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A B S T R A C T

The importance of monitoring the presence of bioactive compounds as food attributes for sample classification 
and characterization is increasing. In this study, targeted Liquid Chromatography coupled with High-Resolution 
Mass Spectrometry (LC-HRMS) was employed to analyze the chemical profile of polyphenolic compounds as the 
source of information for the characterization and classification of 306 commercial coffee samples. Coffee holds a 
distinguished position as one of the most widely popular beverages globally but also one of the most easily 
adulterated. Regrettably, in recent times, instances of coffee adulteration have been on the rise. Consequently, 
implementing rigorous quality control measures for coffee becomes imperative to guarantee its quality. The 
results obtained in this work confirm that the proposed chemical profiles serve as excellent descriptors for sample 
characterization and classification through the implementation of principal component analysis (PCA) and 
partial least squares-discriminant analysis (PLS-DA), achieving classification rates higher than 83.3% in PLS-DA 
validation. Moreover, the proposed LC-HRMS polyphenolic approach was employed to identify and measure 
adulteration levels in coffee samples using partial least squares (PLS) regression with prediction errors below 
7.8%.

1. Introduction

Coffee stands as one of the most widely consumed beverages 
worldwide. Its unique nature as a beverage arises from its distinctive 
flavor and the richness of its aroma [1,2]. It is classified within the 
Rubiaceae family under the Coffea genus. Although a lot of species have 
been identified, only two are economically significant: Coffea Arabica 
(Arabica coffee) and Coffea Canephora (Robusta coffee). Robusta coffee 
trees are more robust and resistant, requiring less specific climatic 
conditions for cultivation compared to Arabica counter-parts. In addi-
tion, Robusta coffee contains more antioxidant compounds and caffeine, 
resulting in a much more bitter taste than Arabica coffee, the latter being 
preferred by consumers. In fact, Robusta seeds are valued at approxi-
mately half the price of the Arabica ones [1,2].

The basic chemical composition of green coffee depends on intrinsic 
factors such as the botanic species, but also on extrinsic factors such as 

climate, cultivation practices, origin, or roasting degree, among others. 
The flavor of high-quality coffee can vary considerably between samples 
of the same species but from different origin regions. In fact, climate or 
soil composition are relevant because can produce changes in the sen-
sory attributes by the presence of minerals or chemical compounds [1]. 
Regarding the chemical composition of green coffee, volatile com-
pounds such as alcohols, esters, hydrocarbons, or aldehydes, and non- 
volatile compounds such as caffeine, carbohydrates, proteins, lipids, 
trigonelline or polyphenols have been reported [1,3].

Phenolic compounds are secondary plant metabolites that play an 
important role in the sensory and nutritional quality of fruits, vegetables 
and other plants. These com-pounds present an aromatic ring with one 
or more hydroxyl groups, and their structures can vary from simple 
phenolic molecules to complex polymers. The main polyphenolic classes 
include phenolic acids, flavonoids, tannins, lignans and stilbenes. 
Polyphenols are present in many food products of the Mediterranean 
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Diet such as apples, oranges, tomatoes, coffee, tea, wine and olive oil, 
among others. Natural polyphenols in food products provide important 
health benefits, especially in terms of antioxidant, anti-inflammatory, 
antiviral, antihypertensive or anticancer properties [3–5]. For that 
reason, coffee consumption is associated with health benefits such as a 
lower risk of type II diabe-tes, or Parkinson’s and Alzheimer’s diseases 
due to its high content on some polyphenols [3,6,7]. Hydroxycinnamic 
acids (e.g., caffeic, ferulic and p-coumaric acids) and quinic acid are 
particularly abundant in green coffee beans and form the so-called 
chlorogenic acids. In fact, the principal phenolics in coffee are caf-
feoylquinic acids (representing approximately 80 % of the total 
chlorogenic acid content), dicaffeoylquinic acids, or feruylquinic acids 
[1,3,8].

The roasting of green coffee beans involves chemical, physical and 
sensory transformations. During the process, the beans increase in vol-
ume and reduce in weight, appearing new chemical compounds while 
others are degraded. For example, the chlorogenic acid content in 
commercial roasted coffees can vary from 0.5 to 6 g/100 g (dry weight), 
depending on the type of processing, blend, roasting degree, and the 
roasting method. In addition to chlorogenic acids, other polyphenolic 
compounds, such as flavonoids or tannins, are also present in coffee 
beans [1,7].

The process of bringing harvested coffee fruits to consumers as a 
beverage involves a series of steps, and due to the complexity of the food 
chain and the involvement of various factors in both production and 
consumption, unfortunately, coffee adulteration is on the rise, leading to 
cases of food fraud. Coffee adulteration (as in any other food product) is 
illegal worldwide, has economic consequences, and can pose serious 
health problems. For that reason, determining the authenticity of food 
products by analytical methodologies is crucial to ensure food quality 
control and food safety [9,10].

The analytical process for assessing polyphenols in food samples 
consists of three stages: extraction, separation and characterization or 
quantification [5]. Common extraction techniques are percolation, 
decoction, heat reflux extraction, Soxhlet extraction, maceration, 
ultrasound-assisted extraction and supercritical fluid extraction [5,11]. 
Concerning the separation the most common techniques are capillary 
electrophoresis (CE) [12] or liquid chromatography (LC) [13]. Some of 
these methods are coupled to nuclear magnetic resonance (NMR) 
[14,15], mass spectrometry (MS) [16–19] or ultraviolet (UV) detection 
[20–22]. For coffee analysis specifically, LC-UV is one of the most 
popular techniques [20–22]. For example, Craig et al. [20] established 
an HPLC-UV method for a rapid quantification of seven chlorogenic acid 
isomers in Arabic green coffee. Moreover, Angeloni et al. [17] developed 
an HPLC-MS/MS method for the quantification of lignans in 100 % 
arabica espresso from five different geographical origins. In another 
work, LC-MS/MS was employed for the quantification of 30 bioactive 
compounds (including some polyphenols) in Arabica coffees [19].

In this study, a targeted Liquid Chromatography-High-Resolution 
Mass Spectrometry (LC-HRMS) method was employed for poly-
phenolic profiling to address the classification and characterization of 
coffee based on origin, variety, and roasting degree. High-resolution 
spectrometry was chosen to ensure the unequivocal identification of 
specific polyphenolsto propose potential markers for coffee authenti-
cation. Although this technology is often considered costly and alter-
native more economical methods have proven effective for coffee 
classification, the use of high-resolution is crucial at this exploratory 
stage. The technique allows precise confirmation of compound struc-
tures which is essential before validating these markers in future studies 
using more accessible technologies, such as low-resolution mass spec-
trometry or liquid chromatography coupled to UV detection.

A total of 306 coffee samples, distributed into three sets, were 
analyzed with the proposed methodology after brewing and filtration. 
Polyphenolic profiling was performed and a custom accurate mass 
database containing 26 polyphenolic compounds previously character-
ized. For coffee characterization and classification, the obtained LC- 

HRMS polyphenolic profiles, based on peak area signals, were used as 
chemical information in Principal Component Analysis (PCA) and Par-
tial Least Squares-Discriminant Analysis (PLS-DA) chemometric 
methods. The resulting scores and loadings plots provided key chemical 
information regarding sample patterns and relevant descriptors. 
Furthermore, the potential use of polyphenols for detecting and quan-
tifying adulteration levels in coffee samples was evaluated through 
Partial Least Squares (PLS) regression.

2. Materials and methods

2.1. Chemicals and solutions

The mobile phase for the chromatographic method was composed of 
HPLC grade methanol obtained from PanReac AppliChem (Barcelona, 
Spain), formic acid (≥98 %) from Sigma-Aldrich (St Louis, MO, USA) 
and purified water with an Elix 3 Milli-Q purification system from 
Millipore Corporation (Burlington, MA, USA). Mineral water obtained 
from Eroski supermarket (Elorrio, Spain) was employed for coffee 
brewing.

Standard solutions of polyphenols were prepared at 1000 mg⋅L− 1 in 
methanol and diluted to 15 mg⋅L− 1 for LC-HRMS analysis. The poly-
phenolic profiling was based on the following compounds (all of them 
from Sigma-Aldrich and with a purity > 96 %): quinic acid, pyrogallol, 
gallic acid, 4-vinylguaiacol, arbutin, 2,5-dihydroxybenzoic, homoge-
ntisic acid, pyrocatechol, 4-hydroxybenzoic acid, 4-O-caffeoylquinic 
acid, chlorogenic acid, caffeic acid, vanillin, 4-methylcatechol, syrin-
galdehyde, ethyl gallate, 3-methylcatechol, p-coumaric acid, sinapic 
acid, ferulic acid, 4,5-di-O-caffeoylquinic acid, 4-ethylcatechol, poly-
datin, 3,4-di-O-caffeoylquinic acid, 3,4-dihydroxybenzaldehyde and 
quercetin. The information about chemical structure, molecular formula 
and CAS number of polyphenols is in Table S1 (supplementary material).

2.2. Instrumentation

A Dionex UHPLC instrument (Thermo Fisher Scientific, San José, CA, 
USA) equipped with a binary pump and an autosampler coupled to a 
linear ion-trap (LTQ)-Orbitrap Velos HRMS instrument (Thermo Fisher 
Scientific) with an electrospray ionization source (ESI) in negative ion 
mode was employed to analyze the coffee samples. Chromatographic 
separation was performed in reversed-phase mode with a Kinetex® C18 
(100 mm × 4.6 mm, 2.6 µm partially porous particle size) column from 
Phenomenex (Torrance, CA, USA), kept at room temperature. Mobile 
phase components were water with 0.1 % formic acid (solvent A) and 
methanol (solvent B), and the flow rate was 0.4 mL⋅min− 1. The elution 
program started increasing the methanol percentage in a linear gradient 
from 3 to 75 % in 30 min; from 30 to 32 min, methanol increased from 
75 % to 95 % and was kept at 95 % methanol for 2 min; from 34 to 34.2, 
the elution program came back to the mobile phase initial conditions (3 
% of methanol); finally, the column was equilibrated from 34.2 to 40 
min at 3 % methanol. The injection volume used in full-loop mode was 5 
µL. For acquisition, ESI source operated in negative ionization mode. 
Sheath, sweep and auxiliary gases were nitrogen, with a purity higher 
than 99,98 %, at flow rates of 60, 0 and 10 a.u. (arbitrary units), 
respectively. The capillary and ESI ionization source temperatures were 
350 ◦C and 25 ◦C, respectively, and an S-Lens RF level of 50 V was 
employed. HRMS acquisition was performed in full scan mode from 100 
to 1,500 m/z at 60,000 full width at half-maximum (FWHM, at m/z 200) 
resolution. An automatic gain control (AGC) of 1 × 106, and a maxi- 
mum injection time (IT) of 200 ms were also employed. A commer-
cially available calibration solution (Thermo Fisher Scientific) was 
employed for tune and calibration of the linear ion-trap (LTQ)-Orbitrap 
Velos HRMS instrument.
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2.3. Samples

A total of 306 commercially available coffees (described in Table S2), 
grouped in three different sets, were analyzed (each set was analyzed 
and evaluated individually). Sets 1 and 2 comprised a total of 240 
commercially available Nespresso® coffee samples purchased from su-
permarkets in Barcelona (Spain), differing in region of origin, coffee 
variety (Arabica, Robusta or blends), and roasting degree. In addition, to 
address the applicability of the proposed methodology for the classifi-
cation and characterization of coffees produced in nearby countries, set 
3 (containing 66 samples) consisted of Vietnam and Cambodia from 
local supermarkets. Set 3 samples were classified into 5 groups 
depending on the coffee variety and the region of origin (no information 
regarding the roasting degree was available). For sets 1 and 2, each 
sample used is an individual coffee capsule, and these capsules belonged 
to two different packages. For set 3, there were triplicate samples from 
the same package as well as triplicates of each sample type from 
different packages.

A Quality Control (QC) solution was also prepared for every sample 
set by mixing 50 µL of each sample extract to evaluate the repeatability 
of the proposed targeted LC-HRMS method and the robustness of the 
chemometric results, and was injected every ten samples (always behind 
a Milli-Q water blank) throughout the sequence.

Some adulteration studies were designed using coffee samples 
belonging to the third set as follows. Three adulteration cases were 
studied: Vietnam-Arabica vs. Vietnam-Robusta, Vietnam-Arabica vs. 
Cambodia, and Vietnam-Robusta vs. Cambodia. In any case, the cali-
bration set was composed of mixtures at 20, 40, 60 and 80 % adulter-
ation levels, as well as the corresponding 100 % pure coffee of each class. 
The validation set included 15, 25, 50, 75 and 85 % adulteration levels. 
Each blended adulteration level was prepared by quintuplicate, thus 
resulting in 55 sample extracts for each case under study. Besides, an 
additional adulterated sample at a 50 % level was employed as the QC 
solution.

2.4. Sample treatment

Coffees were analyzed without any sample treatment aside from 
brewing with mineral water. The brewing process for sets 1 and 2 was 
performed with an espresso machine (Nespresso), always using the same 
brewing time to reach the same final volume. For set 3, coffees were 
brewed with an Italian coffee maker, grinding coffee beans when 
necessary; in this case, ca. 40 g of ground coffee well compressed in the 
Italian coffee maker and 400 mL of the mineral water were employed. 
All samples were filtered with 0.45 µm nylon filters (Phenomenex, 
Alcobendas, Spain) into 2 mL glass vials, which were stored at − 4 ◦C 
until LC-HRMS analysis.

2.5. Data analysis

Coffee samples were randomly analyzed with the proposed targeted 
LC-HRMS method. LC-HRMS raw chromatographic data were processed 
by the TraceFinderTM v3.3 software (Thermo Fisher Scientific) with a 
user-targeted accurate mass database comprising 26 phenolics. Confir-
mation criteria, such as chromatographic retention times, accurate mass 
errors (values below 5 ppm), and isotopic pattern (matches higher than 
85 %), were considered to assess the presence of the chemicals. The 
Polyphenolic Profiles were used to build the different data matrices for 
PCA, PLS-DA and PLS regression under SOLO 8.6 chemometric software 
from Eigenvector Research (Manson, WA, USA) [23]. Details of the 
theoretical foundation of these statistical methodologies are discussed 
elsewhere [24]. For more information on the concepts and foundations 
of food classification and authentication and the introduction to the 
most representative chemometric methods, see the review by Rodionova 
et al. [25].

X-data matrices to be treated by PCA and PLS-DA consisted of the 

peak area values of the detected compounds. In each case, a normali-
zation pretreatment, according to the QCs, regarding the overall con-
centration of the analyte was applied to ensure similar weights to all 
samples. The Y-data matrix in the PLS-DA models categorized each 
coffee sample into its respective class. The Y-data matrix for the PLS 
regression included the blended adulteration levels. The scatter plots of 
scores and loadings from principal components (PCs) or latent variables 
were used to study the distribution of samples and compounds. Thus, 
information regarding correlations and dependences for the targeted 
polyphenolics with the coffee beverages analyzed was visualized. The 
optimal number of LVs for PLS-DA and PLS was estimated from the first 
significant minimum point of the cross-validation (CV) error from a 
Venetian blind strategy. In addition, the applicability of PLS-DA was 
proved by validating with an independent prediction set. For this pur-
pose, PLS-DA models were built with 70 % of the sample group as the 
training set, while the remaining 30 % constituted the prediction set, 
employing a random selection methodology using Excel algorithm to 
divide the data into training and validation set. Regarding PLS, models 
were validated based on the prediction sets described in section 2.3.

3. Results and discussion

3.1. HRMS characterization of targeted polyphenolic compounds

In this work, a total of 26 polyphenolic standards (Table S3) 
belonging to different families (phenolic acids, flavonoids, stilbenes, and 
other phenolics), typically reported in coffee beverages [4,5], were 
characterized by reversed-phase chromatography using a C18 column 
under gradient elution conditions (see section 2.2) and using acidified 
water (0.1 % formic acid) and methanol as mobile phase components. 
These polyphenolic compounds were characterized by HRMS to build a 
home-made accurate mass database of LC-HRMS Polyphenolic Profiles. 
For that purpose, the 26 targeted compounds were grouped in several 
standard mixture solutions (always preventing isobaric compounds), 
and analyzed with the proposed LC-HRMS method in negative ESI mode. 
Chromatographic retention time and HRMS spectra at a resolution of 
60,000 FWHM were registered, and the obtained data is summarized in 
Table S3.

3.2. LC-HRMS polyphenolic profiling of coffee samples

The main objective of the present work is to evaluate if polyphenolic 
profiles, obtained from LC-HRMS raw data using an accurate-mass 
database of 26 polyphenolic compounds, resulted in good sample 
chemical descriptors to address the classification and characterization of 
coffee according to several coffee attributes such as the country of 
production, variety or roasting degree.

Coffee samples distributed in different sets (see Table S2) were 
analyzed with the proposed LC-HRMS method. As an example, Fig. 1
shows the LC-HRMS total ion chromatograms (TICs), as well as the 
extracted ion chromatogram for 4-hydroxybenzoic acid (m/z 137.0241, 
retention time, RT, 12.31 min) of two selected coffee samples belonging 
two different varieties (Arabica and Robusta) from set 1. Fig. 1 shows 
remarkable differences in signal profiles and relative abundances ac-
cording to the variety. In the supplementary material, as an example, the 
extracted ion chromatograms for some of the most representative 
polyphenols in an Arabica coffee sample from Ethiopia (set 2) are shown 
(Figure S7).

The coffee samples and the corresponding QCs were analyzed to 
generate the polyphenolic profiles as explained in Section 3.1. To 
simplify the data, a threshold signal of 1.0 × 105 (peak area) was set in 
the screening software to consider that a compound may be relevant in a 
given sample. Besides, accurate mass measurements (with mass errors 
lower than 5 ppm) and isotopic pattern matches (higher than 85 %) were 
established as confirmation parameters. A report for each analyzed 
sample and QC depicting the peak areas of all the targeted compounds 
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found with the established confirmation criteria was provided. The list 
of reported compounds found in the samples includes both targeted 
polyphenols as well as possible polyphenolic signals coming from 
polyphenol derivatives. As an example, Table S4 shows the obtained 
report for a Master Origin India Coffee sample from set 2.

As can be seen in Table S4, for this specific Indian coffee, 22 poly-
phenolic compounds were detected and the peak area signals were 
provided by the screening software. Several compounds, such as quinic 
acid or chlorogenic acid, depict high peak area signals compared to 
other compounds, which may be attributed to their higher reported 
concentration in coffee samples [22].

As mentioned previously, it is well known that polyphenolic agly-
cones often form derivatives (glycosylated polyphenols, for example). 
These derivatives will be chromatographically separated from their 
aglycones, but fragmentation in the electrospray source will generate 
the aglycon as a fragment. Hence, as illustrated in Table S4, in some 
cases the screening software provides matches for a given compound at 
different retention times than the one corresponding to the standard 
(data in Table S3). This is the case, for instance, of 2,5-dihydroxybenzoic 
acid derivative found in the depicted sample data at a retention time of 
16.39 min while 2,5-dihydroxybenzoic acid standard elutes at a reten-
tion time of 10.94 min under the employed chromatographic separation 
conditions. In addition, isomeric compounds may also be detected. In 
any case, as the main objective of the present contribution is the clas-
sification and characterization of coffee samples by employing poly-
phenolic data, but not a deep characterization of the polyphenols found 
in the analyzed samples, the targeted LC-HRMS profiles that will be used 
as sample chemical descriptors will be built based on the accurate m/z 
values detected by the screening software at the different retention times 
(independently if it was the aglycone or one of their derivatives).

3.3. Exploratory principal Component analysis (PCA)

The capability of targeted LC-HRMS Polyphenolic Profiles as chem-
ical markers for categorizing coffee samples according to geographical 
origin, variety and roasting degree was first evaluated by PCA. In this 
work, PCA was applied as an exploratory technique to identify patterns 
in multivariate data, providing an initial insight into the underlying 
structure of the samples. Consistent with its use in methods like Soft 

Independent Modeling of Class Analogy (SIMCA), PCA was essential for 
dimensionality reduction and for highlighting the main trends within 
the data [25].

First, data matrices (X-data) were built with the polyphenolic peak 
areas at a specific m/z value and retention time for those polyphenols 
detected in the analyzed samples and QCs. In addition, an autoscaling 
preprocessing was used to guarantee equal weighting for all variables. 
The PCA score plots showed that the QCs displayed a linear distribution 
trend instead of appearing grouped. This QC distribution was related to 
their injection or-der in the sequence, suggesting a drift in the LC-HRMS 
polyphenolic signals across the sample sequence. Indeed, a decrease in 
the QC signal was observed throughout the series, likely attributable to 
the decay of electrospray ionization performance since the source be- 
came dirty during the analysis of the samples. Thus, for the correct 
interpretation of the results, the X data matrix was corrected with 
respect to the QCs. Hence, the intensity areas of the compounds in the 
samples were divided by the corresponding areas of the nearest QC to 
guarantee a reliable chemometric result interpretation on the classifi-
cation and characterization studies.

Fig. 2 shows the PCA score plots obtained when using the corrected 
targeted LC-HRMS Polyphenolic Profiles for set 1 of coffee samples, 
displayed by labelling the samples according to the coffee variety (Fig. 2. 
a), to geographical production regions (Fig. 2.b) and to the roasting 
degree (Fig. 2.c). Similar PCA information is provided for sets 2 and 3 in 
Figures S1 and S2 (supplementary material), respectively. The classifi-
cation related to the coffee roasting degree was not examined for sample 
set 3 due to the lack of information regarding this attribute.

As shown in Fig. 2, samples tend to be clustered based on the coffee 
attribute under study (geographical production region, variety, and 
roasting degree). Similar information is shown in the supplementary 
material for the sets of coffee samples number 2 (Figure S1), and 3 
(Figure S2), respectively. These results confirm the potential of the data 
to ad-dress classification and characterization studies detailed in the 
following sections.

3.4. Supervised partial least-squares-discriminant analysis

PLS-DA was employed to establish clear boundaries between the 
different sample classes. Although widely used in food chemistry, this 

Fig. 1. LC-HRMS (a) total ion chromatograms, (b) extracted ion chromatograms and (c) extracted ion mass spectrum for 4-Hydroxybenzoic for (1) an Arabica coffee 
from Ethiopia (m/z 137.0241, retention time, RT, 12.32 min) and (2) a Robusta coffee from Uganda (m/z 137.0241, retention time, RT, 12.30 min).
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method should be applied with caution to avoid potential mis-
interpretations in authentication studies [25]. In our case, PLS-DA effi-
ciently enabled the identification of distinguishing features between the 
sample groups. The corrected targeted LC-HRMS Polyphenolic Profiles 
obtained for each set of coffee samples were subjected to a supervised 
PLS-DA. Coffee samples were categorized based on the three evaluated 
attributes: the geographical production region, the coffee variety, and 
the roasting degree; thus, Y-data matrices were designed according to 
each attribute under study.

Fig. 3 shows the PLS-DA score plots and their respective loading plots 
obtained for set 1. Figure S3 and Figure S4 (supplementary material) 
show the equivalent information obtained for the coffee sets 2 and 3, 
respectively. Furthermore, the values of sensitivities, specificities and 
class prediction errors by cross-validation are shown in Table S5 for all 
the obtained multiclass PLS-DA models.

As shown in Fig. 3.a.1, and Figures S3.a.1 and S4.a.1 (supplementary 
material), the sample classification based on the coffee varieties was 
excellent for all the coffee sample sets under study. Regardless of the 
geographical origin of the samples, the differentiation among varieties 
(Arabica, Robusta, or blended Arabica-Robusta varieties) was perfect, 
achieving sensitivity and specificity values of 100 % (Table S5) and, 
consequently, 100 % classification performance.

Furthermore, for the classification of coffee samples according to 
their geographical production region, good results were also obtained 
for all analyzed sets of samples (Fig. 3.b.1, S3.b.1 and S4.b.1). As shown 

in Table S5, for instance, in the case of set 1, satisfactory results were 
achieved with sensitivity and specificity values higher than 85 % and 
95.9 %, respectively, and classification errors lower than 8.8 %. For set 
2, sensitivity values of 100 % were obtained for the geographical pro-
duction regions, and specificity values higher than 88.5 %. In the case of 
set 3, sensitivity and specificity values of 100 % were achieved, high-
lighting the capability of the Polyphenolic Profiles for geographical 
classification and characterization even when coffees are produced 
under similar climatic conditions.

Finally, the classification of coffee samples based on the roasting 
degree for sample sets 1 and 2 was also satisfactory, as shown in Fig. 3. 
c.1 and S3.c.1, with sensitivity and specificity values higher than 90 % 
and 91 %, respectively, and classification errors values below 7 %.

By studying the obtained PLS-DA loading plots in Fig. 3.a.2, and 
Figures S3.a.2 and S4.a.2 (supplementary material) it can be seen that 
Arabica coffee samples are mostly defined by 3,4-di-O-caffeoylquinic 
acid, and chlorogenic acid, while Robusta coffee samples (or samples 
with a blended percentage of Robusta coffee), are richer in 4,5-di-O-caf-
feoylquinic acid, pyrocatechol, 4-ethylcatechol polyphenol derivative or 
syringaldehyde. These compounds contribute significantly to the coffee 
classification in agreement with the results described by Król et al. [26]
and Bhagat et al. [27].

Regarding the geographical production region, for set 1, as depicted 
in Fig. 3.b.2, coffees originated from India seem to be more defined by 
pyrogallol, gallic acid and ethyl gallate. In contrast, 4-vinylguaiacol 

Fig. 2. PCA score plots obtained when corrected targeted LC-HRMS Polyphenolic Profiles were used as sample chemical descriptors to study coffee samples of set 1 
according to (a) the variety (score plot of PC1 vs. PC2 vs. PC3), (b) geographical production region (score plot of PC1 vs. PC2 vs. PC3) and (c) the roasting degree 
(score plot of PC1 vs. PC3).
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Fig. 3. PLS-DA score and loading plots obtained when corrected targeted LC-HRMS Polyphenolic Profiles were used as sample chemical descriptors to study set 1 
according to (a.1) the variety (score plot of LV1 vs. LV2 vs. LV3), (b.1) the geographical production region (score plot of LV1 vs. LV2 vs. LV3) and (c.1) the roasting 
degree (score plot of LV1 vs. LV2).
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seem to be more characteristic of coffees produced in Uganda, while 
those from Ethiopia are defined by pyrocatechol polyphenol derivative. 
Finally, samples from Brazil and Central and South America are pre-
dominantly characterized by 4-vinylguaiacol. In the case of set 2 
(Figure S3.b.2), Ethiopian samples are predominantly defined by sinapic 
acid or caffeic acid (as with set 1). In contrast, in the case of Indian 
coffees, also present in set 1, the polyphenols that contribute more to its 
sample discrimination and classification is 4-vinylguaiacol polyphenol 
derivative. Homogentisic acid polyphenol derivative seems to play a 
significant role in the classification of Colombian samples. Finally, 4,5- 
Di-O-caffeoylquinic acid seem to be a discriminant compounds for 
Indonesian coffee samples, while 4-O-caffeoylquinic acid for Nicaraguan 
coffees. The results agree with those described by Angeloni et al. [19] for 
the quantification of 30 bioactive compounds in Arabica coffee samples 
from Ethiopia, Brazil, India, Colombia and Costa Rica, and by Craig et al. 
[20] in Indian coffees. Regarding set 3 (Figure S4.b.2), p-coumaric acid 
stands out as the most characteristic polyphenol for Cambodian coffee 
samples. Meanwhile, the other employed polyphenols contribute fairly 
similarly to describing Vietnamese coffee samples, with notable contri-
butions from sinapic acid, ethyl gallate, or 3,4-Di-O-caffeoylquinic acid.

Finally, regarding the roasting degree (data depicted in Fig. 3.c.2 and 
Figure S3.c.2 of the supplementary material), the samples with 1/5 
roasting degree (the less roasted) are mostly defined by pyrocatechol 
and p-coumaric acid polyphenol derivatives. The samples with 2/5 
roasting degree are classified thanks to the higher contribution of 
polyphenols such as sinapic acid polyphenol derivative or caffeic acid. 
Homogentisic acid and 3,4-dihydroxybenzaldehyde polyphenol de-
rivatives seem to define the roasting degree of 3/5. In contrast, the 
coffees with a 4/5 roasting degree, are defined, in both sets of samples, 
by polyphenols such as gallic acid polyphenol derivative, 4,5-di-O-caf-
feoylquinic acid or 4-ethylcatechol. Finally, ferulic acid polyphenol 
derivative is a phenolic acid clearly characteristic of the most roasted 

coffees (5/5 roasting degree). These results agree with Król et al. [26] in 
their analysis of arabica coffee samples with different roasting levels.

3.5. PLS-DA validation

The feasibility of the proposed methodology for classifying coffees 
based on the coffee region of origin, variety and roasting degree was also 
validated. For this purpose, PLS-DA paired models were considered to 
determine classification rates when comparing a single sample class 
against all others. Each paired PLS-DA model examined was built using 
70 % of samples randomly selected for each group as the training set 
while the remaining 30 % of the samples were employed as the pre-
diction set.

Table 1 summarizes the optimal number of LVs, as well as the 
sensitivity, specificity and classification error values achieved for both 
training and prediction steps for each paired classification model eval-
uated. In addition, Fig. 4 shows the paired PLS-DA score plots of Y- 
predicted vs. sample obtained for the three sets of samples when vali-
dation based on the coffee varieties was addressed. Similar information 
is shown in Figures S5 and S6 (supplementary material) when validation 
based on the geographical production region and coffee roasting degree, 
respectively, was performed.

Validation results of the classification of coffee samples by paired 
PLS-DA models (Table 1) are very satisfactory. When addressing the 
classification of coffees based on their variety, sensitivity and specificity 
values of 100 % for both training and prediction were obtained. In the 
case of the geographical production region, sensitivity and specificity 
values higher than 93.5 % and 94.4 %, respectively, for training, and 
higher than 83.3 % and 88 %, respectively, for prediction, were 
accomplished. Finally, for the classification of coffees based on the 
roasting degree, sensitivity and specificity values were higher than 92.9 
% and 92.3 %, respectively, for training, and higher than 83.3 % and 

Table 1 
LVs, and sensitivity, specificity and classification error values obtained for training and prediction on paired PLS-DA models when studying the classifications of the 
analyzed coffee samples according to their geographical production region, variety and roasting degree.

Training Prediction
LVs Class Sensitivity (%) Specificity (%) Classification Error (%) Sensitivity (%) Specificity (%) Classification Error (%)

Coffee variety
Set 1 2 Arabica 100 100 0 100 100 0

2 Arabica-Robusta mixture 100 100 0 100 100 0
2 Robusta 100 100 0 100 100 0

Set 2 2 Arabica 100 100 0 100 100 0
2 Arabica-Robusta mixture 100 100 0 100 100 0

Set 3 3 Arabica 100 100 0 100 100 0
3 Robusta 100 100 0 100 100 0

Coffee geographical production region
Set 1 3 Brazil 100 100 0 100 90.6 4.7

2 Central and South America 100 100 0 100 96.7 1.4
3 Ethiopia 93.5 96.5 5 90 88 11
4 India 100 100 0 100 100 0
3 Uganda 100 100 0 100 100 0

Set 2 2 Colombia 100 100 0 100 100 0
4 Ethiopia 100 100 0 100 100 0
2 India 100 100 0 100 100 0
4 Indonesia 100 100 0 100 100 0
3 Nicaragua 100 94.4 2.8 83.3 92 12.3

Set 3 3 Cambodia 100 100 0 100 100 0
3 Vietnam 100 100 0 100 100 0

Coffee roasting degree
Set 1 3 1/5 96.8 94.9 4.2 87.5 95.5 8.5

5 2/5 100 98.7 0.7 100 96.7 1.7
4 4/5 92.9 97.7 4.7 90 100 5

Set 2 3 2/5 92.9 96.2 5.5 83.3 100 8.3
2 3/5 100 100 0 100 100 0
2 4/5 100 92.3 3.8 90.9 96 6.5
2 5/5 100 100 0 100 100 0
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95.5 %, respectively, for prediction.
Classification errors were always lower than 5.5 % for paired PLS-DA 

training models, and for prediction, values lower than 12.7 % were 
obtained, which are quite acceptable considering the complexity of the 
analyzed samples, although it should be high-lighted that 100 % clas-
sification rates were accomplished in most of the cases.

The obtained results demonstrate that the proposed LC-HRMS 
Polyphenolic Profiling of 26 compounds seems to be suitable sample 
chemical descriptors for the classification and characterization of cof-
fees based on their variety, geographical production region, and roasting 
degree.

3.6. Detection and quantitation of coffee adulteration by partial least 
squares regression

The proposed methodology was applied to detect and quantify 

adulterant percentage levels in blended coffee samples using PLS 
regression. Three coffee adulteration cases were studied: (i) Vietnamese 
Robusta coffee adulterated with Cambodian coffee, (ii) Vietnamese 
Arabica coffee adulterated with Cambodian coffee and (iii) Vietnamese 
Arabica coffee adulterated with Vietnamese Robusta coffee. The selec-
tion of these three cases was based on the proximity of the coffee- 
growing geographical regions, with similar climatic conditions.

For each adulteration case, independent calibration and validation 
sets were employed. The calibration sets contained 0 %, 20 %, 40 %, 60 
%, 80 % and 100 % adulteration levels, while the validation sets 
included 15 %, 25 %, 50 %, 75 % and 85 % adulteration levels. Each 
adulteration level was prepared in quintuplicate, resulting in 55 sample 
extracts for each case under study. Furthermore, a quality control so-
lution was at a 50 % adulteration level. PLS results for the three adul-
teration cases are summarized in Table 2. An ex-ample of the PLS 
predictive performance for Vietnamese Robusta coffee adulterated with 

Fig. 4. Paired PLS-DA score plots of Y predicted vs. samples according to the coffee variety for set 1: (1.a) Arabica vs. Others, (1.b) Robusta vs. Others, (1.c) 
Arabica–Robusta mixture vs. Others; for set 2: (2.a) Arabica vs. Arabica–Robusta mixture; and for set 3: (3.a) Arabica vs. Robusta. Filled and empty symbols 
correspond to training and prediction sets, respectively. Red lines represent the threshold between classes. (For interpretation of the references to colour in this figure 
legend, the reader is referred to the web version of this article.)
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Cambodian coffee is shown in Fig. 5.
As can be seen, PLS was very satisfactory for all the cases studied, 

with calibration and prediction errors below 4.52 % and 7.78 %, 
respectively, and correlations higher than 0.983. Compared with the 
non-targeted LC-HRMS fingerprint approach, prediction errors for the 
detection of coffee adulterant levels clearly improved with targeted LC- 
HRMS Polyphenolic Profiles [28]. Thus, the obtained results prove that 
the developed targeted LC-HRMS Polyphenolic Profile methodology is 
effective is effective in detecting and quantifying adulteration levels in 
adulterated coffees produced from nearby geographical production 
regions.

3.7. Comparison with other scientific publications

This comparative section has been added to analyze and contrast our 
results with those of previous studies in the field to provide a more 
comprehensive view of the context of our study. Supplementary Mate-
rial includes a detailed table (Table S6) summarizing key features and 
findings of relevant research. This table allows for a direct comparison 
with other works and facilitates assessing how our results align with or 
differ from those reported by other researchers. The comparative table 
includes information on authors, publication year, study objectives, 
employed methodology, and comparison with the presented work.

By providing this comparison, we aim to offer a clearer under-
standing of the position of our work within the existing body of litera-
ture, as well as insights into how it contributes to advancing the field. 
The comparative analysis of coffee authentication methodologies, pre-
sented in the supplementary material, highlights a broad spectrum of 
analytical techniques, ranging from Near-Infrared Spectroscopy (NIR) 
and Gas Chromatography-Mass Spectrometry (GC–MS) to Liquid 
Chromatography-Mass Spectrometry (LC-MS) and High-Resolution Mass 

Spectrometry (LC-HRMS). Each of these methods provides valuable in-
sights into coffee classification, variety differentiation, and origin 
authentication. However, there are clear distinctions in the depth of 
chemical information they offer, as well as their potential for future 
application in routine authentication protocols [29–38].

4. Conclusions

In this work, a LC-HRMS Polyphenolic Profiling methodology based 
on the screening of 26 characterized polyphenolic compounds through a 
user accurate mass database was developed. The Polyphenolic Profiles 
resulted in excellent sample chemical descriptors for the characteriza-
tion, classification, and future authentication of coffee samples by PLS- 
DA according to different attributes (e.g., variety, geographical pro-
duction region and roasting degree). PLS-DA validation models 
demonstrated the robustness and reliability of the proposed targeted LC- 
HRMS polyphenolic methodology obtaining, in general, sensitivity and 
specificity values for training higher than 92.9 % and 92.3 %, respec-
tively, and for prediction higher than 83.3 % and 88 %, respectively. 
Overall prediction errors in the detection and quantitation levels of 
adulterations in coffee samples below 7.78 % were accomplished by 
PLS.

While alternative less costly techniques can achieve comparable 
classification results, the use of high-resolution mass spectrometry in 
this exploratory phase is essential for the accurate identification of 
specific polyphenols. Although this method is not intended for routine 
authentication, it establishes a solid foundation for the development of 
simpler and more accessible methods in the future. The precise identi-
fication of key polyphenols is crucial for proposing markers that can 
later be employed with more economical technologies in practical 
applications.

Finally, regarding the representativeness of the samples, the study 
presented has to be considered a proof of concept that explores the 
possibilities of the developed approach. Our work shows some com-
pounds characteristic of different sample typologies (although there 
could also be others that we have not identified). In this sense, in the 
particular scenario described in this manuscript or in another more 
global one, it does seem that the profiling approach with chemometric 
data treatment is an excellent option for the characterization of coffee or 
the identification of potential fraud.
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Table 2 
Evaluation of the coffee adulteration cases by PLS using corrected targeted LC- 
HRMS Polyphenolic Profiles as sample chemical descriptors.

Vietnamese 
Arabica Coffee 
adulterated with 
Cambodian coffee

Vietnamese 
Robusta Coffee 
adulterated with 
Cambodian coffee

Vietnamese 
Arabica Coffee 
adulterated 
with 
Vietnamese 
Robusta Coffee

LVs 4 4 3
R2 0.993 0.983 0.992
Calibration 

Errors (%)
2.98 4.52 3.08

Prediction 
Errors (%)

7.78 6.72 6.00

Fig. 5. PLS regression model for the case of coffee Robusta from Vietnam 
adulterated with coffee from Cambodia.
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