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Automated Clinical Coding of Medical Notes into the SNOMED CT Medical
Terminology Structuring System

by Sergi CANTÓN SIMÓ

Automated clinical coding is the computational process of annotating healthcare
free-text data by detecting relevant medical concepts and linking them to a struc-
tured medical terminology system. One of the most significant of these systems is
SNOMED CT, which contains a vast array of specific medical terms, each identified
by a unique ID. This work focuses on the automatic clinical coding of medical notes
within the SNOMED CT system.

The study presents a comprehensive review of state-of-the-art methods in this
field, followed by a detailed examination of two specific approaches, each tested and
their results discussed. The first method employs a classical dictionary-based ap-
proach, while the second utilizes a deep learning BERT-based model. Additionally,
the work introduces a novel contribution to one of these methods and demonstrates
a practical application where automatic clinical coding facilitates the extraction of
specific numerical values from medical discharge summaries.
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Chapter 1

Introduction

1.1 Medical Terminology Structuring Systems

Today, medical data is often generated by healthcare professionals and stored as free-
text, making it challenging to extract valuable information. However, it is crucial to
structure this data to, for example, maintain accurate electronic medical records.

To classify easily specific medical terms, healthcare organizations have created
different systems to assign a code to each concept. One of them is SNOMED CT, or
Systematized Nomenclature of Medicine Clinical Terms. It is a meticulously orga-
nized and computer-processable system of medical terminology that includes a vast
array of codes, terms, synonyms, and definitions used in clinical documentation and
reporting (U.S. National Library of Medicine, 2024). It is recognized globally as one
of the most comprehensive multilingual clinical healthcare terminologies. SNOMED
CT’s primary role is to encode health information, supporting precise and efficient
clinical data recording to enhance patient care (Gaudet-Blavignac et al., 2021). This
system forms the core terminology for electronic health records, covering areas such
as clinical findings, symptoms, diagnoses, procedures, body structures, organisms,
causes, substances, pharmaceuticals, medical devices, and specimens.

In short, SNOMED CT identifiers can be used to classify and structure a vast
amount of medical concepts. In the online browser of SNOMED International, 2024,
one can search for a term, using either its code or its name, in order to get all its
information. An example can be seen in Fig. 1.1.

SNOMED CT has demonstrated effectiveness in various applications, such as
clinical decision support systems for preventive care (Al-Hablani, 2017). The migra-
tion of existing electronic health records (EHRs) to the SNOMED CT coding system
has been proven successful, optimizing clinical use and enhancing decision support.
This transition was well received by healthcare professionals and quickly adopted
across all specialties at University Hospitals Birmingham (UHB) (Pankhurst et al.,
2021).

In addition to SNOMED CT, several other medical terminology systems play
crucial roles in structuring and coding medical data.

One such system is the International Classification of Diseases (ICD), specialized
in the classification and coding of diseases and related health conditions. ICD is
used globally for health statistics, billing and epidemiology. It provides a standard-
ized language for reporting and monitoring diseases, allowing healthcare providers
to communicate diagnoses consistently. The most recent version, ICD-11, reflects the
latest medical knowledge and practices, offering a detailed framework for categoriz-
ing health conditions (World Health Organization, 2019).

Another key system is the Unified Medical Language System (UMLS), which
integrates various health and biomedical vocabularies into a unified framework.
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FIGURE 1.1: Example of search for the SNOMED CT identificator
(SCTID) of “386661006”. The browser shows that the corresponding
concept is “fever”, which is a “finding”. Also, there are 22 children
concepts, that is, terms that inherit or that are a subtype of “fever”.

For instance, the first one, “aseptic fever”, also a “finding”.

UMLS provides tools and resources to facilitate the linking of different terminol-
ogy systems, ensuring interoperability and consistent data exchange across various
healthcare platforms. It includes a broad range of medical concepts and terms, al-
lowing for comprehensive data integration and enhanced semantic understanding
(Bodenreider, 2004).

Current Procedural Terminology (CPT), maintained by the American Medical
Association, describes medical, surgical, and diagnostic procedures and services.
CPT codes are essential for billing and insurance reimbursement in the United States,
ensuring that healthcare providers are compensated accurately for the services they
deliver. Each CPT code corresponds to a specific medical procedure, facilitating
clear communication between healthcare providers and payers (American Medical
Association, 2024).

LOINC (Logical Observation Identifiers Names and Codes) is another important
terminology system, primarily used for identifying laboratory and clinical observa-
tions. LOINC codes standardize the way lab tests and clinical measurements are re-
ported, enabling the consistent exchange and interpretation of data across different
healthcare systems. This system is vital for ensuring that test results are comparable,
regardless of where or how they were obtained (Regenstrief Institute, 2024).

In the realm of pharmaceuticals, RxNorm provides standardized names for clin-
ical drugs and links these names to various drug vocabularies used in pharmacy
management and drug interaction software. RxNorm ensures that medications are
accurately identified and that information about them is consistently communicated
across different systems (Nelson et al., 2011).

For broader healthcare coverage, the Healthcare Common Procedure Coding
System (HCPCS) is used, especially in the U.S., for coding products, supplies, and
services not covered by CPT codes. This includes everything from durable medical
equipment to ambulance services. HCPCS codes are integral to the billing process in
Medicare and Medicaid, as well as in other healthcare programs (Centers for Medi-
care & Medicaid Services, 2024).

While these systems are essential for various aspects of healthcare, this work will
focus on SNOMED CT due to its comprehensive nature and its pivotal role in clinical
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documentation and electronic health records. SNOMED CT’s extensive coverage of
medical concepts makes it particularly well-suited for the tasks of classification and
structuring of medical data, which are central to this study.

1.2 Motivation of Automatic Clinical Coding

To effectively use medical terminology systems like SNOMED CT to classify and
structure concepts from free-text medical reports, it is essential to identify the rele-
vant terms within the text and assign the appropriate code or identifier to each one.

Manually identifying relevant terms and assigning the correct codes from medi-
cal terminology systems is a complex and time-consuming task, especially given the
vast amount of free-text data in medical reports. Due to the intricacies and scales
involved, this process is challenging to perform by hand. Therefore, automated sys-
tems are necessary to efficiently detect and code these terms, ensuring accurate clas-
sification and structuring of medical concepts (Dong et al., 2022).

Automating the process of identifying and coding relevant terms from medical
texts is far from trivial. The complexity of medical language, including nuances, ab-
breviations, and context-dependent meanings, makes it a challenging task for com-
puters. However, in recent years, advancements in machine learning and deep learn-
ing have led to the development of effective methods for tackling this problem (Jiang
et al., 2017). These technologies have significantly improved the ability to automat-
ically extract and link medical concepts, offering promising solutions for managing
the vast amounts of unstructured data in healthcare (Ji et al., 2022).

1.3 Automated Clinical Coding Steps

As mentioned, when employing machine or deep learning methods, usually this
process consists of two main tasks: recognizing the relevant terms and linking them
to their corresponding concept identifiers. In the medical field, this entire process is
referred to as clinical entity linking or automated clinical coding.

More specifically, the two common steps are as follows:

• First step: The first task involves a NER problem. Named Entity Recogni-
tion (NER) is a process in natural language processing (NLP) that identifies
and classifies key entities in text known as mentions, such as names of peo-
ple, organizations, locations, dates, and other specific terms. In the context
of biomedical texts, NER helps identify relevant terms such as medications,
diseases, medical procedures, body structures, and more.

• Second step: The second task involves assigning a unique identifier to each
recognized term, effectively linking each relevant mention to its correspond-
ing concept within a predefined system, such as SNOMED CT. This process
ensures that each identified term is accurately matched with a specific concept,
enabling the transformation of unstructured text into structured data.

1.4 Objectives and Contents

This work focuses on both theoretical and practical research in the field of named en-
tity recognition and linking of biomedical entities to specific terminologies or their
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corresponding codes within medical terminology systems, with a particular empha-
sis on SNOMED CT. The specific objectives of this work can be outlined as follows:

• Gain a comprehensive understanding of the structure of the MIMIC-IV-Note
dataset and how to extract information for automatic clinical coding.

• Understand the importance of SNOMED CT terminology, including its de-
tailed functioning and potential applications.

• Provide an overview of the state-of-the-art methods in automatic clinical cod-
ing, with an emphasis on approaches that address the tasks of biomedical
named entity recognition and entity linking separately.

• Study, explain in detail and test the two winning methods for entity recogni-
tion and linking from the “SNOMED CT Entity Linking Challenge” (Hardman
et al., 2023a).

• Contribute to the methods by proposing, implementing, and testing modifica-
tions or improvements.

• Evaluate and discuss the results of these methods, including an analysis of
their effectiveness, potential extra improvements and limitations.

• Analyze and illustrate examples of possible applications for automatic clinical
coding.

This work is divided into six chapters. This first chapter has already provided an
introduction to the concepts of medical terminology structuring systems and auto-
mated clinical coding, along with their importance. The second chapter offers a de-
tailed explanation of the state-of-the-art methods in this field of research. The third
chapter will then detail the necessary data required to run the methods explained
in the fourth chapter. In the fourth chapter, these two methods will be explained in
detail, along with the modifications and contributions made in this work. Follow-
ing this, the fifth chapter will present an application of automated clinical coding,
describe the experiments conducted with the selected methods and present the cor-
responding results. Finally, the sixth chapter will discuss these results and provide
the overall conclusions of the work.
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Chapter 2

State of the Art

In recent years, automatic clinical coding has gained significant attention in the fields
of medicine, bioinformatics, and computational science. This surge in interest has
led to the development of various techniques, ranging from classical rule-based or
dictionary-based methods to more advanced approaches utilizing machine learning
and deep learning. The rise of large language models like BERT in the past five years
has further fueled research in entity recognition and linking, leading to the creation
of powerful new models.

This chapter will first discuss notable named entity recognition methods for de-
tecting concepts in biochemistry and biomedicine, then explore the most relevant
entity linking techniques for biomedical concepts and, finally, examine methods that
integrate both entity recognition and linking.

2.1 Named Entity Recognition in Biomedicine

As previously explained, named entity recognition (NER) involves identifying spe-
cific words or entities in free text that belong to a set of predefined categories. In this
process, each term in the text is labeled according to its category, or it is marked as
a general word if it does not fall within any of the relevant categories. In our area
of study, these categories typically include medical, biological, or chemical terms,
depending on the specific subject matter being addressed.

A common method used in named entity recognition is the B-I-O system, where
each word in a text is classified with one of three labels: “B”, “I”, or “O”, followed
by the category of the entity. The label “B” is used if the word is at the beginning
of an entity, “I” if it is inside the entity, and “O” if it is not part of any entity. For
example, in the phrase “The patient suffers from chronic pain”, the B-I-O system
would tag “The”, “patient”, “suffers”, and “from” as O (indicating they are outside
any entity). The word “chronic” would be tagged as B-FINDING, indicating the start
of a medical finding, and “pain” would be tagged as I-FINDING, showing it is part
of the same medical finding entity.

In the context of NER methods applied to bioscience or medical data, these ap-
proaches can be broadly categorized into machine learning and deep learning tech-
niques. Machine learning methods rely on explicitly defined features, which are
often engineered through data preprocessing. For instance, lexical features such as
token text and capitalization can provide insights into the nature of the entities. Part-
of-speech (POS) tags and morphological features, including prefixes and suffixes,
help in understanding the grammatical and structural roles of words. Contextual
features, such as surrounding words or phrases, further aid in disambiguating en-
tities based on their context. Additionally, dictionary lookups to match terms with
biological lexicons and entity co-occurrence patterns provide valuable information
for accurate classification. In contrast, deep learning approaches can automatically
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learn and extract relevant features from raw data, minimizing the need for manual
feature engineering (Durango, Torres-Silva, and Orozco-Duque, 2023).

The review will first cover classical machine learning methods and their applica-
tion in biomedical named entity recognition. Following this, deep learning methods
will be examined, highlighting the solutions they provide to challenges within the
field.

2.1.1 Machine Learning Approaches

Classical machine learning methods for NER, including those applied to bioscience
or medical data, often utilize techniques such as maximum entropy (ME) models,
support vector machines (SVMs), or conditional random fields (CRFs).

For instance, a maximum entropy-based model is used by Lin et al., 2004 to de-
tect entities in text files from the GENIA corpus. The model classifies relevant words
into various biological categories, such as “DNA”, “RNA”, “protein”, and “cell”.
Additionally, dictionary-based and rule-based methods are applied during the post-
processing stage to refine and enhance the accuracy of the classification.

A different process is used in the paper of Wang and Patrick, 2009, which pri-
marily utilizes Conditional Random Fields (CRFs) for entity detection. To address
potential misclassifications, the method further integrates an ensemble of a maxi-
mum entropy model and a support vector machine (SVM) for reclassification and
refinement. Conditional Random Fields are also the base of the method explained
in the work of Settles, 2004, this time to detect entities from “protein”, “DNA”,
“RNA”, “cell-line” and “cell-type”, and used too by Liang et al., 2017 to recognize
both “western drugs” and “traditional medicines” in Chinese free-text.

In the article of Zhou et al., 2004, PowerBioNE is introduced as an advanced
named entity recognition system for the biomedical domain, also using data from
the GENIA corpus. This system utilizes a Hidden Markov Model (HMM) combined
with an HMM-based named entity recognizer. To address data sparsity issues, it
incorporates a k-nearest neighbor (k-NN) algorithm. Additionally, a pattern-based
post-processing technique is employed, which automatically extracts rules from the
training data to further refine the entity recognition.

2.1.2 Deep Learning Approaches

In contrast to classical machine learning approaches, deep learning approaches rely
on neural networks, particularly convolutional neural networks (CNNs) and recur-
rent neural networks (RNNs), for processing and understanding complex text data
(Li et al., 2020). In the field of natural language processing, recent advancements
such as BERT models have brought about a substantial improvement in named en-
tity recognition. BERT, or Bidirectional Encoder Representations from Transformers,
significantly enhances the ability to understand context and relationships within text
(Devlin, 2018). Specifically, the latest BERT-based models, such as BioBERT, which
are pretrained on biomedical text, have represented a significant improvement in the
field (Lee et al., 2020).

An example of a deep learning named entity recognition method utilizing clas-
sical neural networks can be found in the work of Wu et al., 2017. In this study, the
detection of medical entities is explored using both a convolutional neural network
and a recurrent neural network. These networks are trained with word embeddings
generated from the MIMIC-II and i2b2 datasets, enabling the model to effectively
recognize and classify medical terms within the free-text.
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A more complex neural network structure is employed by Wu et al., 2015 for
entity recognition in Chinese text. In this approach, a word embedding matrix is
created from an annotated dataset of admissions to the Peking Union Medical Col-
lege Hospital. Local features are extracted directly from the words, while global
features are derived from the surrounding context using a convolutional neural net-
work (CNN). These local and global features are then combined in a fully connected
neural network, which predicts the probabilities of each entity class.

The method presented by Cho and Lee, 2019 combines Conditional Random
Fields (CRFs) with a bi-directional long short-term memory network (BiLSTM) to
identify biomedical entities. This approach, named Contextual Long Short-Term
Memory Networks with CRF (CLSTM), leverages the strengths of both CRFs and
BiLSTMs to capture context and sequence information more effectively. The CLSTM
model is trained and tested on three prominent biomedical corpora: the Disease Cor-
pus of the National Center for Biotechnology Information (NCBI), the BioCreative
II Gene Mention Corpus (GM), and the BioCreative V Chemical Disease Relation
Corpus (CDR). A similar approach, named BiLSTM-Att-CRF, is employed in the ar-
ticle of Li et al., 2019, where the attention mechanism is integrated into the basic
BiLSTM-CRF model for entity recognition in Chinese medical text. To further en-
hance the model’s performance, medical dictionaries and part-of-speech (POS) fea-
tures are also incorporated, providing additional context and accuracy in identifying
biomedical entities.

A BERT model is combined with the BilSTM-CRF model in the paper of Wang
et al., 2023. First of all, a BERT model is fine-tuned with word embeddings from
Chinese text. Then, the BilSTM-CRF module is utilized to extract further features
from the encoded outputs of BERT in order to account for context information and
improve the accuracy of semantic coding. Additionally, the pre-trained multilingual
BERT model is demonstrated to be effective for Korean clinical entity recognition in
the work of Kim and Lee, 2020.

2.2 Entity Linking

As previously discussed, entity linking is usually the second step in automatic clin-
ical coding. After entities are identified and classified in the text, they need to be
matched with their corresponding specific terms, each associated with a unique
code. The specific terms and codes vary depending on the coding system used,
such as SNOMED CT, ICD, or UMLS.

Automatic entity linking typically relies on machine learning or deep learning
techniques. For instance, vector embeddings are often used to represent both the de-
tected entities and the terms in the coding system. Similarity measures can then be
applied to select the closest term for each entity. In some cases, instead of choosing
a single term directly, a set of potential candidates is identified, and a subsequent
re-ranking or post-processing step is used to select the most appropriate term. Ad-
ditionally, tools like knowledge graphs or rule-based methods are frequently em-
ployed to improve the accuracy of entity linking.

Automatic entity linking has been relatively extensively explored within the ICD
coding system for matching diagnoses and specific terms compared to other sys-
tems. The methods developed for ICD have been effective and are also applied to
other coding systems such as SNOMED CT. Therefore, the review will first include
a section dedicated to explaining some of the most relevant techniques for linking
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entities to ICD codes. Following this, another section will cover methods for linking
entities to other coding systems.

2.2.1 International Classification of Diseases

A common data structure used in ICD entity linking are knowledge graphs. Knowl-
edge graphs are structured networks of interconnected entities and relationships
that represent real-world information in a way that reflects human understand-
ing. They organize concepts, such as diseases and symptoms, into nodes, and link
them through edges that represent relationships like “is associated with” or “is a
symptom of.” When linking diseases to ICD codes, a knowledge graph helps by
mapping disease-related terms from free text to relevant concepts within the graph.
These connections guide the selection of the correct ICD code by providing con-
textual relationships, handling synonyms, and disambiguating terms. Knowledge
graphs also facilitate the construction of embeddings, where entities and relation-
ships are mapped into a continuous vector space. These embeddings capture the
graph’s structure and semantics, allowing for the calculation of distances between
entities. As a result, entities that are closely related in the graph, such as a disease
and its corresponding ICD code, will have similar embeddings, improving the accu-
racy of entity linking. Usually, ICD knowledge graphs need to be constructed before
starting the linking process.

The four methods presented by Teng et al., 2020; Xie et al., 2019; Falis et al., 2019;
Cao et al., 2020, leverage knowledge graphs to efficiently classify ICD entities from
the MIMIC-III dataset. The first method combines a set of convolutional neural net-
works (Multi-CNN) with the knowledge graph, using an attention mechanism to en-
hance ICD concept classification. In the subsequent two papers, a specialized graph
convolutional network (Graph-CNN) is employed to capture hierarchical relation-
ships among medical codes. Additionally, the final method introduces hyperbolic
representations to further refine the embeddings and improve classification perfor-
mance.

A different approach is used in the article of Shi et al., 2017, where several LSTM
neural networks encode diagnosis descriptions from the MIMIC-III dataset. This is
followed by an attention layer and a linear projection that outputs the class proba-
bilities.

Additionally the two papers of Ji, Hölttä, and Marttinen, 2021; Huang, Tsai, and
Chen, 2022 explore the use of pretrained large language models, such as BERT, for
ICD entity linking using MIMIC-III and MIMIC-II data. These models leverage their
deep contextual understanding to improve the accuracy of entity classification.

2.2.2 Other Systems

In the work of Hristov et al., 2023 it is proposed a novel method for classifying clin-
ical text into SNOMED CT codes using transformer models trained on open med-
ical ontologies. They enhance transformer BERT models with clustering, filtering,
and support vector classification (SVC) for embedding-based classification. This ap-
proach addresses the challenge of limited annotated data, improving accuracy in
classifying short clinical text snippets.

ClinLinker (Gallego et al., 2024) links Spanish clinical concepts to SNOMED CT
codes. It starts with a SapBERT-based bi-encoder and cosine similarity to identify
candidate codes for each mention, followed by a cross-encoder for re-ranking to
finalize the selection of identifiers.
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In the article of Achara, Sasidharan, et al., 2024, a MiniEL model is employed to
generate mention encodings and identify candidate entities based on cosine similar-
ity. These candidates are then re-ranked, resulting in efficient entity linking to UMLS
codes.

Ultimately, MedRoBERTa proves to be an effective model for linking entities in
Dutch to a generated Wikipedia corpus in the paper of Hartendorp et al., 2024.

2.3 Automatic Clinical Coding

After reviewing the state of the art in biomedical named entity recognition and entity
linking, the next step is to examine methods that integrate these two processes to
automatically detect and link entities within biomedical free-text.

First, we will review classical approaches, which do not utilize machine learn-
ing or deep learning techniques. The subsequent section will focus on deep learn-
ing methods, including the latest advancements that employ large language models
such as BERT.

2.3.1 Classical Approaches

Despite the majority of medical entity linking methods using machine or deep learn-
ing techniques, some older methods were developed that do not involve either ma-
chine learning or deep learning, as well as recent approaches that are state of the art.
In this section, some of these methods will be outlined.

For instance, rule-based methods use a predefined set of conditions to identify
and code clinical terms. An example of this approach is described in the work of
Farkas and Szarvas, 2008, where terms are found and coded in the ICD-9-CM sys-
tem based on a set of hand-crafted rules. Additionally, regular expressions (regex)
are employed in automatic clinical coding to recognize and extract specific patterns
or terms from unstructured medical text. By defining patterns that match relevant
medical concepts, regex facilitates the extraction and coding process. This approach
is illustrated by Zhou et al., 2020, where regex is used to detect and code ICD-10
diseases from Chinese free-text.

A more sophisticated three-stage approach is utilized by Patrick, Wang, and
Budd, 2007 to detect and link medical terms to SNOMED CT identifiers. The process
begins with the use of an augmented lexicon to index the terms. Next, a term com-
positor establishes relationships between the identified concepts. Finally, a “nega-
tion detector” is employed to identify negative concepts, which are terms where
negation is present.

In the method developed by Guy Amit and Yanover, 2024, medical terms are
linked to SNOMED CT concept IDs through a dictionary-based approach. Initially,
a dictionary is constructed using a combination of training data and SNOMED CT
concept names, which are augmented with a set of synonyms. This dictionary is
further refined with simple linguistic rules and permutations of multi-word expres-
sions. Two versions of the dictionary are created: one that is case-insensitive and an-
other that is case-sensitive. During the inference phase, each document is processed
individually by dividing it into sections and matching terms within those sections
to the dictionary entries. Successful matches are annotated with the corresponding
SNOMED CT concept IDs. Overlapping matches are resolved by prioritizing longer
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mentions and section-specific terms over more general ones. Finally, in the post-
processing stage, annotations are further refined and expanded based on SNOMED
CT relationships to enhance their specificity and accuracy.

2.3.2 Deep Learning Approaches

Deep learning approaches for automatic clinical coding generally follow a two-step
process: named entity recognition and entity linking, akin to the methods discussed
in previous sections. This section will now explore five of the most advanced tech-
niques, most of which employ BERT models.

First of all, the framework named unMERL (Xu et al., 2018) is found to be effec-
tive to recognize and link Chinese free-text mentions to SNOMED CT identifiers. It is
divided in two modules. The maximum entropy (ME) recognition module processes
an input text to identify entity boundaries and classify entities. That is, it determines
where specific terms or phrases representing distinct medical entities begin and end.
The module then generates a list of these entities and their categories. For each iden-
tified medical entity, the ME linking module retrieves and ranks potential matches
from a knowledge base to find the most relevant one.

In the article of Borchert and Schapranow, 2022, a method for detecting and clas-
sifying entities in Spanish text into SNOMED CT codes is detailed. Named entity
recognition is performed using a RoBERTa model. The linking process comprises
two main steps: candidate selection and ranking to determine the most likely iden-
tifier. Candidate selection involves calculating embeddings for both the text men-
tions and SNOMED CT terms with a cross-lingual SapBERT model, which utilizes a
TF-IDF representation of the DisTEMIST data. This is followed by using k-nearest
neighbors to identify the most similar embedding terms for each mention. The rank-
ing phase applies a set of rules to adjust and refine the scores, ultimately retaining
the best match.

Another approach to entity recognition and linking to SNOMED CT codes in
Spanish using the DisTEMIST dataset is described in the work of Reyes-Aguillón
et al., 2022. Named entity recognition (NER) is performed using a BERT model. For
linking mentions to their corresponding SNOMED CT codes, the method calculates
the cosine similarity between the average vectors of each recognized entity and the
vectors of SNOMED CT terms. These vectors are obtained using the SciELO-CBOW
model, which is a pre-trained Spanish language model.

Automated clinical coding for COVID-19 has been explored in the paper of Sohrab
et al., 2020, where mentions are linked to UMLS system identifiers using the CORD-
19 dataset, which includes free-text from numerous COVID-19 research papers. The
framework, called BENNERD, consists of two stages: a Named Entity Recognition
(NER) stage using a BERT model, followed by an entity linking stage. In the link-
ing phase, an approximate nearest neighbor search first retrieves the top candidate
entities. These candidates are then ranked using a fully-connected neural network
that concatenates mention and entity embeddings and applies a linear layer to score
them.

The SNOBERT method (Kulyabin et al., 2024) detects medical entities in the
MIMIC-IV dataset and links them to SNOMED CT codes. The Named Entity Recog-
nition (NER) step employs BiomedBERT, a BERT model tailored for biomedical ter-
minology. Candidate generation for each mention is handled by PubMedBERT, an-
other specialized BERT model. To refine these initial predictions, a re-ranking stage
is applied using a cross-encoder model, trained on PubMed papers, to improve ac-
curacy.
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Chapter 3

Data

As this work focuses on two specific methods and the SNOMED CT terminology,
this chapter will explain the most relevant data required to run these methods, as
well as the SNOMED CT knowledge base. Understanding this data is crucial for
grasping the functionality of both methods, which is why this section precedes their
detailed explanation.

First, the elements and relationships within the SNOMED CT knowledge base
will be detailed. This will be followed by an explanation of the MIMIC-IV-Note
dataset and the data provided by the contest, including an exploration of the latter.

3.1 SNOMED CT Knowledge Base

As explained in the introduction, SNOMED CT is a medical terminology structuring
system. The database available at https://www.nlm.nih.gov/healthit/snomedct/
international.html serves as the knowledge base for SNOMED CT International
Edition. This database is organized as a set of folders and files, containing all the
updated information on SNOMED CT terms, including their IDs, descriptions, hier-
archical relationships, and more.

The SNOMED CT files are structured as relational tables, with each line in the
file representing a row in the table. The first row of each table contains the column
headings, while the subsequent rows contain the data.

This database allows for the construction of a knowledge graph, where all the
information about hierarchical relationships among terms, their IDs, meanings, and
descriptions is consolidated into a single data structure.

3.2 MIMIC-IV-Note Dataset

MIMIC-IV is a contemporary electronic health record dataset that covers a decade
of admissions between 2008 and 2019 (Johnson et al., 2023b).

The MIMIC-IV-Note dataset is a dedicated module within the MIMIC-IV frame-
work. It consists of deidentified free-text clinical notes from the MIMIC-IV clinical
database. This dataset encompasses 331,794 anonymized discharge summaries for
145,915 patients admitted to the hospital and emergency department at Beth Israel
Deaconess Medical Center in Boston, MA, USA. It also includes 2,321,355 deidenti-
fied radiology reports covering 237,427 patients (Johnson et al., 2023a). Nevertheless,
in this work, only the discharges will be employed.

https://www.nlm.nih.gov/healthit/snomedct/international.html
https://www.nlm.nih.gov/healthit/snomedct/international.html
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3.3 Contest Data

The data provided by the contest has been used for training and testing purposes.
This dataset consists of 204 annotated discharge summaries from the MIMIC-IV-
Note dataset (Hardman et al., 2023b). Two files are provided: one containing the
free-text notes and the other containing 51,574 annotated terms to SNOMED CT
concepts for these texts, but only 5,334 different IDs among these terms. Each file
includes the following information:

• Notes:

– ID of the note.

– Text of the note.

• Annotations:

– ID corresponding to the note where the annotated term appears.

– Starting position of the annotated term on the text note.

– Ending position of the annotated term on the text note.

– SNOMED CT ID corresponding to the annotated term.

Figure 3.1 shows a graphical example of an annotated text.

FIGURE 3.1: Example of medical text and labeled con-
cepts. The concepts are highlighted in green, and the indi-
cated SNOMED IDs, names, and categories are shown. Ex-
tracted from https://www.drivendata.org/competitions/258/

competition-snomed-ct/page/914/

As the texts are from medical discharge summaries, all of them have a similar
structure of sections. Some of those sections are, for instance, “chief complaint”,
“history of present illness”, “past medical history” or “physical exam”.

A relevant observation from exploring the distribution of the annotations is that,
as shown in Figure 3.2, most concepts appear infrequently. Specifically, the majority
of concepts occur fewer than 100 times. This "long tail" distribution effect can make
the automatic annotation of less frequent concepts more challenging.

Only a few concepts appear frequently. The three most common concepts are as
follows:

• The most frequent concept, appearing 584 times, is “No abnormality detected”
(ID: 281900007), a “finding”. It appears in various forms in the text, such as
“NAD”, “No acute”, “intact”, “normal”, “unremarkable”, “WNL”, and “nega-
tive”.

• The second most common concept is “Red cell distribution width determina-
tion” (ID: 66842004), a “procedure” that appears a number of 489 times. Unlike
the first, it primarily appears as “RDW” and “RDWSD”.

https://www.drivendata.org/competitions/258/competition-snomed-ct/page/914/
https://www.drivendata.org/competitions/258/competition-snomed-ct/page/914/
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FIGURE 3.2: Distribution of the appearance frequency for each con-
cept in both linear (left) and logarithmic (right) scales.

• The third concept is “Physical examination procedure” (ID: 5880005), also a
“procedure” appearing 455 times. It is found in different forms, including
“exam”, “HEENT”, “PHYSICAL EXAM”, “Neck”, and “PHYSICAL EXAM-
INATION”.
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Chapter 4

Methods

Among the various automated clinical coding methods, this work focuses on study-
ing two in particular: the winning approaches from the “SNOMED CT Entity Link-
ing” contest. These two methods represent state-of-the-art techniques for addressing
the full task of entity recognition and linking, each employing a distinct approach.
In fact, both methods were mentioned in the previous chapter.

This section provides a detailed explanation of the original methods, as well as
the modifications and contributions made to them. Subsequent sections will discuss
the experiments conducted, the improvements implemented, and the analysis of
these advancements.

4.1 First Method

This initial method, involves constructing a dictionary that maps pairs of section
headers and mentions to SNOMED CT terms. This approach does not rely on ma-
chine learning or deep learning techniques. Instead, it uses data from various sources
and leverages relationships among SNOMED CT terms, word permutations, syn-
onyms, and word replacements, among other techniques, to accurately identify and
match terms within free-text. The original code for this method can be found in the
GitHub repository https://github.com/drivendataorg/snomed-ct-entity-linking/
tree/main/1st%20Place.

The method’s workflow is divided into three stages. The first stage involves pre-
processing the data. The second stage is the training phase, where dictionaries are
generated from the preprocessed data. Finally, the third stage consists of annotation
or inference, followed by postprocessing to generate predictions for the test texts.

Next, each of these three stages will be described in detail. However, before that,
the necessary initial data will be explained.

4.1.1 Initial Data

This initial data required to run this automatic clinical coding method is sourced
from or stored in five distinct locations:

• Medical Abbreviations: Downloaded from https://github.com/imantsm/
medical_abbreviations, this dataset contains common abbreviations used by
health professionals and their corresponding full meanings.

• OMOP Synonyms: This dataset, downloaded from https://www.ohdsi.org/
data-standardization includes information on synonym relationships among
medical concepts, based on the Observational Medical Outcomes Partnership
(OMOP) (Observational Health Data Sciences and Informatics (OHDSI), 2024).

https://github.com/drivendataorg/snomed-ct-entity-linking/tree/main/1st%20Place
https://github.com/drivendataorg/snomed-ct-entity-linking/tree/main/1st%20Place
https://github.com/imantsm/medical_abbreviations
https://github.com/imantsm/medical_abbreviations
https://www.ohdsi.org/data-standardization
https://www.ohdsi.org/data-standardization
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• SNOMED CT Filtered Knowledge Base: Contains updated information on all
SNOMED CT terms, including the IDs of each term and the hierarchical rela-
tionships among SNOMED CT concepts, such as which concepts are inherited
or are children of others.

• Train Notes: Free-text medical records selected for training the inference model.

• Train Annotations: Annotations corresponding to the Train Notes, identifying
the relevant medical terms for each record.

• Test Notes: Free-text medical records selected for evaluating the inference
model. These notes are separate from the training set and are used to assess
the model’s performance on unseen data.

• Test Annotations: Annotations corresponding to the Test Notes, identifying
the relevant medical terms for each record. These annotations are used to eval-
uate the accuracy of the model’s predictions.

• MIMIC-IV-Note: The complete MIMIC-IV-Note dataset, containing all free-
text medical notes.

4.1.2 Preprocessing

This first task involves processing, merging, and extracting information from the
initial data to create a set of tables and dictionaries that will be utilized in the sub-
sequent stages. The general preprocessing workflow is illustrated in 4.1. Now, this
process will be broken down in detail.

FIGURE 4.1: Main scheme of the preprocessing stage for the first
method. The numbers indicate the sequence of operations, while
the colors associated with each number illustrate the relationships in-

volved and the data generated during each phase.

1. Create Flattened Terminology: The SNOMED CT terminology dataset, which
includes all terms and associated information, is processed to produce a flat-
tened terminology dataset. This dataset includes only concepts categorized as
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“procedure”, “body structure”, and “finding”, as well as “disorder” (a child
of “finding”), “regime/therapy” (a child of “procedure”), and “morphologic
abnormality” and “cell structure” (both children of “body structure”). Only
one row per concept ID is retained, removing any synonyms.

2. Generate Synonyms: The OMOP synonyms dataset is merged with the flat-
tened terminology to create a comprehensive table that includes all concepts
(IDs and names) and their synonyms. This table also specifies the hierarchical
level or category and indicates whether a term is a synonym or the primary
name. This ensures that each main concept is followed by its synonyms before
moving to another concept.

3. Clean Annotations: Training notes and training annotations are merged into a
single table. This table includes annotated words, their concept IDs, the start-
ing and ending positions of the annotations in the text, and the ID of the text
note where the mention is found.

4. Extend Abbreviations: The dataset of synonyms is merged with the medical
abbreviations file to expand the abbreviations data. This extension includes
the associated SNOMED CT concept name and ID corresponding to each ab-
breviation and its full form.

5. Create Abbreviations Dictionary: An extended abbreviations dataset is used
to create a dictionary that maps sections where a concept appears and its ab-
breviation to its corresponding ID. The dictionary is structured as:

{(
{s1, s2, . . . , sn} , aj

)
: xi

}
, (4.1)

where {s1, s2, . . . , sn} represents the set of sections where the i-th concept with
SNOMED CT ID xi, having the j-th abbreviation aj, appears.

6. Perform Term Extension: The “Relationships” and “Descriptions” datasets
from the SNOMED CT knowledge base are merged to produce a dataset that
links general terms to specific terms. For each general term, its ID and name
are repeated for every concept that derives from or inherits it. This dataset
allows for the identification of specific concepts by their specific names, IDs,
general terms, and the discriminative word used to classify the specific term.
For instance, “Burn of ring finger” is associated with “Burn of finger” as its
general term, with “ring” serving as the discriminative word. Only the terms
with IDs contained in the flattened terminology are considered.

7. Create Unigram Dictionaries: Two unigram dictionaries are constructed in
the following format:

{(‘any’, wi) : xi} , (4.2)

where wi represents a word and xi is its corresponding SNOMED CT ID.

Each dictionary is built with words that appear fewer than 20,000 and 3,000
times, respectively, in the complete MIMIC-IV-Note dataset.
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4.1.3 Train

After preprocessing, the training phase involves creating two types of dictionaries:
one case-sensitive and one case-insensitive. These dictionaries map pairs of sections
and terms to their corresponding SNOMED CT IDs. The authors of this method
refer to these dictionaries as Kiri dictionaries. Thus, training in this method is the
process of constructing these Kiri dictionaries.

The entire process operates by iterating through each training note, meaning
each text in the training set, along with its corresponding annotations.

First, an empty dictionary is initialized. For each annotation in a text, the anno-
tation’s ID is stored in two ways: first, with a generic tuple (“any”, mention), and
second, with a specific tuple (section, mention) where it was found. Certain sections
that do not provide significant information are excluded from this process. Then, for
each pair, only the most frequently occurring SNOMED CT ID is retained. In other
words, for each pair, only the ID most commonly used to code that specific tuple is
kept.

Once the primary dictionary has been created, it is divided into a case-sensitive
version and a case-insensitive version. The case-insensitive dictionary is then ex-
tended using other dictionaries or by applying specific rules. Specifically, four ex-
tensions are performed:

1. Synonyms: The synonyms file, generated during preprocessing by merging
the flattened terminology with OMOP synonyms, is used to extend the dictio-
nary by adding tuples in the form (“any”, synonym), where "synonym" repre-
sents the synonyms of the words already present in the dictionary.

2. Unigrams: The unigrams from the preprocessing stage, including both the
3,000 and 20,000-item dictionaries, are added to the main dictionary.

3. Word Replacements: A set of predefined simple replacements are applied to
the current dictionary to further expand its entries. For each item in the dic-
tionary, if its mention contains a specific string from a defined set, that string
is replaced with another predefined string. The modified mention, along with
the original section and ID, is then added to the dictionary. For example, if
an item (section, mention) undergoes a replacement in the mention, the new
item added to the dictionary will be (section, modified mention), where the
mention has been altered based on the replacement.

The specific replacements applied are:

• A comma is replaced by an empty space.

• The phrase “and” is replaced by “with”.

• The phrase “with" is replaced by “and”.

• The word “valve” is replaced by an empty space.

• The phrase “of” is replaced by “of the”.

4. Permutations: A set of permutations is applied to the mentions in the dictio-
nary, adding the newly permuted mentions while retaining the original sec-
tions and IDs. If a mention contains the word “of” and consists of either three
or four words, “of” is removed, and the remaining words are rearranged. For
example, the term “pain of appendicitis” would be permuted to “appendicitis
pain”, and a new item with the same section and ID would be added to the
dictionary under this new, permuted name. If “of” is not in the mention but
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the mention still has three or four words, then all possible word permutations
are added to the dictionary. Nevertheless, if the mention contains a different
number of words than three or four, no permutation is performed.

4.1.4 Annotation and Postprocessing

This final stage utilizes the Kiri dictionaries to annotate the test notes. Initially, pre-
dictions are made, followed by a postprocessing phase to refine and enhance the
results.

First Prediction

The initial prediction of relevant terms in the text is carried out twice: once with
the case-insensitive dictionary and once with the case-sensitive dictionary, which is
extended with the abbreviations dictionary created during preprocessing.

For each dictionary, the prediction process is performed text by text. Each text
is first divided into sections. Then, mentions from the dictionary are identified in
the text using a set of regular expressions. If the section specified in the dictionary
matches the section where the term is found in the text, or if the section is“any”, the
starting and ending positions of the matched term are recorded. Specific sections are
given preference over the generic “any”.

After predictions are made with each dictionary, they are combined. In cases of
overlap, conflicts are resolved by prioritizing longer and more specific mentions and
section-specific terms over more general ones.

Postprocessing

After the initial prediction, a subsequent phase of postprocessing is necessary to
improve and fine-tune the results.

For each predicted term, the SNOMED CT hierarchical structure is used to spec-
ify more general terms. Each detected term is expanded by adjusting its starting
and ending positions. Matches are sought among concepts that inherit from the
predicted more general concept. If a more specific term is found among the related
children concepts, this more specific term is retained and prioritized over the general
one. This process utilizes the previously generated data of term extensions.

4.2 Second Method

The second method employs a completely different approach, divided into two main
steps: named entity recognition and entity linking.

After preprocessing the data, a BERT model is used to perform the NER task. To
simplify the NER process, only three broad categories are considered: “Procedure”,
“Finding”, and “Body Structure”. Other relevant categories that inherit from these
are grouped under the general categories during the NER phase. Following this, a
candidate matching step assigns the top k candidate SNOMED CT terms to each de-
tected mention using a cosine similarity metric. Finally, a re-ranker refines the scores
and selects the best candidate from the identified terms. The main workflow is illus-
trated in 4.2. The original code for this method can be found in the GitHub repository
https://github.com/drivendataorg/snomed-ct-entity-linking/tree/main/2nd%
20Place.

https://github.com/drivendataorg/snomed-ct-entity-linking/tree/main/2nd%20Place
https://github.com/drivendataorg/snomed-ct-entity-linking/tree/main/2nd%20Place
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Each step will be detailed after an explanation of the necessary data required to
use this method.

FIGURE 4.2: Main scheme of the second method.

4.2.1 Initial Data

Unlike the first method, this approach requires less initial data. It only needs the
following:

• SNOMED CT Knowledge Base

• Train Notes

• Train Annotations

• Test Notes

• Test Annotations

All of this data has already been explained in the previous method.

4.2.2 Preprocessing

In the preprocessing stage, the initial notes are processed and the necessary data for
the subsequent steps is generated. The specific operations performed during this
stage are as follows:

1. Process the Training Notes: The training notes contain several inaccuracies
that need correction. Issues such as shifts caused by tags are resolved, and
sections with a high proportion of missing values are removed to ensure they
do not affect the training process. Additionally, all HTML markup elements,
such as line breaks and new lines, are stripped from the text.

2. Create the Knowledge Graph: The SNOMED CT knowledge base is trans-
formed into a knowledge graph serialized object. This allows for efficient han-
dling of dependencies and hierarchies among SNOMED CT concepts in future
steps.

3. Extract the Most Common Concepts: A dictionary is generated that maps each
term in the train annotations to the SNOMED CT ID that has most frequently
associated.

4. Generate Word Embeddings: Word embeddings are created using a SapBERTEm-
bedder. The embeddings are generated separately for each of the three main
categories: “Procedure”, “Finding” and “Body Structure”.
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4.2.3 Candidate Selection (Named Entity Recognition)

As previously explained, the NER task involves detecting entities categorized as
“Procedure”, “Finding” and “Body Structure”. To address this task, the traditional
B-I-O (Begin-Inside-Outside) system is employed. In this system, “B” denotes the
beginning of an entity, “I” indicates words inside an entity, and“ O” signifies words
outside any relevant entity. Therefore, the system considers the following seven
classes: “I-Finding”, “B-Finding”, “I-Procedure”, “B-Procedure”, “I-Body”, “B-Body”,
and “O”.

This NER task is addressed by fine-tuning a pre-trained BiomedBERT model
using the embeddings created during preprocessing.

4.2.4 Candidate Matching

The aim of this section is to match the detected entities to the most similar SNOMED
CT terms that share the same class type.

For each class type, the embeddings of the recognized entities are compared with
SNOMED CT term embeddings of the same class, retaining the top k most similar
terms. Similarity is calculated using cosine similarity, which can be computed as:

cos (θ) = ∑n
i viui√

∑n
i v2

i

√
∑n

i u2
i

, (4.3)

where v ∈ Rn and u ∈ Rn are the vectors being compared.

4.2.5 Re-ranking and Postprocessing

After selecting the top k SNOMED CT candidates for each recognized mention in
the notes, a re-ranker refines these predictions by applying more specific criteria.

The re-ranking is performed using the MedCPT model (Jin et al., 2023), which
was trained on 18 million semantic query-article pairs from PubMed. MedCPT
employs a cross-encoder architecture, initialized with a pretrained PubMedBERT
model. A cross-encoder is a deep learning NLP model designed to compare and clas-
sify pairs of sentences or text sequences by computing the similarity between them.
Although MedCPT is originally designed to retrieve the most relevant PubMed ar-
ticles based on their titles in response to specific queries, in this context, it is used
to compare and re-rank the recognized mentions against SNOMED CT terms, ulti-
mately predicting the most accurate SNOMED CT concept corresponding to each
mention.

Moreover, the terms from the dictionary of the most common concepts, created
during preprocessing and found in the text, are also added to the prediction and
linked to their respective IDs.

4.3 Modifications and Contribution

Before testing the methods, several modifications to both the methods and the data
were made to address specific issues and ensure the code runs effectively. In ad-
dition, a contribution was made to the second method by incorporating an idea
from the first method. All the new code with all the modifications and contri-
butions can be found in the GitHub repository https://github.com/SergiCSim/
SNOMED-CT-AutomatedClinicalCoding.

https://github.com/SergiCSim/SNOMED-CT-AutomatedClinicalCoding
https://github.com/SergiCSim/SNOMED-CT-AutomatedClinicalCoding
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This chapter will first discuss the modifications made, followed by an explana-
tion of the contribution to the second method.

4.3.1 Adaptations and Modifications

First, the code for the first method was originally designed to convert the entire
MIMIC-IV-Note dataset text into a single string, which caused a memory error. To
resolve this, the code was modified to read and process the text in chunks, thereby
avoiding memory issues.

Besides that, new code was written to automate the training and testing pro-
cesses for the first method. The original code was intended to train on the entire
contest dataset and generate submissions for new notes. A new Bash script now au-
tomatically handles the entire training and testing process, including necessary file
deletions and movements. It also divides the notes into training and testing sets,
along with their corresponding annotations.

Another modification involved addressing issues related to the data. Since the
SNOMED CT knowledge base is frequently updated, the version of SNOMED CT
data originally intended for use in the method did not match the newly updated
data. This mismatch led to inconsistencies in the second method, particularly due to
changes in the activation or deactivation of relationships between concepts. A total
of 46 problematic IDs were identified out of 5,336, which represents approximately
0.86% of the SNOMED CT concepts in the annotations. These problematic IDs ap-
peared in 218 out of 51,574 rows in the annotations, accounting for roughly 0.42% of
the rows.

Given the small proportion of problematic rows and IDs, the chosen solution was
to delete the rows containing these problematic IDs. Consequently, all experiments
in both the first and second methods were conducted using the updated annotations,
with the problematic IDs removed.

4.3.2 Contribution

In the first method, text notes are divided into sections, which play a crucial role.
As previously explained, the text is broken down into sections, and pairs of (section,
mention) are linked to their corresponding IDs. However, the structure of the text in
sections is not utilized in the second method, where all the text is treated uniformly
without considering sections. The contribution made to the second method aims
to slightly improve its predictions by incorporating the section structure into the
process.

As explained in Section 4.2.5, the re-ranking process selects the best SNOMED
CT concept from the top k candidates. The similarity score, initially calculated as
cosine similarity in the previous phase, is recalculated using more specific criteria
related to the content of the mentions and the SNOMED CT candidate terms. The
candidate term with the highest score after re-ranking is then selected as the best
match.

Instead of considering only the score of the re-ranker, s1, a linear combination
of this score and another one related to the section, s2, can be considered. As in
the named entity recognition the entities are categorized either “procedure”, “body
structure” or “finding” and each mention is linked to a SNOMED CT concept within
the same category, the second score can be calculated only taking into account the
category of the detected mention.
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Therefore, this second score can be defined as the probability of finding the
SNOMED CT concept with ID i among all the concepts in the same category k in
the section where the mention has been found. It can be calculated empirically us-
ing the information from the training notes and annotations.

If a specific mention is found in section (“sec”) j, the probability that this mention
corresponds to the SNOMED CT term “T” with ID i and category (“cat”) k can be
mathematically estimated as:

Pr(ID = i | sec = j) =
Pr(ID = i ∩ sec = j)
Pr(sec = j ∩ cat = k)

=

#{T : ID=i∩ sec=j}
#{T : cat=k}

#{T : sec =j∩cat=k}
#{T : cat=k}

(4.4)

Hence,

s2 =
# {T : ID = i ∩ sec = j}
# {T : sec = j ∩ cat = k} , (4.5)

where #A is the cardinality of the set A.
It should be noted in 4.3.2 that, when calculating Pr(sec = j), it is implicitly

understood that the category must be k, as this is the same category corresponding
to the ID i.
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Chapter 5

Experiments and Results

This chapter will first explain the experiments performed using the methods, incor-
porating the modifications and adaptations described in Section 4.3.1, as well as the
second method modified according to the contribution outlined in Section 4.3.2.

Next, a brief application of automated clinical coding will be discussed, along
with the results of the related experiment.

5.1 Methods

5.1.1 Metrics

To assess the performance of the methods, three metrics were considered: the macro-
averaged character intersection-over-union (mIoU), the global F1 score (F1) and the
macro-averaged F1 score (mF1).

Macro-averaged Character Intersection-over-union

The intersection-over-union (IoU) is a widely used metric for evaluating perfor-
mance by calculating the overlap between two sets. In this context, the overlap is
determined by comparing the characters of the predicted mentions with those of the
ground truth, assessing both the intersection and the union based on characters at
the same positions in the text.

However, the metric employed here is the macro-averaged intersection-over-
union. This variant averages the IoU across classes, with each class representing
a SNOMED CT concept.

This metric was the one evaluated in the “SNOMED CT entity linking” contest,
where the objective was to achieve the highest macro-averaged intersection-over-
union (mIoU) on a set of notes with annotations that were unknown to the partici-
pants and known only to the contest organizers.

The IoU for one class can be calculated as:

IoUclass =
Pchar

class ∩ Gchar
class

Pchar
class ∪ Gchar

class

. (5.1)

And, the macro-averaged one, as:

mIoU =
∑classes∈P∩G IoUclass

Nclasses∈P∩G
, (5.2)

where Pchar
class is the set of characters in all predicted spans for a given class, and

Gchar
class is the set of characters in all ground truth spans for the given class, and classes ∈

P ∩ G is the set of classes present in either the ground truth or the predicted spans.
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F1 Score

The F1 score is a metric that combines precision and recall into a single value. It is
particularly useful for imbalanced datasets. The F1 score is the harmonic mean of
precision and recall.

Precision is defined as:

Precision =
True Positives

True Positives + False Positives
(5.3)

Recall is defined as:

Recall =
True Positives

True Positives + False Negatives
(5.4)

The F1 score is calculated as:

F1 = 2 · Precision · Recall
Precision + Recall

(5.5)

Macro-Averaged F1 Score

The macro-averaged F1 score is used in multi-class classification problems. It com-
putes the F1 score for each class independently and then averages these scores. This
method treats all classes equally.

Let F1class denote the F1 score for a specific class. The macro-averaged F1 score
is calculated as:

mF1 =
1

Nclasses
∑

class
F1class (5.6)

where Nclasses is the number of classes, and F1class is the F1 score for each indi-
vidual class.

5.1.2 Experiments

The experiments involve training and testing both methods, as well as the modified
second method. Metrics are calculated for each prediction to evaluate the accuracy
of the predictions in relation to the test annotations, which serve as the ground truth.

The data used in the experiments consists of the dataset with problematic con-
cepts filtered, as described in Section 4.3.1. The 204 medical notes were divided
such that 80% of the notes, a number of 164, were used for training and the remain-
ing 20%, a quantity of 40, for testing. Accordingly, the training annotations were
selected from the annotated terms of the training notes, while the test annotations
were drawn from the annotated terms of the test notes.

In the modified second method, the new mixed score, smixed, is calculated by
considering the conditioned probabilities of the sections (Section 4.3.2). The mixed
score is computed as

smixed = w1s1 + w2s2, (5.7)

where s1 and s2 are combined linearly according to the weights w1 ∈ R and
w2 ∈ R.

In the experiments with the modified second method, various combinations of
weights were tested to evaluate the results with different linear combinations of the
two scores.
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TABLE 5.1: mIoU, F1 and mF1 metrics of the first method, second
method and modified second method using different configurations

of weights. The first method does not use weights.

Method w1 w2 mIoU F1 mF1

1st — — 0.43241 0.72390 0.45358

2nd (modified) 0 1 0.34509 0.69644 0.37050
2nd (original) 1 0 0.42740 0.71670 0.44752
2nd (modified) 1 1 0.42741 0.71651 0.44749
2nd (modified) 1 2 0.42762 0.71344 0.44739
2nd (modified) 1 3 0.42718 0.71329 0.44688
2nd (modified) 1 4 0.42703 0.71287 0.44683
2nd (modified) 1 5 0.42554 0.71227 0.44571
2nd (modified) 1 6 0.42556 0.71161 0.44553
2nd (modified) 1 7 0.42478 0.71107 0.44482
2nd (modified) 1 8 0.42523 0.71071 0.44527

Since the magnitude of the scores does not impact the final result, as only the
highest score is retained, and the values of the second score are typically much
smaller than those of the first, w1 has been set to w1 = 1. Nine integer values of
w2, ranging from 0 to 8, have been tested with w1 = 1, that is, w2 = 0, 1, . . . , 8. The
run with w1 = 1 and w2 = 0 corresponds to the original second method. Addition-
ally, an experiment with w1 = 0 and w2 = 1 has also been conducted.

The first method was tested on a system equipped with an Intel® Core™ i5-
6200U processor running at 2.30GHz, 8GB of RAM, and a 2.40GHz CPU.

For the second model, a BiomedNLP-BiomedBERT-large-uncased-abstract was
utilized during the natural language processing phase. This model was trained on
four NVIDIA A100-SXM4-40GB GPUs, which together provide 27,648 CUDA cores
and 1 TB of RAM. The same pre-trained BERT-based model was used across all con-
figurations for the modified second method. During the entity linking phase, each
weight configuration for the modified method was processed once using a single
NVIDIA GeForce RTX 4060 GPU with 3,072 CUDA cores, 8GB of RAM, and an Intel®

Core™ i7-14700F processor running at 2.10GHz, supported by 32GB of RAM.

5.1.3 Results

The results are presented in Table 5.1. The dictionary-based first method outper-
forms all others across the three metrics. However, within the experiments using the
modified second method, the configuration with w2 = 2 yields the highest mIoU.
Conversely, the original second method achieves the best F1 and mF1 scores. The
poorest performance is observed when only the second score is considered, specifi-
cally when w1 = 0. Nevertheless, the differences between the metrics across various
weight configurations in the modified second method appear to be minimal.

5.2 Application

Automated clinical coding has multiple applications, primarily including the struc-
turing of electronic medical records into organized data to efficiently manage rele-
vant medical information.
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This section will demonstrate a specific case where automated clinical coding
proves useful.

5.2.1 Description and Experiments

In the MIMIC-IV-Note medical summaries, there are multiple terms that have a
number associated. For instance, quantites of medicaments, concentration of de-
terminated substances, etc.

One interesting numerical term is “vital signs”, which has the SNOMED CT ID
of 118227000. In SNOMED CT, the relevant term is not the values of the vital signs
themselves but rather the set of words that identify them. For example, some terms
found in the medical texts that are categorized as vital signs include “VS”, “vital
signs”, “Vitals”, “VITALS”, and “VSS”. There are 313 annotations categorized with
the vital signs ID in the annotation data.

Extracting the vital signs from free-text is not always an easy task, due to the
varied ways in which the five vital signs are reported. The vital signs can appear in
different forms, orders, and there can be missing values that are not present in the
text. Specifically, the five vital signs are:

• Temperature

• Blood Pressure (Systolic and Diastolic)

• Heart Rate

• Respiration Rate

• Oxygen Saturation

Thus, the experiment performed consists of determining whether knowledge of
where the vital signs are found in the text, thanks to automated clinical coding, could
facilitate the extraction of numerical values for these vital signs from the text more
effectively compared to when this information is not known.

Specifically, given the identifier term, each text has been filtered to only include
the information that is 100 characters after the end of the identifier. This approach
aims to extract the vital signs from this filtered text, rather than attempting to obtain
them from the entire text.

Due to the limited number of samples (only 313 annotations with vital signs),
utilizing a deep learning NLP model to extract vital signs numbers has proven inef-
fective due to insufficient training data. Instead, a solution was implemented using
a set of conditions based on regular expressions to extract the vital signs values. The
details of this solution can be found in the GitHub repository of this project.

5.2.2 Results

The evaluation of the method for vital signs detection is challenging due to the ab-
sence of ground truth data. Nevertheless, it has been observed to be effective in most
cases and this can be checked in the available code. To illustrate this, five examples
of vital signs extraction with the selected partial texts will be presented, along with a
comparison of the results when applying the same extraction code to the entire text.

For the first text:

“ remained stable. Please follow up at next PCP ___. [ ] Patient had a significant
headache during ad”,
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TABLE 5.2: First example comparing predicted vital signs from par-
tial versus full text with actual values.

Vital Sign Prediction (Full Text) Prediction (Partial Text) Real Value

Temperature 98.1 None None
Blood Pressure 130/88 None None
Heart Rate 50 None None
Respiration Rate 5 None None
Oxygen Saturation saturation None None

TABLE 5.3: Second example comparing predicted vital signs from
partial versus full text with actual values.

Vital Sign Prediction (Full Text) Prediction (Partial Text) Real Value

Temperature 98.3 98.3 98.3
Blood Pressure 137/69 137/69 137/69
Heart Rate 83 83 83
Respiration Rate 16 16 16
Oxygen Saturation 98% 98% 98%

where no vital sign numbers are present but a vital signs identifier was men-
tioned earlier, the algorithm’s predictions are shown in Table 5.2. It is apparent that
the predictions based on the full text do not align with the actual values. Instead,
the algorithm generates incorrect values along with a single word from the text.

In contrast, for the second text:

“: 98.3, 83, 137/69, 16, 98% RA GEN: NAD, AAO x 3 CV: RRR PULM: CTAB ABD:
Laparoscopic incisions open”,

where all vital signs are explicitly included and separated with commas at the
starting of the text, the predictions in Table 5.3 are accurate and align well with the
provided information.

For the third text:

“- T 97.9 BP138/67 HR78 RR20 SaO2 98RA GENERAL: Alert, oriented, no acute
distress HEENT: Sclera a”

where all vital signs are present but preceded by identifiers such as “T” for tem-
perature, “BP” for blood pressure, etc., the predictions in Table 5.4 demonstrate ac-
curate identification of all vital signs in the partial text. However, the predictions are
incorrect when applied to the full text.

In the fourth text:

“: Temp 98.8; BP 140/47; HR 102; RR 20; SpO2 93% on 3L. . Currently, her dyspnea
is much better. ”,

where the vital signs are expressed similarly to the previous text but with dif-
ferent identifiers (“Temp” for temperature and “SpO2” for oxygen saturation) and
separated by semicolons, the predictions in Table 5.5 show mixed results. For two
cases, the predictions remain consistent between the full and partial texts. However,
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TABLE 5.4: Third example comparing predicted vital signs from par-
tial versus full text with actual values.

Vital Sign Prediction (Full Text) Prediction (Partial Text) Real Value

Temperature 97.5 97.9 97.9
Blood Pressure 126-148/64-87 138/67 138/67
Heart Rate None 78 78
Respiration Rate 19 20 20
Oxygen Saturation 100% 98% 98%

TABLE 5.5: Fourth example comparing predicted vital signs from par-
tial versus full text with actual values.

Vital Sign Prediction (Full Text) Prediction (Partial Text) Real Value

Temperature 98.8; 98.8; 98.8
Blood Pressure 70/30 140/47; 140/47
Heart Rate 95 102 102
Respiration Rate 28; 20; 20
Oxygen Saturation 80% 93% 93%

for the remaining cases, only the predictions based on the partial text are accurate,
though some predictions include semicolons.

For the fifth text:

“ prior to transfer were: 56 105/55 18 94% RA Upon arrival to the floor, pt CP free.
No SOB, dizzi”,

where it appears that there is no temperature value provided, the predictions
shown in Table 5.6 indicate that only the respiration rate is accurately predicted
when using the full text. The algorithm incorrectly predicts a temperature value
with the full text, even though no temperature should be present. Nonetheless, all
predictions based on the partial text are correct.

TABLE 5.6: Fifth example comparing predicted vital signs from par-
tial versus full text with actual values.

Vital Sign Prediction (Full Text) Prediction (Partial Text) Real Value

Temperature 98.1 None None
Blood Pressure 140/70 105/55 105/55
Heart Rate 64 56 56
Respiration Rate 18 18 18
Oxygen Saturation 96% 94% 94%
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Chapter 6

Discussion and Conclusions

In this final chapter, the results obtained from the experiments conducted in the
previous chapter will be discussed. Subsequently, the overall conclusions of the
work will be presented.

6.1 Discussion of the Method’s Results

6.1.1 Original Methods

Analyzing the results from the experiments conducted using different methods, it
appears that the first method yields the best outcomes. However, this does not nec-
essarily indicate that the first method is the most effective overall.

It is crucial to consider how well the method generalizes to other systems and
datasets. The first method, which relies on resources like the SNOMED CT knowl-
edge base and the complete MIMIC-IV-Note dataset, may encounter issues when
applied to less commonly used systems or datasets other than MIMIC-IV-Note. Ad-
ditionally, extending this method to other languages, such as Spanish or Chinese,
would be challenging. For instance, medical abbreviations or synonyms in these
languages might need to be sourced from different databases, making the method
less adaptable. On the other hand, the second method is more versatile and could
be applied to other systems and datasets with minimal modifications. Moreover,
if the necessary pretrained BERT models are available, this method could be easily
adapted to annotate free text in languages other than English.

Regarding the running time, it is true that the first method requires significantly
less time and computational resources to create the Kiri dictionaries compared to the
time needed to train the BERT-based NER model in the second method. However,
once both models are trained, the inference time is slightly shorter for the second
method without considering the modifications introduced.

In addition, it is important to consider the broader context of deep learning ad-
vancements. As the field evolves, frequent improvements and increased computa-
tional power contribute to the development of more sophisticated methods. Cur-
rently, BERT models represent some of the state-of-the-art techniques in natural lan-
guage processing. Yet, in a few years, emerging frameworks could surpass these
existing models.

This means that deep learning approaches like the second method, which rely
on large language models, could benefit significantly from future advancements. As
more powerful large language models become available, they could enhance the
performance of these methods, potentially achieving better results than current ap-
proaches, including the first method.

When developing predictive models, such as the two employed in this work, a
key consideration is the risk of overfitting. Overfitting occurs when models become
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overly tailored to the training data, leading to poor performance on testing data
because they fail to generalize to new, unseen data. Nevertheless, in this particular
case, overfitting is not a relevant concern for the following reasons:

In the first method, a dictionary is created that contains all the terms from the
training data, along with the most common IDs associated with each term. This
dictionary is further expanded with new terms, such as synonyms, permutations,
and abbreviations. Similarly, the second method involves constructing a dictionary
based on the most common IDs for each term in the annotations.

As a result, in both methods, the predictions for the training data are generated
using these dictionaries. Since the prediction process for the training data differs
from that of the testing data, the issue of overfitting is not directly applicable in this
context.

6.1.2 Contribution

With respect to the contribution, the computation of the second score involves an ad-
ditional step that slows down the overall inference process. Therefore, it is necessary
to evaluate whether this extra step is worthwhile.

Using the contribution approach, the results show an increase in the macro-
averaged intersection-over-union when w2 = 2. However, no improvement is ob-
served in either the F1-score or the macro-averaged F1-score, and the interpretation
of these results is not immediately clear.

One aspect suggesting that the improvement might be relevant is that the met-
rics obtained when w1 = 0, where only the second score from the contribution is
considered, produce meaningful results rather than those corresponding to random
predictions. Nonetheless, it is also necessary to consider that the candidates to which
these scores are applied had already been filtered by selecting the top 10 candidates
through re-ranking.

The IoU metric provides a more nuanced interpretation because it recognizes
similar predictions if there is some overlap between them, while F1-related scores
treat two similar predictions as just an error. However, it is still unclear whether the
difference between the best IoU score achieved with the contribution and the IoU
score of the original approach is significant enough.

There is something else that needs to be considered. The approach used in the
contribution is sensitive to the number of samples from each ID. A concept that
appears a few times will have a very small value of s2, as # {T : ID = i ∩ sec = j} will
be very small, while # {T : sec = j ∩ cat = k} will be very large. The contribution of
s2 could be useful, but it might be overshadowed by s1. Increasing w1 would likely
not be beneficial, as it would overly emphasize the second score for IDs that appear
more frequently.

Considering Pr(sec = j | ID = i) instead of Pr(ID = i | sec = j) might miti-
gate this issue, but it would still be problematic. For instance, an ID with only one
sample appearing once in the entire dataset, and that sample occurring in a specific
section, would benefit disproportionately from the second score compared to an ID
appearing in 500 samples, 400 of which are in that section.

In reality, additional experiments with different datasets would be necessary to
determine if there is a genuine improvement from combining the two scores. Con-
ducting experiments on a more balanced dataset might provide clearer results and
mitigate the problem of IDs that appear too infrequently.
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6.2 Discussion of the Application’s Results

In this work, a small-scale application of automated clinical coding has been demon-
strated, and the results can be further discussed.

The results of the predictions using the regular expressions-based method for
detecting vital signs from partial texts have been presented. However, it would have
been necessary to evaluate this model on a set of texts using annotated test data to
compute relevant metrics, such as accuracy measures. Unfortunately, due to the lack
of data with test labels for the actual vital signs, this evaluation was not possible.

Despite the lack of test labels to accurately evaluate the model, the work high-
lights the importance of knowing where vital signs are likely to appear in order to
extract them efficiently. When applied to full text, the model struggles to accurately
extract vital sign values because they are mixed with other information. A more
complex model would be required to identify vital signs using the full texts. Such a
model, based on regular expressions or on deep learning, would likely need to first
detect vital sign term identifiers, such as “VS” or “vital signs”, before extracting the
values, which is already what has been done in automatic clinical coding.

The results shown are promising. Nonetheless, the regular expressions-based
model still makes some errors, such as including incorrect characters or confusing
some numbers. An NLP deep learning model would likely have been a better choice
and could have produced better results but, given the limited number of 313 sam-
ples, it was not feasible to apply a traditional machine learning or deep learning
train-test approach.

Despite having used a relatively simple model that is not perfect, it could still
be effectively applied to detect vital signs in texts from the same physicians, who
typically have consistent writing styles. Nevertheless, to generalize to texts written
by other specialists, a deep learning model trained on a larger dataset would be
necessary.

Another consideration is that detecting vital signs is especially challenging, as
there are five different values to identify, which can be expressed in numerous ways,
and sometimes values may not be written in the text at all. A similar regular ex-
pressions approach could be developed to detect other types of numerical values
associated with a SNOMED CT ID, such as doses of medicines or concentrations of
substances, which might be much simpler and also useful.

6.3 Conclusions

In conclusion, the objectives of this work have been successfully accomplished.
Firstly, the significance of the SNOMED CT medical terminology structuring sys-

tem, as well as the importance of structuring medical data, has been thoroughly
understood and demonstrated. The structure and utility of the SNOMED CT knowl-
edge base and the MIMIC-IV-Note dataset have also been comprehensively explained
and utilized.

An extensive study of the state of the art in named entity recognition and entity
linking has been conducted, with two methods examined in detail serving as effec-
tive examples of automated clinical coding techniques. These methods, each em-
ploying distinct approaches, one a classical dictionary-based method and the other
a BERT deep learning-based model, have both produced strong results.

Moreover, an improvement inspired by the section-breaking technique of the
first method was implemented in the second method. While this contribution shows
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potential, further work and experiments are necessary to determine its significance
and practical value.

This work has not only presented abstract models and results but also demon-
strated a practical application of automated clinical coding in detecting vital sign
values. Although there is room for improvement, this small application serves as an
example of the vast importance and potential applications of this research field.

For future work, it would be beneficial to study, test, and compare different
models, especially deep learning ones, to those explored in this study. It would
also be worthwhile to test the improvement in a more balanced dataset or to pro-
pose and evaluate new enhancements to the tested models, such as expanding the
dictionary-based method with additional terms from other sources or refining the
deep learning-based method by experimenting with other types of large language
models. Furthermore, it would be valuable to extend these and other automated
clinical coding methods to systems beyond SNOMED CT and to a range of lan-
guages, including widely spoken ones like Spanish, as well as less commonly spoken
but still important languages used by healthcare workers, such as Catalan.
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