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Abstract: This thesis investigates the efficiency of the adiabatic evolution, in the context of a
1-dimensional Fermi-Hubbard system. Two equivalent methods were used: CNOTs and FSWAPs.
As it is easier to write a generalised code for CNOTs, it was the method used in subsequent sections.
The sources of error in quantum simulations were studied (the adiabatic and Trotteritzation errors),
and it was verified that they behaved as predicted (in particular, the adiabatic error increased
with a small N , and the Trotteritzation error increased with a larger δt). The optimal parameters
needed to achieve the desired infidelity were also determined. Shortcuts to adiabaticity using the
Counter-Diabatic Driving method are also applied, resulting in a faster evolution.

I. INTRODUCTION

Quantum computing has emerged in recent years as
a promise to carry out operations that a classical ma-
chine could not. Even so, it is still limited for very
large systems. This has given rise to algorithms such as
the adiabatic algorithm [2], which aims to obtain solu-
tions for complex systems from known solutions for sim-
pler systems. These adiabatic processes are powerful but
slow, which has led researchers to look for faster meth-
ods, such as shortcuts to adiabaticity [7]. This thesis
explores adiabatic evolution and shortcuts to adiabatic-
ity, using the Counter-Diabatic Driving [1] method, for
a 1-dimensional Fermi-Hubbard system. Systems to up
to 10 sites (Ns=10) were studied. To perform the evo-
lutions, the software used was OpenFermion and Qibo.
OpenFermion is a Python library for simulating fermionic
systems, which play an important role in chemistry and
materials science research. Qibo, on the other hand, is
a quantum circuit simulator. The initial ground state of
the evolution and the operators need to be converted into
quantum gates. In the case of the kinetic term, this is
achieved by using two different procedures named here
FSWAPs and CNOTs.

The thesis is organized as follows: Sections II and III
cover the theoretical foundations: the Fermi-Hubbard
model and Jordan-Wigner transformation. Section IV
presents the different algorithms used, as well as the gates
necessary to perform adiabatic evolution in a quantum
computer, using FSWAPs and CNOTs. Section IV D
briefly introduces the shortcuts to the adiabaticity (STA)
method with Counter-Diabatic Driving (CD). In Section
V, the results of the simulations are presented, and the ef-
fectiveness of the adiabatic evolution and the STA meth-
ods are studied. There is also an analysis of the different
sources of error. Finally, in Section VI the conclusions
are presented, proposing future work.
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II. FERMI-HUBBARD MODEL

The Fermi-Hubbard model describes the behaviour of
electrons in a solid. This is done by considering their
movement between sites (hopping term) and electron
repulsion (interaction term). It is based on the tight-
binding electron model and adds a short-range interac-
tion. Electronic systems are described by Hamiltonians
consisting of the fermionic operators in the second quan-

tization formalism. These are a†0, the creation operator,
which creates a particle at site 0, and a0, the annihilation
operator, also known as raising and lowering operators.

In this formalism, the number operator (nj = a†jaj) is
also relevant. Its eigenvalues are the number of fermions
in a particular state associated with the lattice site j. The
Fermi-Hubbard Hamiltonian is [5]:

H = −J
Ns−1∑
j=1

∑
σ∈{↑,↓}

a†j,σaj+1,σ + h.c.+ U
∑
j

nj↑nj↓,

(1)
where σ indicates spin up or spin down, and Ns is the
total number of sites. The first term is the hopping
term, which describes particles tunnelling between neigh-
bouring sites (h.c stands for hermitian conjugate). The
last term is the on-site interaction, which acts between
fermions occupying the same site (in the case of elec-
trons, it’s the Coulomb interaction). Periodic boundary
conditions are assumed.

III. JORDAN-WIGNER TRANSFORMATION

Quantum computers (QC) are made up of qubits, so
to be able to work in a QC, one has to transform Hamil-
tonians (like the one introduced in section II) into the
qubit operators Xj , Yj , Zj , ... to treat them.

For fermions, one possible mapping was proposed by
Jordan and Wigner in 1928. The Jordan-Wigner trans-
formation is particularly significant in the study of quan-
tum many-body systems and quantum simulations. It
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provides a way to map fermionic operators to spin opera-
tors (qubits), which is crucial for implementing fermionic
Hamiltonians on quantum computers. As described in
OpenFermion:

aj =

j−1∏
k=1

Zk
1

2
(Xj + iYj). (2)

IV. METHODOLOGY

A. Adiabatic Algorithm

The adiabatic evolution (AE) is an algorithm used to
find the ground state of a Hamiltonian that would be
hard to find analytically. It evolves from the ground
state of an initial Hamiltonian, which is easy to con-
struct, to the ground state of the target Hamiltonian.
The evolution time must be long enough to satisfy the
conditions of the adiabatic theorem. There can be level
crossings as long as some symmetry protects them. The
time-dependent Hamiltonian is of the form:

H(s) = (1− s)Hi + sHf , (3)

where s is the effective time: s = t/T ⇒∈ [0, 1], with T
the period and t the current state of the evolution t = jδt
(δt is the time step and j is the number of steps made).
To run a simulation on a quantum computer, it is im-

portant to map the sites of the Hamiltonian into qubits.
A 1D chain can be mapped by representing the particles
with spin down in the odd qubits, and the spin up in the
even.

Having the Hamiltonian in equation 3, the evolution
consists on evolving the Hamiltonian from U=0 to U=1,
this means:

Hi = Hhopping, (4)

Hf = Hinter +Hhopping, (5)

and so

H(s) = Hhopping + s ·Hinter . (6)

Notice that the initial Hamiltonian chosen is the kinetic
term of the Fermi-Hubbard Hamiltonian. So the initial
state is the ground state of Hhopping, which in the cases
studied can be found easily. In a QC, the initial state
must be expressed with a circuit. In this thesis, the
function prepare gaussian state from OpenFermion was
used. This function prepares the eigenstate of a quadratic
Hamiltonian using the algorithm described in [3].

The solution of the Time-dependent Schrödinger equa-
tion is

|ψ(T )⟩ = T̂ e−i
∫ T
0

Hadiab(t)dt|ψ(0)⟩. (7)

The exponential of the integral should be transformed
into a product to be able to compute it:

ψ(T )⟩ ≈
N∏
j=0

e−iHadiab(jt)δt|ψ(0)⟩. (8)

To perform the evolution in a QC, it is key to remember
that they only manage up to 2 qubit operators, so we
need to decompose the previous operator into a simpler
one. To do so, we can use the Trotter-Suzuki formula
(valid for small δt):

e−iδtHadiab(jδt) = e−iδt j·δt
T HCe−iδtHhopp

+O([Hhopp, HC ], δt
2). (9)

And so the expression for the evolved state turns to:

|ψ(T )⟩ ≈
N∏
j=0

L∏
i

e−iδt jδt
T Un̂i↑n̂i↓

L∏
iσ

e−iδtJ(â†
i+1σ âiσ+â†

iσ âi+1σ)|ψ(0)⟩. (10)

Now, it is needed to define the gates used to express
HC and Hhopp in the circuit.

For the interaction term δt2 j
T · U · n̂i↑n̂i↓ = δt2 j

T hC ,
where

hC = U

 0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

 . (11)

δt, T and U (corresponding to the final H) are constant
during the evolution but j changes. The evolution oper-
ator is then:

e−iδt2 j
T ·hC =


1 0 0 0
0 1 0 0
0 0 1 0

0 0 0 e−iδt2 j
T ·U

 , (12)

which is implemented as the CU1 gate in Qibo. The
Hopping term adds an interaction between non-adjacent
qubits, so it can’t be built with only one operator. There
are two equivalent procedures: FSWAPs and CNOTs.

B. FSWAPs

The expression of the hopping operator is:

hh = −J(â†i+1âi + â†i âi+1) = −J

 0 0 0 0
0 0 1 0
0 1 0 0
0 0 0 0

 , (13)
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where the matrix is in the qubit space as long as i and i+1
correspond to adjacent qubits. The evolution operator is
then:

e−iδt·hh =

 1 0 0 0
0 cos(Jδt) isin(Jδt) 0
0 isin(Jδt) cos(Jδt) 0
0 0 0 1

 , (14)

which corresponds to the fSim gate in Qibo, with an angle
of Jδt.

In general, the hopping term adds an interaction be-
tween non-adjacent qubits, so it is necessary to bring
them together. The particles are fermions, so to switch
them, the commutation relations need to be applied. The
fermionic swap gates have that precise function [4]:

fp,qswap = 1 + a†paq + a†qap − a†pap − a†qaq, (15)

fp,qswapa
†
p(f

p,q
swap)

† = a†q fp,qswapap(f
p,q
swap)

† = aq. (16)

C. CNOTs

Another method that could be used is to map the ex-
ponent to qubit operators and exponentiate each Pauli
string with the staircase method:

The operator eiθZ , can be written in Qibo as RZ =(
e−iθ/2 0

0 eiθ/2

)
. With several Z gates, for example

eiθZ0Z1 , the resulting circuit is shown in Figure 1:

FIG. 1: Circuit for eiθZ0Z1

If the gates X and Y are included, the result is some-
thing similar to eθiY ZY or eθiXZX . To use the stair-
case method, the gates X and Y can be expressed in
terms of the Z gate with a change of basis (X=HZH†

and Y=RX(π/2) Z RX(π/2)†). The circuit for eθY1Z2Y3

is shown in Figure 2.

FIG. 2: Circuit for eθY1Z2Y3

The construction of the circuit of the kinetic term (for
any Ns) is done with a single generalized code that cre-
ates a circuit for any operator of the form eθH , where
H must be under a Jordan-Wigner transformation. This
generalised code contrasts with the FSWAPs procedure,
in which the circuit was designed for every value of Ns.
For this reason, the further coding (shortcuts to adia-
baticity) was coded using CNOTs.

D. Shortcuts to Adiabaticity with
Counter-Diabatic Driving

Adiabatic processes can be too slow for real-life ap-
plications and might imply circuits with large amounts
of gates. That is where Shortcuts to Adiabaticity come
into play. STA achieves the same final states as those
obtained through adiabatic processes, in a much shorter
time. The specific STA method CD, introduces an aux-
iliary Hamiltonian designed to suppress non-adiabatic
transitions, to achieve rapid and controlled evolution of
quantum states.
Consider the time-dependent Hamiltonian H0(t) with

instantaneous eigenvalues En(t) and eigenstates |n(t)⟩
such that:

H0(t)|n(t)⟩ = En(t)|n(t)⟩. (17)

In a truly adiabatic evolution (as long as the evolution
is slow), the system remains in an instantaneous eigen-
state |n(t)⟩ of H0(t). However, for small values of T,
non-adiabatic transitions can occur, leading to results
different from |n(t)⟩. In the CD method, a term is added
to the Hamiltonian HCD(t), such that the total Hamil-
tonian

Htotal(t) = H0(t) +HCD(t), (18)

leads to the desired final state even for fast processes.
The counter-diabatic term HCD(t) is given by:

HCD = ṡAs. (19)

This auxiliary term (As) cannot be calculated exactly
in many practical cases, limiting its applicability in com-
plex systems. Luckily, this term can be obtained with
the following relation:

As(l) = i

l∑
k=1

αk(t)[H, [H, [· · · [H, ∂sH]]]], (20)

where l → ∞. As can be approximated by iak[H, ∂sH] =
iak(HhHc −HcHh).
The coefficient ak is the one that minimizes S =

Tr(G2), where G = δsH − i[H,As].

V. RESULTS

In this section there will be an analysis of the errors
related to T and N , to understand the chosen values
of N and T . The result of the study of the adiabatic
evolution and the STA method leads to Figure 3, where
the evolution (with AE and STA) of the infidelity for a
big system (Ns=10) is shown.

In Table II, the second column corresponds to the val-
ues for which a normalized infidelity of 0.05 is reached.
The normalized infidelity is IN = I/I0, where I0 is the
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FIG. 3: Comparison of infidelity (IN ) for a single evolution
with N=20, T=2 and Ns=10. With matrix calculus and cir-
cuits simulations, with and without STA.

Ns Circuit Nq Depth
3 CNOTS 67 94

FSWAPS 21 10
4 CNOTS 100 134

FSWAPS 32 11
5 CNOTS 133 174

FSWAPS 47 15
6 CNOTS 166 214

FSWAPS 58 15

TABLE I: Number of two-qubit gates Nq and circuit depths
for different lattice sizes and the CNOT and FSWAP proce-
dures.

Ns Best value of IN Values for IN ≈ 0.5
N T IN N T IN

3 120 2 2.6 · 10−5 20 6.8 0.059
4 120 3 4.36 · 10−5 20 4.6 0.050
5 120 2.8 7.8 · 10−5 20 6.4 0.056
6 120 3.6 2.7 · 10−4 20 7 0.057

TABLE II: Study of the values of T and N with CNOTs.

infidelity of the prepared initial state with the final state.
For Ns=4, the ground state is degenerated, so the adia-
batic evolution gave bad results. To solve this and make
the evolution, the ground state of a Hamiltonian with
U → 0 can be used. The results from Table II and Figure
4, indicate that the best results are for larger values of T ,
and small values of T/N = δt. This is due to two sources
of error: the adiabatic error, and the Trotterization er-
ror. Adiabatic errors are reduced for larger periods, and
the Trotteritzation error is reduced for a smaller δt. As
the number of steps N is fixed, increasing T will increase
δt leading to a bigger Trotteritzation error. That is why
the worst results appear for small N and big T .
With this in mind, STA was coded and simulated for a

FIG. 4: Density plot of the infidelity (IN ) for Ns=6 with
CNOTS for different values of T and N .

larger system (compared with the ones studied in the ta-
ble), Ns=7, using the determined values to reach a small
infidelity: N ≥ 20 and a small T . To study the advantage
of the STA algorithm, in Figure 5 the difference in the
infidelity can be seen (Iadiabatic − ISTA). For big N and
T (but still small δt) the two methods lead to similar re-
sults, as expected. On the other hand, STA gives better
results for small N and T , where the standard adiabatic
evolution is not that efficient. In [6] it is proposed to only
use the HCD term added to the Hamiltonian, a method
included in Figure 6, where the comparison of all the
methods can be seen. It is quite surprising that for small
N the results with only the CD term are better than with
and without STA. However, those two converge fast so
this advantage is soon lost.

FIG. 5: Difference in the infidelity (Iadiabatic − ISTA) for dif-
ferent values of N and T .

Finally, it would be interesting to perform a single evo-
lution for the largest system possible, to see if the previ-
ous conclusions about the parameters and the behaviour
of the different methods, allow us to reach an acceptable
value of the infidelity. The larger system that could be
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FIG. 6: Infidelity comparison of different methods for Ns=7
and different values of N (with T = 1).

computed analytically, to be able to compare results, was
Ns=10. From Table II, it is deduced that N = 20 and
T = 2 should be enough to get an infidelity smaller than
0.05. The behaviour for the different methods can be an-
ticipated: for N = 20, only the CD term will not give
good results (therefore it is not computed), and STA will
be very similar for matrices and circuits as due to small
δt and large N . The result of the evolution is Figure 3,
which gives a final infidelity of 0.005 (better than 0.05, as
expected), and the expected behaviours for each method.

VI. CONCLUSIONS

This thesis investigated the adiabatic evolution and
shortcuts to adiabaticity, particularly Counter-Diabatic

Driving in the context of quantum computing. Key take-
aways include: The convergence behaviour of quantum
circuits was evaluated, revealing optimal parameters for
achieving desired infidelity levels. For instance (consid-
ering N ≥ 20), 1 < T < 6 is small enough to make
δt = T/N small, and large enough to reduce the error
in the adiabatic evolution. As for the equivalent meth-
ods CNOTs and FSWAPs, Table I shows that the circuit
depth and the number of two-qubit gates are smaller for
FSWAPs. However, this is because for CNOTs the evolu-
tion is decomposed in simpler gates than FSWAPs. In a
real QC (depending on the native gates used) FSWAPs
should be decomposed into simpler gates and the ad-
vantadge could be lost. In addition, when it comes to
programming, it is easier to make a generalized code for
CNOTs, and therefore it was the method used for pro-
gramming STA. The results obtained for the infidelity
for the systems studied (up to 10 sites) are small, so
all methods can give good results. STA doesn’t show
a remarkable improvement; however, this could be due
to the simplicity of the system (1-dimensional) and the
low number of sites. A study with larger systems and
more complex systems could be done to determine the
improvement of STA in real-life systems. Notably, evo-
lution with only the CD term appears to yield better
results for small N compared to using STA or no STA.
There could be further studies of this phenomenon.
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Pérez-Obiol for his patience and dedication. I would also
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