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Abstract: The ground state energy of an electron-hole pair confined in a nanometre semicon-
ductor particle (quantum dots) has been studied as a function of size. Three different methods have
been used depending on the importance of the quantum confinement. In the regime of weak quan-
tum confinement, the system reduces to a one-body problem, and can be treated as a hydrogen-like
atom. In the intermediate regime, the variational method provides an acceptable upper bound of
the ground state energy. The trial function used has been properly designed to take into account
both the confinement effect and the Coulomb interaction. In the strong confinement regime, the
Coulomb interaction can be neglected, and the problem can be solved analytically as a system of two
independent particles confined by an infinite ”square” potential. The results evidence the strong
dependence of the ground state energy on the particle size, which can be applied to tune optical
properties at will. Finally, the results have been compared with experimental data.

I. INTRODUCTION

In the 1930s, Herbert Fröhlich was the first to explore
the idea that materials properties may depend on macro-
scopic dimensions due to quantum size effects. Quantum
dots (QD), made of small semiconductor particles, are
ideal systems for studying these phenomena [1]. Their
structure and composition are the same as the bulk ma-
terials, but their properties can be tuned with their size.
Due to the relevance of QD in optical applications, such
as fluorescent labelling and monochromatic light genera-
tion [2], the Nobel Prize in Chemistry 2023 was awarded
to Moungi G. Bawendi, Louis E. Brus, and Alexei I. Eki-
mov for the discovery and synthesis of QD.

In a semiconductor, the valence band is the highest en-
ergy range which is populated by electrons at zero tem-
perature, while the conduction band is the lowest range
of vacant electronic states. The valence band and the
conduction band are separated by a band gap, Eg, for
which no solution of the Schrödinger equation can be
found. An electron from the valence band can absorb
energy, being promoted to an excited state in the conduc-
tion band, and generating a vacancy in the valence band
that can be interpreted as an effective positive charge so-
called hole. The electron and the hole can be recombined,
emitting a photon with an energy larger or equal to Eg.
The fine control of Eg in bulk semiconductors, typically
through doping, has allowed for controlled light emis-
sion and absorption in a wide range of energies. To de-
scribe the kinematics of electrons and holes, the effective
mass approximation is typically used, in which effective
masses consider the interaction between the electron and
the hole with the crystal lattice. Generally, this quantity
is defined as a tensor that depends on the curvature of
the corresponding energy band. For the sake of simplic-
ity, this work will focus on semiconductors whose energy
bands are isotropic and, consequently, me and mh will
be scalar quantities. It is useful to define a reduced mass
µ = memh/(me +mh).
When the electron and the hole are close enough, they

can form a bound system (exciton) through the Coulomb
interaction between them. As depicted in Fig. 1 (a), the
excitonic states are hydrogen-like and they are found just
bellow the bottom of the conduction band. However,
these bound states can easily break down by thermal ex-
citation at room temperature since their energies are very
close to the conduction band (see Table I). The ionisa-
tion of the excitonic state can be understood as the loss
of spatial correlation of the electron-hole pair due to ther-
mal excitation.
In a QD, the ground state (GS) energy of the electron-

hole pair can be tuned by changing the QD radius, rn.
This gives rise to a lot of applications involved with dis-
play technologies, since the colour of the emitted photon
when the electron-hole recombine can be precisely se-
lected. The main focus of this work is to study quantum
confinement effects that gobern the formation of electron-
hole pairs in semiconductor QD. To do so, it is useful
to define a unit of length in terms of the Bohr radius,
aµ ≡ 4πεℏ2/(µe2), which is the most probable distance
between the hole and the electron in the GS of the ex-
citon. The energy will be expressed in effective Hartree
units, Eµ ≡ µe4/(4πεℏ)2, which stands for minus twice
the GS energy Eex of the exciton in the bulk semiconduc-
tor with respect to the bottom of the conduction band.
In Table I, aµ and Eµ for three common semiconductors
used to prepare QD can be found.

me/m0 mh/m0 σ εr aµ (nm) Eµ (eV)

CdSe 0.13(1) 0.3(1) 2.3(8) 9.56(1) 5.6(9) 0.027(4)

CdS 0.19(1) 0.53(1) 2.79(16) 5.5(1) 2.08(9) 0.126(6)

CuCl 0.4(1) 4.0(5) 10(3) 7.9(1) 1.1(3) 0.16(4)

TABLE I: Reduced effective mass for the electron and the
hole, where m0 is the rest mass of the electron, σ ≡ mh/me,
relative permittivity, Bohr radius, and Hartree energy for
CdSe, CdS, and CuCl. Data extracted from [3][4][5].

Depending on rn, three different regimes can be iden-
tified that are associated with weak, intermediate, and
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strong quantum confinement. In the weak confinement
regime, for rn >∼ 2 aµ, the electron-hole pair is in a
hydrogen-like state (exciton), since quantum confinement
effects are small and can be treated as a perturbation of
the hydrogenic atom. In this regime, the curvature of
the wave function increases to fit inside the QD, the GS
of the exciton gets closer to the conduction band, and,
hence, the bound system weakens as the size of the QD
becomes smaller. The critical value of rn at which the
electron and the hole no longer form a bound state due
to the kinetic energy becoming larger than the Coulomb
energy is the so-called ionization radius, ri. This is the
onset of the intermediate regime where the confinement
effects become dominant over Coulomb interaction, the
hydrogen-like model is no longer valid, and the system
must be treated as a two-interacting particle problem.
Finally, once rn is reduced sufficiently so that the kinetic
energy is big enough to neglect the Coulomb interaction,
the problem reduces to the case of two particles in a
sphere with infinite ”square” potential. This corresponds
to the strong confinement regime, for which the radius of
the QD is about rn < 0.5 aµ. The energy states when the
exciton is ionised can be thought as it is shown in Fig. 1
(b).

Bulk 

Semiconductor Quantum Dots

Excitonic 

states

CB

VB

(a) (b)

Eh

Ee

Eg

Eex

FIG. 1: (a) Valence band, conduction band, and excitonic
states in a bulk semiconductor. The separation between the
GS of the exciton and the conduction band is not in scale,
just for the sake of clarity. (b) Evolution of the energy levels
of the electron and the hole as the QD gets smaller in the
intermediate and strong confinement regimes.

II. RESULTS AND DISCUSSION

The electron-hole system is described by the Hamilto-
nian

Ĥ = − ℏ2

2me
∇⃗2

r⃗e
− ℏ2

2mh
∇⃗2

r⃗h
− 1

4πε

e2

|r⃗e − r⃗h|
, (1)

where r⃗e and r⃗h are the position vectors of the electron
and the hole, respectively. To simplify Eq. (1) it has been
used the atomic units ℏ = e = 1/4πϵ = 1. Moreover, the

masses from Eq. (1) are expressed in units of µ

Ĥ = − µ

2me
∇⃗2

r⃗e
− µ

2mh
∇⃗2

r⃗h
− 1

|r⃗e − r⃗h|
. (2)

A. Regime of weak quantum confinement

The Hamiltonian in this regime can be turned into a
one-body problem changing the variables into the cen-

tre of mass position, R⃗, and the relative position of the
electron and the hole, r⃗.

Ĥ = − 1

2M
∇⃗2

R⃗
− 1

2
∇⃗2

r⃗ −
1

r
, (3)

where M = (me + mh)/µ is the total mass of the sys-

tem in units of the reduced mass, and r⃗ and R⃗ are in
units of aµ. This Hamiltonian is separable, so wave func-
tions can be factorised into a plane wave function for
the centre of mass and a wave function of an effective
particle with mass equal to µ. Due to the spherical sym-
metry of the problem, the Schrödinger equation is sepa-
rable in spherical polar coordinates. To solve the radial
part, it is convenient to define the reduced radial wave
function Pnl(r) ≡ rRnl(r) obtaining the following eigen-
values’ problem,[

− 1

2µ

d2

dr2
+ Veff (r)

]
Pnl(r) = EexPnl(r), (4)

where Veff (r) is the sum of the opposing centrifugal en-
ergy with the Coulomb potential V (r). Introducing the
function Qnl ≡ ∂rPnl + lPnl/r, Eq. (4) can be turned
into a system of ordinary differential equations of first
order

dξ

dr
= A(r)ξ(r), (5)

where

ξ(r) =

(
Pnl(r)

Qnl(r)

)
, A(r) =

(
l/r 1

−2(Eex − V ) l/r

)
.

(6)
This is an integration problem with boundary conditions
because it has to be satisfied that Pnl(rn) = 0. P10(r)
(GS) as a function of rn was computed using the Ham-
ming method [6]. The calculations were performed us-
ing Fortran 90, with a computer code implemented from
scratch. The parameter values used in the calculations
correspond to the CdSe from Table I. This will also be
the case for the calculations in the two other regimes.
Fig. 2 shows P10(r) for three representative QD sizes.

For rn > 10 aµ, P10(r) resembles greatly that of the exci-
ton in a bulk semiconductor. As rn decreases, the overall
curvature of P10(r) increases to satisfy the boundary con-
dition, and so does the kinetic energy. The uncertainty
principle, ∆x∆p ≥ ℏ/2, provides a way of understand-
ing this phenomenon: as the QD is smaller, the uncer-
tainty in the position of the exciton becomes smaller, so
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the uncertainty in the momentum is increased, and, con-
sequently, the kinetic energy. For rn < 1.835(1) aµ, a
hydrogen-like wave function does not fit inside the QD,
even for the GS of the system, and P10(r) does not sat-
isfy the boundary conditions since it does not vanish at
rn. At rn = 1.835(1) aµ, Eex = 0 and the contributions
of the kinetic energy and the Coulomb interaction cancel
each other. It is worth noting that changing the reference
frame to the centre of mass is only valid if the system is
bound. Once the system is unbound, the centre of mass
has an acceleration and the solutions obtained using this
method are meaningless. Moreover, this method under-
estimates the total kinetic energy of the system since it
does not consider the increase in the kinetic energy of the
centre of mass as rn decreases due to confinement effects.
Then, the actual value of the ionization radius, ri, of the
exciton should be larger than 1.835(1) aµ.
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FIG. 2: Reduced radial wave function of the GS for three
different QD sizes within the weak quantum confinement
regime. Note the increase in overall curvature as the QD
size is smaller.

To get a better estimation of ri the following proce-
dure is proposed. In Fig. 3, it is shown the dependence of
the obtained energy on 1/r2n to show the expected linear
behaviour for small values of rn corresponding to a parti-
cle confined in a sphere with infinite ”square” potential.
For large values of rn the energy tends asymptotically to
−0.5, the energy of the GS of the exciton in the bulk ma-
terial expressed in units of Eµ. The intersection between
these two limiting behaviours at rn = 3.15(5) aµ provides
an estimation of ri at which the hydrogenic model ceases
to be valid because of large contributions of the kinetic
energy that ionise the exciton.

B. Intermediate regime

As the size of the QD is smaller, the kinetic energy be-
comes comparable or even greater than the absolute value
of the Coulomb interaction, and the electron-hole pair be-
comes unbound. Now, the quantum problem is that of
a two-particle system. Both particles interact through
the Coulomb force, but they are not linked together in a
bound state, since the kinetic energy due to the quantum
confinement surpasses the Coulomb interaction. This two
body problem is described by the general Hamiltonian of
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a2/r2
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E e
x
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)

ri = 3.15(5) a

FIG. 3: Dependence of the GS energy of the exciton as the
QD gets smaller. The ionization radius is estimated by finding
the intersection of the linear regression (dashed line) with
Eex = −0.5Eµ (horizontal dashed line).

Eq. (2). The problem has still spherical symmetry, since
it is going to be found the energy of the GS for l = 0.
Taking advantage of this symmetry, it is useful to change
coordinates: {r⃗e, r⃗h} → {re, rh, reh}, where reh stands
for the distance between the two particles. The calcula-
tion of a general element of the Hamiltonian matrix in
these coordinates is indicated in Appendix VA. The final
result is

⟨ψ|H|φ⟩ =
∫∫∫

V

µ

2me

{(
∂ψ

∂re

)(
∂φ

∂re

)
+

+

(
∂ψ

∂reh

)(
∂φ

∂reh

)
+
r2e + r2eh − r2h

2rereh

[(
∂ψ

∂re

)(
∂φ

∂reh

)
+

+

(
∂ψ

∂reh

)(
∂φ

∂re

)]}
dτ +

∫∫∫
V

µ

2mh

{(
∂ψ

∂rh

)(
∂φ

∂rh

)
+

+

(
∂ψ

∂reh

)(
∂φ

∂reh

)
+
r2h + r2eh − r2e

2rhreh

[(
∂ψ

∂rh

)(
∂φ

∂reh

)
+

+

(
∂ψ

∂reh

)(
∂φ

∂rh

)]}
dτ −

∫∫∫
V

ψφ

reh
dτ.

(7)
The volume element results to be dτ =
8π2rerhrehdredrhdreh, after integration of the whole
solid angle, since the operators and the trial functions
are all isotropic (see Appendix VB).
The Rayleigh-Ritz variational method [6] provides an

acceptable approximation to compute the GS energy
of this two-particle problem in the whole range of rn
including the weak and strong confinement regimes
because it uses the Hamiltonian in Eq. (2). To choose a
good trial function, the following points have been taken
into account:

• It has to satisfy the boundary conditions.

• The hydrogen-like solutions for the exciton show
an exponentially decaying tail with respect to the
variable r. To consider that r for the exciton cor-
responds to reh in the two-particle problem.
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• The kinetic energy has derivatives with respect to
re and rh. → Explicit dependences on the coordi-
nates re and rh are necessary.

For convenience, it has been chosen a simple trial func-
tion that fulfils all the previous conditions

ψ(re, rh, reh) =

(1)︷ ︸︸ ︷(
1− re

rn

) (2)︷ ︸︸ ︷(
1− rh

rn

) (3)︷ ︸︸ ︷
exp (−α reh), (8)

where α is a variational parameter to minimise the GS
energy. The terms (1) and (2) ensure that the trial func-
tion is cancelled when the electron or the hole are at the
edges of the QD. Moreover, the dependences on re and rh
provide contributions to the kinetic energy as the confine-
ment increases. The term (3) corresponds to the expo-
nentially decaying tail with respect to reh which stands
for the Coulomb correlation between the two particles.
The GS energy, Eeh, has been computed as the expec-
tation value of the Hamiltonian with this trial function
and minimised with respect to α. These calculations have
been performed by writing a notebook in the framework
of Wolfram Mathematica [7]. In Fig. 4, it is shown the de-
pendence of Eeh on rn minimising the expectation value
of the Hamiltonian with respect to α. It is worth men-
tioning that Eeh perfectly converges to Eex = −0.5Eµ

for large values of rn as expected. The energy for the GS
obtained for the exciton in the Subsection IIA predicts
lower values than this method, since the model for the
confined exciton underestimates the kinetic energy re-
lated to the quantum confinement of the two independent
particles. To improve the energy estimation of the GS,
it has been used the Rayleigh-Ritz variational method
with a basis of functions. Suppose a basis of N functions
ψ1, ..., ψN quadratically integrable, which do not have to
be linearly independent. A trial function can be obtained
as a linear combination of the basis

Ψ =

N∑
i=1

ci ψi, (9)

where ci are variational parameters that must be appro-
priately chosen to minimise the energy of the GS. The
elements of the basis can be in the form of Hylleraas func-
tions [8] consisting of products of a trial function (that
in Eq. (8) in our case) and powers of re, rh, and reh

Ψ(re, rh, reh) =
∑
ijk

cijk ψ r
i
er

j
hr

k
eh. (10)

Eeh(rn) has been computed with a basis of 4 functions
with i, j, k = 0, 0, 0; 1, 0, 0; 0, 1, 0; 0, 0, 1. To perform
these calculations, a program has been written in Wol-
fram Mathematica. It works as follows:

1. For a given α value, it has to be solved a generalised
eigenvalue problem

det(Hnm − λΛnm), (11)

where Hnm ≡ ⟨ψn|Ĥ|ψm⟩ and Λnm ≡ ⟨ψn|ψm⟩.

2. The minimum eigenvalue is the best upper bound
for the current value of α.

3. This process is repeated for a range of α. The mini-
mum eigenvalue along this process is the best upper
bound for the GS.

As it can be seen in Fig. 4, the results with this basis
do not improve significantly the curve obtained using a
single trial function. This is because the trial function
of Eq. (8) has already most of the features that are rel-
evant in the exact wave function of the GS. It is worth
remarking that rn = 2.23(1) aµ at which Eeh = 0 pro-
vides an estimation of ri which is in agreement with the
value obtained in Subsection IIA.
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FIG. 4: GS energy as a function of rn. Energy of the ex-
citon from the weak confinement model (blue curve). Vari-
ational method with the trial function of Eq. (8) (orange
curve). Variational method with the basis of 4 functions
(green curve). Results for the strong confinement model (pur-
ple curve). Estimation of the Coulomb interaction between
the two particles by subtracting the purple curve from the
green curve (red curve). The inset is a zoom of the interme-
diate regime.

C. Regime of strong quantum confinement

For rn <∼ 0.5 aµ, the results from the variational
method are very noisy since they involve calculations
with very large numbers as arguments of the exponen-
tial functions become smaller. However, in this regime,
the energy due to Coulomb interaction is negligible with
respect to the kinetic energy of the two particles. There-
fore, the problem can be treated as that of two indepen-
dent particles enclosed in a sphere with infinite ”square”
potential. The Hamiltonian is still that given in Eq. (2)
but without the potential energy due to the Coulomb
interaction. Then the eigenstates can be factorised as
Ψ(r⃗e, r⃗h) = ψ(r⃗e)ψ(r⃗h), and the problem is analytically
solvable (see Appendix VC). The energy of the GS for
the electron-hole pair is

Eeh = Ee − Eh =
1

2

(
π

rn

)2

. (12)

As it is shown in Fig. 4, the GS energy calculated by
this method connects with the results from the varia-
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tional method at approximately rn = 0.5 aµ and pro-
vides a simple way to calculate the energy of the system
for rn < 0.5 aµ, where the numerical errors involved in
the calculations of the variational method are too large
to obtain reliable results.

III. COMPARISON WITH EXPERIMENTAL
DATA

The results from the variational method have been
compared with experimental data found in the litera-
ture. Fig. 5 shows the energy shift, defined as Eshift =
Eeh + 0.5Eµ, for different ratios between the electron
and hole masses, σ ≡ mh/me. Since me and mh play
symmetric roles in Eq. (2), the results for σ < 1 are not
plotted, as the curves would be identical if σ were defined
as σ ≡ me/mh.
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FIG. 5: Energy shift computed for several values of σ repre-
sented in a semilogarithmic plot as a function of rn. Experi-
mental data CdS [4][9] (triangles), CuCl [9] (diamonds), and
CdSe [10] (circles). Error bars were not indicated in the orig-
inal references for the data corresponding to CdSe and CuCl,
so they are not drawn in the graph for CdS either for the sake
of clarity.

There is a good qualitative agreement between the
overall trends of the calculated curves and the experimen-
tal data, but not a perfect match with the curve corre-
sponding to the σ value for each set of experimental data
(see Table I for values of σ). The experimental points are

generally under the estimated energies as expected, since
the variational method gives an upper bound. Moreover,
notice that along this work two important approaches
have been taken. Firstly, me and mh have always been
taken constant and equal to the bulk values as the QD
is smaller. This may be a gross approximation for small
particles where quantum confinement effects are impor-
tant and there is always a Coulomb interaction between
the electron and the hole. Secondly, confinement inside
the QD has been approximated by an infinite ”square”
potential. In real QD, confinement potentials are finite
and the electron and the hole have a certain probability
to spread outside the QD. This reduces the kinetic en-
ergy related to the quantum confinement, resulting in a
lower total energy.

IV. CONCLUSIONS

The variational method provides a good estimation of
the GS energy across all three regimes, since the trial
function incorporates the essential features. The esti-
mation of the GS energy aligns perfectly with the lim-
its of small rn and rn → ∞, where analytical solutions
are known. Furthermore, experimental data are in ex-
cellent agreement with the behaviour predicted by the
variational method, even though it is not possible to
match each set of experimental data with the correspond-
ing curve for the expected σ value.
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V. APPENDIX

A. Hamiltonian

The Coulomb potential operator is easy rewritten in
these coordinates,

V̂ =
1

reh
. (13)

The obtention of the kinetic energy operator is more te-
dious. The gradient operator in the Cartesian coordinate
system is

∇⃗ = e⃗x
∂

∂x
+ e⃗y

∂

∂y
+ e⃗z

∂

∂z
. (14)

The variables can be changed into {re, rh, reh, α, β, γ}
(where α, β, γ are the three Euler angles that define the
plane spanned by r⃗e and r⃗h) taking into account the
spherical symmetry of the space

∂

∂xe
=
∂re
∂xe

∂

∂re
+
∂rh
∂xe

∂

∂rh
+
∂reh
∂xe

∂

∂reh
. (15)

Similarly for ∂ye
, ∂ze . Taking into account that re =

(x2e+y
2
e +z

2
e)

1/2, rh = (x2h+y
2
h+z

2
h)

1/2 and reh = (x2eh+

y2eh + z2eh)
1/2, the gradient operator can be expressed as

∇⃗e = r̂e
∂

∂re
− r̂eh

∂

∂reh
. (16)

The expression for the gradient operator for the holes is
analogous to the Eq. (16).To calculate the expectation
value of the kinetic energy of two wave functions, the
following trick is going to be used. Two first derivatives
will be calculated instead of one second derivative

⟨ψ|T̂ |φ⟩ = − µ

2me
⟨ψ|∇⃗2

e|φ⟩ =
µ

2me
⟨∇⃗eψ|∇⃗eφ⟩ . (17)

For two given wave functions,

(∇⃗eψ) · (∇⃗eφ) =

(
∂ψ

∂re

)(
∂φ

∂re

)
+

(
∂ψ

∂reh

)(
∂φ

∂reh

)
+

−r̂e · r̂eh
[(

∂ψ

∂re

)(
∂φ

∂reh

)
+

(
∂ψ

∂reh

)(
∂φ

∂re

)]
.

(18)
Since r⃗e + r⃗eh = r⃗h, it can be obtained

r̂e · r̂eh =
r2h − r2e − r2eh

2rereh
. (19)

Joining Eq. (18) and Eq. (19), the final expression is
obtained

(∇⃗eψ) · (∇⃗eφ) =

(
∂ψ

∂re

)(
∂φ

∂re

)
+

(
∂ψ

∂reh

)(
∂φ

∂reh

)
+

+
r2e + r2eh − r2h

2rereh

[(
∂ψ

∂re

)(
∂φ

∂reh

)
+

(
∂ψ

∂reh

)(
∂φ

∂re

)]
.

(20)

Proceeding analogously for the hole, it can be obtained

(∇⃗hψ) · (∇⃗hφ).
The final expression for a general element of the Hamil-
tonian matrix is

⟨ψ|H|φ⟩ =
∫∫∫

V

µ

2me

{(
∂ψ

∂re

)(
∂φ

∂re

)
+

+

(
∂ψ

∂reh

)(
∂φ

∂reh

)
+
r2e + r2eh − r2h

2rereh

[(
∂ψ

∂re

)(
∂φ

∂reh

)
+

+

(
∂ψ

∂reh

)(
∂φ

∂re

)]}
dτ +

∫∫∫
V

µ

2mh

{(
∂ψ

∂rh

)(
∂φ

∂rh

)
+

+

(
∂ψ

∂reh

)(
∂φ

∂reh

)
+
r2h + r2eh − r2e

2rhreh

[(
∂ψ

∂rh

)(
∂φ

∂reh

)
+

+

(
∂ψ

∂reh

)(
∂φ

∂rh

)]}
dτ −

∫∫∫
V

ψφ

reh
dτ

(21)

B. Volume element

The calculations to obtain the volume element in the
coordinates {re, rh, reh} are the following. As a starting
point, it is taken the volume element in the coordinates
{re, θe, ϕe, rh, θh, ϕh}

dτ = r2e sin θedredθedϕer
2
h sin θhdrhdθhdϕh. (22)

ϕi and one of the θi can be integrated, for example θe.
Moreover, changing the variable, θh → θeh, where θeh is
a relative angle which has the range 0 ≤ θeh ≤ π.

dτ = 8π2r2edrer
2
h sin θehdrhdθeh. (23)

Taking into account that r⃗eh = r⃗h − r⃗e,

r2eh = r2e + r2h − 2rerh cos θeh. (24)

For a given r⃗e and r⃗h which do not change the modulus,
if the Eq. (24) is differentiated, it is obtained rehdreh =
rerh sin θeh. Finally, it can be replaced in Eq. (23)

dτ = 8π2rerhrehdredrhdreh, (25)

with the limits 0 ≤ re ≤ rn, 0 ≤ rh ≤ rn, and |re − rh| ≤
reh ≤ re + rh.

C. Energy states for a particle in a sphere with
infinite ”square” potential

The Hamiltonian of the electron and the hole in a
sphere with infinite ”square” potential is

− µ

2mα
∇2

αφ(r⃗α)) = Eαφα(r⃗α), (26)
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where α = e, h and ∇2
α =

[
1
r2α
∂rα(r

2
α∂rα)− L2/(r2α)

]
.

The boundary conditions are R(rn) = 0. The wavefunc-
tion can be factorized as φα = Rα(rα)Yα(θα, ϕα). Intro-
ducing this into the Schrödinger equation, it is obtained
(without writing α for the sake of simplicity)

(1)︷ ︸︸ ︷
1

Y
L2Y =

(2)︷ ︸︸ ︷
2mr2E

µ
+

1

R

∂

∂r

(
r2
∂R

∂r

)
. (27)

The term (1) only depends on θ, ϕ and the term (2) on r,
hence, both terms have to be equal to a constant which
will be called l(l + 1) for convenience. The equations
obtained are

L2Y = l(l + 1)Y, (28)

2mr2E

µ
+

1

R

∂

∂r

(
r2
∂R

∂r

)
= l(l + 1). (29)

Eq. (28) is an eigenvalue problem whose solutions are
the spherical harmonics Ylm(θ, ϕ). To solve Eq. (29), it
is useful to rewrite it in the form

r2
∂2R

∂r2
+ 2r

∂R

∂r
+

(
2mr2E

µ
− l(l + 1)

)
R = 0. (30)

Changing the variables J(ρ) ≡ √
ρR and ρ ≡ kr where

k ≡
√
2mE/µ, it is obtained

ρ2
∂2J

∂ρ2
+ ρ

∂J

∂ρ

[
ρ2 − (l + 1/2)2

]
J = 0. (31)

The solution of this equation is

J(ρ) = AJν(ρ) +BYν(ρ), (32)

where Jν is the Bessel function of the first kind and Yν
is the Bessel function of the second kind. The Bessel
functions of second kind have a singularity in ρ = 0, for
this reason, B = 0. Returning to the variables of the
problem, it is obtained

R = N jl(kr), (33)

where N is a normalizing constant and jl is lth order
spherical Bessel function. Imposing the boundary condi-
tion R(rn) = 0, it is obtained

E =
µ

2m

(
kn,l
rn

)2

, (34)

where kn,l is the nth root of jl. As the interest of this
work is in the GS, it is only needed the firs root, which
is π. Adding the energy of the hole and the elctron, it is
finally obtained

E =
1

2

(
π

rn

)2

. (35)
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