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Abstract: When using 4D STEM methods to study various material characteristics, large amounts 
of diffraction images are created for each sample studied. To determine different characteristics of 
the material locally from the data obtained from the diffraction patterns, it has been considered to use 
clustering machine learning algorithms that will be able to quickly read and classify all diffraction 
images. A KMeans algorithm has been adapted to classify this type of data. The method has been 
found to work satisfactorily when applied to an experimental example. 
 

I. INTRODUCTION 

 
As one of the most promising techniques used in Scanning 

Transmission Electron Microscopy (STEM), the 4D STEM 
technique provides us with a 2D diffraction pattern at each 
pixel position of a sample scanned with a STEM. If the 
scanned areas measure approximately 150 x 150 pixels, we 
can easily have to deal with quantities of 22,500 diffraction 
images per 4D STEM experiment before we can extract usable 
information from the sample. It could be a very tedious job if 
we have to go through them one by one. The use of big data 
techniques that can divide the sample into zones with similar 
behaviour could allow us to get a general idea of the sample 
by only analysing the diffraction pattern of each of these 
zones.  

The present work will focus on adapting the KMeans 
algorithms previously used in Electron Energy Loss 
Spectroscopy (EELS) analysis by the LENS group of the 
Electronic and Biomedical Engineering Department of the 
Physics Faculty of UB [1,2] to analyse 4D STEM diffraction 
data. 

 

II. 4D STEM 

 
In the Transmission Electron Microscope (TEM), an 

image is seen on the image plane of the objective lens and a 
diffraction pattern is seen at the focal plane of the objective 
lens. Then, the intermediate and projector lenses bring either 
of those to the observation plane at the end of the microscope. 
Diffraction mode is a fundamental observation mode in the 
TEM.  

Electron diffraction in the TEM appears as a two-
dimensional diffraction pattern, fulfilling Braggs Law: 

 
2d(hkl)sinqB=nl 

 
where d(hkl) is the spacing of the hkl family of planes, qB 

is the Bragg angle, n an integer number and l the wavelength 
of the incident electron, typically in the order of magnitude of 
the pm. At zone axis (if the crystal is observed along one of its 
symmetry axes) we will see a Fourier transform of the crystal 

along that particular axis, with the transmitted beam at the 
center (corresponding to those electrons not having been 
diffracted). The intensity of the transmitted beam will be 
higher for thinner samples. Additionally, as we move away 
from zone axis, we can reach a two-beam condition, where 
only the transmitted beam and one spot corresponding to one 
hkl are visible in the diffraction pattern. 

 A Scanning Transmission Electron Microscope (STEM) 
is capable of focusing a beam of electrons into spots of 0.05 to 
0.2 nm in size always keeping the beam parallel to the optical 
axis. This allows for a point-by-point sweep of the sample that 
has been prepared thin enough to be considered 2D. 

4D STEM is an electron microscopy technique that uses a 
pixelated electron detector that captures a diffraction pattern 
at each scan location. What we get is a 2D image of the 
reciprocal space associated with each swept spot. The data will 
be stored in a four-dimensional array. Each element of the 
array stores a number associated with the intensity received at 
each pixel of the detector when the electron beam is focused 
on each of the scan locations. 

The data packaging and reading software performs a 
reconstruction of the sample image in real space from the 
diffraction images and allows us to visualize each diffraction 
pattern while placing it within the reconstructed image of the 
sample. 

 

FIG. 1: Diffraction pattern of a spot located within the 
reconstruction of the real image of a sample. 
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III. K-MEANS 

 

Machine learning is a branch of AI science that applies 
automatic data-driven learning methods to obtain accurate 
predictions and classification based on past data observations. 
It enables artificial intelligence to mimic the way humans 
learn, gradually improving its accuracy. 

Data analysts describe the machine learning algorithms in 
three main stages: 

1. Decision process: based on the input data, which may or 
may not be labelled, the algorithm makes a first guess for a 
pattern in the data. 

2. Error function: An error function evaluates the accuracy 
of the predicted model. If there are known examples, uses 
them to make a comparison. 

3. Model optimization process: After the model is 
compared to the data, necessary changes are made to reduce 
the discrepancy between the known example and the model 
estimate. This "evaluation and optimization” process will be 
iterated, updating the weights autonomously until an accuracy 
threshold is reached. 

There are two main categories of machine learning: 
supervised learning and unsupervised learning. Depending on 
the data and feedback available one or the other will be more 
effective. 

In supervised learning, the computer is provided with 
"training data" which is a set of data that contains both the 
inputs and the desired outputs. The goal of this process is to 
find a general rule that maps inputs to outputs. 

In unsupervised learning no labels are given to the learning 
algorithm. Its goal is to find structures in data that has not been 
labelled, classified, or categorized. It identifies commonalities 
in the data and reacts based on the presence or absence of those 
commonalities in each new piece of data. With the kind of data 
we want to analyse, unsupervised learning seems to be the best 
choice especially clustering. 

Cluster analysis consists of grouping a set of objects (in 
our case diffraction images) so that objects in the same group 
(cluster) are more similar than those in other clusters. The type 
of cluster analysis will be chosen according to the nature of 
the data and it is very common to have to pre-process this data 
to adjust the results with the type of classification we want it 
to do. 

KMeans is a clustering method that divides n elements into 
k clusters in which each element belongs to the cluster with 
the closest mean (cluster centroid), serving as the cluster 
prototype. After running the algorithm, it provides a label for 
each element according to the cluster in which it has been 
placed, and k centroids or average objects that represent all 
the objects that have been placed in that group. 

As an unsupervised classification algorithm, KMeans is 
not provided with pre-grouped and labelled data. Only the 
objects to be classified and the number k of clusters in which 
they must be placed are given.  

The process is as follows: KMeans randomly choose the k 
centroids with which to start the algorithm. After that it begins 
a chain of two steps that will be repeated. First step, each 

element is mapped to the closest or most similar centroid 
creating a group of elements for the centroid. Second step, the 
position of the centroid of each group is updated by taking as 
the new centroid the average position of the objects belonging 
to this group.  

To do the analysis with KMeans, we will work with the 
four-dimensional array of intensity data provided by the 4D 
STEM software. For a better understanding of the classified 
data, we will present the results emulating the concept of 
reconstructed real space and diffraction patterns 
corresponding to each spot in this space with the data obtained 
as a result of running the KMeans algorithm. 
 

 
I. ADAPTATION OF THE ALGORITHM 

AND DATA PROCESSING WITH 
PYTHON 

 
The Python programming language will be used for data 

processing. Data is collected from the microscope in .blo 
format and will first have to be converted into a hyperspy 
object, a multidimensional data analysis module specialized in 
reading microscopy data, to be then transformed into a four-
dimensional numpy array. 

KMeans only works with data in a maximum of 2 
dimensions. This will force the data to be converted into a two-
dimensional array. It must be done in such a way as not to lose 
the physical sense or the purpose of the classification. It is 
interesting to divide the sample into zones according to the 
characteristics of its diffraction patterns. The most logical and 
efficient thing to do in this case will be to convert the two 
dimensions of the reciprocal space into a single dimension 
(row) that will constitute each of the objects to be compared. 
At the same time, we will convert the two dimensions that 
represent the real space of the sample into one dimension 
(column) to be able to assign a label to each element of this 
column according to the classification carried out with the 
rows containing the reciprocal space information. It is also 
important that the data is normalized to ensure that it is all on 
the same scale and can be properly compared.  

A python function has been designed that will perform this 
reshape process, normalize the data, apply the KMeans 
function from sklearn.cluster and return both the cluster map 
in real space and the mean  diffraction pattern, or centroid, 
corresponding to each label according to the desired number 
of clusters k.  

It is very important to know in which shape the function 
returns this data and how to retrieve the information we are 
interested in. Given that the KMeans algorithm used is part of 
an external library and was not programmed by us, each piece 
of information had to be identified by deducing it from the 
data obtained after doing the first tests of the algorithm with 
our function. Through this procedure it has been verified that 
the cluster map is contained in an array of sizes m and n 
corresponding to the first 2 dimensions of the incoming array. 
The centroids are contained in a second array with a number k 
of rows of  𝑜 × 𝑝  elements each being o and p the last 2 
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dimensions of the incoming array and k the number of clusters 
indicated when calling the function. This second returned 
array will have to be reshaped by converting each of the k rows 
into a two-dimensional array of o=144 rows and p=144 
columns, thus reconstructing the diffraction pattern designated 
as the centroid of each of the k clusters.  

Once verified the entire process, the aim is to deepen the 
study of the possibilities of the algorithm by applying the 
knowledge of the physical phenomenon of diffraction 
patterns. The goal will be to improve the identification of 
different orientations and planar defects by better studying the 
fainter diffraction spots. It will be done by means of a 
manipulation of the data prior to the application of the 
KMeans algorithm. 

In order to better study the fainter spots, a mask will be 
applied in each of the diffraction patterns to cover the 
transmitted beam. In this way, more contrast will be achieved 
between the fainter spots, given that the function with which 
KMeans is applied normalizes the data.  

 

IV. EXPERIMENTAL DETAILS 

 

To test the algorithm, two regions of a sample of  
𝐵𝑖!,#$%𝑁𝑎!,#$%𝐵𝑎!,&%𝑇𝑖	𝑂' will be analyzed, which we will 
call region 1 and region 2. The 4D STEM data of region 1 
corresponds to a 4D array of dimensions (181, 172, 144, 144). 
This indicates that the acquired images comprise a total of 
181x172 (x and y axes in Cartesian coordinates) scanned spots 
from each of which a diffraction image of 144x144 pixels has 
been obtained. The 4D STEM data of region 2 corresponds to 
a 4D array of dimensions (131, 166, 144, 144). In this case, a 
total of 131x166 spots were scanned from which diffraction 
images of 144x144 pixels were extracted. The data was 
obtained in a Jeol 2100 TEM operating at 200kV. 

 

FIG. 2: Images reconstructed from the diffraction patterns of 
region 1 of the sample on the left and region 2 on the right. 

 

V. RESULTS AND DISCUSSION 

 
To find an appropriate number of clusters, we will run the 

algorithm on the region 1 data for various numbers of clusters 
starting with k=4 and then compare the results. By 
redistributing the data as explained and plotting properly, the 
following graphs have been obtained.  

 
 

FIG. 3: Map of clusters for 4 clusters in a real-space 
reconstruction of region 1. Each color corresponds to each of 

the four labels. 

 

FIG. 4: Each of the 4 diffraction patterns corresponding to 
the centroids resulting from running the algorithm for four 
clusters in the data of region 1. From left to right and from 

top to bottom the centroids corresponding to the labels 0,1,2 
and 3 in figure 3. With gray scale bar. 

It has been identified and indicated in figure 4 which 
centroid corresponds to each label and, therefore, to each zone 
of the real space map of clusters (figure 3). 

A 5-cluster and a 6-cluster approach have also been 
considered. Results are shown in figures 5 and 6 for the 5 
clusters and in figures 7 and 8 for 6 clusters. 
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FIG. 5: Map of clusters for 5 clusters in a real-space 
reconstruction of region 1. Each color corresponds to each of 

the five labels. 

 
FIG. 6: Each of the 5 diffraction patterns corresponding to 
each centroid resulting from running the algorithm for 5 
clusters on the data from region 1. From left to right and 
from top to bottom the centroids corresponding to labels 

0,1,2,3, and 4 in figure 5. 
	

	
FIG. 7: Map of clusters for 6 clusters in a real-space 

reconstruction of region 1. Each color corresponds to each of 
the six labels. 

 
FIG. 8: From left to right and from top to bottom, diffraction 

patterns (labelled 0,1,2,3,4 and 5 in figure 7) that act as 
centroids resulting from running the algorithm for 6 clusters 

in the data for region 1. With gray scale bar. 
 

The results for 6 clusters are considered satisfactory. Once 
k=6 is selected, the next step is to test the algorithm with the 
other sample region. We must consider that the dimensions of 
the array containing region 2 data have a different size than 
that of the region 1, therefore, the process to retrieve the 
information should be re-adjusted to region 2 data. 

The graphs obtained from the analysis of the region 2 data 
are shown in figures 9 and 10. 

	
FIG. 9: Map of clusters for 6 clusters in a reconstruction of 

the real space of region 2. Each color corresponds to each of 
the 6 labels. 

 
FIG. 10: From left to right and from top to bottom, 

diffraction patterns (labelled 0,1,2,3,4 and 5 in figure 9) that 
act as centroids resulting from running the algorithm for 6 

clusters in the data for region 2. With gray scale bar.	
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We will focus on the data from the second region, which 
seems to have more variety, to test the application of masks 
and subsequent classification. 

A mask covering the central beam is applied to the region 
2 data as described in Section III and KMeans is run for 6 
clusters. The resulting cluster map is shown in figure 11. The 
centroids are given in figure 12. 

Interestingly, these figures, upon close examination, yield 
information on the different regions oriented differently: 
Clusters 4, 3,2 and 1 correspond to different orientations of the 
crystal.  

Also, we can see, within one of the orientations, the one 
corresponding to cluster 4, the presence of crystalline defects, 
given by cluster 5. 

 
FIG. 11: Map of clusters for 6 clusters in a reconstruction of 

the real space of region 2 once the mask covering the 
transmitted beam has been applied. Each color corresponds 

to each of the 6 labels. 

 
FIG. 12: From left to right and from top to bottom, 

diffraction patterns (labelled 0,1,2,3,4 and 5 in figure 11) that 
act as centroids resulting from running the algorithm for 6 

clusters in the data of region 2 once the mask that covers the 
transmitted beam has been applied. With gray scale bar. 
 

VI. CONCLUSIONS 

 
In this work, the KMeans algorithm has been adapted to 

the classification of 4D STEM data and has been shown to 
soundly classify the diffraction patterns in 4D STEM. In 
particular, it has been tested on two 4D STEM datasets 
obtained from a 𝐵𝑖!,#$%𝑁𝑎!,#$%𝐵𝑎!,&%𝑇𝑖	𝑂' sample and has 
been able to separate regions with different crystal orientations 
and to identify subregions with crystalline defects within one 
of these regions. 
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