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This thesis focuses into the signature method’s role as a robust tool in data sci-
ence, specifically within the realms of time series analysis and financial data streams.
Originating from rough paths theory, the signature method offers a comprehensive
representation of sequential data, effectively capturing intricate patterns and depen-
dencies crucial for advanced modeling and predictive analytics.

Establishing a solid theoretical foundation, this thesis explores how the signa-
ture method transforms raw time series data into structured representations that
preserve essential dynamic information. Through theoretical insights and practical
illustrations, the thesis demonstrates the method’s efficacy in enhancing model clas-
sification, temporal segmentation, and understanding complex model structures.
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Chapter 1

Introduction

This thesis explores the utilization of the signature method as a powerful tool in data
science, specifically in the realm of time series analysis and financial data streams.
This thesis aims to establish a theoretical foundation for the signature method and
demonstrate its practical applications through three distinct studies.

The signature method offers a unique approach to capturing complex patterns
and dependencies within sequential data. Originally developed in the field of rough
paths theory, the signature method provides a concise yet comprehensive represen-
tation of data streams, facilitating enhanced model classification and predictive an-
alytics.

This thesis begins with an exploration of the theoretical base of the signature
method, explaining its role in transforming raw time series data into structured rep-
resentations that preserve essential information about the data’s dynamics. Subse-
quently, it presents three applied studies to illustrate the method’s efficacy:

• Model Classification: Comparing traditional Autoregressive (AR), Autoregres-
sive Moving Average (ARMA), and Autoregressive Integrated Moving Aver-
age (ARIMA) models using signature-based features.

• Temporal Segmentation: Classifying crude oil data streams based on 30-minute
intervals using signature features, demonstrating the method’s applicability in
temporal segmentation tasks.

• Equivalence Demonstration: Investigating how AR models can be viewed as a
special case within the broader framework of Expected Signature (ES) models,
highlighting the method’s versatility in capturing varied model structures.

Each study showcases the signature method’s ability to extract complex tempo-
ral information into structured and interpretable features, thereby enhancing un-
derstanding and predictive capabilities across diverse domains. By bridging theo-
retical insights with practical applications, this thesis offers insights into leveraging
signature-based approaches for complex data analysis. For access to the code and
implementations used in these studies, please refer to my GitHub Repository.

https://github.com/Anavictoriagalindo/Master-Thesis/tree/main
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Chapter 2

Time Series

According to the book Introduction to Time Series and Forecasting, “A time series model
for the observed data xt is a specification of the joint distributions (or possibly only
the means and covariances) of a sequence of random variables Xt of which xt is
postulated to be a realization ” (Brockwell and Davis, 2016). A process {Xj, j ∈ Z}
is strictly stationary if for any k1, . . . , kn and l the vectors

(Xk1 , . . . , Xkn)

and
(Xk1+l , . . . , Xkn+l)

have the same law. We say that a process is stationary if

• E[Xk] = µ ∈ R, ∀k ∈ Z, and

• C(Xk, Xk+l) = γ(l), ∀k, l ∈ Z, where γ is a function defined on N

It is important to define what is a white noise. A process {Xk, k ≥ 1} is termed as
white noise if all its variables have an expectation of µ, a variance of σ2, and are
uncorrelated. We say that the white noise is centered when µ = 0.

2.1 Autoregressive models (AR)

Let Z = {Zj, j ∈ Z} be a centered white noise with variance σ2 and {Yj, j ∈ Z} a
time series. Define the operator B such as BYj := Yj−1. With this information we can
now define the Autoregressive model AR(1).

Definition 2.1.1. The AR(1) equation is

Yj = ϕBYj + Zj, ϕ ∈ (−1, 1),

which is equivalent to Yj = ϕYj−1 + Zj

We can generalize this expression to define the AR(p) model. Let Φ(x) be a poly-
nomial of degree p. Note that we can always write Φ as

Φ(x) = 1 − ϕ1x − ϕ2x2 − · · · − ϕpxp

just by dividing the polyonomial by the independent coefficient.
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Recall that a polynomial Φ(x) is invertible if there exists a series ∑∞
i=0 ψixi such

that

Φ(x)
∞

∑
i=0

ψixi = 1

with ∑∞
i=0 ψ2

i < ∞.

Now we can define an AR(p) model:

Definition 2.1.2. Let Φ be an invertible polynomial of degree p. A process {Yj, j ∈ Z} is
an AR(p) model if it is stationary and satisfies

Φ(B)Yj = Zj, j ∈ Z, Zj.

This expression is equivalent to Yj − ϕ1Yj−1 − ϕ2Yj−2 − · · · − ϕpYj−p = Zj

2.2 Moving Average models (MA)

Moving Average models are based on the idea that the observed value of a time
series variable at any given time point is a linear combination of the current and
past random error terms. Unlike autoregressive (AR) models, which rely on past
values of the variable itself, MA models use past values of the error terms to model
the data.

Definition 2.2.1. Let Z = {Zj, j ∈ Z} be a white noise with variance σ2 and q ≥ 0 A
process {Yj, j ∈ Z} is a MA(q) model if it has the following form:

Yj = Zj + θ1Zj−1 + · · ·+ θqZj−q

with θ1, . . . , θq being real numbers.

2.3 AutoRegressive Moving Average model(ARMA)

An ARMA (AutoRegressive Moving Average) process is a commonly used model in
time series analysis that combines the two models seen before: the AutoRegressive
(AR) model and the Moving Average (MA) model.

Definition 2.3.1. Let p and q be two natural numbers, let Z be a white noise with mean 0
and variance σ2 and Φp(·) and Θq(·) two invertible polynomials without roots in common
with degree p and q respectively. The process {Yj, j ∈ Z} is an ARMA(p, q) id it satisfies
the equation

Φp(B)Yj = Θq(B)Zj, j ∈ Z,

which is equivalent to the following expression:

Yj − ϕ1Yj−1 − · · · − ϕpYj−p = Zj + θ1Zj−1 + · · ·+ θqZj−q

2.4 AutoRegressive Integrated Moving Average model (ARIMA)

An ARIMA model is an extension of the ARMA model that is used to analyze and
forecast time series data that may exhibit non-stationarity. The components of the
ARIMA models are the following:
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• AutoRegressive (AR) Component: This part involves regressing the variable
on its own lagged (past) value as seen in section 2.1.

• Integrated (I) Component: This part involves differencing the series to make it
stationary. Differencing the series d times is denoted as I(d).

• Moving Average (MA) Component: As seen above in section 2.2, this part
models the error term as a linear combination of past error terms.

Now we can define an ARIMA(p, d, q) model:

Definition 2.4.1. Let X be a process {Xj, j ∈ Z} and p, d, q three fixed natural numbers.
We say that X is an ARIMA(p, d, q) model if

Yj = (Id − B)dXj, j ∈ Z

is an ARMA(p, q) model.





7

Chapter 3

The Signature

3.1 The Signature

The signature method is a mathematical framework derived from rough path theory,
designed to handle and analyze sequential data, such as time series. It transforms
complex, high-dimensional data into a structured format that captures the essential
patterns and behaviors of the sequence.

3.1.1 Previous Concepts

Before starting with the definition of signature we need to introduce some previous
concepts.

Definition 3.1.1. We define a path X in Rd as a continuous mapping from an interval [a, b]
to Rd. The notation used will be Xt = X(t), to highlight the importance on the dependence
on the parameter t ∈ [a, b].

Definition 3.1.2. A smooth path is a path which has derivatives of all orders.

During this project we will refer to a paths assuming that they are always piece-
wise differentiable.

A simple example of a smooth path in R2 is the following and its representation
can be seen in Figure 3.1:

Xt = {X1
t , X2

t } = {cos(t), 0.5 sin(t)}, t ∈ [0, 2π].

FIGURE 3.1: Two-dimensional smooth path
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In Rd we can generalize the expression of the path to

X : [a, b] → Rd, Xt = {X1
t , X2

t , . . . , Xd
t }.

With this understanding, we can now introduce the concept of the path integral.

Definition 3.1.3. Let X : [a, b] → R be a one-dimensional path and f : R → R be a
function. We can define the path integral of X against f as∫ b

a
f (Xt)dXt =

∫ b

a
f (Xt)Ẋtdt, (3.1.1)

where Ẋt = Xt/dt.

In the equation (3.1.1) f (Xt) is also a path defined from [a, b] to R. In addition we
can define the path integral of one real-valued path against another.

Definition 3.1.4. Let Y : [a, b] → R and X : [a, b] → R be two paths. The path integral
of Yt against Xt is defined as ∫ b

a
YtdXt =

∫ b

a
YtẊtdt. (3.1.2)

Note that imposing Yt = f (Xt) in the equation (3.1.2) we recover the equation
(3.1.1).

3.1.2 The Signature of a Path

Let X : [a, b] → Rd be a path with Xt = {X1
t , X2

t , . . . , Xd
t } (all Xi are paths from the

interval [a, b] to R). We define for every index i ∈ {1, . . . , d}

S(X)i
a,t =

∫
a<s<t

dXi
s = Xi

t − Xi
0. (3.1.3)

Equation (3.1.3) can be seen as the increment of the i-th coordinate from time 0 to
time t ∈ [a, b]. Note that S(X)i

a,t is also a path defined as Xi (meaning that is also
defined from the interval [a, b] to R).

Definition 3.1.5. For every i, j ∈ {1, . . . , d} we define the double-iterated integral as

S(X)
i,j
a,t =

∫
a<s<t

S(X)i
a,sdX j

s =
∫

a<r<s<t
dXi

rdX j
s (3.1.4)

The result of equation (3.1.4) is a special case of the path integral defined in (3.1.1)
so S(X)

i,j
a,· : [a, b] → R is also a real-valued path. Now, we can define analogously

the triple-iterated integral.

Definition 3.1.6. For every i, j, k ∈ {1, . . . , d} we define the triple-iterated integral as

S(X)
i,j,k
a,t =

∫
a<s<t

S(X)
i,j
a,sdXk

s =
∫

a<q<r<s<t
dXi

qdX j
rdXk

s . (3.1.5)

The same principle applies as with the double-iterated integral. It’s a special
case of the path integral, where S(X)

i,j,k
a,· : [a, b] → R represents a real-valued path.

Continuing recursively, we obtain the k-fold iterated integral.
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Definition 3.1.7. For any integer k ≥ 1 and a set of indices i1, . . . , ik ∈ {1, . . . , d}, we
define the k-fold iterated integral of X along the indices i1, . . . , ik ∈ {1, . . . , d} as

S(X)i1,...,ik
a,t =

∫
a<s<t

S(X)
ik ...,ik−1
a,s dXik

s =
∫

a<tk<t
· · ·

∫
a<t1<t2

dXi1
t1

. . . dXik
tk

. (3.1.6)

Another time, S(X)i1,...,ik
a,t and Xik

s are real-valued paths, equation (3.1.6) is a special
case of the path integral and S(X)i1,...,ik

a,· is a path from the interval [a, b] to R.

Before defining the signature we need to introduce one last concept. Let A be
an alphabet of d letters, this is A = {1, . . . , d}. We define the set words W of the
alphabet A as the set

W = {(i1, . . . , ik)|k ≥ 1, i1, . . . , ik ∈ A}.

Finally we can define the signature of a path.

Definition 3.1.8. One can compute the signature of a path X : [a, b] → Rd (noted as
S(X)a,b) by computing the collection of all iterated integrals of X. By convention, the first
term of the signature is always 1. Rigorously,

S(X)a,b = (1, S(X)1
a,b, . . . , S(X)d

a,b, S(X)1,1
a,b , S(X)1,2

a,b , . . . ), (3.1.7)

where the superscripts of the components of S(X)a,b are the set of words W on the alphabet
A = {1, . . . , d}.

Since the words W on an alphabet A are infinite, note that the signature of a path
is an infinite series. For this reason sometimes it is convenient to use the k-th level of
the signature. This is the finite set of all the S(X)i1,...,ik

a,b where the superscripts have a
length of k. For instance, the first level of the signature is (S(X)1

a,b, . . . , S(X)d
a,b), the

second level is

(S(X)1,1
a,b , . . . , S(X)1,d

a,b , S(X)2,1
a,b , . . . S(X)2,d

a,b , . . . , S(X)d,1
a,b , . . . S(X)d,d

a,b )

and so on up to k-th level.

3.1.3 Geometrical interpretation of the firsts levels of the Signature

To gain a deeper understanding, let’s explore the geometric intuition behind the
first two levels of the signature. In equation (3.1.3) we have already seen that the
first level of the signature, S(X)i

a,b, is the increment of the i-th coordinate (with i ∈
{1, . . . , d}). For the second level we will differentiate two cases:
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• the first case is when the two superscripts are the same value, this is S(X)i,i
a,b.

With simple computations we obtain for all i ∈ {1, . . . , d}:

S(X)i,i
a,b =

∫ b

a

(∫ s

a
dXi(r)

)
dXi(s)

=
∫ b

a

(∫ b

r
dXi(s)

)
dXi(r)

=
∫ b

a
(Xi(b)− Xi(r))dXi(r)

= Xi(b)
∫ b

a
dXi(r)−

∫ b

a
Xi(r)dXi(r)

= Xi(b)(Xi(b)− Xi(a))−
(
(Xi(b))2

2
− (Xi(a))2

2

)
=

(Xi
b − Xi

a)
2

2
.

• The second case is when the superscripts are i, j ∈ {1, . . . , d} for i ̸= j. The
terms S(X)

i,j
a,b have something to do with the Lévy area. The Lévy area, repre-

sented in Figure 3.2, refers to the signed area enclosed by the path, which is the
red line, and the chord, depicted by the blue dashed straight line connecting
the endpoints. The area above the blue chord (A−) is negative and the one be-
low the chord (A+) is positive, this is the reason why we say that it is a signed
area. For a two dimensional path Xt = {X1

t , X2
t } the Lévy area is

A =
1
2

(
S(X)1,2

a,b − S(X)2,1
a,b

)
.

FIGURE 3.2: Lévy area, image extracted from Chevyrev and Kormil-
itzin, 2016

3.1.4 Embedding: from discrete data to a path

Understanding how to construct a path from discrete data is crucial, especially in
time series analysis where data points are often discrete due to the discrete nature
of time variables. There are three primary methods for constructing such paths:
piecewise linear interpolation, rectilinear interpolation, and lead-lag transformation.

Piecewise linear interpolation is a method used to estimate values between known
data points by approximating each segment between adjacent points with a straight
line. This technique assumes linearity between neighboring data points, providing
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a simple yet effective method for filling in missing or intermediate values in one-
dimensional datasets. We will illustrate this with an example.

Example 3.1.9. Let X and t be one-dimensional data streams of length four defined
by

{Xi}4
i=1 = {1, 5, 3, 6} and {ti}4

i=1 = {0, 1, 2, 3}.

Using the piecewise linear interpolate we transform the discrete series into a fucn-
tion or path. We can see the representation of the picewise linear interpolation in
Figure 3.3. Note that we just joined the data points with a straight segment.

FIGURE 3.3: Piecewise linear interpolation

The next method is the rectilinear interpolation. Rectilinear interpolation is a
method used to estimate values within a rectangular grid of known data points.
Given a grid of data points arranged in "rows" and "columns", rectilinear interpola-
tion estimates the value at a point within the grid by interpolating along the rows
and columns independently. In other words, it first performs linear interpolation
along one direction (e.g., horizontally) to estimate values along the rows, and then
performs another linear interpolation along the other direction (e.g., vertically) to es-
timate values along the columns. We will use the same data that we used in Example
3.1.9 to see how this method works.

Example 3.1.10. Let X and t be the same as in the previous example. We can con-
struct the rectilinear interpolation by adding the auxiliary points (1, 1), (2, 5) and
(3, 3) that are represented as orange crosses in Figure 3.4.

FIGURE 3.4: Rectilinear interpolation
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Finally we will present the lead-lag transformation. Lead-lag transformation is
fundamentally different from interpolation techniques. It involves shifting one time
series {Xt} relative to another {Yt} in order to analyze the temporal relationships
between variables. The idea is to shift one time series relative to another, either
forward (lead) or backward (lag) in time. The process {Xt} follows {Yt}’s path with
a k lag:

Xt+k ∝ Yt, k > 0.

This transformation reveals dynamic dependencies and correlations, making it par-
ticularly useful in time series analysis and financial modeling. Let us show the pro-
cess of computing the lead-lag transformation with an example.

Example 3.1.11. Let X be the same as in the two previous examples. We want to
compute the lead-lag transformation for the exact same process X:

Lead-lag : X = {1, 5, 3, 6} 7→
{

XLag = {1, 5, 5, 3, 3, 6, 6}
XLead = {1, 1, 5, 5, 3, 3, 6}

The resulting path is represented in Figure 3.5. The orange crosses represent the
auxiliary points added, which are: (1, 5), (5, 3) and (3, 6).

FIGURE 3.5: Lead-lag transformation

3.1.5 Signature Properties

Invariance to time re-parameterisation

One of the key properties of signatures is their invariance to time re-parameterisation.
This means that the signature of a path remains unchanged under a continuous and
strictly increasing transformation of time. To understand this, consider a continuous
path X defined on the interval [0, T].

Suppose we have a continuous and strictly increasing function σ : [0, T] → [S, U].
This function re-parameterises the time interval [0, T] to [S, U]. For any multi-index
(i1, . . . , ik) ∈ I and for any 0 ≤ s < t ≤ T, the invariance property can be expressed
as:

∫
s<u1<···<uk<t

dXi1
u1
· · · dXik

uk =
∫

σ(s)<u1<···<uk<σ(t)
dXi1

σ−1(u1)
· · · dXik

σ−1(uk)
.
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Uniqueness

The uniqueness property of signatures underscores their power in characterizing
paths. As discussed in Hambly and Lyons, 2010, the signature of a path Ss,t(X)
uniquely determines the function u 7→ Xu − Xs for u ∈ [s, t] up to tree-like equiv-
alence. This means the signature encodes sufficient information to reconstruct the
path segment Xu relative to Xs within [s, t].

A sufficient condition for this uniqueness is the existence of a component i ∈
{1, . . . , d} such that Xi

u is strictly monotone increasing, ensuring the path does not
retrace itself and can be distinguished by its signature.

Typically, the first few terms of the signature contain most of the path’s informa-
tion, making signatures efficient representations. This is especially useful in practical
applications, providing a concise yet comprehensive summary of the path’s behav-
ior.

Log Signature

A formal power series x is expressed as:

x =
∞

∑
k=0

∑
i1,...,ik

λi1,...,ik ei1 ⊗ · · · ⊗ eik

where λi1,...,ik are coefficients and ei1 , . . . , eik are basis elements in a vector space.

The logarithm of x, denoted log x, is defined by:

log x = log(λ0) + ∑
n≥1

(−1)n

n

(
1 − x

λ0

)⊗n

where λ0 > 0 ensures log(λ0) is well-defined, and ⊗ denotes the n-th tensor power
(for more information about tensor algebra see Akivis, Goldberg, and Silverman,
1972).

For a path X : [a, b] → Rd, the log signature log S(X)a,b is the formal power series
obtained by applying the logarithmic transformation to the signature S(X)a,b over
the interval [a, b].

It is important to define the Lie bracket between two formal power series x and
y. We define the Lie bracket as:

[x, y] = x ⊗ y − y ⊗ x

This operation analyzes algebraic structures and commutative properties within for-
mal power series.

Now, the first few terms of log S(X)a,b are:

log S(X)a,b =
d

∑
i=1

S(X)i
a,bei + ∑

1≤i<j≤d

1
2

(
S(X)

i,j
a,b − S(X)

j,i
a,b

)
[ei, ej] + . . .

Here, S(X)i
a,b denotes the i-th component of S(X)a,b, and S(X)

i,j
a,b represents the Lévy

area between ei and ej.
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In summary, the log signature refines path representations by capturing complex
interactions, enhancing interpretability in sequential data analysis such as pattern
recognition and anomaly detection in data science applications.

3.1.6 Properties of the signature of a time series

In this section, we discuss the main properties of the signature of a time series
{(ti, ri)}N

i=m through the presentation of two important lemmas.

3.1.7 Unique Determination by Signature

Lemma 3.1.12 (Unique Determination by Signature). Suppose that 0 < m < n ≤ N,
where m, n ∈ N. The signature of a time series {(ti, ri)}n

i=m uniquely determines the time
series {(ti, ri)}n

i=m.

Lemma 3.1.12 states that the signature of a time series encodes enough infor-
mation to uniquely reconstruct the original time series. In other words, given the
signature, we can accurately determine the sequence of time points and their corre-
sponding values. The proof can be found in Levin, Lyons, and Ni, 2016

Lemma 3.1.13 (Linear Functional Representation). Let X denote the signature of a time
series {(ti, ri)}n

i=1. Assume that the time points {ti}n
i=1 are known. Then the differences in

the values ∆R = (r1, r2 − r1, . . . , rn − rn−1)
T can be represented as a linear functional of

the signature X, specifically:
∆R = T−1A,

where

A :=


0!π2(X)
1!π12(X)

...
(n − 1)!π1...12(X)

 , T :=


1 1 · · · 1
t1 t2 · · · tn
...

...
. . .

...
tn−1
1 tn−1

2 · · · tn−1
n

 , ∆R :=


r1

r2 − r1
...

rn − rn−1

 .

Here, the notation π refers to the projection of the signature X onto specific com-
ponents. Specifically, π2(X) denotes the second component of the signature of X,
π12(X) denotes the projection onto the component corresponding to the indices 1
and 2, and so forth. The proof of this lemma is in Levin, Lyons, and Ni, 2016.

Lemma 3.1.13 demonstrates how the values of a time series can be derived from
its signature when the time points are known. By expressing ∆R as T−1A, we estab-
lish a linear relationship between the time series values and its signature. This means
that once we have the signature and the time points, we can use this linear functional
to retrieve the original time series values. This property is particularly useful in data
science applications where efficient and accurate reconstruction of time series data
is needed for analysis, forecasting, or anomaly detection.
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Chapter 4

Application 1: Signature Method
for Model Classification

In this section, we will illustrate an application of the signature method. Specifi-
cally, we will simulate two models, Y and Y′, which have the same structure but
different parameter values, and then classify them using the signature of the time
series. We will test it with the following model structures: AR(p), ARMA(p, q) and
ARIMA(p, d, q).

4.1 Experiments and results

4.1.1 AR(p) model

Consider two AR(p) models that share the same order p but have different param-
eters: Φp or Φ′

p. Let {Yi,j} represent the observations of the time series, where the
index i denotes each individual time series and j represents the observation at time
tj. Each time series Yi,· is assigned a label: “class 0” or “class 1”, depending on the
parameters used to generate the time series. In this case we will fix p = 2 and the
classes will be defined by:

• class 0: Yt = −0.5Yt−1 + 0.25Yt−2 + Zt and

• class 1: Yt = −0.75Yt−1 + 0.5Yt−2 + Zt,

where Zt has zero mean and unit variance. We will generate 500 time series of each
class, 1000 in total, of length 100.

FIGURE 4.1: Two AR(2) series of different classes
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In Figure 4.1 we can see two examples of the time series generated. The blue
one is defined by the class 0 scheme and the red one corresponds to class 1. After
generating the 1000 series we store the series in a matrix with this structure:

t1 t2 t3 . . . t100 Class
Y1,1 Y1,2 Y1,3 . . . Y1,100 0
Y2,1 Y2,2 Y2,3 . . . Y2,100 0
Y3,1 Y3,2 Y3,3 . . . Y3,100 0

...
...

...
. . .

...
...

Y500,1 Y500,2 Y500,3 . . . Y500,100 0
Y1,1 Y1,2 Y1,3 . . . Y1,100 1
Y2,1 Y2,2 Y2,3 . . . Y2,100 1
Y3,1 Y3,2 Y3,3 . . . Y3,100 1

...
...

...
. . .

...
...

Y500,1 Y500,2 Y500,3 . . . Y500,100 1

Then we are going to transform each {Yi}. Firstly, we use the cumulative sum:

Ỹi j = CS({Yi}j) = {0, Yi,1, Yi,1 + Yi,2, Yi,1 + Yi,2 + Yi,3, . . . }

and later we convert each time series in a two dimensional path by using the lead-lag
transformation obtaining

Xi =
{(

Ỹlead
i , Ỹlag

i

)}
.

After this transformation, we are able to compute the signature of each time series Yi
that has been converted into a path. To compute the signature in Python we use the
esig library. According to PyPI, 2024 “The Python package esig provides a toolset
(previously called sigtools) for transforming vector time series in stream space to
signatures in effect space”. We are going to compute the signature up to level L = 2,
this is:

S(Xi) =
(

1, S(1)
i , S(2)

i , S(1,1)
i , S(1,2)

i , S(2,1)
i , S(2,2)

i

)
And then store all the signatures in a matrix with form:

Feature Set Class

Ŝ(1)
1 Ŝ(2)

1 Ŝ(1,1)
1 Ŝ(1,2)

1 Ŝ(2,1)
1 Ŝ(2,2)

1 0

Ŝ(1)
2 Ŝ(2)

2 Ŝ(1,1)
2 Ŝ(1,2)

2 Ŝ(2,1)
2 Ŝ(2,2)

2 0
...

...
...

...
...

...
...

Ŝ(1)
500 Ŝ(2)

500 Ŝ(1,1)
500 Ŝ(1,2)

500 Ŝ(2,1)
500 Ŝ(2,2)

500 0

Ŝ(1)
1 Ŝ(2)

1 Ŝ(1,1)
1 Ŝ(1,2)

1 Ŝ(2,1)
1 Ŝ(2,2)

1 1

Ŝ(1)
2 Ŝ(2)

2 Ŝ(1,1)
2 Ŝ(1,2)

2 Ŝ(2,1)
2 Ŝ(2,2)

2 1
...

...
...

...
...

...
...

Ŝ(1)
500 Ŝ(2)

500 Ŝ(1,1)
500 Ŝ(1,2)

500 Ŝ(2,1)
500 Ŝ(2,2)

500 1

Note that we have removed the first element of the signature in all the rows.
In addition, the notation ŜI

i refers to the signature value standardized for row i =
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1, . . . , 1000 and column I ∈ {(1), (2), (1, 1)(1, 2), (2, 1), (2, 2)}. To standarize the each
SI

i we compute the mean of the I-th column µI , and the standard deviation of the I-th
column σI by using the formulas

µI =
1

1000

1000

∑
i=1

SI
i and σI =

√√√√ 1
1000

1000

∑
i=1

(SI
i − µI)2,

respectively. Then the values of the standardized matrix are given by:

ŜI
i =

SI
i − µI

σI
.

The objective is to predict the corresponding class label for each row i, given Ŝi =

(Ŝ(1)
1 , . . . , Ŝ(2,2)

1 ). We will follow the standard procedure of splitting the data into a
training set and a testing set. The testing set comprises 30% of the data, while the
remaining data is used for training. Before training a logistic regression model to
directly predict whether the given data belongs to class 0 or 1, we will first explore
why the first and second levels of the signatures (in this case) are appropriate for
classifying the data. With the training data, we will train a LASSO model to deter-
mine the most relevant signatures for predicting the class. The results of the analysis
indicate that the most significant signatures are (1, 2) and (2, 1), with corresponding
LASSO coefficients of 0.48842699 and −0.74945231, respectively. In Figure 4.2a we
have plotted the signature term S(1,2) in the x axis and S(2,1) in the y axis. We have
visually distinguished the classes of the data by using different colors. One can see
that this shows a separation on data. Furthermore, we have plotted in Figure 4.2b
log S(1) against log S[1,2] to provide additional insight into the data separation.

(A) Figure 4.2: Relevant signature terms for
class 0 and class 1

(B) Figure 4.2: Log signature terms for class 0
and class 1

After that, we discard the S(I) with LASSO coefficients equal to zero and train
a logistic regression model. On the left we can see the confusion matrix for the
training dataset with an accuracy of 0.8385 and on the right the confusion matrix
corresponding to the test set with also an accuracy of 0.8167.
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Training Data

Actual Predicted 0 Predicted 1
Class 0 300 50
Class 1 63 287

Accuracy: 0.8386
TABLE 4.1: Train-

ing data results

Testing Data

Actual Predicted 0 Predicted 1
Class 0 148 2
Class 1 13 137

Accuracy: 0.8167
TABLE 4.2: Test-

ing data results

Overall, the model demonstrates good performance on both the training and test-
ing datasets, with high accuracies. This indicates that the selected feature matrix is
effective in distinguishing between the classes. Subsequently, we will examine the
same process for another model.

4.1.2 ARMA(p,q) model

In this section, the objective is to apply the same methodology as previously dis-
cussed to analyze the effectiveness of time series signatures in classifying them. In
this instance, the time series will adhere to an ARMA(1,1) process. Two classes will
be defined, as in the previous experiment. The equations representing the classes
are as follows:

• class 0: Yt − 0.4Yt−1 = 0.5 + Zt + 0.5Zt−1 and

• class 1: Yt − 0.8Yt−1 = 0.5 + Zt + 0.7Zt−1.

In continuation with our methodology from the previous experiment, we will
omit a detailed explanation of the entire process. Instead, we will focus on plotting
key elements and analyzing the outcomes. In Figure 4.3, we present the plot of two
ARMA(1,1) processes, with colors indicating their respective classes.

FIGURE 4.3: Two ARMA(1,1) series of different classes

The LASSO model identified the most relevant signatures as those with super-
scripts (1, 1) and (2, 1). In Figure 4.4a, we present these signatures plotted against
each other. Additionally, in Figure 4.4b, we plot log S(1) against log S[1,2]. Both rep-
resentations clearly illustrate the separation between the two classes.

Here are the confusion matrices and accuracies for both the training and testing
sets:
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(A) Figure 4.4: Relevant signature terms for
class 0 and class 1

(B) Figure 4.4: Log signature terms for class 0
and class 1

Actual Predicted 0 Predicted 1
Class 0 349 1
Class 1 20 330

Accuracy: 0.97

TABLE 4.3: Train-
ing Data

Actual Predicted 0 Predicted 1
Class 0 148 2
Class 1 13 137

Accuracy: 0.95

TABLE 4.4: Test-
ing Data

The model performs exceptionally well using the selected feature matrix, effec-
tively classifying the data with high accuracy and low error rates. The high accura-
cies on both training (0.97) and testing data (0.95) suggests that the features selected
are highly relevant and informative for the classification task.

4.1.3 ARIMA(p,d,q)

We employ the same approach for an ARIMA (2,1,2) model. The classes are defined
as follows:

• class 0: (1 − 0.5B + 0.25B2)(1 − B)Yt = (1 + 0.3B − 0.2B2)Zt and

• class 1: (1 − 0.75B + 0.5B2)(1 − B)Yt = (1 + 0.4B − 0.3B2)Zt

In Figure 4.5, we illustrate the graphical representations of two ARIMA(1,2,1) pro-
cesses, where colors distinguish between their respective classes.

FIGURE 4.5: Two ARMA(1,1) series of different classes
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The LASSO analysis highlighted the significance of signatures denoted as (2, 1)
and (1, 2). In Figure 4.6a, we plot these signatures for visual comparison. Further-
more, in Figure 4.6b, we show log S(1) against log S[1,2], revealing a distinct demar-
cation between the classes.

(A) Figure 4.6: Relevant signature terms for
class 0 and class 1

(B) Figure 4.6: Log signature terms for class 0
and class 1

Following is the presentation of confusion matrices and accuracy metrics for the
training and testing sets subsequent to training a logistic regression model with
LASSO feature selection.

Actual Predicted 0 Predicted 1
Class 0 323 27
Class 1 40 310

Accuracy: 0.9042

TABLE 4.5: Train-
ing Data

Actual Predicted 0 Predicted 1
Class 0 138 12
Class 1 17 133

Accuracy: 0.9033

TABLE 4.6: Test-
ing Data

In the training data, the model achieved a relatively high accuracy of approxi-
mately 90.43%. Similarly, on the testing data, the model demonstrated a commend-
able accuracy of around 90.33%. Overall, these results suggest that the model classi-
fies correctly the data.
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Chapter 5

Application 2: Classification of
Crude Oil Data Stream Based on
30-Minute Time Intervals

In this chapter, we delve into the application of the signature method for the classi-
fication of financial data streams, with a specific focus on the crude oil stock market.
The central objective is to classify 30-minute time windows of crude oil stock mar-
ket data by using its signature. This chapter is based on a paper titles “Extracting
information from the signature of a financial data stream” Gyurkó et al., 2014.

Crude oil stock market data, characterized by its high volatility and complex
temporal dependencies, presents a significant challenge for traditional classification
techniques. The inherent noise and rapid fluctuations in crude oil prices needs a
robust analytical framework capable of perceiving subtle patterns over short time
intervals. The signature method, with its capacity to handle irregular and high-
frequency data, is particularly suited to this task.

Classifying stock market data is crucial for several reasons. Accurate classifica-
tion can enhance predictive models, allowing traders and analysts to make more
informed decisions and develop more effective trading strategies. Moreover, it can
help in risk management by identifying potential market shifts and anomalous be-
haviors promptly. In the context of crude oil, which plays an important role in the
global economy, understanding its market dynamics can lead to better insights into
macroeconomic trends and energy policies. Therefore, the ability to classify and in-
terpret crude oil market data accurately is fundamental for financial stability and
strategic planning.

This approach represents a novel application of the signature method. Previ-
ously, we classified simulated time series where the underlying model types were
known. In contrast, we will now apply this method to a real financial data stream
without detailed knowledge of the data’s nature. This shift to using actual market
data presents new challenges and opportunities, highlighting the robustness and
versatility of the signature method in handling complex, real-world financial data.

5.1 Crude Oil Market Data: Analysis and Preprocessing

To conduct our experiments, we will utilize a dataset comprising FX prices of crude
oil, provided in generic ASCII format, denominated in WTI/USD (West Texas Inter-
mediate in USD). The dataset consists of 1-minute interval data, recorded in Eastern
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Standard Time (EST) zone without Daylight Savings adjustments. Each data point
within the 1-minute window includes the following columns:

• Timestamp (T): Indicates the specific time at which the price data was recorded.

• Open Price (O): Refers to the price of crude oil at the beginning of the 1-minute
interval.

• High Price (H): Represents the highest price of crude oil reached during the
1-minute interval.

• Low Price (L): Denotes the lowest price of crude oil recorded within the 1-
minute interval.

• Close Price (C): Signifies the price of crude oil at the end of the 1-minute inter-
val.

• Volume (V): represents the total amount of trading activity.

The column “volume” will be disregarded as it consistently registers a value of 0.
The dataset spans the years 2021, 2022, and 2023. The data has been obtained from
HistData.com, 2024.

We will generate data streams spanning 30-minute intervals, starting either from
minute 00 to 29 or from minute 30 to 59. Subsequently, we will preprocess these
data streams represented as Ŷ = ((T, O, H, L, C)ti)

30
i=1. To mitigate the presence of

obvious patterns, we will apply various transformations, including normalization
and standardization, to the features within the data. The transformations applied
are:

• We begin by normalizing the timestamps T. This normalization ensures that
the timestamps are represented on a scale from 0 to 1, indicating their position
within the time series. The normalization formula is given by:

uti := i − t0

t30 − t0
.

• Next, we normalize the open, high, low, and close prices by subtracting the
mean µ and dividing by the standard deviation σ of each respective column.
This standardization process ensures that each feature has a mean of 0 and
a standard deviation of 1, allowing for better comparison and analysis. The
formulas for normalization are as follows:

oti :=
Oti − µ({Oti}30

i=0)

σ({Oti}30
i=0)

, hti :=
Hti − µ({Hti}30

i=0)

σ({Hti}30
i=0)

,

lti :=
Lti − µ({Lti}30

i=0)

σ({Lti}30
i=0)

and cti :=
Cti − µ({Cti}30

i=0)

σ({Cti}30
i=0)

.

• Additionally, we calculate the logarithm of the mid price (m), which is the aver-
age of the high and low prices. This transformation provides a more symmetric
representation of the price distribution and helps capture potential patterns in
the data. The formula for calculating the logarithm of the mid price is:

mpti := log
Hti + Lti

2
.
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• Furthermore, we compute the spread between the high and low prices and
standardize it by subtracting the mean and dividing by the standard deviation.
This standardized spread provides a measure of price volatility relative to the
mean spread across the dataset. The formula for calculating the standardized
spread is:

sti :=
Sti − µ({Sti}30

i=0)

σ({Sti}30
i=0)

,

where Sti = Hti − Lti .

Now, we have transformed each data stream Ŷ into X = (uti , oti , hti , lti , cti , mpti , sti)
30
i=1.

The reference paper suggests implementing a lead-lag transformation by introduc-
ing a lag based on the logarithm of the mid-price (mp). However, during our exper-
imentation, this transformation showed computational challenges, primarily due
to the complexity of the resulting path and the significant computational time re-
quired for signature computations. As an alternative approach, we explored the
use of piecewise linear interpolation. Remarkably, this strategy yielded excellent re-
sults while consuming minimal computational resources. Therefore, we utilized the
esig library in Python to calculate the signature of the piecewise linear interpola-
tion paths for all X up to level 4. This results into 2801 signature terms for each data
stream.

5.1.1 Classification method

In our experiments, the input comprises a collection of data streams spanning two
distinct time windows, each lasting 30 minutes, denoted as "time 1" and "time 2".
Each data stream is followed by a label indicating its temporal partition. Our ob-
jective is to leverage the unique signature of each data stream to predict whether it
belongs to time 1 or time 2.

To accomplish this, we divide the data into separate training and testing sets.
The testing set constitutes 25% of the total input data streams. The prediction task
involves assigning a value of 0 to data streams corresponding to time 1 and a value
of 1 to those from time 2.

For classification, we employ a linear regression model augmented with Lasso
regularization, setting the hyperparameter alpha to 0.01 (by k-fold cross validation
it always resulted to be the best option). Standardization of the signature features is
performed to ensure optimal functioning of the LASSO regularization technique.

5.1.2 Performance evaluation

To evaluate the performance of our classification method, we employ the Kolmogorov-
Smirnov (KS) distance. The KS statistic measures the maximum distance between
the cumulative distribution functions (CDFs) of two samples, ranging from 0 to
1. Higher KS distances indicate better separation between the positive and nega-
tive classes, meaning the model is more effective at distinguishing between the two
classes.

We begin by computing the KS distance for the distributions of the predicted
probabilities for each category using both the training set and the test set. This in-
volves calculating the KS distance for the predicted probabilities of the positive and
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negative classes in both datasets, providing insight into the model’s ability to differ-
entiate between the two classes.

Next, we use a threshold of 0.5 to classify instances into positive and negative
classes. We then compute the confusion matrices for the training and testing sets,
allowing us to calculate the ratio of correct classifications (accuracy) for both sets.
This step helps us evaluate the model’s performance in terms of correctly identifying
positive and negative instances.

Finally, we compute the Receiver Operating Characteristic (ROC) curve and the
Area Under the Curve (AUC) for both the training and testing sets. The ROC curve
illustrates the model’s ability to distinguish between classes at threshold value 0.5,
while the AUC provides a single scalar value summarizing the overall performance.
This comprehensive evaluation process offers a detailed understanding of the model’s
discriminative power and accuracy across different datasets.

5.2 Experiments and Results

In evaluating market performance, it is essential to consider various time intervals.
First, we will compare several segments of the trading day with the final trading
window before market closure at 17:00 P.M. to 18:00 P.M. Specifically, we will con-
trast the market activity during the last time slot of the day, 16:30 P.M. to 16:59 P.M.,
with the intervals: 9:00 A.M. to 9:29 A.M., 10:30 A.M. to 10:59 A.M., 12:00 P.M. to
12:29 P.M., 14:30 P.M. to 14:59 P.M., 15:00 P.M. to 15:29 P.M. and 16:00 P.M. to 16:29
P.M.. These time windows capture different phases of the trading day, allowing us
to analyze market trends and similarities with the closure interval.

In Table 5.1, we observe various performance metrics: KS Distance, AUC and Ac-
curacy, all of which indicate higher values correspond to better classification model
performance. Across all cases, we find consistently strong results for these metrics.

The KS Distance values range from 0.6638 to 0.9401 for the training set and from
0.5472 to 0.8755 for the test set. Regarding AUC, the values range from 0.9060 to
0.9925 for the training set and from 0.8327 to 0.9787 for the test set. Higher AUC
values denote better overall performance in distinguishing between classes, as il-
lustrated by the ROC curve. Accuracy, which measures the proportion of correctly
classified instances, shows values ranging from 0.7556 to 0.9678 for the training set
and from 0.7540 to 0.9346 for the test set. Higher accuracy values indicate a higher
percentage of correctly predicted outcomes by the model. An intriguing observation
from the data is the trend where earlier time windows (further from market closing
time) tend to exhibit better performance across all metrics. As time windows ap-
proach closer to the market closing time, the performance metrics tend to decrease,
indicating reduced model effectiveness in distinguishing between classes. This trend
suggests that temporal proximity to market events significantly impacts the model’s
predictive performance. One can think that as we move closer to the market clos-
ing time, the time windows become more similar in terms of their characteristics or
features, for this reason we could have lower performance when we approximate to
the closing time.
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Window Comparison
KS Distance AUC Accuracy

Train Test Train Test Train Test
9:00-9:29 vs 16:30-16:59 0.9401 0.8755 0.9925 0.9787 0.9678 0.9346

10:30-10:59 vs 16:30-16:59 0.8904 0.8354 0.9869 0.9765 0.9400 0.9068
12:00-12:29 vs 16:30-16:59 0.8122 0.7521 0.9681 0.9404 0.9044 0.8660
14:30-14:59 vs 16:30-16:59 0.8029 0.7602 0.9627 0.9326 0.8983 0.8540
15:00-15:29 vs 16:30-16:59 0.6638 0.5472 0.9060 0.8327 0.8347 0.7556
16:00-16:29 vs 16:30-16:59 0.6713 0.5641 0.9068 0.8506 0.8319 0.7583

TABLE 5.1: Comparison of Performance Metrics Across Several Time
Windows vs Closing Time Window

(A) Relevant Signature Terms for 9:00-
9:29 vs 16:30-16:59

(B) Relevant Signature Terms for 10:30-
10:59 vs 16:30-16:59

(C) Relevant Signature Terms for 12:00-
12:29 vs 16:30-16:59

(D) Relevant Signature Terms for 14:30-
14:59 vs 16:30-16:59

(E) Relevant Signature Terms for 15:00-
15:29 vs 16:30-16:59

(F) Relevant Signature Terms for 16:00-
16:29 vs 16:30-16:59

FIGURE 5.1: Relevant Signature Terms for different Time Windows
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In Figure 5.1, we illustrate a plot showing the relationship between the two most
significant signature terms, identified by their highest absolute LASSO coefficients.
Class 1 is consistently represented in red and corresponds exclusively to the clos-
ing time slot of 16:30 P.M.-16:59 P.M.. Meanwhile, Class 0 varies across the different
time slots selected for the experiment. The plot reveals a noticeable trend: as the
selected time slots approach the market closing time, the distinction between the
classes becomes increasingly ambiguous. This observation suggests that the identi-
fied signature terms encounter greater difficulty in effectively partitioning the data
as the time slots approach each other.

(A) ROC Curve for 9:00-9:29 vs 16:30-
16:59

(B) ROC Curve for 10:30-10:59 vs 16:30-
16:59

(C) ROC Curve for 12:00-12:29 vs 16:30-
16:59

(D) ROC Curve for 14:30-14:59 vs 16:30-
16:59

(E) ROC Curve for 15:00-15:29 vs 16:30-
16:59

(F) ROC Curve for 16:00-16:29 vs 16:30-
16:59

FIGURE 5.2: ROC Curve for different Time Windows

The ROC curves in Figure 5.2 reveal varying performance across different time in-
tervals compared to the 16:30-16:59 reference period. Earlier intervals (Figures 5.2a,
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5.2b, 5.2c and 5.2d) show nearly perfect discrimination, with curves close to the top-
left corner indicating high accuracy. As the interval approaches 16:30-16:59 (plots
5.2e and 5.2f), curves shift towards the diagonal line, suggesting decreased classifi-
cation performance likely due to similarity with the reference period for proximity.

In the next experiment, we will compare a baseline time period (excluding the
start and closure times) with various alternative time intervals. Specifically, we will
compare the time bucket from 11:00 A.M. to 11:29 A.M. with the following time
windows: 9:00 A.M. to 9:29 A.M., 10:00 A.M. to 10:29 A.M., 11:30 A.M. to 11:59
A.M., 1:00 P.M. to 1:29 P.M., 3:00 P.M. to 3:29 P.M., and 4:30 P.M. to 4:59 P.M.. We can
see the results in 5.2.

Window Comparison
KS Distance AUC Accuracy

Train Test Train Test Train Test
9:00-9:29 vs 11:00-11:29 0.7330 0.7184 0.9343 0.9075 0.8665 0.8420

10:00-10:29 vs 11:00-11:29 0.5683 0.4515 0.8631 0.7967 0.7755 0.7086
11:30-11:59 vs 11:00-11:30 0.6238 0.5402 0.8906 0.8248 0.8061 0.7385
13:00-13:29 vs 11:00-11:30 0.5577 0.4753 0.8554 0.8059 0.7645 0.7283
15:00-15:29 vs 11:00-11:30 0.8412 0.8015 0.9705 0.9522 0.9022 0.8944
16:30-16:59 vs 11:00-11:30 0.8784 0.9010 0.9813 0.9801 0.9367 0.9410

TABLE 5.2: Comparison of Performance Metrics Across Several Time
Windows vs 11:00-11:29

One noticeable observation is that the metrics measured during the time window
11:00-11:29 generally exhibit lower values than those presented in Table 5.1. This
discrepancy occurs because this specific time window is less distinct compared to
the closing time, which typically has more pronounced market activity or signifi-
cance. Another observation is that as we move closer to the baseline time, 11:00-
11:29, we observe consistent behaviors across adjacent time intervals. This suggests
that market dynamics during these intervals exhibit similarities, possibly influenced
by market trends or trading patterns.
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Chapter 6

Application 3: AR Models as a
Special Case of ES Models

This chapter is based on the article "Learning from the Past, Predicting the Statis-
tics for the Future, Learning an Evolving System" (Levin, Lyons, and Ni, 2016).
In this section, we will first establish a general framework for the Expected Sig-
nature Model. Following this, we will tailor this model to the context of time se-
ries analysis. To solidify our understanding, we will implement a computational
example demonstrating that Autoregressive (AR) and Autoregressive Moving Aver-
age (ARMA) models can be viewed as specific instances of the Expected Signature
Model.

6.1 The Expected Signature Model

First, let us define a Banach space. A Banach space is a complete normed vector
space, meaning that it is a vector space equipped with a norm, and every Cauchy
sequence in this space converges to a point within the space. This completeness
property is crucial for various analytical techniques.

Consider two Banach spaces, V and W, and a compact time interval J. We can
describe an E-valued data stream within the time interval J as a function X : D → E,
where D represents the set of event times and D ⊂ J.

To handle varying time stamps in the data streams, we embed X into a function
that maps from J to E. One straightforward method is to extend X into a piece-
wise linear function as seen in 3.1.4, though there are more sophisticated methods
available. For simplicity, we will assume that this embedded function is continuous
and even piecewise smooth on a very fine scale. However, it may still exhibit high
oscillations and be difficult to analyze directly.

The fine structure of these data streams is significant because it gives meaning
to concepts such as iterated integrals and differential equations. Nevertheless, di-
rectly analyzing these streams in their raw form is neither convenient nor efficient.
To address this, the theory of rough paths provides a solution by using a form of
p-variation. This theory completes the space in such a way that integrals and differ-
ential equations become well-defined within this framework.

To clarify, V p(J, E) denotes the space of continuous functions mapping from J to
E with finite p-variation. In our discussion, we will consider elements of V p(J, E)
as representations of data streams or paths. This allows us to work within a robust
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mathematical framework that supports effective analysis and application of regres-
sion techniques on data streams.

The effects of data streams can be modeled within a regression framework where
the dependent variable is represented by observations on paths in V p(J, E). In this
context, the dependent variable itself may also be a stream. Let us consider observa-
tions of input-output pairs {Xi, Yi}n

i=1, where the relationship is assumed to adhere
to:

Yi = f (Xi) + ϵi, ∀i ∈ {1, . . . , n},

with Xi ∈ Vp(J, E), Yi ∈ V p([0, T], W), E[ϵi|Xi] = 0, and f being an unknown
function over the path space. The goal is to accurately and effectively estimating the
function f within this framework.

Similar to classical nonparametric regression techniques in finite-dimensional
cases, identifying specific feature sets within observed input-output data is crucial
for linearizing the functional relationship between them. This chapter proposes ap-
plying linear regression on the signature features of a path to address this challenge.
Throughout this chapter, we will adopt the following notation: X will represent the
signature of X, and Y will represent the signature of Y.

Theorem 6.1.1 (Signature Approximation). Suppose f : S1 → R is a continuous func-
tion where S1 is a compact subset of S(Vp(J, E)). Then for every ϵ > 0, there exists a linear
functional L ∈ T((E))∗ such that for every a ∈ S1,

| f (a)− L(a)| ≤ ϵ.

Theorem 6.1.1 states that for any small positive number ϵ, we can find a linear
functional L such that for any point a in S1, the difference between f (a) and L(a) is
smaller than ϵ. One can see the proof of this theorem in Levin, Lyons, and Ni, 2016

Our objective is to learn the conditional distribution of Y given X. In the language
of rough paths, this involves understanding the relationship between the expected
values of Y based on the information from X. There are two main reasons to use
signatures:

• Unique Path Determination: The signature of a path with limited changes
(bounded variation) uniquely describes that path. This means the signature
gives a full picture of the path’s shape and movement.

• Expected Signature and Stochastic Processes: Under certain conditions, the
expected signature of a stochastic process (random process) can determine the
distribution of the random signatures. This means the average behavior of a
process can be understood through its signature.

When the conditional expectation E[Y|X] is a continuous function of X, Theorem
6.1.1 tells us that this expectation can be approximated by a linear function of X in
a local region. By incorporating a small amount of noise, we can derive a model
known as the Expected Signature Model.

Definition 6.1.2. The Expected Signature Model is used to describe the relationship between
two stochastic processes X and Y, which take values in spaces E and W, respectively. The
signatures of these processes, denoted by X and Y, are assumed to be well-defined.
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The model claims that:
Y = L(X) + ϵ,

where L is a linear functional that maps from the signature space of X to the signature space
of Y, and ϵ represents noise with an expected value of zero given X (i.e., E[ϵ|X] = 0).

In essence, this model helps us understand and predict the behavior of Y based
on the information encoded in the signatures of X.

By using these concepts, we can develop robust methods for analyzing and pre-
dicting complex data streams, leveraging the mathematical framework of rough
paths and signature theory to simplify and solve regression problems in data sci-
ence.

6.1.1 Calibration and Prediction

In the context of the expected signature model, when we have a large number of
samples {Xi, Yi}N

i=1, estimating the expected truncated signature of Y of order m,
denoted as ρm(E[Y|X]), essentially becomes a standard linear regression problem.
Here, the coordinate iterated integrals of Y act as the multi-dimensional dependent
variables, while the coordinate iterated integrals of X serve as the independent vari-
ables.

In practical applications, we focus on the truncated signature of X up to a certain
order rather than the full signature, since we need a finite number of explanatory
variables. Given that the regression is linear, we can utilize many existing linear re-
gression techniques. To handle potential issues like collinearity in the design matrix
and overfitting, we can apply regularization or variable selection methods such as
LASSO or SVD. This calibration method is referred to as the ES approach, where ES
stands for expected signature.

To evaluate how well the model fits, we use the mean squared error of the resid-
uals {ai}N

i=1 as a performance metric, where:

ai = Yi − f̂ (Xi), ∀i = 1, . . . , N.

Alternatively, we can use R2 or adjusted-R2 as indicators of the model’s fitting per-
formance.

6.2 Expected Signature Model for Time Series

In this section, we explore the application of the expected signature model specifi-
cally to time series data. The expected signature model provides a powerful tool for
analyzing and predicting the behavior of time series by leveraging the mathematical
framework of signatures.

Consider a univariate time series {ri}N
i=1 and fix two positive integers p and q.

For a given time index k ∈ N, let Fk denote the information set available up to time
tk, comprising past returns before tk. In this context, Yk represents the signature of
the future returns series S({ti, ri}

k+q
k+1), and Xk represents the signature of the past

returns series S({ti, ri}k
k−p).

We define the ES model as follows:
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Definition 6.2.1. Assuming the univariate time series {ri}N
i=1 is stationary, it is said to

satisfy the ES model with parameters p, q, n, and m (denoted as ES(p, q, n, m)) if there
exists a linear function f : Tn(R2) → Tm(R2) such that

ρm(S({rt+i}
q
i=1)) = f (ρm(S({rt−i}

p
i=0))) + at,

where N is a positive integer such that N ≥ p + q, and the residual terms at satisfy
E[at|Ft] = 0.

Consider µk as the conditional expectation of the signature S({ti, ri}
k+q
k+1), given

the information up to time tk. This is mathematically expressed as

µk = E[S({ti, ri}
k+q
k+1) | Fk]. (6.2.1)

Here, µk is represented as a function of Xk, indicating the existence of a mapping
f : T((R2)) → T((R2)) such that µk = f (Xk).

It’s important to note that µk and ak belong to T((E)). The conditional covariance
of the signature of the future return series S({ti, ri}

k+q
k+1), given Fk, is defined by the

function Σ2
k : A∗ × A∗ → R:

Σ2
k(I, J) = Cov(π I(Yk), π J(Yk) | Fk), (6.2.2)

where I, J ∈ A∗.

The core assumption of the ES model rests on the stationarity of the time series
{ri} (recall definition in Chapter 2), a standard requirement in time series analysis.
This condition ensures that the distribution of the signature of (rt1 , . . . , rtk) remains
invariant under time shifts.

In the ES(p, q, n, m) model, it is assumed that the distribution of rk+1, . . . , rk+q,
given the current information Fk, depends solely on the truncated signature (up to
order n) of the p previous data points rk−p, . . . , rk−1, rk. These signatures are suffi-
ciently rich to approximate any smooth mean function over the p preceding obser-
vations, in particular the signatures are enough to predict µk.

6.3 AR Models as a Type of Expected Signature Model

We have seen that autoregressive (AR) models are widely used in statistics and
econometrics for modeling and estimating the conditional expectation of future val-
ues based on past information. Specifically, the AR model predicts the future value
rk+1 based on a linear combination of past values {rk, rk−1, . . . , rk−p+1}, where p is
the order of the model. In this section we are going to see that the AR model can be
viewed as a special case of the Expected Signature (ES) model.

The AR model focuses on modeling and estimation of the conditional expectation
mk, and variance σ2

k of the future data rk+1 given the information up to time tk, in
other words:

mk := E[rk+1|Fk] σ2
k := Var[rk+1|Fk]

Let µk be the expected signature of {(tk+i, rk+i)}
q
i=0 on condition to Fk (where

q = 1), so we can define the mean equation for rt and the variance equation for rt
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using µk as follows:

mk = π(2)(µk), σ2
k = 2π(2,2)(µk)− (π(2)(µk))

2,

where π(2) and π(2,2) are projections of the expected signature.

Since linear forms on the signature of p-lagged values of rt are dense in the space
of smooth functions on p-lagged values, the AR model aligns with the ES model
framework. The AR model essentially uses the signature of past values as explana-
tory variables, thereby fitting into the ES model’s structure.

6.4 Experiments and results

In this experiment, we aim to calibrate and predict time series data using two dif-
ferent approaches: the Autoregressive (AR) approach and the Expected Signature
(ES) approach. We will compare the performance of these methods in terms of their
predictive accuracy and ability to capture the underlying patterns of the time series
data.

6.4.1 Data Generation

We begin by generating a synthetic AR series to serve as our dataset. The AR series
is generated using the following AR(3) model parameters:

ϕ = [0, 0.6, 0.15,−0.1]

where ϕ0 = 0 is the intercept, and ϕ1 = 0.6, ϕ2 = 0.15, ϕ3 = −0.1 are the coefficients
for the lagged terms.

The AR series is generated with the function generate_AR_series, which in-
cludes random noise to simulate real-world data. The series length is set to n =
4000. Additionally, we generate an expected AR series without noise using the
generate_expected_AR_series function for comparison.

6.4.2 AR Calibration

The Autoregressive (AR) approach is a linear model that predicts the current value
of the series based on its past p values. The AR model is calibrated using linear
regression. The data is split into a training set (80%) and a testing set (20%).

The model is trained to predict the next value in the series based on the previous
p = 3 values. The calibration process involves fitting the following model:

rt = ϕ0 + ϕ1rt−1 + ϕ2rt−2 + ϕ3rt−3 + ϵt

where ϵt is the random noise term.

6.4.3 ES Model Calibration

The Expected Signature (ES) model leverages the concept of signatures to capture the
information in the time series. The signatures are computed using the esig library
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from PyPI, 2024, which provides a way to encode higher-order interactions between
data points.

The ES_calibration function applies the Expected Signature (ES) model to time
series data with parameters p, q, n, m. Here, p denotes the number of past lags in-
cluded in the past windows, while q represents the number of future values to be
predicted. The integer n determines the order up to which signatures are computed
for input data, and m specifies the level at which signatures are predicted for the
output variables. The function operates on the univariate time series {ri}4

i=1000 gen-
erated, where each ri represents a data point at time ti. The goal is to model and
predict future values using the ES approach.

The function iterates over segments of the training data to create past and future
windows, guided by parameters p and q. For each time index t, it constructs:

• Past path: The past path encapsulates historical data up to time t. Specifically,
the past path {ri}t

i=t−p comprises data points ranging from rt−p to rt, covering
p + 1 data points. Additionally, for each past path at time t, an initial point
with a value of 0 is included at time t − p − 1.

• Future Path: This projects expected future values based on the data at t. The
future path {ri}

t+q
i=0 forecasts data points from rt to rt+q, predicting 1 + q data

points ahead (the present point plus q future data points). Also, we add an
additional initial point at time t − 1 with zero value.

For each time index t, the function computes two signatures. ρn(S({ri}t
i=t−p−1))

for the past path, denoted as Xk, which serves as independent variables and it also
computes ρm(S({ri}

q
i=t−1)) for the future path Yk, representing dependent variables

to be predicted using the information provided by Xk. Here, ρm represents the signa-
ture up to a specified truncation order m, capturing the key features of the path in a
concise manner. We use the model ES(3, 1, 4, 2). The choice of 3 for the first parame-
ter is because we are predicting an AR(3) model, which relies on three lagged values.
The second parameter is set to 1 since we are only predicting one future value. The
third parameter, 4, is selected as the signature level for the input data, which is suf-
ficient to predict the output effectively. Lastly, the fourth parameter is 2, chosen
because signatures up to order 2 capture the most important features necessary for
prediction.

The resulting signatures X_sig and y_sig are stored as arrays. The data is then
split into training and testing sets using an 80-20 split ratio, where the training set
is used to fit the predictive model, and the testing set is used to evaluate its perfor-
mance.

A Lasso model is trained using the training data X_sig_train and y_sig_train
with alpha = 0.01. This model learns the relationship between past signatures Xk
and future signatures Yk, aiming to predict future values based on historical patterns
captured by the signatures. As demonstrated in 3.1.13, we focus exclusively on the
third coordinate of the signature, which corresponds to the value of rt that we are
attempting to predict.

6.4.4 Performance Analysis

The performance of both approaches are evaluated using the following metrics:
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• R2: Coefficient of determination.

• Adjusted R2: Adjusted for the number of predictors.

• MSE: Mean Squared Error.

• Running time: The total time taken to execute the model.

6.4.5 Results and Comparison

The performance metrics for both the AR and ES approaches are computed and com-
pared. Note that we can compute the metrics against the real values (with noise) and
the expected values, the results are presented in Table 6.1 and in Table 6.2, respec-
tively.

Approach R2 Adjusted R2 MSE Running time
AR Approach 0.39 0.36 1.0633 0.0 s
ES Approach 0.39 0.39 1.0664 1.5 s

TABLE 6.1: Performance metrics for AR and ES models against real
values (with noise).

Approach R2 Adjusted R2 MSE Running time
AR Approach 0.99 0.99 0.0008 0.0 s
ES Approach 0.99 0.99 0.0033 1.59 s

TABLE 6.2: Performance metrics for AR and ES models against ex-
pected values.

Table 6.1 shows the performance metrics against real values with noise. Both the
AR and ES approaches exhibit identical R2 and Adjusted R2 values of 0.39, indicat-
ing that they explain approximately 39% of the variance in the data when noise is
present. The AR model achieves a slightly lower MSE of 1.0633 compared to the ES
model’s MSE of 1.0661. Notably, the AR model demonstrates instantaneous compu-
tational time (0.0 s), whereas the ES model requires 1.5 seconds to complete compu-
tations.

Table 6.2 evaluates performance against expected values, where both models
show exceptional results with R2 and Adjusted R2 values of 0.99, indicating they
explain 99% of the variance in the data against the expected values. The AR model
achieves an impressively low MSE of 0.0008, while the ES model exhibits a slightly
higher MSE of 0.0037. Running time results are exactly as in Table 6.1.

These results underscore that the AR model can be viewed as a subset or a par-
ticular case within the broader framework of the ES model. The AR model’s abil-
ity to fit closely to expected values with minimal MSE and instantaneous compu-
tational time further supports its effectiveness. Meanwhile, the ES model, while
achieving comparable R2 values, mathematically demonstrates the capacity to han-
dle more complex data representations through its signature-based approach, but
with slightly higher computational requirements.

In addition to the performance statistics, visualizing the results can provide a
deeper understanding of how each approach performs. To this end, we have created
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several plots to compare the predicted and actual values for both the AR and ES
approaches.

First, we plot the predicted time series against the expected time series for the test
set. Figures 6.1 and 6.2 show these plots for the AR and ES approaches, respectively.
For both approaches, we can see an almost perfect overlap between the predicted
and expected data, suggesting that both models predict well the expected data of
the test test.

FIGURE 6.1: AR Ap-
proach: Expected
Values vs. Predicted

Values

FIGURE 6.2: ES Ap-
proach: Expected
Values vs. Predicted

Values

Next, we examine the mean of the true series versus the mean of the predicted
series. Figures 6.3 and 6.4 display these comparisons for the AR and ES approaches,
respectively. In these figures, we plot the true mean of the series against the pre-
dicted mean. For both approaches, the predicted values lie almost perfectly along
the regression line, confirming the models’ accuracy.

FIGURE 6.3: AR
Approach: True
Mean vs. Pre-

dicted Mean

FIGURE 6.4: ES
Approach: True
Mean vs. Pre-

dicted Mean

These visualizations reinforce the conclusions drawn from the performance met-
rics. The AR model aligns closely with the capabilities of ES models. This suggests
that AR models can be viewed as a specific instance within the broader framework
of ES models, leveraging signature-based approaches to achieve reliable predictions
in time series analysis. Also, this experiment demonstrates the effectiveness of the
ES model in predicting time series data, in particular AR models.
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Chapter 7

Conclusions

This thesis has delved into the versatile applications of the signature method within
the realms of time series analysis and financial data streams, showcasing its efficacy
in both theoretical exploration and practical implementation.

Our journey began with a rigorous exploration of the theoretical base of the sig-
nature method, emphasizing its role in preserving essential dynamics while simpli-
fying complex temporal information. Subsequently, through three distinct applied
studies, we demonstrated its effectiveness across different domains.

In the first application we conducted a classification analysis of Autoregressive
(AR), Autoregressive Moving Average (ARMA), and Autoregressive Integrated Mov-
ing Average (ARIMA) models using signature-based features. This study high-
lighted the method’s ability to distinguish between various model structures based
on their signature characteristics.

In the second application we used signature terms as features for classifying
crude oil data streams based on 30-minute intervals demonstrating the method’s
practical utility in temporal segmentation tasks. By accurately capturing temporal
patterns, the signature method facilitated meaningful segmentation and analysis of
time-sensitive data.

In the last application we investigated the relationship between AR models and
Expected Signature (ES) models providing insights into how AR models can be inter-
preted within the broader ES framework. This exploration emphasized the method’s
versatility in accommodating different model structures while maintaining predic-
tive accuracy.

Each study underscored the signature method’s capability to transform complex
temporal data into interpretable and actionable insights. By integrating theoretical
insights with practical applications, this thesis has successfully achieved its objec-
tives.
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