding s-wave component replaced by
that containing the effect of the strong interaction as

‘I>C+S(k;r, z) = @?(k;r,z)—é()cf(kr)—i-@ngs(k;r) , (15)

where z = r cos §, with 6 being the relative angle between
7 and k. The complete Coulomb wave function including
all partial waves is given by [8]

@?(k;r, z) = 67“7/2F(1 + i7)e** | By (—ivy; 1 ik(r — 2))

(16)
with I'(z) being the Euler’s gamma function and
1Fi(a,b;z) the confluent hypergeometrical function or
Kummers function.  The s-wave projection of the
Coulomb wave function is given by [§],

Gy (kr) = (kr)~ e Fo(y; kr) (17)

as can also be checked from Eq. (9) after setting [ = 0,
5o = 0 and taking into account that ®o; = ug/7r.

Expanding the second term of the correlation function
integral in a similar way to the previous case leads to
the following expression for the correlation function that
considers the effect of both the strong and the electro-
magnetic interactions:

Ck) = /S(T’) |<I)J?(k;r,z)|2d3r

ug 5 (r k)

r

2

+/47rr25(7") - |<I>ch(k:r)|2 dr

(18)
where u§ 5 (r, k) represents the computed reduced radial

s-wave function, obtained through the numerical solution
method detailed in the preceding section.
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III. NUMERICAL RESULTS

The results presented here have been obtained from a
Fortran code that incorporates i) the Numerov method
to obtain the normalized radial wave function, ii) an eva-
luation of phase shifts and iii) the computation of the
correlation function, for different types of potentials and
spin values. The code has been entirely developed for
this particular study. An analysis of the results allows us
to draw meaningful conclusions about the present study.

A. Wave functions and scattering phase-shifts

To conduct the femtoscopy study of the system, we
first need the wave functions to apply them. We will
begin by representing the potentials for [ = 0 using the
data from Table I.
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FIG. 1: Top: Strong interaction potentials with Woods-Saxon
form. Bottom: s-wave functions of bound states for both spin
values.

To numerically solve the Schrédinger equation, the
Numerov algorithm was implemented as explained in
the previous section to calculate the bound states.
For the normalization of these wave functions, only a
constant that makes satisfy the normalization integral
4 [ driug (r,k)]? = 1 is required. The wave functions of
the bound states correspond to the energies of E(J =
1/2) = —7.780 MeV, which coincides with the binding
energy of the 3He nucleus, and E(J = 3/2) = —2.539
MeV. In Fig. 1 it can be observed that for J = 1/2, the
depth of the potential well is greater, and consequently,
its wave function is more pronounced at the origin.

We move on to the continuous spectrum of positive
energy states, £ > 0. To solve these wave functions,
the method explained earlier for positive energies was
followed. These wave functions have been normalized
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by finding their respective phase shifts and performing a
matching. Subsequently, we have figures representing the
phase shift for each total spin case in Fig. 2, as functions
of the kinetic energy of the incident proton in the lab
frame, which is given by T, = E(m, +mgq)/mgq, with m,,
and my being the proton and deuteron mass, respectively.

As seen in Fig. 2, the numerically computed phase
shifts closely approximates the behavior of experimental
data extracted from Ref. [10]. With these phase shifts,
the wave function for only strong interactions can be nor-
malized.
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FIG. 2: Values of the s-wave phase shifts, 26y and o, as
functions of the kinetic energy of the incident proton, com-
pared with the experimental data from Ref. [10].
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Strong; 1=1/2 —— [
Strong + Coulomb; 1=1/2 — - -
Strong; 1=3/2 = = []
Strong + Coulomb; 1=3/2

D(F)[fm3/2]

FIG. 3: Wave functions for k = 0.5 fm™' of a free particle,
a particle with only strong interaction, and a particle with

strong and Coulomb interactions for total spin J = 1, 2.

Adding the Coulomb potential to the strong force, we
follow the same procedure to numerically calculate the
wave functions, and for their normalization, we use the
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phase shifts &;(k) for the matching. Fig. 3 provides a
visual summary of everything we have analyzed so far.
We can observe the effect of the strong attractive poten-
tial on the wave functions (red and dashed-blue lines),
which, compared to that of a free particle (dotted black
line), is pulled in, making it more intense at the ori-
gin and producing a repulsive phase-shift. If we com-
pare these strong wave functions with the correspond-
ing S+C wave functions (dash-doubly-dotted green and
dash-dotted yellow lines), what include also the effect of
the repulsive Coulomb force, we can observe a mild de-
crease of the wave function at the origin and a small shift
to higher distances.

B. Femtoscopy correlation functions

Once we have reached this point, we can put into prac-
tice what has been derived from the femtoscopy formal-
ism and represent the numerical results compared with
the experimental data. Starting from Eq. (9), normalized
with the corresponding phase-shift solved with Eq. (10),
we represent the obtained correlation functions for dif-
ferent spin cases in Fig. 4.
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FIG. 4: Correlation functions for a source radius parameter,
ro = 1.25 fm, for both spin values with Coulomb and strong
interactions incorporated, and only Coulomb, for comparison.

The lines in the graph in Fig. 4 need to be combined
to extract the total correlation function, taking a spin-
weighted average. Note that for J = 1/2, there are two
possible states, [1/2;—1/2], and for J = 3/2, there are
four states, namely [3/2;1/2; —1/2; —3/2]. Therefore,

_220(k) +4*C(k)
- - .

The Coulomb-only correlation function is < 1, indicat-
ing repulsion. The strong attractive component, when
the strong interaction is applied, causes it to grow more
rapidly. Following this procedure for different values
of the source radius, we arrive at the results in Fig. 5.
We can see that the numerically obtained results closely

C(k)

(19)
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match the experimental data. With a simple model like
the one used in this study, we have successfully repli-
cated a behavior very similar to the experimental find-
ings. It is notable that for larger values of rg, the nu-
merical results converge more closely to the experimen-
tal data, avoiding the first peak. This convergence be-
comes more pronounced for smaller ry, suggesting that
in the source, there are more pairs with a small relative
distance. Consequently, the interaction with the strong
force becomes more significant. Therefore, realistic val-
ues for rg corresponding to the proton-deuteron collision
would be rg = 1.5,1.75 and 2 fm.

1.2 T T T

ck)

rg = 1fm
rp=125fm -----
rg=15fm —--
rg=175fm = = 7
rg=2fm—--—
‘ ‘ | _Alice data —6—

100 150 200 250 300 350 400
k [MeV/c]

FIG. 5: Correlation functions for different source radius pa-
rameter values with Coulomb and strong interactions com-
pared with the experimental data extracted from Ref. [1].

IV. CONCLUSIONS

We have developed a Fortran program, based on the
Numerov’s algorithm, to solve the Schrodinger equation
of a two-body problem employing a simple interaction,
the Wood-Saxon plus the Coulomb potential, to deter-
mine the corresponding wave function. We have aimed
at investigating if the correlation function obtained with
this wave function is capable of reproducing the recently

available experimental results.

Using our numerically solved wave function, we have
found accurate expressions for the phase shifts and the
femtoscopy correlation function. This has allowed us to
have a reasonably good theoretical description for the ex-
perimental data, especially considering the simplicity of
the model. Obviously, as we can see in Ref. [4], the inter-
action described by a three-body problem will be more re-
alistic. However, our calculation with a two-body system
can still be improved further with a more sophisticated
calculation that takes into account higher partial waves
or by adding new interactions to the potential, such as
spin-spin or isospin-dependent interactions.

In previous works, Coulomb and strong interactions
were implemented into the correlation function using the
Lednicky model [3], which yielded results incompatible
with experimental data [2] (see the discussion and figure
in the Appendix).

Due to the results obtained from the approximation
with the Lednicky model, it was believed that an in-
ternal description of the deuteron was necessary, trans-
forming this problem into a three-body calculation. This
work demonstrates that with a realistic two-body wave
function, obtained from the solution of the Schrédinger
equation with pd potentials that reasonably describe the
phase shifts, we find a correlation function that closely
resembles the experimentally measured one.
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V. APPENDIX: LEDNICKY MODEL FOR
PROTON-DEUTERON

The so-called Lednicky approximation [3] to the corre-
lation function is obtained when one inserts into Eq. (11)
the asymptotic form of the wave function. A further as-
sumption is involved, consisting in replacing the scatter-
ing amplitude with total spin J, f(k), which multiplies
the scattered spherical component of the wave function,
by its so-called low-energy expansion expression,

J 1 17,2 . -
£ (k) = <%J+2d0k —zk) , (20)

J

where af is the scattering length and d is the effective
range parameter of the interaction in the spin channel J.

As already said, in this approximation the interaction
wave function is the asymptotic one, even close to the
interacting potential, what is not fully correct. However
the final expression for Cpy (k) is analytic. For exam-
ple, the expression for the correlation function (without
Coulomb effects, for simplicity) is [1]

2Re fJ(k)Fl(%ro) ~ Im f7(k)

Crn(k) =1+ Y

—yr1 3
={2.5

1|/ (k)
i

where Fj(x) and Fy(z) are analytical functions that re-
sult from the Gaussian parametrization of the source
function.

There exists another expression valid for the case with
both strong and Coulomb effects. Since it is more compli-
cated, we reproduce here the case with strong interaction
only.

The ALICE collaboration has used this model to pre-
dict the correlation function of a proton-deuteron pair
using a source radius parameter of 7o = 1.08 fm, and sev-
eral strong interaction potentials; among them, the one
from Arvieux [10], the same that we use in this work.
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FIG. 6: Correlation functions calculated with the Lednicky
model for a source parameter 7o = (1.08 £ 0.06) fm. Figure
taken from Ref. [2] (ALICE collaboration).
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2 - ag
2ﬁT0

ﬁro TFQ(Q]{ITQ) 5 (21)

In Fig. 6 we can observe the apparent discrepancy be-
tween the predictions of the Lednicky model and the ex-
perimental data from ALICE [2]. The model described
in this work fits better, as can be seen in Fig. 5.
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