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Abstract: This work extends a recent approach to gravitational particle production in asymptot-
ically flat spacetimes, originally applied to scalar particles, to explore the cosmological production
of Dirac fermions. This method avoids the necessity of solving the equation of motion by examin-
ing monodromies around singular points in the equations. We derive a general expression for the
amount of spin-1/2 particle production, and elucidate to which scale factors it applies. In contrast to
the scalar case, which exhibits three regimes, Dirac fermions present a single regime of production.
Simple scale factor examples are examined, recovering easily all known results and producing new
ones.

I. INTRODUCTION

Gravitational particle production is one of the earliest
outcomes emerging from the application of quantum field
theory in curved spacetimes. This was already predicted
by Schrödinger [1] and then established by Parker in the
late 60s [2, 3]. Nowadays, the interest on this topic is
driven by its relevance to applications such as baryogen-
esis and the understanding of dark matter’s origin.

To recall the basic phenomenon consider a 3+1 dimen-
sional universe undergoing a homogeneous and isotropic
expansion, as described by the Friedmann-Lemâıtre-
Robertson-Walker (FLRW) metric,

ds2 = −dt2 + a(t)2dx⃗2 = a(η)2(−dη2 + dx⃗2) (1)

and place a quantum field on this background, taken to
be in the vacuum state at very early times. Since the
scale factor a(t) is a function of time, the gravitational
field is time dependent and the time translation sym-
metry is broken. Hence, the spacetime no longer pos-
sesses Poincaré invariance. Then, the conservation of en-
ergy for quantum fields is no longer imperative because
they can exchange energy with the gravitational back-
ground. Observers at asymptotic late times will describe
the field not to be in their notion of vacuum, but in an
excited state.

The traditional approach to cosmological particle pro-
duction [3, 4] requires solving the equation of motion
around two different times, which severely limits the
amount of fully solved examples. Recently, a new per-
spective has emerged, capable of providing an expression
for the creation of scalar particles without the need to
solve the equation of motion [5]. Our goal in this work
is to extend this formalism to the study of gravitational
production of Dirac fermions.

The structure of this work is as follows. In section
II scalar production [5] is reviewed, exposing the pos-
sibility of different regimes of particle production. In
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section III we present our results on cosmological pro-
duction of Dirac fermions, concluding that there is only
one regime of production. Sections IV and V are devoted
to the study of analytically solvable profiles of expansion
corresponding to equations with three and four regular
singular points (RSPs). Finally, in section VI the most
important results are summarized.

II. SCALAR FIELD WARM UP

In order to study scalar production, we consider a
real massive scalar field coupled to the gravitational field
through the Ricci scalar, which leads to the following
equation of motion

□ϕ−m2ϕ− ξRϕ = 0 (2)

Any solution to a second order linear differential equation
can be expressed as a sum over a complete set of positive
and negative norm solutions,

ϕ =
∑
k⃗

(ak⃗fk⃗ + a†
k⃗
f∗
k⃗
) (3)

In the canonical quantization field theory the coefficients

ak⃗ and a†
k⃗
are annihilation and creation operators, respec-

tively. There are two useful and particularly simple
choices for the coupling constant ξ, since these do not
introduce derivatives of the scale factor on the equation of
motion: the minimally coupled massless field (ξ,m = 0)
and the conformal coupling (ξ = 1/6).
If one writes the solution for the conformal coupling

case as [6]

fk⃗(η) =
eik⃗x⃗χk⃗(η)

a(η)
√
V

(4)

equation (2) is reduced to the following mode equation

χ′′(η) + [k2 +m2a2(η)]χ(η) = 0 (5)

A similar procedure can be performed for the minimal
coupling case, which would be the appropriate one to
study cosmological graviton production.
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In generic spacetimes, as opposed to Minkowski space-
times, the impossibility to define a family of observers
perceiving identical quantum states is notable. Specific-
ally, there is no common vacuum state from which the
concept of particle emerges, as the explicit identification
of a particle arises from the application of the creation
operator to the vacuum state. Consequently, the em-
phasis of this study will be on asymptotically flat space-
times, which approaches Minkowski geometry both in the
remote past and future.

For a spacetime of that nature, sets of plane wave solu-
tions can be identified in the asymptotic regions:

χin,⃗k ∼ e−iwinη

√
2win

χ∗
in,⃗k

∼ eiwinη

√
2win

(6a)

χout,⃗k ∼ e−iwoutη

√
2wout

χ∗
out,⃗k

∼ eiwoutη

√
2wout

(6b)

where win and wout are the asymptotic past and future
values for the frequency term of the equation, respec-
tively.

Since the order of the differential equation defines the
dimension of the solution vector space, any pair of solu-
tions of equation (5) can be expressed as a linear combi-
nation of any other pair of linearly independent solutions.
Solutions between Minkowski regions are connected by
Bogoliubov coefficients:

χin,⃗k = αkχout,⃗k + βkχ
∗
out,⃗k

(7a)

χ∗
in,⃗k

= β∗
kχout,⃗k + α∗

kχ
∗
out,⃗k

(7b)

These are the same coefficients that relate the creation
and annihilation operators in both regions. Besides, the
importance of the computation of the βk coefficient (over
solving the equation) is further accentuated as it enables
the calculation of the number of particles created with

mode k⃗ [2]
⟨Nk⃗⟩ = in

⟨0|b†kbk|0⟩in =
∣∣βk⃗∣∣2 (8)

where b†k, bk are the creation and anihilation operators at
asymptotic late times.

As expected for an ODE with real coefficients, solu-
tions are complex conjugated of each other. Furthermore,
if we work with the plane wave normalized solutions, the
connection matrix belongs to SL(2,C). Thus the deter-
minant is simply

|αk|2 − |βk|2 = 1 (9)

It can be proved that if equation (5) presents only RSPs,
then a(η) tends to constant values in the infinite past
and future, and thus the spacetime is asymptotically
Minkowski. We will focus our interest on equations of
this type, denoted as Fuchsian. The most general second
order Fuchsian ODE is

d2Φ(z)

dz2
+

(
n∑

k=1

Ak

z − zk

)
dΦ(z)

dz
+

+

n∑
k=1

(
Bk

(z − zk)2
+

Ck

z − zk

)
Φ(z) = 0

(10)

This can be transformed into a time-dependent har-
monic oscillator-type equation, like the mode equation,
by implementing the following transformations: a partic-
ular Möbius transformation (z → z+z1), an index trans-
formation (A1 = 1, A2 = ... = An = 0) and a change of
variables z = eη/s. The resulting equation can be written
as

d2χ2(η)

dη2
+ w2(η)χ(η) = 0 (11)

with a general scale factor for the scalar case of the form
of

w2(η) =
wfe

2(n−1)η/s + ...+ (c1c2...cn−1)
2w2

i

(eη/s + c1)2...(eη/s + cn−1)2
(12)

Near singular points, solutions of ODEs usually cannot
be expressed as power series. Nevertheless, the Frobenius
method provides a basis of solutions near each RSP of the
form

ϕ±(u) = ur±
∑
k

cku
k (13)

where u is a coordinate that vanishes at the RSP and r±
are the solutions of the indicial equation associated to
the RSP. It is straightforward to check that the indicial
equation for the z = 0 and z = ∞ RSPs are

r2 + s2w2
i = 0 r2 + s2w2

f = 0 (14)

using u = z at z = 0 and u = 1
z at z = ∞. By imposing

z = eη/s, the asymptotic solutions are recovered, except
for the normalization. Since the bases of solutions of
the asymptotic regions have been identified, the problem
is to obtain |βk⃗|

2 in the change of basis (7). The key
idea [5] is to consider elementary and composite mono-
dromies for these two RSPs. The monodromy matrices
corresponding to elementary monodromies around these
RSPs in their Frobenius bases are(

e2πir+ 0
0 e2πir−

)
(15)

The composite monodromy matrix corresponding to
the path encircling the two asymptotic RSPs, which
is SL(2,C), can be brought to upper triangular form
with the diagonal components being {−e2πiσ,−e−2πiσ}.
Using the invariance of the trace (T = −2 cos 2πσ), as

well as equation (9), an expression for |βk|2 can be found
[5].
For the conformal coupled case:

|βk|2 =
a2f
a2i

cos2 πσ + sinh2 sπ(wf − wi)

sinh 2πswi sinh 2πswf
(16)

For the massless minimally coupled, the prefactor a2f/a
2
i

does not appear.
All the characteristics of the expansion profile are

encoded in σ. It is a complex function of the parameters
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that appear in the scale factor a(η) and it is mathemati-
cally related to the positions and residues of the remain-
ing RSPs. Also, σ must be such that |βk|2 is real and
positive. Furthermore, considering that the monodromy
matrix belongs to SL(2,C) and the classes of these matri-
ces are determined by their trace squared (T 2), the pos-
sible classes given a real trace are: elliptic (T 2 < 4),
parabolic (T 2 = 4) and hyperbolic (T 2 > 4). These pos-
sibilities result in three alternative scenarios for σ. No-
tice that since |βk|2 depends on T , the conditions for the
regimes are not the same as for the classes of the matrix.

For real σ (elliptic regime or regime I) the production
is bounded,

|βk|2I =
a2f
a2i

cos2 πσ + sinh2 sπ(wf − wi)

sinh 2πswi sinh 2πswf
(17)

Alternatively, σ = i∆ (hyperbolic regime or regime II)
leads to an enhanced particle production, given the expo-
nential resulting dependence,

|βk|2II =
a2f
a2i

cosh2 π∆+ sinh2 sπ(wf − wi)

sinh 2πswi sinh 2πswf
(18)

A complex σ would also be possible, but it would be
restricted to the form of σ = 1/2+i∆ (another hyperbolic
regime or regime III),

|βk|2III =
a2f
a2i

sinh2 sπ(wf − wi)− sinh2 π∆

sinh 2πswi sinh 2πswf
(19)

The condition s(wf − wi) > ∆ must also be true. No
examples within this regime have been found.

In the remaining of the section, we illustrate these gen-
eral results with the simplest examples. The simplest
scale factor corresponds to equation (5) having three
RSPs. The resulting frequency term can be written as

w2(η) =
w2

fe
2η
s + ϵe

η
s + w2

i

(e
η
s + 1)2

(20)

where wi and wf are the initial and final frequencies and
ϵ controls the symmetry of the profile. This profile, which
stands out as the most general function that enables the
Fuchsian equation with three RSPs to transition between
Minkowsi spacetimes, was already studied by Epstein [7]
in a different physical context.

For a conformally coupled massive scalar field, the well-
known example is the one considered by Bernard and
Duncan [8], in which the expansion is modelized as a
hyperbolic tangent by imposing ϵ = w2

i + w2
f . The same

profile was used for a massless minimally coupled scalar
field by Parker [6]. For this simple case, the compos-
ite monodromy around two RSPs is just the monodromy
around the third one. This fact simplifies the determina-
tion for an indicial equation from which σ can be deter-
mined. In this case

r(r − 1) + s2(w2
f + w2

i − ϵ) = 0 (21)

allows to calculate

σ =

√
1

4
+ s2(ϵ− w2

f − w2
i ) (22)

There are two regimes, depending on the sign inside the
square root. Notice that σ is real for the hyperbolic tan-
gent case, so it belongs to regime I.
Adding a fourth RSP to the mode equation results in

more intricate expressions. The scale factor is of the form

w(η)2 =
w2

fe
4η
s + ϵ3e

3η
s + ϵ2e

2η
s + ϵ1e

η
s + c21c

2
2w

2
i

(e
η
s + c1)2(e

η
s + c2)2

(23)

which yields the Fuchsian equation with four RSPs, the
Heun equation [5].
Now that we have reviewed the formalism and results

for the scalar field, we present our contribution to the
study of gravitational production of spin-1/2 particles.

III. FERMION PRODUCTION IN EXPANDING
SPACETIMES

If the produced particles are spin-1/2 fermions, the
dynamics of the field is given by the Dirac equation in
curved spacetime, where the partial derivative is pro-
moted to a covariant one:

(i /D −m)ψ = 0 (24)

We have used the slashed notation /D = γµDµ, where γ
µ

are the 4×4 Dirac matrices that satisfy

γµγν + γνγµ = 2gµν (25)

Using the latter relation as well as the spin connection

[Γν , γ
µ(x)] =

∂γµ(x)

∂xν
+ Γµ

νργ
ρ(x) (26)

the Dirac equation in FLRW can be expressed as [3, 4]

ψ′′ + [k2 +m2a2(η) +mγ0a′(η)]ψ = 0 (27)

More conveniently, by writing the equation on the
eigenspaces of γ0, the following two mode equations are
found

ψ′′(η) + [k2 +m2a2(η)± ima′(η)]ψ(η) = 0 (28)

Each of these two equations has a two-dimensional vector
space of solutions. However, unlike in the scalar case, the
complex conjugate of a solution is not a solution to the
same equation but rather to the other one. The bases for
the first eigenspace (+i) relate through the Bogoliubov
transformation as(

ϕ+i
ϕ−∗
i

)
=

(
α+ β+

β−∗ α−∗

)(
ϕ+f
ϕ−∗
f

)
(29)
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and analogously for the second eigenspace (−i) with
ϕ−i , ϕ

+∗
i and ϕ−f , ϕ

+∗
f . These Bogoliubov coefficients sat-

isfy the following relations [4]

α+

α− =
wi −mai
wf −maf

=
wf +maf
wi +mai

(30a)

β+

β− =
wi −mai
wf +maf

=
wf −maf
wi +mai

(30b)

α−α+∗ − β−β+∗ =
wi

wf
(30c)

where, as for the scalar case

wi(k⃗) =

√
|⃗k|2 +m2a2i wf (k⃗) =

√
|⃗k|2 +m2a2f (31)

Similar to the scalar case, for Dirac fermions we will
keep the restriction to Fuchsian mode equations, meaning
they only present RSPs. Before delving into the discus-
sion of particle production, let us identify which scale
factors a(η) satisfy this requirement. Comparing equa-
tions (28) and (12),

m2a(η)2 ± ima′(η) =

=
ϵ2ne

2nη/s + ϵ2n−1e
2n−1 + ...+ ϵ0

(eη/s + c1)2...(eη/s + cn)2

(32)

Since a(η) tends to constant values as η → ±∞, then
in those limits a′(η) → 0. This constraints the values
of ϵ2n = m2a2f and ϵ0 = (c1...cn)

2m2a2i . In contrast to
the scalar case, the values of the remaining ϵ coefficients
are complex. With the assumption that a(η) is real and
considering real values for the coefficients ci, the general
form of the scale factor can be expressed as

a(η) = af − A1

eη/s + c1
− ...− An

eη/s + cn
(33)

with the constraint that m2a(η)2 ± ima′ → m2a2i as η
tends to −∞. These a(η) are a subset of the family
of scale factors from the scalar case. Notice that for n
RSPs, besides the ci, the scalar scale factors have 2n −
5 free parameters, while the fermionic ones only n − 3.
Additional restrictions between the Ai constants have to
be applied if monotonous scale factors are required.

For each of the two mode equations consider a compos-
ite monodromy encircling the two RSPs of the asymp-
totes of the profile. For the present case, the compo-
nents of the Bogoliubov transformation are not complex
conjugate of each other. However, the relations from
equation (30) enable the derivation of expressions for
|β±

k |2. Now, simpler equations result from taking the
convention {e2πiσ, e−2πiσ} for the composite monodromy
eigenvalues. Using the notation w+ = wf + wi and
w− = wf − wi

|β+
k |2 =

wi

wf

wf −maf
wi −mai

cos 2πσ − cosh 2πw−

cosh 2πw+ − cosh 2πw−
(34a)

|β−
k |2 =

(
wf +maf
wi −mai

)2

|β+
k |2 (34b)

Since |β±
k |2 must be real and positive, σ is forced to be

imaginary σ = i∆,

|β+
k |2 =

wi

wf

wf −maf
wi −mai

cosh 2πσ − cosh 2πw−

cosh 2πw+ − cosh 2πw−
(35)

We have found that, unlike in the scalar case, there is
only one predicted regime for fermion creation.
In the upcoming section, particular profiles a(η) will be

discussed. These represent the simplest cases that lead
to Fuchsian equations presenting three and four RSPs.

IV. HYPERGEOMETRIC PROFILES

As for the scalar case, the a(η) studied in [4],

a(η) =
ai + af

2
+
af − ai

2
tanh

η

2s
= af −

af − ai
eη/s + 1

(36)

is a particular case within this set. Specifically, it is evi-
dent that this is the simplest possible one. In order to
compute the particle production, it is necessary to deter-
mine the composite monodromy exponent σ. This can
be done analogously to the scalar case, by solving the
indicial equation corresponding to the third RSP,

r(r − 1) + s2m2(af − ai)
2 ± ims(af − ai) = 0 (37)

which results in a monodromy exponent as

σ = ±ims(af − ai) (38)

Note that cos 2πσ = cosh 2πms(af − ai), which matches
the result of [4], derived there by a much longer compu-
tation, involving the explicit solutions of (28).

V. HEUN PROFILES

Just like for the scalar case, we can identify the scale
factors for which the mode equation becomes a Heun
equation, i.e. one that exhibits four RSPs. For Dirac
fermions, this general scale factor takes the form of

a(η) = af − A1

eη/s + 1
− A2

eη/s + t
(39)

with the constraint af −A1 −A2/t = ai.
If the four RSPs are located at z = 0, 1, t,∞ the Heun

equation can be expressed as

d2Ψ

dz2
+

[ 1
4 − θ20
z2

+
1
4 − θ21
(z − 1)2

+
1
4 − θ2t
(z − t)2

+

+
θ20 + θ21 + θ2t − θ2∞ − 1

2

z(z − 1)
+

+
(t− 1)(−ν2 + θ2t − θ21 − 1

4 )

z(z − 1)(z − t)

]
Ψ = 0

(40)
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where 1
2 ± θ0,

1
2 ± θ1,

1
2 ± θt,− 1

2 ± θ∞ are the local expo-
nents related to the singularities and ν is an accessory
parameter.

In order to compute the particle production, an expres-
sion for the composite monodromy exponent σ in terms
of the Heun parameters is needed. This question has
surfaced in different physical problems, allowing for solu-
tions through various approaches. However, we are not
aware of a closed form expression. One of the strate-
gies is to exploit the relation of the Heun equation and
the classical limit of the Virasoro conformal blocks of 2D
conformal field theory [9], taking into account that the
parameter ν depends on t, which allows the formulation
of a perturbative expansion for σ as

σ(t)2 = ν2 −
∞∑
k=1

kWkt
−k (41)

where Wk are the known coefficients in the expansion of
the classical conformal blocks. It is necessary to rewrite
the Heun equation as the mode equation in order to
define a map between the Heun parameters and those
from the profile. To accomplish that, three transforma-
tions must be applied. The first one is an index trans-
formation Ψ(z) = z1/2(z − 1)1/2χ(z) to modify the form
of the equation. The second one is the following Möbius
transformation in order to use the connection formula
from [9], whose RSPs are at z = 0 and z = 1, between
the relevant RSPs for this case: z = 0 and z = ∞. The
last one is a change of variables z = eη/s. The resulting
map between parameters is the following

θ20 = −s2k2 − s2m2a2i , θ2∞ = −s2k2 − s2m2a2f (42a,b)

θ21 =

(
imsA1 ±

1

2

)2

(42c)

θ2t =

(
ims

A2

t
± 1

2

)2

(42d)

ν2 =

(
ismA1 ±

1

2

)2

−

−m2s2
(
A2

2

t2
+

2aiA2

t
+ 2

A1A2

t− 1

)
(42e)

Notice that for either A2 → 0 or in the limit t→ ∞, these
relations converge towards the hypergeometric case, with
the composite monodromy parameter being σ = ν−1/2,
so cos 2πσ = cosh 2πms(af − ai), providing a non trivial
check of our results.

VI. CONCLUSIONS

In this work, we have extended a recent approach
to gravitational particle production in asymptotically
flat spacetimes, originally applied to scalar field parti-
cles, to investigate the cosmological production of Dirac
fermions. This novel approach sidesteps the need to solve
the equation of motion, relying instead on the examina-
tion of monodromies around the RSPs of the equations.
We derived a general scale factor that is a subset of the

scale factors for the scalar case, as well as an expression
to quantify the fermion production, given by the second
Bogoliubov coefficient. Unlike the scalar case, charac-
terized by three production regimes, we established that
only a single regime exists for Dirac fermions.
Furthermore, we explored simple examples resulting in

the mode equation having three and four RSPs. In the
case of n=3 RSPs, the scale factor had no free parame-
ters; it has been studied in the past, and it was essentially
the only solved example until this work. A perturba-
tive approach based on conformal blocks was applied to
study particle production with a scale factor leading to
the equation having four RSPs. It was shown that the re-
sult reduces to the hypergeometric one under appropriate
limits.
Further interesting research could be focused on non

asymptotically flat spacetimes, like DeSitter universes,
Majorana fermions and higher spin particles.
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