
Quantum Convolutional Neural Networks

Author: Joan Ainaud Fondevila
Facultat de F́ısica, Universitat de Barcelona, Diagonal 645, 08028 Barcelona, Spain.∗

Advisors: Arnau Rios, Javier Rozalén

Abstract: A combination of Machine Learning techniques with Quantum Computing is presented
in the form of a Quantum Convolutional Neural Network. This paradigm is implemented with
Python to solve two simple problems. Small scaling of the complexity with respect to the input size
is observed, and the detriment of architectures with a lot of depth.

I. INTRODUCTION

Machine learning (ML), and especially neural net-
works, have risen as one of the most popular and ver-
satile approaches to tackle many problems ranging from
generic tasks like image recognition [1] to studying quan-
tum many-body systems [2]. Specific architectures of the
networks are chosen to better tackle each problem. In
studying fermionic many-body systems, neural networks
are designed to respect anti-symmetry [2]. Similarly, with
image recognition, the most common architecture, that
of convolutional neural networks, is invariant to transla-
tions. Implementing these symmetries directly not only
ensures they are satisfied, but may also reduce the com-
plexity of the neural networks.

At the same time, quantum computing’s promise for
a quantum advantage is a present interest, especially as
advances in quantum hardware keep progressing. But
in the current noisy intermediate-scale quantum (NISQ)
era, algorithm’s like Shor’s are still limited by the number
of qubits attainable and by their noise. A very popular
paradigm has become that of a hybrid design, with a
quantum circuit (QC) controlled by a classical routine,
for which some calculations are also outsourced [3].

In this context, the idea of combining ML with quan-
tum computing has become quite popular. Quantum
neural networks (qNN) have been used for many tasks,
but here we focus on their use as classifiers. In partic-
ular, quantum convolutional neural networks (qCNNs)
have emerged as promising designs [1] which, like their
classical counterparts, implement translational symme-
try.

In this thesis, a qCNN is implemented, that is, a trans-
lationally invariant ansatz for a quantum circuit is de-
scribed and the full recipe for its implementation and
training will be given.

This paper is structured as follows. In section II the
quantum machine learning paradigm is presented and its
theoretical working evaluated. Special care is given into
considering the implementation of the method, including
computation of gradients and design limitations. Then,
in section III, this design is simulated classically for two

∗Electronic address: jainaufo35@alumnes.ub.edu

simple problems. The implementation using two differ-
ent libraries (Qibo[4] and Tensorflow Quantum[5, 6]) is
compared to ensure the results are independent. In sec-
tion IV, the problems are used to characterize the qC-
NNs behaviour on varying input size and circuit depth.
All the code used is accessible in a GitHub repository
https://github.com/joan-ainaud/TFG_QCNN.

II. QUANTUM MACHINE LEARNING

A quantum neural network (qNN) takes an input quan-
tum state |ψ(x⃗)⟩, which is then evolved by a trainable

parametrized circuit, which we refer to as UT (θ⃗), and the
output corresponds to the expectation value of a mea-
surement Ô:

f(x⃗, θ⃗) = ⟨ψ(x⃗)|U†
T (θ⃗)ÔUT (θ⃗) |ψ(x⃗)⟩ (1)

The reason the output is an expected value is that, by
quantum mechanics, measurement may yield one from
different outcomes, each with some probability. The ex-
pectation value is therefore obtained by averaging several
samples, each sample being a measurement obtained af-
ter rerunning the circuit on the same input. For our pur-
poses, we measure a single qubit in the computational
basis, yielding either 0 or 1.
The output is a function of the input and of the param-

eters θ⃗, but the goal is to find θ⃗opt such that the optimized

network fopt(x⃗) ≡ f(x⃗, θ⃗opt) gives a certain desired be-
havior, such as classifying the input state from a list of
classes. An exterior classical routine is charged with con-
trolling the quantum circuit (QC) to achieve this. The
routine can run the circuit, control its parameters and

measure its outputs. Our routine attempts to find θ⃗opt
by minimizing a loss L, as defined in section IID.
We only consider QCs that are initialized at |0⟩⊗n

,
with the input data being classical x⃗ and then encoded
following some feature map |ψ(x⃗)⟩ = UE(x⃗) |0⟩⊗n

.
Fig. 1 shows a diagrammatic summary of this design.

The QC is also shown, which is read from left to right:
first, the input is encoded with UE , then evolved with
UT and finally measured. The exterior classical routine

evaluates the QC and minimizes the loss L to find θ⃗opt.
In the following subsections, the parts of the qNN are

treated in more detail.

mailto:jainaufo35@alumnes.ub.edu
https://github.com/joan-ainaud/TFG_QCNN

Quantum Convolutional Neural Networks Joan Ainaud Fondevila

 Update

Input
Encoding

Output

Loss

FIG. 1: Diagram of the quantum machine learning paradigm. Within the rounded box, the quantum circuit is shown. UE(x⃗)

encodes the input x⃗ into the circuit and UT (θ⃗) operates on this input, parametrized with some trainable parameters θ⃗, and

the result is measured. Outside, the classical minimization routine is shown, which iteratively updates the parameters θ⃗ to
minimize a loss L calculated from the measured output f . Gradients may also be calculated directly from the circuit, as drawn,
which is explained in section IID

A. Gates

A QC evolves its qubits using a series of gates, math-
ematically described as unitary transformations U . The
optimization problem equates to finding an optimum
gate from the space of all possible gates. Generally, the

parametrized gates UT (θ⃗) only span a subspace of all
possible gates, therefore, the choice of parametrization is
limiting. A good architecture for the circuit is crucial to
ensure an optimum gate is achievable, while remaining
simple to speed up computations and comply with the
current NISQ era limitations.

By considering that in the end these algorithms must
run on an actual quantum computer, the layer must be
built using directly implementable, elementary, gates.
Universality theorems ensure that even if limiting one-
self to some elementary gates, as long as certain gates
are available, any other gate may be implemented up to
any desired precision [7].

In our case, we use as elementary gates the set of ro-
tation gates Rx(ϕ), Ry(ϕ), Rz(ϕ) and the CNOT gate.
With these, it is enough to define a general one qubit
and two qubit transform (ignoring global phase shifts),
which are our basic building blocks and are shown in Fig.
2. We refer to the simple two qubit gate shown there as
such, and to the general 2-qubit as Full. They are simple

to implement, as the parametrization θ⃗ can be directly
equated with the angles of the rotations.

B. Encoding

The choice of encoding is very important to get good
results depending on the problem. As a simple example,
a QNN can learn to calculate cos(ϕ+α) as a function of

U1(θ1−3) ≡ Rx(θ1) Ry(θ2) Rz(θ3)

qi :
Uqi,qj (θ1−3)

Rz(θ1) •

qj : ≡ • Ry(θ2) Ry(θ3) •

qi :

UF
qi,qj (θ1−15)

U1(θ1−3)
Uqi,qj (θ7−9)

U1(θ10−12)

qj : ≡ U1(θ4−6) U1(θ13−15)

FIG. 2: Basic gate blocks used in this work. Top: Can rep-
resent any single qubit gate. Middle: Mixes two qubits. Bot-
tom: Combination of other two, can represent a generic two
qubit gate

ϕ very easily using the circuit:

|0⟩ Rx(ϕ) Rx(θ)

Knowing that Rx(θ) |0⟩ = cos(θ2) |0⟩ − i sin(θ2) |1⟩, by
measuring with respect to Z the output of the QNN is
⟨ψ|Z |ψ⟩ = cos(ϕ+θ). Clearly, this would solve the prob-
lem by learning θ = α. This is a very particular case,
where a real number is encoded into an angle, and it was
key for obtaining such a simple circuit. In this work, ba-
sis encoding is used, which consists in using the computa-
tional basis of a quantum circuit understood as bitstrings
{|0 . . . 00⟩ , |0 . . . 01⟩ , . . . , |1 . . . 11⟩}. By converting, and
if necessary trimming, classical data into a binary repre-
sentation, a one-to-one correspondence is made for each
bit to a qubit. This is the method we use, which allows to
directly compare a quantum circuit with a more intuitive
classical (reversible) circuit.

Treball de Fi de Grau 2 Barcelona, June 2024

Quantum Convolutional Neural Networks Joan Ainaud Fondevila

C. Parametrized layers and output qubits

The following known properties: By the reversibility
of a quantum circuit, extra ancilla/output qubits must
be used if the function to implement is not reversible.
Overparametrization leads to worse results [8]. Deeper,
more complex, circuits are also worse performing in the
NISQ era. On a real implementation of a quantum com-
puter, the topology must be considered. Basic 2-qubit
gates may only be directly used on connected qubits.

D. Learning and Gradients

Given and architecture and parametrization, this de-
fines our input to output function in Eq. (1). To use it
for solving a problem, a criterion for what defines a good
solution must be given. For instance, our circuit out-
put may represent an energy which must be minimized.
The usual procedure is to define a loss functional L[f]
to minimize. In our case, we are given some pre-labelled
data (x⃗i, y⃗i)i=1,ND

, that is, we know the desired output
of some inputs: fopt(x⃗i) = yi. An attempt of a solu-
tion is given by minimizing an empirical loss. In our case
we choose to use the mean squared error (MSE), which
reads:

L[f] = 1

ND

ND∑
i

(f(x⃗i)− y⃗i)
2
. (2)

As θ⃗ parametrizes the circuits, this allows to minimize
the loss L(θ) = L[f(θ)] by simple gradient descent:

θ⃗(k+1) = θ⃗(k) − α∇⃗L(θ⃗(k)), (3)

with α being the learning rate, a positive real number.
Some other methods may be used for their better con-
vergence properties like speed, such as Adam. Explicitly,
the gradient is:

∇⃗L(θ⃗(k)) = 1

ND

ND∑
i

2
(
f(x⃗i, θ⃗

(k))− yi

)
∇⃗f(x⃗i, θ⃗(k)).

(4)

Parameters are initialized as θ⃗(0), and every iteration
(k) → (k + 1) is also called an epoch.
A surprising result of qML is that in some cases the

gradient of f can be calculated reusing the same circuit.
The derivative with respect to a parameter θk can be ob-
tained with two reevaluations of f , shifting θk positively
and negatively. This warrants its name as the parame-
ter shift rule [9], equivalent to the idea of calculating the
derivative of a trigonometric function like f(x) = sin(x)
by exploiting that a cosine is a shifted sine. This is ex-
plicit for the example in section II B.

Explicitly, for our case where all parameters corre-
spond to Pauli rotations, the gradient due to the pa-
rameter θk of a single Pauli Rotation is given by:

∂kf(x⃗, θ⃗) =
1

2

[
f(x⃗, θ⃗ +

π

2
êk)− f(x⃗, θ⃗ − π

2
êk)

]
. (5)

It must be understood that θ⃗ = (θ1, . . . , θk, . . . , θNp), so
êk = (0, . . . , 1, . . . , 0) changes just the θk value. A proof
of said rule is given in the Appendix. Interestingly, this
implies the maximum eigenvalue of the measure operator
Ô is an upper bound for the gradient. An apparent prob-
lem that comes when choosing a symmetric structure for
the quantum neural network is that parameters will be
reused for different rotation gates. In terms of implemen-
tation, this is not a problem, as although conceptually the
parameter that determines the rotation of these different
gates is the same, in terms of implementation each gate
can be shifted independently. By the product rule, the
total gradient will be obtained by adding these up.

III. IMPLEMENTATION

Two simple problems are devised to test our implemen-
tation. These consist in a parity check and an excitation
check.

• Parity: Given n input bits, return the parity of the
input. That is, return 0 (1) if an even (odd) number
of them are 1.

• Excitation: Given n input bits, return 1 if more
than half of them are 1.

These problems are simple and can be solved classi-
cally, so they lend well to compare results. These have
also been chosen for their simple symmetry. Both are
only functions the number of 1s and 0s, they are permu-
tation invariant.
Our quantum neural network, strictly speaking differs

from a canonical quantum convolutional neural network
as first defined in [1]. Our circuit only implements the
analogue of convolutional layers, which implement the
classical idea of translationally symmetric layers where
a same kernel (our 1 qubit or 2 qubit gates) are applied
equally to neighboring qubits. A pooling layer should
also be implemented, which mixes qubits together like
our 2 qubit gate, but discards one of them from that
point onward, effectively reducing the dimension. This
pooling layer was not necessary for our simple problems,
but it is very useful when thinking about big inputs like
images.

|0⟩

UT (θ⃗)

|0⟩

UE(x⃗)
|0⟩
|0⟩
|0⟩

FIG. 3: Structure of our circuit for N = 4 and one readout
qubit.

Treball de Fi de Grau 3 Barcelona, June 2024

Quantum Convolutional Neural Networks Joan Ainaud Fondevila

A. Comparing Libraries

These designs are implemented, as a simulation, with
Python. Two libraries are used, Qibo and Tensorflow
Quantum (TFQ), which differ in their approach. Qibo is
more generic while TFQ is more focused on the machine
learning aspect. As this is a simulation, the circuit is im-
plemented with tensor operations (state vector and gate
matrices), which TFQ exploits to offer gradients by auto-
matically differentiating the circuit. Alternatively, TFQ
also provides the option to calculate the gradient via the
Parameter Shift Rule, which gives the same results but
would also let us take sampling into account. This al-
lows to compare this abstracted implementation with the
more grounded Qibo implementation, where the Param-
eter Shift Rule is implemented manually. Fig.4 shows the
evolution of the loss function in terms of the epoch for
the encoding problem. Dashed lines represent the TFQ
simulation and full lines the Qibo implementation. Being
more precise, their difference is also plotted, and we find
that the two implementations coincide within numerical
precision of 32-bit floats.

0 25 50 75 100 125 150 175 200
epochs

0.74

0.75

0.76

0.77

0.78

0.79

0.80

0.81

lo
ss

Qibo
TF

0 50 100 150 200
epochs

2

0

2

di
ffe

re
nc

e

1e 7

FIG. 4: Evolution of loss, dashed Tensorflow and filled Qibo,
for each epoch during training of excitation problem withN =
4 input qubits and all initial parameters set to 1. The inside
figure shows the difference between the two.

IV. RESULTS

We choose N input qubits and one output qubit (read-
out) to allow non-reversible outputs in terms of the input.
Our problems are very classical, so we first explore what
solution they may have.

• For the parity problem, the only thing needed is
to CNOT all input qubits into the readout qubit,
which when measured gives the parity. The CNOT
gate is in the end a reversible XOR gate, strongly
related to parity.

• For the excitation problem, the solution is less triv-
ial. Thinking classically, an approach would be to
use log2(n) ancilla qubits where to add the number
of excitations to then see if they amount to more
than half. But these extra ancilla bits are not con-
sidered, as we want to minimize resources.

The architecture of our circuit will consist of 1-qubit
gates for each of the input qubits, all using the same pa-
rameter, and then of 2-qubit gates connecting each qubit
with the readout qubit. In the following sections, depth
will refer to the amount of 2-qubit gates used, and when
referring to the circuit as Full, it means general 2-qubit
gates are used instead of the simple ones. Then, these
problems are solved using our quantum neural network.
First, for different N , two different training layers, one
more complete than the other, are used to compare the
convergence of the problems. The results are shown in
Fig.5, which show the evolution of the loss for different
ammount of qubits and depending on problem (colum)
and architecture (row). The parity problem illustrates
how the symmetries have made it so with the same num-
ber of parameters, our circuit can learn the solution to
the problem for any number of qubits using the Full ar-
chitecture. This is an ideal solution: the cost in terms of
parameters, and therefore of depth too, is constant with
the input size. As can be seen, with a layer of our choice
of single qubit gates and simple two qubit gates, neither
of the problems converge. By changing the two qubit
gates into full ones, the parity problem converges, while
the excitation one doesn’t. This is coherent with the ex-
pected behaviour. The solution to the first problem just
needs to find the equivalent of a CNOT cascade, while
the second one has no direct solution with just two bit
gates without more ancillary qubits. A certain scaling of
the minimum loss achieved is observed.

The excitation problem showcases a different reality.
As heuristically expected, just our general two gate con-
volutional layer is not enough to solve the problem, but it
is much better. it is difficult to make general conclusions
from these kinds of results, as we don’t know the full
shape of L[f], but this is why the next thing to be done
is look at how the depth of our circuit, by adding more
layers, can change this minimum observed loss. This is
showcased in table IV, where it is observed how the min-
imum loss achieved needs a depth of 3, but with higher
depth more local minima appear and we don’t converge
to the solution.

The results coincide with theoretical results on quan-
tum classifiers. By itself, increasing the depth and the
number of parameters clearly may only increase the sub-
space of accessible unitary gates UT , as our gates can
imitate the identity matrix. In spite of that, while this
means that the minima attainable for L could be lower,
the risk of getting stuck in local minima is much greater.

Treball de Fi de Grau 4 Barcelona, June 2024

Quantum Convolutional Neural Networks Joan Ainaud Fondevila

0.0

0.2

0.4

0.6

0.8

1.0

1.2
Re

st
ric

te
d

2-
ga

te
lo

ss
Parity Excitation

0 10 20 30
epoch

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Fu
ll

2-
ga

te
lo

ss

0 10 20 30
epoch

N=2
N=3
N=4
N=5
N=6

FIG. 5: Evolution of loss with epochs showing convergence
for the two problems. First column corresponds to the parity
problem and the second column to the excitation problem.
First row corresponds to using simple two qubit gates and
second row to using full two qubit gates

Run\Depth 1 2 3 4 5

#1 0.16388 0.01682 0.28086 0.19210 0.20765
#2 0.14961 0.24070 0.07499 0.00136 0.16617
#3 0.16387 0.03736 0.00007 0.17856 0.21864
#4 0.16402 0.02338 0.01088 0.23033 0.09737
#5 0.16391 0.05819 0.05413 0.00362 0.00163

TABLE I: Table showing loss values converged to after 1000
epochs for the excitation problem with N = 4 input qubits.
The column indicates the depth of the circuit, 5 different runs
are shown, and the lowest loss for each depth is given.

V. CONCLUSIONS

We have successfully implemented a convolutional
quantum neural network. Implementing the whole while

giving thought to each of its parts. These simple prob-
lems have served as tests to illustrate the power in using
the symmetries of the problem, while also serving as sim-
ple starting points to expand further. For instance, these
classically simple problems can be complicated by think-
ing less of the 1s and more about the X gates used to
implement them. Thinking about the problem as exci-
tations X of the ground state |00 . . . 0⟩ illustrates how
if instead of the 0 state the initial state is prepared to
be some other state |ψ⟩, the problem becomes much less
trivial and much more quantum. We can train to classify
whether an input state is close to ψ or has been excited
with respect to it.

On another note, while the performance of the quan-
tum circuit has been evaluated by itself, there has been
no direct classical analogue to compare. These problems
were very classical, and if anything, a slower performance
is to be expected. This is specially true for large n, where
unless some alternative simulation methods are used, no
matter how simple the circuit gets like in our parity case,
simulating the 2n Hilbert space becomes redundant and
prohibitively large. Still, some alternative classical meth-
ods could be used to give some benchmarks.

Finally, the most relevant NISQ test would be to imple-
ment this circuit in an actual NISQ quantum computer.
And to prepare for it, the formalism could be developed
in terms of density matrices and implementing noise, to
make concrete how it propagates, and to what extent
the symmetries and learning process would compensate
for it.

Acknowledgments

I would like to thank my advisor Dr. Arnau Rios
Huguet for his dedication and for taking me into his wing.
Moreover, I am very grateful for his and Javier Rozalén’s
weekly feedback, which has been crucial to shape this
work as it has become. Finally, I would also like to thank
Alejandro Romero for his comments, and my family and
friends for their support.

[1] I. Cong, S. Choi, and M. D. Lukin, Nat. Phys 15, 1273
(2019).

[2] J. W. T. Keeble, M. Drissi, A. Rojo-Francàs, B. Juliá-
Dı́az, and A. Rios, Phys. Rev. A 108, 10.1103/phys-
reva.108.063320 (2023).

[3] J. R. McClean, J. Romero, R. Babbush, and A. Aspuru-
Guzik, New J. Phys. 18, 023023 (2016).

[4] S. Efthymiou, S. Ramos-Calderer, C. Bravo-Prieto,
A. Pérez-Salinas, D. Garćıa-Mart́ın, A. Garcia-Saez, J. I.
Latorre, and S. Carrazza, Quantum Sci. Technol. 7,
015018 (2021).

[5] M. Broughton, G. Verdon, T. McCourt, A. J. Martinez,
J. H. Yoo, S. V. Isakov, P. Massey, R. Halavati, M. Y.

Niu, A. Zlokapa, et al., Tensorflow quantum: A soft-
ware framework for quantum machine learning (2021),
arXiv:2003.02989 [quant-ph] .

[6] Cirq Developers, Cirq (v1.4.0) (2024).
[7] M. A. Nielsen and I. L. Chuang, Quantum Computation

and Quantum Information (Cambridge University Press,
2022 [11th edition]).

[8] Y. Du, Y. Yang, D. Tao, and M.-H. Hsieh, Phys. Rev.
Lett. 131, 140601 (2023).

[9] M. Schuld, V. Bergholm, C. Gogolin, J. Izaac, and N. Kil-
loran, Phys. Rev. A 99, 032331 (2019).

Treball de Fi de Grau 5 Barcelona, June 2024

https://doi.org/10.1038/s41567-019-0648-8
https://doi.org/10.1038/s41567-019-0648-8
https://doi.org/10.1103/physreva.108.063320
https://doi.org/10.1103/physreva.108.063320
https://doi.org/10.1088/1367-2630/18/2/023023
https://doi.org/10.1088/2058-9565/ac39f5
https://doi.org/10.1088/2058-9565/ac39f5
https://arxiv.org/abs/2003.02989
https://doi.org/10.5281/zenodo.11398048
https://doi.org/10.1103/PhysRevLett.131.140601
https://doi.org/10.1103/PhysRevLett.131.140601
https://doi.org/10.1103/PhysRevA.99.032331

Quantum Convolutional Neural Networks Joan Ainaud Fondevila

VI. APPENDIX

A. Parameter Shift Rule

Here the parameter shift rule is proven for unitary
gates that can be expressed as e−iθG, with G a Hermitian
matrix with only 2 distinct eigenvalues.

Consider a parametrized quantum circuit UT (θ⃗) with

measure operators Ô. In the process of training our neu-
ral network, we evaluate the expectation value

f = ⟨0|⊗nU†
T ÔUT |0⟩⊗n, (6)

of which we want to calculate the gradient with respect
to the training parameters. If the total circuit is built, or
can be expressed, as the composition of gates depending

on no more than one parameter: UT (θ⃗) =
∏

k Uk(θk), we
may split the total unitary gate with respect to a single
parameter θ as UT = LU(θ)F . Thus we write:

f = ⟨ψ|U(θ)†M̂U(θ)|ψ⟩ (7)

With |ψ⟩ = F |0⟩⊗n, M̂ = L†ÔL
Using the chain rule, the gradient becomes

∂θf = ⟨ψ|(∂θU†)M̂U |ψ⟩+ ⟨ψ|U†M̂(∂θU)|ψ⟩, (8)

where, given our representation, ∂θU = −iGU = −iUG.
Due to G being a hermitian matrix with only 2 distinct
eigenvalues λm < λM , we may center these around 0 by
reexpressing G as:

G =

(
G− λm + λM

2
I

)
+
λm + λM

2
I.

The first summand has eigenvalues ±λM−λm

2 ≡ ±r, and
we may neglect the second summand by considering how
it affects U :

U = e−iθG = e
−iθ

[(
G−λm+λM

2 I
)
+

λm+λM
2

]
= e−iθG′

e
iθ
[

λm+λM
2

]

The rightmost term is a global phase, which is irrel-
evant. More explicitly, it cancels in equation 7. Thus,
we can consider without loss of generality our 2 distinct
eigenvalue hermitian matrices as having said eigenvalues
±r.

Under this assumption, it follows that:

G2 = r2I.

This, in turn, allows us to rewrite after Taylor expanding

U(θ) = e−iθG = cos(rθ)I − ir−1 sin(rθ)G, (9)

which we use to develop 8, where we write |ψ′⟩ = U |ψ⟩,
as

∂θf = ⟨ψ′|iGM̂ |ψ′⟩+ ⟨ψ′|M̂(−iG)|ψ′⟩

= r
(
⟨ψ′|ir−1GM̂ |ψ′⟩+ ⟨ψ′|M̂(−ir−1G)|ψ′⟩

)
.

Finally, rewriting this expression with a little algebraic
trick, we obtain:

r

2

(
+⟨ψ′|(I − ir−1G)†M̂(I − ir−1G)|ψ′⟩

−⟨ψ′|(I + ir−1G)†M̂(I + ir−1G)|ψ′⟩
)

Using equation 9, we may express 1√
2
(I ∓ ir−1G) =

U
(
± π

4r

)
, and bringing back our definition of |ψ′⟩ = U |ψ⟩,

using that U(x)U(y) = U(x + y) given our exponential
form and defining s = π

4r , we finally obtain:

∂θf = r

(
+⟨ψ′|U(θ + s)†M̂U(θ + s)|ψ′⟩

−⟨ψ′|U(θ − s)†M̂U(θ − s)|ψ′⟩
)
.

Now this expression for the gradient is very useful, as it
corresponds to using the same circuit to calculate f with
θ shifted positively and negatively and then adequately
combining them. This is similar to a two point finite
difference formula, but it differs a bit with the scaling
factor and it is analytical. For our single qubit rotation
gates, r = 1

2 , s =
π
2

B. Basis Encoding

While the basis encoding directly equates the input
with a computational basis state, the actual initial state

is still taken to be the |00 . . . 00⟩ = |0⟩⊗N
state. As a

reminder, this is because |0⟩ usually corresponds to the
easier state to prepare, such as the ground state of an
atom, while in comparison |1⟩ usually represents an ex-
cited state. Therefore, the encoding circuit UE(x⃗) must
be implemented, which is simply:

|0⟩ Xx1

|0⟩ Xx2

. . .

|0⟩ XxN

Where it must be understood that each xi is a bit.

Treball de Fi de Grau 6 Barcelona, June 2024

	Introduction
	Quantum Machine Learning
	Gates
	Encoding
	Parametrized layers and output qubits
	Learning and Gradients

	Implementation
	Comparing Libraries

	Results
	Conclusions
	Acknowledgments
	References
	Appendix
	Parameter Shift Rule
	Basis Encoding

