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Abstract

The main goal of this work is to formalize the Mountain Pass Theorem of Am-
brosetti and Rabinowitz within the formal subsystem of second order arithmetic
known as ACA0. We develop some Analysis within this system to have access to
the space of continuous functions from [0, 1] into a separable Banach space and
from there built formalized proofs of the basic ingredients of the Mountain Pass
Theorem: The deformation lemma and the minimax principle that proves the the-
orem itself.

2020 Mathematics Subject Classification. 03B30, 03F35
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Chapter 1

On the program of Reverse
Mathematics

Reverse Mathematics is a crucial subject within Proof Theory needed not only
for understanding the foundations of modern mathematical research, but also
for unearthing the computational content behind key results in a wide range of
branches.

History has witnessed that in the beginning of the twentieth century, mathe-
matics was shaken by a foundational crisis after some paradoxes, most famously
Russell’s paradox, were discovered within Cantor’s naïve set theory. Part of the
mathematical community of that time argued that the origin of the paradoxes was
in the risky and uncontrolled treatment of the concept of infinite set. Thus, David
Hilbert proposed a sort of common-sense solution: eliminate all infinitary reason-
ing from mathematics. This, some authors argue, gave rise to a completely new
branch of Mathematical Logic: Proof Theory, an intrinsically finitistic approach
to logical and mathematical reasoning that allegedly could account even for in-
finitary concepts and thus, safeguards them. It is often said that Gödel destroyed
almost all of Hilbert’s illusions with his impressive Incompleteness Theorems, but
even if a full account of Hilbert’s finitist program is impossible, some partial reck-
oning of it could be pursued. As Stephen Simpson (one of the fathers of Reverse
Mathematics) explains in [19], Hilbert’s program has today evolved into Reverse
Mathematics, a proof-theoretical research program which safeguards results in a
wide variety of fields of classical mathematics by showing that they can be proven
without strong infinitary assumptions or, conversely, shows that such assumptions
are downright unavoidable.

Reverse Mathematics was explicitly initiated by Harvey Friedman in [12] and
continued to a huge extent by Simpson and his students. Concretely, its purpose is
to study the role of set-existence axioms (of an increasingly non-finitistic flavour)
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2 On the program of Reverse Mathematics

within the formal system of second order arithmetic, with an eye to determin-
ing which axioms are needed in order to prove specific mathematical theorems.
Friedman’s notion of the right axioms identified to prove a given theorem is one
on which not only can the theorem be proved from the axioms, but the axioms
can be proved from the theorem. In other words, the proper axioms are necessary
in order to prove the theorem, and not merely sufficient. Such equivalences are
often proved in the weak base theory RCA0, a formal subsystem of second order
arithmetic that may be viewed as a kind of formalized computable mathematics,
with full classical logic but restricted comprehension and induction. RCA0 is used
as a weak base theory because, despite it being only able to build computable sets,
it is strong enough to prove equivalences between other set-existence axioms and
particular mathematical results.

Traditionally, the subsystems studied in the framework of Reverse Mathemat-
ics are five: the aforementioned base subsystem RCA0 and four others, ordered
increasingly according to the strength of their set-existence axioms: WKL0 which
states that every infinite binary tree has an infinite branch and deals directly with
the finitistic reductionism of Hilbert; ACA0 which constructs arithmetical sets and
thus is a good account of predicative mathematics; ATR0 which constructs sets by
transfinite recursion and supports predicative reductionism; and Π1

1-CA0 a prop-
erly impredicative very strong system. For more on finitistic reductionism, pred-
icativity and impredicativity, we recommend Dean and Walsh [7], a systematic
study on the philosophical ideas behind each of this subsystems. The technical
definitions of these systems will be detailed in the third chapter of our work.

Surprisingly, a very rich body of theorems of classical mathematics has been
investigated in the context of Reverse Mathematics and have been shown to be
either provable in RCA0 or equivalent to one of those other four systems over
RCA0. Even quite extensive theories in fields such as Number Theory, Analysis
and Algebra have been developed and analysed in Reverse Mathematics. They can
be found consolidated by Simpson in [19], the mandatory reference in the field.

The main objective of the present work is to formalize within some of the
mentioned formal subsystems (it will turn out to be ACA0) a particular result
of Non Linear Analysis known as the Mountain Pass Theorem (in short MPT),
first presented in 1973 by Ambrosetti and Rabinowitz [2]. Broadly speaking, the
MPT provides necessary conditions to ensure the existence of critical points of
differentiable functionals with domain defined in a Banach space and image in
the real numbers. We will focus on it in the following chapter.

The main application of the Mountain Pass Theorem is as a tool to guarantee
the existence of weak solutions of semilinear elliptic partial differential equations
(PDEs). In fact, it was with the motivation of finding solutions of such semilinear
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problems that Ambrosetti and Rabinowitz studied the theorem in the first place.
A wide range of PDEs can be solved using the MPT indeed; in the referenced
paper [2], nonlinear problems of eigenvalues and eigenvectors are solved using
this technique; even more, along with small modifications of the MPT and the
inclusion of various concepts and different hypotheses, it is possible to speak of
a multiplicity of solutions to those problems. They also provide applications of
their theorem to integral equations. A very practical but excellent summary of
those possibilities can be found in the second part of Rabinowitz’s monograph
[18].

The MPT that we will analyze here has undergone modifications of various
types and has been widely generalized. The methods that arise from it or have
some relationship with its structure are called methods of minimax, and among
other things, they are useful for instance to find solutions of Hamiltonian systems.
The applications are numerous and frequent in contemporary research, so it will
be impossible to detail them here; the interested reader is addressed to Ambrosetti
and Rabinowitz [2], Badiale and Serra [5], Evans [9], Jabri [15] or Rabinowitz [18].

From a practical point of view, one can not stress enough the importance that
PDEs and related problems have as a subject inside Mathematical Analysis. Since
its origins as a device to address certain problems in Physics, the mathematical
study of techniques that can guarantee the existence of solutions of such equa-
tions has always been a fruitful enterprise. Thus, we consider clearly justified the
study within the field of Reverse Mathematics of one of the principal theorems
sustaining the theory of PDEs. However, in this work we will only formalize the
theorem within ACA0 and not pursue its reversal. The technical difficulties of the
proof of the theorem itself make the formalization a program interesting enough
to be self contained here. With no more delay, we begin our research by getting to
know the classical Mountain Pass Theorem in what follows.
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Chapter 2

The Classical Mountain Pass
Theorem

As already stated in the introduction, the objective of this work is to formalize
the classical proof of the Mountain Pass Theorem by Ambrosetti and Rabinowitz
[2] within a subsystem of Second Order Arithmetic towards a future analysis in
the context of Reverse Mathematics.

In this chapter we introduce the theorem in a non-formalized context to get ac-
quaintance with all the nuances that the mathematical metalanguage can sustain.
We will only discuss theoretical aspects of the MPT but it is worth mentioning
again that the theorem is a very popular result in the field of Nonlinear Analysis
due to several interesting applications regarding the solutions of nonlinear PDEs.

For starters, we enunciate the statement of the theorem in its most known form.

Theorem 2.1 (Mountain Pass Theorem). Let E be a Banach space and let I ∈ C1(E, R)

be a continuously differentiable functional that satisfies the compactness property of Palais-
Smale (PS)1. Suppose that I(0) = 0 and that there exist ρ, α > 0 such that:

1. If ∥u∥ = ρ then I(u) ≥ α,

2. There is v ∈ E such that ∥v∥ > ρ and I(v) ≤ 0.

Then I has a critical value c ≥ α. Moreover, c can be characterized as:

c = inf
g∈Γ

max
u∈g([0,1])

I(u),

where
Γ = {g ∈ C([0, 1], E) : g(0) = 0, g(1) = v}.

1See Definition 2.10 in the next section.
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6 The Classical Mountain Pass Theorem

Remark 2.2. To intuitively understand the reason why the Mountain Pass Theorem has
such a name, consider the case when E = R2; there we can think of the graph of the
functional I as the surface of a very smooth mountain having the points (0, 0) and (v, I(v))
as the bottoms of two valleys (the latter being at most as deep as the former). If we take all
the continuous paths between those points and consider the highest point of each of those
paths, the theorem says that in the path where this point has the lowest height, we would
find a spot (the critical point) where we can pass through from one valley to another, i.e., a
mountain pass. Figure 2.1 illustrates this situation.

Figure 2.1: Graph of a function that satisfies the MPT hypotheses. In the highest
point of the red path between the points I(0) = 0 and I(v) < 0 we can find a
mountain pass.

To fully understand the statement of the theorem and to perform its non-
formalized proof, we first consider some prerequisites regarding the analytic and
topological tools needed to that aim.

2.1 Analytical and Topological Prerequisites

We assume some basic undergraduate knowledge of Mathematical Analysis to
present some important definitions in what follows.

2.1.1 Continuity and differentiability review

In the first place, we recall some necessary concepts regarding metric spaces.
Let (X, d) denote a metric space, where as usual X is a set and d : X × X → R is a
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metric or distance. We also consider the usual notations for the open ball of center
x ∈ X and radius r > 0:

Br(x) = {y ∈ X : d(y, x) < r},

and its closure:
Br(x) = Br(x) = {y ∈ X : d(y, x) ≤ r}.

The stepping stone of Analysis in metric spaces is the definition of continuous
function, so we recall its most known definition.

Definition 2.3 (continuous function). Let (X, d) and (Y, d̃) be metric spaces. A func-
tion F : X → Y is said to be continuous if for every x0 ∈ X we have that for every ε > 0
there is δ > 0 such that

d(x, x0) < δ ⇒ d̃(F(x), F(x0)) < ε.

We profit from this definition to present a characterization of continuity that
will inspire the formalization of this concept within subsystems of second order
arithmetic in the next chapter.

Theorem 2.4. Let (X, d) and (Y, d̃) be metric spaces. A function F : X → Y is contin-
uous iff for every value F(x) and each open ball B ⊆ Y containing F(x) there is an open
ball B̃ ⊆ X including x such that F(B̃) ⊆ B.

Proof. (⇒) Let F(x) ∈ ran(F) and let B = Br(y) be an open ball such that F(x) ∈ B.
Thus, d̃(F(x), y) < r. Now, let ε = r − d̃(F(x), y) > 0. Since F is continuous we
know that there is δ > 0 such that

d(x′, x) < δ ⇒ d̃(F(x′), F(x)) < ε.

Take B̃ = Bδ(x). We claim that F(B̃) ⊆ B. Let x0 ∈ F(B̃). Then, there is x′ ∈ B̃
such that F(x′) = x0. Since x′ ∈ B̃, we have that d(x′, x) < δ and therefore
d̃(F(x′), F(x)) < ε. Now, to show that x0 ∈ B we have to prove that d̃(x0, y) < r.
We have this because:

d̃(x0, y) = d̃(F(x′), y)

≤ d̃(F(x′), F(x)) + d̃(F(x), y)

< ε + d̃(F(x), y) = r.

(⇐) Let x0 ∈ X and let ε > 0. Since F(x0) ∈ Bε(F(x0)), then there is an open
ball B̃ = Br(y) such that F(B̃) ⊆ Bε(F(x0)) and x0 ∈ B̃ (so d(x0, y) < r). Take
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δ = r − d(x0, y) > 0. Then, given d(x, x0) < δ we can prove that d̃(F(x), F(x0)) < ε

as follows. First, notice that

d(x, y) ≤ d(x, x0) + d(x0, y)

< δ + d(x0, y) = r.

Therefore, whenever d(x, x0) < δ, we have that x ∈ B̃, whence F(x) ∈ F(B̃) ⊆
Bε(F(x0)) and thus d̃(F(x), F(x0)) < ε.

Now we bring our attention to complete normed spaces. We start recalling
some basic definitions.

Definition 2.5 (Banach space). A normed space (E, ∥·∥) is said to be Banach if it is
complete with respect to the metric defined by the norm, i.e.,

d(x, y) = ∥x − y∥ , x, y ∈ E.

Recall that we say that a metric space (E, d) is complete if every Cauchy sequence (xn)n∈N

of elements of E has a limit x ∈ E, i.e.,

∀ε > 0 ∃N > 0 such that n ≥ N → d(xn, x) < ε.

Definition 2.6 (dual space). Let (E, ∥·∥) be a real Banach space. We define the (topolog-
ical) dual of E, denoted by E ′, as the class of all the continuous linear maps with domain
E and range in R, i.e.:

E ′ = { f : E → R : f is a continuous linear map} .

E ′ is a Banach space (even if E is not one) if we consider the norm:

∥ f ∥E ′ = sup
{
| f (x)|
∥x∥ : x ∈ E, x ̸= 0

}
.

For U ⊆ E, a functional is any map I : U → R, not necessarily linear or
continuous.

Definition 2.7 (Fréchet differential). Let E be a Banach space, U be an open subset of
E, and I : U → R be a functional. We say that I is Fréchet differentiable in x ∈ U if
there is f ∈ E ′ such that

lim
∥h∥→0

I(x + h)− I(x)− f (h)
∥h∥ = 0, (2.1)

which using the “little-O” notation of Landau can be written as follows:

I(x + h) = I(x) + f (h) + o(∥h∥)
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whenever ∥h∥ → 0.
It can be shown that if this f exists, then it is unique. This way, for each I : U →

R differentiable in x ∈ U, the unique f ∈ E ′ that satisfies (2.1) is called the Fréchet
differential (or simply differential) of I in x, and is denoted by I ′(x). Therefore,

I(x + h) = I(x) + I′(x)(h) + o(∥h∥) (2.2)

whenever ∥h∥ → 0.

If for every x ∈ U we have that I′(x) exists, then we say that I is differentiable
on U or just differentiable. It is important to notice that if I is differentiable, then
it is continuous. In this scenario the application

I′ : U → E ′

x 7→ I′(x)

is called the Fréchet derivative of I, and in general it can be non-linear and discon-
tinuous.
If I′ is continuous as a map from U to E ′, then we say that I is of class C1 in U
and write I ∈ C1(U).

2.1.2 Some specific prerequisites for the MPT

We now continue with more definitions to establish the bases of the Mountain
Pass Theorem.

Definition 2.8 (sublevels of a functional). Let E be a Banach space and let I : E → R

be a functional. For every a ∈ R we define the sublevel of I at a as the following set:

Ia = {x ∈ E : I(x) ≤ a}.

Definition 2.9 (critical value of a differentiable functional). Let E be a Banach space
and let I : E → R be a differentiable functional. We say that c ∈ R is a critical value of
I if there exists u ∈ E such that

I′(u) = 0 and I(u) = c.

Since I′(u) is an element of the dual space of E, the expression I′(u) = 0 means that
I′(u)(x) = 0 for all x ∈ E. We say that u is a critical point at level c.

Definition 2.10 (Palais-Smale sequence and (PS) condition). Let E be a Banach space
and let I : E → R be a differentiable functional. We say that a sequence (xk)k∈N of
elements of E is Palais-Smale if (I(xk))k∈N is a bounded sequence in R and if the sequence
(I′(xk))k∈N converges to 0 (in E ′). We say that I satisfies the Palais-Smale condition
(in short: I satisfies (PS)) if every Palais-Smale sequence of elements of E has a convergent
subsequence.
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Definition 2.11 (lower semi-continuous function). Let (X, d) be a metric space. We
say that F : X → R is lower semi-continuous if for every x ∈ X and every λ < f (x),
there is a δ > 0 such that whenever d(x, y) < δ, it follows that f (y) > λ.

With all of these technical definitions, we are ready to understand the state-
ment of the Mountain Pass Theorem. To fully perform its proof we will need
some previous results which will be presented in the following section.

2.2 The proof of the MPT

We present the statements of two very important results used to prove the
MPT. First, the Deformation Lemma. A detailed proof can be found in [18].

Lemma 2.12 (Deformation Lemma). Let E be a Banach space and let I ∈ C1(E, R) be
a continuously differentiable functional that satisfies (PS). Suppose c ∈ R and ε̄ > 0. If c
is not a critical value of I, then there exists ε ∈ (0, ε̄) and η ∈ C([0, 1]× E, E) such that:

(a) η(1, Ic+ε) ⊆ Ic−ε.

(b) η(1, u) = u if I(u) /∈ [c − ε̄, c + ε̄.]

Second, we present a version (in fact a corollary) of Ekelands’s ε-variational
principle from [3].

Lemma 2.13 (ε-variational principle). Let X be a complete metric space and F : X →
R ∪ {+∞} a proper lower semi-continuous function bounded below. Then for any ε > 0,
there esxists some point yε such that:

(i) F(yε) ≤ ε + inf F.

(ii) F(x) > F(yε)− εd(x, yε), for all x ̸= yε.

Now, we reproduce the statement of the Mountain Pass Theorem and give its
proof.

Theorem 2.14 (Mountain Pass Theorem). Let E be a Banach space and let I ∈ C1(E, R)

be a continuously differentiable functional that satisfies (PS). Suppose that I(0) = 0 and
that there exist ρ, α > 0 such that:

1. If ∥u∥ = ρ then I(u) ≥ α,

2. There is v ∈ E such that ∥v∥ > ρ and I(v) ≤ 0.
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Then I has a critical value c ≥ α. Moreover, c can be characterized as:

c = inf
g∈Γ

max
u∈g([0,1])

I(u),

where
Γ = {g ∈ C([0, 1], E) : g(0) = 0, g(1) = v}.

Proof. In the first place, we show that c = inf
g∈Γ

max
u∈g([0,1])

I(u) indeed exists, i.e., c ∈ R.

Since for any g ∈ Γ the function I ◦ g : [0, 1] → R is continuous, we know that
max
t∈[0,1]

I(g(t)) does exist. Now, let

F : Γ → R.

g 7→ max
t∈[0,1]

I(g(t)).

Let g ∈ Γ. We have that ∥g(0)∥ = ∥0∥ = 0 and ∥g(1)∥ = ∥v∥ > ρ. The fact
that g and the norm ∥·∥ are both continuous gives us, due to the intermediate
value theorem, the existence of tg ∈ [0, 1] such that

∥∥g(tg)
∥∥ = ρ. Thanks to the

Condition 1, we have I(g(tg)) ≥ α and therefore:

max
t∈[0,1]

I(g(t)) ≥ α.

Thus, we have that F(g) ≥ α > 0 for all g ∈ Γ. Hence, inf
g∈Γ

F(g) exists. It is clear

that we can write:
c = inf

g∈Γ
F(g),

whence we have that c ∈ R. Moreover, c ≥ α.
Now, towards proving that c is a critical value of I, we can take two different

paths to achieve that aim: via the Deformation Lemma or via the ε-variational
principle. We present both in what follows.

Sketch of the Proof Via the Deformation Lemma (See [2]).
By contradiction, suppose that c is not a critical value of I. We apply Lemma

2.12 with ε̄ = α/2 and get ε ∈ (0, ε̄) and η ∈ C([0, 1]× E, E) as in the aforemen-
tioned result. By the characterization of the greatest lower bound, we can find
g ∈ Γ such that

F(g) < c + ε. (2.3)

Consider the notation ηt(x) = η(t, x). Define

g̃ : [0, 1] → E

t 7→ η1(g(t)).
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We want to show that g̃ ∈ Γ. Notice that since ε̄ = α/2, then c − ε̄ > 0. Therefore:

I(0) = 0 < c − ε̄ and I(v) ≤ 0 < c − ε̄.

Thus, by (b) of the Deformation Lemma, we have:

g̃(0) = η1(g(0)) = η1(0) = 0

and
g̃(1) = η1(g(1)) = η1(v) = v.

Thus, g̃ ∈ Γ and therefore,
c ≤ F(g̃). (2.4)

By (2.3), I(g(t)) ≤ c + ε for all t ∈ [0, 1]. Thus, g(t) ∈ Ic+ε for all t ∈ [0, 1] and
therefore η1(g(t)) ∈ η1(Ic+ε) for all t ∈ [0, 1]. By (a) of the Deformation Lemma,
we have that η1(g(t)) ∈ Ic−ε for all t ∈ [0, 1], or in other words g̃(t) ∈ Ic−ε for all
t ∈ [0, 1]. This of course means that I(g̃(t)) ≤ c − ε for all t ∈ [0, 1]; hence:

F(g̃) ≤ c − ε < c. (2.5)

This contradicts (2.4), so we are done.

Sketch of the Proof Via the ε-Variational Principle. (See [15])
We consider Γ as a complete metric space with the metric

d(g1, g2) = max
t∈[0,1]

∥g1(t)− g2(t)∥

for all g1, g2 ∈ Γ. It can be shown that F : Γ → R defined as above is continuous
and therefore lower semi-continuous. Also, we already showed that F is bounded
bellow. Thus, by Lemma 2.13, we know that for every ε > 0 there is gε such that:{

F(gε) ≤ c + ε.

F(g) ≥ F(gε)− εd(g − gε), for all g ∈ Γ.
(2.6)

Set Mε = {t ∈ [0, 1] : I(gε(t)) = max
s∈[0,1]

I(gε(s))}. Then, using (2.6) and thanks to a

quite technical argument from convex analysis (see [3], page 272) we can deduce
that there is tε ∈ Mε such that: ∥∥I′(gε(tε))

∥∥ ≤ ε.

Now, we define a sequence (un)n∈N by un = g1/n(t1/n) for each n ∈ N. It is easy
to prove that this sequence of elements of E is such that (I(un))n is a bounded
sequence and such that I′(un) → 0. Thus, since I satisfies (PS), we have that there
is a subsequence (unk)k and u ∈ E such that unk → u. It is straightforward to prove
that I′(u) = 0 and I(u) = c, so c is a critical value.
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The original proof of the MPT (see [2]) follows the first path that we have pre-
sented here, i.e., via the Deformation Lemma. Considering this, we will present
a formalization of that version of the proof of the MPT. However, since Ekeland’s
ε-variational principle and its applications have been recently studied in the con-
text of Reverse Mathematics (see [11] and [10]), we encouraged the interested
researcher to study the other path.

In the following chapters we will pursue the mentioned formalization, but in
the first place we will study in detail the formal theories that we will be working
within towards this formalization.
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Chapter 3

Second Order Arithmetic

We now turn our eyes to Mathematical Logic. This chapter is divided into two
parts. In the first one, we will introduce the formal systems of the tradition of Re-
verse Mathematics that we will be using to formalize the proof of the MPT. It will
be a quite descriptive section. In the second part we will begin the development
of ordinary mathematics within those systems to achieve a fair amount of theory
that serves as base to state and prove the Deformation Lemma and the MPT itself
within this context. We will introduce some basic knowledge from many sources
and also give the proofs of some original results.

3.1 Subsystems of Second order Arithmetic

By Z2 we denote the formal logical system of Second Order Arithmetic which
we define in what follows.

Definition 3.1 (language of Z2). The language of Z2, denoted L2, is a two-sorted first-
order language. This means that there are two distinct sorts of variables which are intended
to range over two distinct kinds of objects. The first sort of variables, known as number
variables and represented by lower-case letters i, j, k, m, n, . . . , are intended to range over
the set ω = {0, 1, 2 . . . } of the natural numbers. The second sort, the set variables, are
represented by upper-case letters X, Y, Z, A, B, . . . and are intended to range over subsets
of ω. We consider as part of the language the binary function symbols + and ·, the relation
symbols < and ∈ whose intended meanings are the usual ones. The terms and formulas of
L2 are as follows:

• Numerical terms. Consisting of the number variables, the constant symbols 0 and
1, and whenever t1 and t2 are numerical terms we recursively define as a numerical
terms: t1 + t2 and t1 · t2.

15
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• Atomic formulas. If t1 and t2 are numerical terms and X is a set variable, then the
following are atomic formulas: t1 = t2, t1 < t2 and t1 ∈ X.

• Formulas. We recursively built up the formulas from atomic formulas by means of
propositional connectives ∧,∨,¬,→, number quantifiers ∀n, ∃n and set quantifiers
∀X, ∃X.

Definition 3.2 (Second Order Arithmetic). The axioms of second order arithmetic
consists of the universal closures of the following L2-formulas:

(a) basic axioms:

n + 1 ̸= 0

m + 1 = n + 1 → m = n

m + 0 = m

m + (n + 1) = (m + n) + 1

m · 0 = 0

m · (n + 1) = (m · n) + m

¬m < 0

m < n + 1 ↔ (m < n ∨ m = n)

(b) induction axiom:

(0 ∈ X ∧ ∀n(n ∈ X → n + 1 ∈ X)) → ∀n(n ∈ X)

(c) comprehension axiom scheme:

∃X∀n(n ∈ X ↔ φ(n))

where φ(n) is any formula of L2 in which X does not occur freely.

In the comprehension axiom scheme, φ(n) may contain free variables in addition to n.
These free variables may be referred to as parameters of this instance of the comprehension
axiom scheme.

By Second Order Arithmetic (Z2) we mean the formal system in the language of L2

consisting of the axioms of second order arithmetic, together with all formulas of L2 which
are deducible from those axioms by means of the usual logical axioms and rules including
equality axioms and the law of excluded middle. This makes our system a classical, non-
intuitionistic system.

By a subsystem of Z2 we mean any formal system in the language L2 whose
theorems are included in those of Z2. We recall the most important subsystems
used in Reverse Mathematics as well as some known important results.
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3.1.1 The system RCA0

Definition 3.3 (bounded quantifiers). Let φ be a formula of L2, let n be a number
variable an let t be a numerical term which does not contain n. We abbreviate ∀n(n <

t → φ) as (∀n < t)φ and ∃n(n < t ∧ φ) as (∃n < t)φ. The quantifiers ∀n < t and
∃n < t are called bounded number quantifiers.

Definition 3.4 (Σ0
1 and Π0

1 formulas). An L2-formula is said to be Σ0
1 (respectively Π0

1)
if is one of the form ∃n θ (respectively ∀n θ) where θ is a formula built up from atomic
formulas by means of propositional connectives and bounded number quantifiers. Note
that although this formulas contain no set quantifiers, they may contain free set variables.

Definition 3.5 (formal system RCA0). The axioms of RCA0 consists on the basic ax-
ioms of Z2 plus the following axiom schemes.

(i) Σ0
1 induction axiom:

(φ(0) ∧ ∀n(φ(n) → φ(n + 1)) → ∀n(φ(n))

where φ(n) is any Σ0
1 formula of the language L2.

(ii) ∆1
0 comprehension axiom scheme:

∀n(φ(n) ↔ ψ(n)) → ∃X∀n(n ∈ X ↔ φ(n))

where φ(n) is Σ0
1, ψ(n) is Π0

1, and X does not occur freely in φ(n).

By RCA0 we mean the formal system in the language of L2 consisting of the previous
axioms, together with all formulas of L2 which are deducible from those axioms by means
of the usual logical axioms and rules.

The scheme of ∆1
0 comprehension, also known as recursive comprehension

axiom (RCA), states the existence of computable sets of natural numbers. This is
due to the result by Post [17] that states that a set is computable if and only if
it and its complement are computably enumerable, and the fact that computably
enumerable sets are Σ0

1 definable.
Working in RCA0, we can code a great deal of finite objects like rational num-

bers, pairs of natural numbers, or even finite sequences of natural numbers, as
natural numbers; and we can code functions from N to N and real numbers as
sets of numbers (represented by rapidly converging Cauchy sequences of ratio-
nals). In the next section we would take some of such codings and their properties
for granted and will define others from scratch. For now it is enough to know
that in particular, RCA0 is strong enough to code binary trees, an object useful to
define the subsystem of the next section.
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Definition 3.6 (binary tree). The following definition is made in RCA0. Let 2<N be the
set of all (codes for) finite sequences of 0′s and 1′s. A binary tree is a set T ⊆ 2<N which
is closed under initial segment. A path through T is a function g : N → N such that
g[n] ∈ T for all n ∈ N, where g[n] = ⟨g(0), g(1), . . . , g(n − 1)⟩.

3.1.2 The system WKL0

We introduce a subsystem of second order arithmetic stronger than RCA0,
known as weak König’s lemma and denoted by WKL0.

Definition 3.7 (formal system WKL0). Let 2<N be the set of all (codes for) finite se-
quences of 0′s and 1′s. Weak König’s lemma is the formalized statement that says that
every infinite tree T ⊆ 2<N has an infinite path (we say that a set X ⊆ N is finite if it is
bounded above, and we say that X is infinite otherwise). The axioms of WKL0 are those
of RCA0 plus weak König’s lemma.

WKL0 is a formal system capable of prove a great deal of theorems in analysis
as we will see later. However, its power is restricted and another subsystem of Z2

will be needed.

3.1.3 The system ACA0

In what follows we define the system ACA0, a formalized predicative system.
We begin recalling arithmetical formulas.

Definition 3.8 (arithmetical formulas). Let φ be a formula of L2. We say that φ is
arithmetical if it contains no set quantifiers. It may contain free set variables.

Definition 3.9 (formal system ACA0). The axioms of ACA0 are the basic axioms and
the induction axiom of Z2 plus the following:

(ACA) arithmetical comprehension axiom scheme:

∃X∀n(n ∈ X ↔ φ(n))

where φ(n) is any arithmetical formula in which X does not occur freely.

ACA0 is a quite stronger axiom than WKL0. However, in terms of mathematical
practice, not as strong as the last subsystem we would be considering in this work.
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3.1.4 The system Π1
1-CA0

Definition 3.10 (Π1
1 formulas). Let φ be a formula of L2. We say that φ is Π1

1 if it is of
the form ∀X θ, where X is a set variable and θ is an arithmetical formula.

Definition 3.11 (formal system Π1
1-CA0). The axioms of Π1

1-CA0 are the basic axioms
and the induction axiom of Z2 plus the following:

(Π1
1-CA) Π1

1 comprehension axiom scheme:

∃X∀n(n ∈ X ↔ φ(n))

where φ(n) is any Π1
1 formula in which X does not occur freely.

Π1
1-CA0 is a fully impredicative system that we will wish to avoid in the for-

malization of the MPT. In what follows, we will develop the bulk of Analysis
needed to proof the MPT.

3.2 Development of Analysis in the Subsystems of Z2

As we already stated, when working in RCA0 we can code a great deal of
mathematical objects. We refer the reader to sections II.2, II.3 and the beggining
of II.4 of [19] for details about the development within RCA0 of properties of nat-
ural numbers, definitions and properties of codes for finite sequences of natural
numbers, functions between sets of natural numbers and the definitions and prop-
erties of the systems of numbers Z and Q. Particularly, in section II.3 it is proven
within RCA0 that the universe of total number theoretic functions is closed under
composition, primitive recursion, and the least number operator i.e., minimiza-
tion. Thus, RCA0 can sustain a certain arithmetization of computation as expected
by its name. Taking matters from there, we will show that it can sustain also the
arithmetization of elementary analysis. To quote John Stillwell in his remarkable
Reverse Mathematics: Proofs from the Inside Out [20], book that we emphatically rec-
ommend, “the remarkable convergence of analysis and computation to a common
source in arithmetic is what makes the reverse mathematics of analysis possible."

3.2.1 Complete separable metric spaces in Z2

We start our development of the parts of Mathematical Analysis that will be
useful for our purposes defining the system of real numbers R.

Definition 3.12. A sequence of rational numbers is defined in RCA0 to be a function
f : N → Q. We denote such a sequence (qn)n∈N where qn = f (n).
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A quickly converging Cauchy sequence of rational numbers is a sequence of
rational numbers (qn)n∈N such that ∀n ∀m (n > m → |qn − qm| ≤ 2−m). Here |q|
denotes the absolute value of a rational number q ∈ Q, i.e., |q| = q if q ≥ 0, −q otherwise.

Definition 3.13 (the system of real numbers). The following definition is made in
RCA0. A real number is defined to be a quickly converging Cauchy sequence of ratio-
nal numbers (qn)n∈N. Two real numbers (qn)n∈N and (q′n)n∈N are said to be equal if
∀n (|qn − q′n| ≤ 2−n+1). We then write x = y.

When describing definitions or proofs within RCA0 (or other subsystems of
Z2), we shall sometimes use the symbol R informally to denote the set of all real
numbers. Of course the set R does not formally exist, since RCA0 is limited to the
language L2 of Second Order Arithmetic.

Similarly to how equality was defined, within RCA0 we can define a sum, a
difference, a product and an order to the effect that R can be proven to be an
Archemedian ordered field (see Theorem II.4.5 of [19]); thus we shall use all of the
usual properties of R . We continue with more definitions.

Definition 3.14. The following definition is made in RCA0. A sequence of real numbers
is a function f : N × N → Q such that for each n ∈ N, the function ( f )n : N → Q

defined by ( f )n(k) = f ((k, n)) is a real number. We shall employ notations such as
(xn)n∈N for the sequence f with ( f )n = xn.

Now, we introduce some definitions that will allow us to develop some higher
Analysis. We still follow [19] but use the notation of [11].

Definition 3.15 (complete separable metric space). The following definition is made
in RCA0. A (code for a) complete separable metric space X̂ is a non-empty set X ⊆ N

together with a sequence of real numbers d : X × X → R≥0 such that d(a, a) = 0,
d(a, b) = d(b, a) and d(a, b) + d(b, c) ≥ d(a, c) for all a, b, c ∈ X. A point of X̂ is a
sequence x = (xn)n∈N of elements of X such that for all n ≤ m, d(xn, xm) ≤ 2−n . We
write x ∈ X̂ to mean that x is a point of X̂. We identify a ∈ X with the constant sequence
(a)n∈N and consider X as a dense subset of X̂. We set d(x, y) = lim

n→+∞
d(xn, yn), and

write x =X̂ y if d(x, y) = 0 (subscripts will be omitted if there is no confusion). Thus, for
all x ∈ X̂, we have that d(x, xn) ≤ 2−n, where x = (xn)n∈N.

Notice that we have defined a point x of a complete separable metric space
X̂ as a quickly convergent Cauchy sequences of elements of X. The fact that for
x = (xn)n∈N ∈ X̂ we have that d(x, xn) ≤ 2−n for every n ∈ N justifies the
designation of the space as separable with dense set X. To justify its denomination
as complete, we must consider the following result. Recall that a sequence (xn)n∈N

of elements of X̂ converges if there is a point x ∈ X̂ such that

∀ε > 0 ∃N ∀n (n ≥ N → d(xn, x) < ε).
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In that case, we write xn → x.

Theorem 3.16 (Exercise 10.9.2 of [8]). The following is provable in RCA0. Let X̂ be a
complete separable metric space. Every quickly converging sequence (xn)n∈N of elements
of X̂ converges.

We have a case for completeness in terms of quickly convergent Cauchy se-
quences. Unfortunately, RCA0 is not strong enough to prove that any Cauchy
sequence (not necessarily quickly convergent) does converge. For this we need the
power of ACA0. Recall that a sequence (xn)n∈N, xn ∈ X̂, is said to be Cauchy if
∀ε > 0 ∃m ∀n (m < n → d(xm, xn) ≤ ε).

Theorem 3.17 (Theorem III.2.7 of [19]). The following is provable in ACA0. In any
complete separable metric space X̂, every Cauchy sequence is convergent.

Sequences of real numbers are quite useful sets of reals. Next we present the
definitions of some other important sets.

Definition 3.18 (open and closed sets). Within RCA0, let X̂ be a complete separable
metric space. A (code for an) open set U in X̂ is a set U ⊆ N× X ×Q>0. A point x ∈ X̂
is said to belong to U (abbreviated x ∈ U) if ∃n ∃a ∃r(d(x, a) < r ∧ (n, a, r) ∈ U).

A closed set in X̂ is defined to be the complement of an open set in X̂. In other words,
we define a code for a closed set C to be the same thing as a code for an open set U, and we
define x ∈ C if and only if x /∈ U.

Definition 3.19 (separably closed set). A (code for a) separably closed set in Â is a
sequence C = (xn)n∈N of points of Â. The separably closed set is then denoted by C and
x ∈ C if and only if ∀q ∈ Q>0 ∃n d(x, xn) < q.

The definitions of (codes for) closed sets and (codes for) separably closed sets
intend to code the same mathematical object (closed sets) but their logical content
is quite different as can be appreciated with the following theorems that will play
an important role later on.

Theorem 3.20 (Theorem 7.1 of [13]). The following are equivalent over RCA0:

1. Π1
1-CA0.

2. For every complete separable metric space Â and every closed set C in Â there
exists a continuous function fC : Â → R such that for every x ∈ Â we have
fC(x) = inf{d(x, y) : y ∈ C}.

Theorem 3.21 (Theorem 7.3 of [13]). The following are equivalent over RCA0:

1. ACA0.
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2. For every complete separable metric space Â and every separably closed set C in Â
there exists a continuous function fC : Â → R such that for every x ∈ Â we have
fC(x) = inf{d(x, y) : y ∈ C}.

We continue the first part of our review of Analysis with the definition of
continuous functions within RCA0.

Although the classical non-formalized “ε − δ” definition of continuity is typ-
ically expressed in terms of strict inequalities, it can be stated equivalently with
non-strict inequalities. Thus, Theorem 2.4 can be stated in terms of closed balls. In
consequence, a function F : X → Y is continuous iff for all x ∈ X, for every closed
ball B containing F(x) there is a closed ball B̃ including x with F(B̃) ⊆ B.

Following this, we notice that to represent a continuous function f in second
order arithmetic it is necessary to capture information about which closed balls
map into which other closed balls without referring directly to points in the space.
Since any closed ball is completely determined by a center x and a radius r, it
follows from this characterization that we can represent a continuous function F
with a sequence Φ of tuples of center-radius pairs ⟨(x, r), (y, s)⟩ such that enu-
merates certain facts of the form F(Br(x)) ⊆ Bs(y). The inclusion of a four-tuple
⟨(x, r), (y, s)⟩ in Φ needs to show that this set inclusion holds.

However, the code Φ does not need to include every such inclusion; it only
needs to include enough information about F for us to recover a value for F(x)
for each x in the domain of F. In the Reverse Mathematics literature the following
definition of such a code for Φ to represent continuous functions is fundamental.

Definition 3.22 (coded continuous function). The following definition is made in
RCA0. Let X̂ and Ŷ be complete separable metric spaces. A continuous partial func-
tion f : X̂ → Ŷ is coded by a set Φ ⊆ N × X × Q>0 × Y × Q>0 that satisfies the
properties below. Let us write Br(a) Φ−→ Bs(b) for the formula ∃n((n, a, r, b, s) ∈ Φ).
Then, for all a, a′ ∈ X, all b, b′ ∈ Y , and all r, r′, s, s′ ∈ Q>0, Φ must satisfy:

(CF1) if Br(a) Φ−→ Bs(b) and Br(a) Φ−→ Bs′(b′) then d(b, b′) ≤ s + s′;

(CF2) if Br(a) Φ−→ Bs(b) and d(a′, a) + r′ < r, then Br′(a′) Φ−→ Bs(b);

(CF3) if Br(a) Φ−→ Bs(b) and d(b, b′) + s < s′, then Br(a) Φ−→ Bs′(b′).

A point x ∈ X̂ is in the domain of the function f coded by Φ if, for every ε > 0, there
are Br(a) Φ−→ Bs(b) such that d(x, a) < r and s < ε. If x ∈ dom( f ), we define the value
f (x) to be the unique point y ∈ Y such that d(y, b) ≤ s for all Br(a) Φ−→ Bs(b) with
d(x, a) < r. We say that f is totally defined on X̂ if x ∈ dom( f ) for all x ∈ X̂ and refer
to such an object as a coded continuous function.



3.2 Development of Analysis in the Subsystems of Z2 23

A wide range of usual functions can be proven to be coded continuous in
RCA0. We present an especially important result regarding the composition of
coded continuous functions.

Theorem 3.23 (Lemma II.6.4 of [19]). The following is provable in RCA0. If f : Â → B̂
and g : B̂ → Ĉ are continuous, then so is h = g ◦ f : Â → Ĉ given by h(x) = g( f (x)).

There is a very useful characterization of continuity of functions between met-
ric spaces regarding sequences of elements of the space and the sequences of the
image. We can not prove the characterization within RCA0 but it will be possible
to prove one of the implications.

Theorem 3.24. The following is provable in RCA0. Let X̂ and Ŷ be two separable metric
spaces. Let f : X̂ → Ŷ be a coded continuous function and let (xn)n∈N be a convergent
sequence in X̂, i.e., there is x ∈ X̂ such that xn → x. Then the sequence ( f (xn))n∈N of
elements of Ŷ converges to f (x).

Proof. Denote by d and d′ the metrics of X̂ and Ŷ respectively and let f be coded
by the set Φ ⊆ N × X × Q>0 × Y × Q>0. To show that f (xn) → f (x), let ε > 0 (in
Q) and show that there is N ∈ N such that

n ≥ N → d′( f (xn), f (x)) < ε.

On the one hand, since x ∈ X̂, then x ∈ dom( f ) and therefore there are Br(a) Φ−→
Bs(b) such that d(x, a) < r and s <

ε

4
. Whence, d′( f (x), b) ≤ s. Adding s to both

sides of the inequality we get that d′( f (x), b) + s ≤ 2s <
ε

2
. Thus, we have

Br(a) Φ−→ Bs(b) and d′(b, f (x)) <
ε

2
;

hence, by (CF3), we conclude that

Br(a) Φ−→ Bε/2( f (x)). (3.1)

On the other hand, since d(x, a) < r, by density there is δ > 0 such that d(x, a) +

δ < r. Thus, due to (CF2), the latter and (3.1) imply that Bδ(x) Φ−→ Bε/2( f (x)). The
fact that xn → x provides an N′ ∈ N such that d(xn, x) < δ for every n ≥ N′.
Now, take N = N′ and let n ≥ N. Since d(xn, x) < δ and because xn ∈ dom( f ) we
have that d( f (xn), f (x)) ≤ ε

2
< ε. This completes the proof.

Other important definitions that are very useful in Analysis have their formal-
ized counterpart. We review some of them.
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Definition 3.25 (compactness). The following definition is made in RCA0. A compact
metric space is a complete separable metric space X̂ such that there exists an infinite
sequence of finite sequences

((xij)i≤nj)j∈N, xij ∈ X̂,

such that for all y ∈ X̂ and j ∈ N there exists i ≤ nj such that d(xij, y) < 2−j.

Remark 3.26. Within RCA0 one can prove that the sequence ((i · 2−j)i≤2j)j∈N shows
that the closed unit interval [0, 1] = {x : 0 ≤ x ≤ 1} is compact. More generally, any
closed bounded interval in R is compact. See Example III.2.4 of [19].

Definition 3.27 (modulus of uniform continuity). The following definition is made in
RCA0. Let X̂ and Ŷ be complete separable metric spaces, and let F be a coded continuous
function from X̂ to Ŷ. A modulus of uniform continuity for F is a function h : N → N

such that for all n ∈ N and all x and y in X̂, if F(x) and F(y) are defined and d(x, y) <
2−h(n), then d(F(x), F(y)) < 2−n.

We will need to develop some insight on separable Banach spaces within
RCA0. Thus, we present the formalized definition.

Definition 3.28 (separable Banach space). The following definition is made in RCA0.
A (code for a) separable Banach space Ê consist in a countable vector space E over the
rational field Q together with a sequence of real numbers ∥·∥ : E → R satisfying

1. ∥q · a∥ = |q| · ∥a∥ for all q ∈ Q and a ∈ E;

2. ∥a + b∥ ≤ ∥a∥+ ∥b∥ for all a, b ∈ E.

A point of Ê is a sequence x = (xn)n∈N of elements of E such that for all n ≤ m,
∥xn − xm∥ ≤ 2−n. As usual, we define a pseudometric on E by d(a, b) = ∥a − b∥, for
all a, b ∈ E. Thus, Ê is the complete separable metric space which is the completion of E
under d.

If x = (xn)n∈N and y = (yn)n∈N are points of Ê and α = (qn)n∈N is a real number,
we define ∥x∥ = lim

n→+∞
∥xn∥, x + y = lim

n→+∞
(xn + yn) and α · x = lim

n→+∞
(qn · xn). It is

easy to show within RCA0 that this limits exist and that ∥·∥ : Ê → R, + : Ê × Ê → Ê
and R× Ê → Ê can be coded as continuous functions. Thus, Ê enjoys the usual properties
of a normed vector space over R (see section II.10 of [19] for details about this definition
and its properties).

Now, to finish this section we consider three important results that will play a
crucial role in what follows. Notice the increasing logical strength of each of them.



3.2 Development of Analysis in the Subsystems of Z2 25

Theorem 3.29 (Theorem 10.4.1. of [8]). The following is provable in RCA0. If F is a
coded continuous function from an interval [a, b] to R, and y is between F(a) and F(b),
there is an x ∈ [a, b] with F(x) = y.

Theorem 3.30 (Theorem IV.2.2 of [19]). The following is provable in WKL0. Let X̂ be a
compact metric space. Let C be a closed set in X̂, and let F be a continuous function from
C into a complete separable metric space Ŷ. Then F has a modulus of uniform continuity
on C. If in addition X̂ = C and Ŷ = R, the F attains a maximum value.

Theorem 3.31. The following is provable in ACA0. Every sequence of real numbers
bounded from below has an infimum.

Proof. Adapt proof of 4. from Theorem III.2.2 of [19].

3.2.2 The separable Banach spaces C([0, 1], Ê)

With the formalization of the proof of the MPT in sight, we would want to
reason towards the existence of a version in RCA0 of the separable Banach space of
continuous functions C([0, 1], Ê), where Ê is a separable Banach space. However,
RCA0 will not be enough to do so. We eventually will have to reason within
WKL0. To begin with, consider E, the countable dense subset of Ê. Yet within
RCA0 define |E| ⊆ N to be the set of (codes for) nonempty finite sequences of
elements of Q× E, ⟨r0, . . . , rn⟩, where ri = ⟨qi, xi⟩ ∈ Q× E for each i ∈ {0, 1, . . . , n}
and such that q0 = 0, qn = 1 and with qi < qj if i < j. We define the “line” passing
through the points rk and rk+1 as follows:

ℓ
rk+1
rk (x) =

(
x − qk

qk+1 − qk

)
· (xk+1 − xk) + xk, for x ∈ [qk, qk+1] . (3.2)

Equation 3.2 is just a generalization of the classical equation of a straight line
passing between to given points from Euclidean plane geometry.

We want to define an addition and a scalar product on |E|. Consider ⟨r0, . . . , rm⟩
and ⟨s0, . . . , sn⟩ on |E|, where ri = ⟨qi, xi⟩ ∈ Q × E for each i ∈ {0, 1, . . . , m} and
si = ⟨q′i, x′i⟩ ∈ Q × E for each i ∈ {0, 1, . . . , n}.

For the addition we set

⟨r0, . . . , rm⟩+ ⟨s0, . . . , sn⟩ = ⟨t0, . . . , tk⟩

where k = max{m, n} and ti = ⟨q′′i , x′′i ⟩ is constructed as follows.

• q′′0 = 0 and x′′0 = x0 + x′0.

• q′′1 = min{q1, q′1} and

x′′1 =

{
x1 + ℓs1

s0(q1) if q′′1 = q1,

x′1 + ℓr1
r0(q

′
1) if q′′1 = q′1.
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•

q′′2 =

{
min{q′1, q2} if q′′1 = q1,

min{q1, q′2} if q′′1 = q′1,

and

x′′2 =


x′1 + ℓr2

r1(q
′
1) if q′′2 = q′1,

x2 + ℓs2
s1(q2) if q′′2 = q2

x1 + ℓs2
s1(q1) if q′′2 = q1

x′2 + ℓr2
r1(q

′
2) if q′′2 = q′2.

We can continue in this way successively until we reach

• q′′k = 1 and x′′k = xm + x′n.

The previous definition of addition is projected to be used towards a com-
putable definition of a step by step sum of piece-wise linear functions with break-
points in the ri and the si. The result will be another piece-wise linear function
with breakpoints in the ti.

For the scalar product we set:

q · ⟨r0, . . . , rm⟩ = ⟨0⟩, if q = 0

and
q · ⟨r0, . . . , rm⟩ = ⟨q · r0, . . . , q · rm⟩, if q ∈ Q \ {0}.

One can verify that |E| is a vector space over Q.
Now, continuing in RCA0, for all m ∈ N, given ⟨r0, . . . , rm⟩ ∈ |E| we define a

function g : [0, 1] → Ê by

• g (qk) = xk for k ∈ {0, . . . , m}, and

• g(x) = ℓ
rk+1
rk (x) for x ∈ [qk, qk+1].

Notice that g is a piece-wise linear (in the “likewise a straight line” meaning of
the term) and continuous function with rational breakpoints; we will call this
functions polygonal when Ê = R and therefore E = Q. It is easy to verify that g
is a coded continuous function.

Up to here, we are asserting that finite sequences of points ⟨r0, . . . , rm⟩ ∈ |E|
serve as codes of piece-wise linear continuous functions like g: precisely the ones
constructed using those points as breakpoints.

Now, we want to define a norm for |E|. To that aim, RCA0 is not strong enough.
We must use the power of WKL0.



3.2 Development of Analysis in the Subsystems of Z2 27

As defined above let g : [0, 1] → Ê a piece-wise linear continuous function with
rational breakpoints and consider:

G : [0, 1] → R

x 7→ ∥g(x)∥ .

Since the norm ∥·∥ and g are coded continuous functions then G, as a composition,
is also a coded continuous function. Using the Theorem 3.30 with X = C = [0, 1]
and Y = R, we have that max

x∈[0,1]
∥g(x)∥ ∈ R. Thus, for ⟨r0, . . . , rm⟩ ∈ |E|, we set

∥⟨r0, . . . , rm⟩∥1 = max
x∈[0,1]

∥g(x)∥ .

We define C([0, 1], Ê) = |̂E|, the completion of |E| under the metric induced by
this norm.

We want to assert that the points of our C([0, 1], Ê) are in canonical one to one
correspondence with the continuous Ê-valued functions on the closed unit interval
[0, 1]. For this, we prove the following.

Theorem 3.32. The following is provable in RCA0. Let F be a continuous Ê-valued
function defined on [0, 1].

1. If F(x) is uniformly continuous, then for each ε > 0 there exists a piece-wise linear
continuous function f with rational breakpoints such that ∥F(x)− f (x)∥ < ε for
all x ∈ [0, 1].

2. If F(x) possesses a modulus of uniform convergence, then there exists a sequence of
piece-wise linear continuous functions with rational breakpoints ( fn)n∈N such that
∥F(x)− fn(x)∥ < 2−n for all x ∈ [0, 1].

Proof. To prove 1, let F : [0, 1] → Ê be a uniformly continuous function, i.e., for all
ε > 0 there exists δ > 0 such that if |x1 − x2| < δ then ∥F(x1)− F(x2)∥ < ε. Now,
we fix ε > 0. Since ε

5 > 0, we can find δ > 0 as in the previous definition applied
to ε

5 > 0. Taking m ∈ N large enough so 1
m < δ, we have

∥F(x)− F(y)∥ <
ε

5
, whenever |x − y| < 1

m
, for all x, y ∈ [0, 1].

For such an m we construct the piece-wise linear continuous function f : [0, 1] → Ê
as follows. Let k ∈ {0, . . . , m}. Since F

(
k
m

)
∈ Ê, then F

(
k
m

)
= (xk

i )i∈N with

xk
i ∈ E, and we know that for every i ∈ N,

∥∥∥F
(

k
m

)
− xk

i

∥∥∥ ≤ 2−i. We can take

i ∈ N such that 2−i < ε
5 and define:
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• f
(

k
m

)
= xk

i ∈ E, for k ∈ {0, . . . , m}.

• f (x) = (mx − k) ·
(

f
(

k+1
m

)
− f

(
k
m

))
+ f

(
k
m

)
, for x ∈

[
k
m , k+1

m

]
.

Thus, we have that
∥∥∥ f
(

k
m

)
− F

(
k
m

)∥∥∥ < ε
5 , for each k ∈ {0, . . . , m}.

Next, for k ∈ {0, . . . , m} and x ∈
[

k
m , k+1

m

]
, and because 0 ≤ mx − k ≤ 1, notice

that: ∥∥∥ f
(

k
m

)
− f (x)

∥∥∥ =
∥∥∥ f
(

k
m

)
− (mx − k) ·

(
f
(

k+1
m

)
− f

(
k
m

))
− f

(
k
m

)∥∥∥
= | − (mx − k)|

∥∥∥ f
(

k+1
m

)
− f

(
k
m

)∥∥∥
≤
∥∥∥ f
(

k+1
m

)
− f

(
k
m

)∥∥∥ .

Finally, given x ∈ [0, 1], we know x ∈
[

k
m , k+1

m

]
for some k ∈ {0, . . . , m}. Therefore:

∥F(x)− f (x)∥ ≤
∥∥∥F(x)− F

(
k
m

)∥∥∥+ ∥∥∥F
(

k
m

)
− f

(
k
m

)∥∥∥+ ∥∥∥ f
(

k
m

)
− f (x)

∥∥∥
≤ ε

5 +
ε
5 +

∥∥∥ f
(

k
m

)
− f

(
k+1

m

)∥∥∥
≤ 2ε

5 +
∥∥∥ f
(

k
m

)
− F

(
k
m

)∥∥∥+ ∥∥∥F
(

k
m

)
− F

(
k+1

m

)∥∥∥+ ∥∥∥F
(

k+1
m

)
− f

(
k+1

m

)∥∥∥
≤ 2ε

5 + ε
5 +

ε
5 +

ε
5 = ε.

For 2, since any continuous coded function that possesses a modulus of uni-
form continuity is uniformly continuous, we can use part 1 and induction with
φ(n), the Σ0

1 formula that says that there exists a piece-wise linear continuous
functions fn with rational breakpoints such that ∥F(x)− fn(x)∥ < 2−n for all
x ∈ [0, 1].

Due to Theorems 3.30 and 3.32 we assert that within WKL0, the space C([0, 1], Ê)
is isomorphic to the space of uniformly continuous functions F : [0, 1] → Ê that
have moduli of uniform continuity and that the dense set is given by piece-wise
linear continuous functions f : [0, 1] → Ê with rational breakpoints, each repre-
sented by finitely many pairs ⟨x, f (x)⟩ ∈ Q × E.

With a similar construction, it is straightforward to have access to the separable
metric space Γ = Â = {g ∈ C([0, 1], Ê) : g(0) = 0, g(1) = v} for any fixed v ∈ Ê,
where the dense subset A consists in piece-wise linear continuous functions with
rational breakpoints and such that the image of 0 is 0 and the image of 1 is v.
Notice that this will not be a Banach space (because it will not be a vector space)
but just a metric space. The metric being defined by

d( f , g) = max
t∈[0,1]

∥ f (t)− g(t)∥ .
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Up to this point, we have set up the formalized framework where to develop the
formalization of the MPT. In the next chapter, we formalize its first ingredient: the
Deformation Lemma.
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Chapter 4

Formalizing the Deformation
Lemma

We have seen that one possible path to perform the proof of the MPT relies
on the use of the Deformation Lemma. This is the path that we will take here
although we again encourage the interested researcher to explore the path that
uses the Ekeland ε−principle.

In order to formalize the proof of the Deformation Lemma (Lemma 4.24) we
need to review some results from the theory of Ordinary Differential Equations
(ODEs).

4.1 Ordinary Differential Equations

We begin with some preliminary results.

Theorem 4.1 (Generalized Theorem for Convergence for Series). The following is
provable in RCA0. Let Â be a separable metric space and let Ê be a separable Banach space.
Let Σ+∞

k=0αk be a convergent series of nonnegative real numbers αk ≥ 0. Let (ϕk)k∈N be a
sequence of continuous functions ϕk : Â → Ê such that ∥ϕk(x)∥ ≤ αk for all k ∈ N and
x ∈ Â. Then ϕ = Σ+∞

k=0ϕk : Â → Ê is continuous, and ∥ϕ(x)∥ ≤ Σ+∞
k=0αk for all x ∈ Â.

Proof. We rewrite the proof of Lemma II.6.5 of [19], where the theorem is proved

for Ê = R. We set Φ ⊆ A × Q>0 × E × Q>0 such that Br(a) Φ−→ Bs(b) if and only

if there is some m ∈ N such that there exist Br(a)
Φk−→ Bsk(bk), k < m, such that

b = ∑k<m bk and
∞

∑
k=0

sk +
∞

∑
k=0

αk < s.

One can verify that this is a code for ϕ : Â → Ê as required.

31
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Remark 4.2. The preceding theorem can be used to show that real-valued functions defined
by power series, such as ex, are also coded continuous functions.

Next, we present a formalized version of the Riemann integral.

Definition 4.3 (Riemann integral). The following definitions are made in RCA0. A
partition of the interval [a, b] is a finite list of points P = {x0, x1, x2, ..., xk} with a =

x0 < x1 < x2 < · · · < xk−1 < xk = b. In each subinterval Ij = [xj−1, xj], select a
computable point ξ j (e.g. the average of the endpoints). Let ∆xj = xj − xj−1. Given a
Banach space Ê and a function f : [a, b] → Ê we define the Riemann sum as

RP =
k

∑
i=0

f (ξ j)∆xj.

Define the mesh of the partition P to be m(P) = max
j

∆xj. We say that the Riemann

sums have a limit ℓ ∈ R as the mesh of the partitions tends to zero if, given ε > 0, there
is a δ > 0 such that, if m(P) < δ, then ∥RP − ℓ∥ < δ. In that case, we call the limit ℓ
the Riemann integral of the function f on the interval [a, b]. We write as usual

ℓ =
∫ b

a
f (x) dx

for the Riemann integral.

We are ready to prove a fundamental result.

Theorem 4.4 (Existence of the Riemann Integral). The following is provable in WKL0.
Let Ê be a separable Banach space and let F : [a, b] → Ê be a coded continuous function.
Then the Riemann integral of F on [a, b] exists.

Proof. First, we are going to show a kind of Cauchy property for the Riemann
integral following some ideas from [6] and [16]. Let ε > 0. Due to Theorem 3.30,
we know that WKL0 proves that the coded continuous function F is uniformly
continuous on [a, b]. This allows us to choose δ > 0 such that |s − t| < δ implies

∥F(s)− F(t)∥ <
ε

2(b − a)
. Now let P and Q be partitions of [a, b] with mesh less

than δ. We show that
∥RP −RQ∥ < ε.

Let W be the common refinement of P and Q, defined to be W = P ∪Q. Let the
points of P be called p0, p1, . . . , pk and let the points of W be called w0, w1, . . . , wm.
The partition P gives rise to subintervals Ij, having lengths ∆j, and the partition
W gives rise to subintervals Jl , having lengths ∆′

l . For each j, let sj be a computable
point chosen from Ij and for each l, let tl be a computable point chosen from Jl
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(these points are chosen to enable us to write down the Riemann sums). Since the
partition W contains every point of P , plus some additional points as well, every
Jl is contained in some Ij. Thus, consider that for each j:

∆j = ∑
Jl⊆Ij

∆′
l .

Now consider the following:

∥RP −RW∥ =

∥∥∥∥∥ k

∑
j=1

F(sj)∆j −
m

∑
l=1

F(tl)∆′
l

∥∥∥∥∥
=

∥∥∥∥∥∥
k

∑
j=1

F(sj) ∑
Jl⊆Ij

∆′
l

−
k

∑
j=1

 ∑
Jl⊆Ij

F(tl)∆′
l

∥∥∥∥∥∥
≤

k

∑
j=1

∑
Jl⊆Ij

∥∥F(sj)− F(tl)
∥∥∆′

l .

Since each of the points sj, tl are in Ij, we have that |sj − tl | < δ; therefore,∥∥F(sj)− F(tl)
∥∥ <

ε

2(b − a)
. Whence,

∥RP −RW∥ <
k

∑
j=1

∑
Jl⊆Ij

ε

2(b − a)
∆′

l .

=
ε

2(b − a)

k

∑
j=1

∑
Jl⊆Ij

∆′
l .

=
ε

2(b − a)

k

∑
j=1

∆j

=
ε

2(b − a)
(b − a) =

ε

2
.

Analogously, we can estimate that ∥RQ −RW∥ <
ε

2
and therefore that ∥RP −RQ∥ <

ε. Thus, we have shown that for all ε > 0, there is δ > 0 such that for any two
partitions P and Q with mesh less than δ, we have that ∥RP −RQ∥ < ε. We use
this fact to prove that the Riemann integral exists. For each n ∈ N, let δn > 0 be
such that for any two partitions P and Q with mesh less than δn, we have that

∥RP −RQ∥ <
1
2n .

We can assume that δn ≥ δn+1; otherwise, we replace δn by δ′n = min{δ1, . . . , δn}.
For each n ∈ N, let Pn be a partition with m(P) < δn. Clearly, if m > n then both
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Pm and Pn have mesh less that δn, thus

∥RPm −RPn∥ <
1
2n . (4.1)

This implies that the sequence (RPm)m∈N is a quickly converging Cauchy se-
quence in Ê. In consequence, by Theorem 3.16, this sequence converges in Ê,
to a limit that we call ℓ = lim

m→+∞
RPm . Taking the limit in (4.1) as m → +∞, we

have that for all n ∈ N:
∥RPn − ℓ∥ <

1
2n .

To see that ℓ is the Riemann integral we are looking for, fix ε > 0 and let K ∈ N

be such that 2−K < ε/2. Let P be an arbitrary partition with m(P) < δK; this way
we have that:

∥RP − ℓ∥ ≤ ∥RP −RPK∥+ ∥RPK − ℓ∥

<
1

2K +
1

2K < ε.

Since ε > 0 was chosen arbitrarily, we can conclude our proof.

Some properties of the Riemann integral that will be used later are easy to
prove in WKL0. We state them in the following lemma:

Lemma 4.5. The following is provable in WKL0. Suppose that f , g : [a, b] → Ê are two
coded continuous functions. Then,

1. α
∫ b

a f (x) dx +
∫ b

a g(x) dx =
∫ b

a [α f (x) + g(x)] dx, for α ∈ R.

2.
∫ c

a f (x) dx +
∫ b

c f (x) dx =
∫ b

a f (x) dx, for c ∈ (a, b).

3.
∥∥∥∫ b

a f (x) dx
∥∥∥ ≤

∫ b
a ∥ f (x)∥ dx.

4.
∥∥∥∫ b

a f (x) dx
∥∥∥ ≤ max

x∈[a,b]
∥ f (x)∥ · (b − a).

Next, we want to establish a sort of Generalized Fundamental Theorem of
Calculus. First, we must review some definitions on bounded and continuous
linear operators and an important theorem relating both. All of this can be found
in [19].

Definition 4.6 (bounded linear operators). The following definition is made in RCA0.
Let Â and B̂ be separable Banach spaces. A (code for a) bounded linear operator from
Â to B̂ is a sequence F : A → B̂ of points of B̂, indexed by elements of A, such that (i)
F(q1a1 + q2a2) = q1F(a1) + q2F(a2) for all q1, q2 ∈ Q and a1, a2 ∈ A, (ii) there exists a
real number α such that ∥F(a)∥ ≤ α · ∥a∥ for all a ∈ A.
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For F and α as above and x = (xi)i∈N ∈ Â, we define F(x) = limk→+∞ F(ak). Thus
∥F(x)∥ ≤ α · ∥x∥ for all x ∈ Â. We write F : Â → B̂ to denote this state of affairs. If
α ∈ R is such that ∥F(x)∥ ≤ α · ∥x∥ for all x ∈ Â, we write ∥F∥ ≤ α.

Definition 4.7 (continuous linear operators). The following definition is made in
RCA0. Let Â and B̂ be separable Banach spaces. A continuous linear operator from
Â to B̂ is a totally defined continuous function φ : Â → B̂ such that φ(α1x1 + α2x2) =

α1 φ(x1) + α2φ(x2) for all α1, α2 ∈ R and x1, x2 ∈ Â.

Theorem 4.8 (Theorem II.10.7. of [19]). The following is provable in RCA0. Given a
continuous linear operator φ : Â → B̂, there exists a bounded linear operator F : Â → B̂
such that F(x) = φ(x) for all x ∈ Â. Conversely, given a bounded linear operator
F : Â → B̂, there exists a continuous linear operator φ : Â → B̂ such that φ(x) = F(x)
for all x ∈ Â.

Thus, we know that RCA0 proves that bounded linear operators are the same
thing as continuous linear operators.

If F : Â → B̂ is a bounded linear operator we write F ∈ B(Â, B̂). A special case
is the dual space of the separable Banach space Â, when B̂ = R.

For F ∈ B(Â, B̂) we define its norm as:

∥F∥B(Â,B̂) = sup
x ̸=0

∥F(x)∥B̂
∥x∥Â

.

Consider the following result.

Lemma 4.9 (Existence of norms for bounded linear functionals). The following is
provable in ACA0. Every bounded linear functional on a Banach space has a norm.

Proof. This follows from (1) of Theorem 13.4 of [4].

We must mention that for arbitrary separable spaces Â and B̂, the Banach space
B(Â, B̂) (and therefore the dual of a separable Banach space Ê, denoted Ê ′) cannot
be proven to exist in Second Order Arithmetic because there is no way to justify
it would be separable in full generality. When using it as a set, we should assume
it is also a separable Banach space in order to define continuously differentiable
functions, which is what we do next.

Definition 4.10. Let Â and B̂ be two Banach spaces, and U ⊆ Â be an open subset of Â.
A function f : U → B̂ is called Fréchet differentiable (or just differentiable) at x ∈ U if
there exists a bounded linear operator D : Â → B̂ such that

lim
∥h∥B̂→0

∥ f (x + h)− f (x)− D(h)∥Â
∥h∥B̂

= 0, (4.2)
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wich using the “little-O” notation of Landau can be written as follows:

f (x + h)− f (x)− D(h) = o(h), as ∥h∥ → 0.

If there exists such an operator, it is unique, so we write f ′(x) = D and call it the Fréchet
derivative of f at x. A function f that is Fréchet differentiable for any point of x ∈ U is
said to be of class C1 if the function

f ′ : U → B(Â, B̂)

x 7→ f ′(x)

is continuous.

Note that this is not the same as requiring that the map f ′(x) : Â → B̂ be
continuous for each value of x, which is already assumed since bounded and
continuous are equivalent.

Now we are ready to prove a pretty fundamental theorem.

Theorem 4.11 (Generalized Fundamental Theorem of Calculus). The following is
provable in WKL0. Let Ê be a separable Banach space and let f : [a, b] → Ê be a coded
continuous function. Then the function

F : [a, b] → Ê

x 7→
∫ x

a
f (s) ds.

is differentiable on (a, b) and F′(x) = f (x).

Proof. By the previous theorem we know that WKL0 is enough to define F(x) =∫ x
a f (s) ds for each x ∈ [a, b]. Now, to show that its derivative is f (x), let x ∈ (a, b)

and show that

F(x + h)− F(x)− f (x)h = o(h), as |h| → 0.

Let ε > 0. By the uniform continuity of f , we choose δ > 0 such that |s − t| < δ
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implies ∥ f (s)− f (t)∥ < ε. Now, assume that |h| ≤ δ and consider the following,

∥F(x + h)− F(x)− f (x)h∥
|h| =

∣∣∣h−1
∣∣∣ ∥∥∥∥∫ x+h

a
f (s) ds − F

∫ x

a
f (s) ds − f (x)h

∥∥∥∥
≤ h−1

∥∥∥∥∫ x+h

x
f (s) ds − f (x)h

∥∥∥∥
= h−1

∥∥∥∥∫ x+h

x
f (s) ds −

∫ x+h

x
f (x) ds

∥∥∥∥
= h−1

∥∥∥∥∫ x+h

x
[ f (s)− f (x)] ds

∥∥∥∥
≤ h−1

[
max

s∈[x,x+h]
∥ f (s)− f (x)∥

]
(h)

= max
s∈[x,x+h]

∥ f (s)− f (x)∥

=
∥∥ f (s′)− f (x)

∥∥ ,

where s′ ∈ [x, x + h] is where the maximum is attained. Since x, s′ ∈ [x, x + h],
then |s′ − x| < h, and therefore ∥ f (s′)− f (x)∥ < ε.

The Fundamental Theorem of Calculus is an angular result in the development
of Integration Theory. We recall a particular application of it that will be useful
afterwards.

Theorem 4.12 (Grönwall’s inequality). The following is provable in WKL0. Let ψ(t)
be a continuous function on [0, h] which satisfies the integral inequality:

0 ≤ ψ(t) ≤
∫ t

0
(Mψ(s) + A) ds

for t ∈ [0, h] and for constants M, A ≥ 0. Then

ψ(t) ≤ AheMh

for 0 ≤ t ≤ h. In particular, if

ψ(t) ≤ M
∫ t

0
ψ(s) ds

for 0 ≤ t ≤ h, then
ψ(t) = 0.

Proof. The proof follows immediately using the Fundamental Theorem of Calculus
as can be apreciated in the original proof by Grönwall on [14].
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Now, we need a generalization of Picard’s theorem for existence and unique-
ness for initial value problems.

Theorem 4.13 (Generalized Picard’s Theorem). The following is provable in RCA0.
Let Ê be a separable Banach space. Assume that f : R× Ê → Ê has a modulus of uniform
continuity h : N → N and satisfies a Lipschitz condition with respect to the second
variable:

∥ f (x, y1)− f (x, y2)∥ ≤ L · ∥y1 − y2∥ .

Also, let ∥ f (x, y)∥ ≤ M whenever |x| ≤ a and ∥y − u∥ ≤ b for a, b ∈ R and u ∈ Ê.
Then, the initial value problem: {

y′(x) = f (x, y(x))

y(0) = u,
(4.3)

has a unique solution y = ϕ(x) for the interval J = [−α, α], where α = min{a, b/M}.
Moreover ϕ(x) has a modulus of uniform continuity on this interval.

Proof. In this proof we follow those from Theorems IV.8.1 and IV.8.3 of [19], where
things are done for Ê = R.

First, let A = {qi : i ∈ N} be an enumeration of the rational numbers in the
closed interval [−α, α]. Thus Â = [−α, α]. We may safely assume that q0 = 0. Let C
be the closed convex set in Ê N consisting of all sequences (yi)i∈N such that y0 = u
and

∥∥yi − yj
∥∥ ≤ M|qi − qj| for all i, j ∈ N. To each (yi)i∈N ∈ C is associated a

continuous function
ϕ : [−α, α] → Ê

such that ϕ(qi) = yi for all i ∈ N. Namely, the code Φ of ϕ is given by putting

Br(qi)
Φ−→ Bs(b) if and only if Mr + ∥b − yi∥ < s. Thus we shall identify points of

C with continuous functions ϕ : [−α, α] → Ê satisfying ϕ(0) = u and∥∥ϕ(x)− ϕ(x′)
∥∥ ≤ M|x − x′|

for |x|, |x′| ≤ α. We define a continuous function F : C → C as follows. For
(yi)i∈N, we put

F((yi)i∈N) =

(
u +

∫ qi

0
f (x, ϕ(x)) dx

)
i∈N

where ϕ : [−α, α] → Ê is the continuous function associated to (yi)i∈N as above.
Notice that for all i, j ∈ N we have that

∥u+
∫ qi

0 f (x, ϕ(x)) dx − u −
∫ qj

0 f (x, ϕ(x)) dx∥

=
∥∥∥∫ qj

qi
f (x, ϕ(x)) dx

∥∥∥
≤ M|qi − qj|,
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so F((yi)i∈N) ∈ C. Using a modulus of uniform continuity for f , we can construct
a code for F. Thus, we have the coded continuous function F : C → C defined by

F(ϕ)(x) 7→ u +
∫ x

0
f (s, ϕ(s)) ds.

We define a sequence of functions ϕn ∈ C by ϕ0(x) = u for all |x| ≤ α and
ϕn+1 = F(ϕn) for all n ∈ N. First, we prove that for all n ∈ N, if |x| ≤ α, we have
that

∥ϕn(x)− u∥ ≤ b. (4.4)

We proceed by induction. The base, when n = 0, is trivial. For the inductive step,
let (4.4) hold; this implies that ∥ f (s, ϕn(s))∥ ≤ M for all s ∈ [0, x]. Now consider
the following:

∥ϕn+1(x)− u∥ =

∥∥∥∥∫ x

0
f (s, ϕn(s)) ds

∥∥∥∥
≤ max

s∈[0,x]
∥ f (s, ϕn(s)))∥ (x − 0)

≤ M|x|
≤ Mα ≤ b.

Second, we want to prove that for all n ∈ N, we have that

∥ϕn+1(x)− ϕn(x)∥ ≤ Ln M|x|n+1

(n + 1)!
. (4.5)

We shall use induction again. For the base case, we can see that:

∥ϕ1(x)− ϕ0(x)∥ =

∥∥∥∥∫ x

0
f (s, ϕ1(s)) ds

∥∥∥∥
≤ max

s∈[0,x]
∥ f (s, ϕ1(s))∥ (x − 0)

≤ M|x|.
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For the inductive step, assuming that (4.5) holds, we have that:

∥ϕn+2(x)− ϕn+1(x)∥ =

∥∥∥∥∫ x

0
[ f (s, ϕn+1(s))− f (s, ϕn(s))] ds

∥∥∥∥
≤
∫ x

0
∥ f (s, ϕn+1(s))− f (s, ϕn(s))∥ ds

≤ L
∫ x

0
∥ϕn+1(s)− ϕn(s)∥ ds

≤ L
∫ x

0

Ln M|s|n+1

(n + 1)!
ds.

≤ Ln+1M
(n + 1)!

∫ x

0
|s|n+1 ds

=
Ln+1M|x|n+2

(n + 2)!
.

With (4.5) been proved to hold for all n ∈ N, let ψn = ϕn+1 − ϕn and βn =
Ln M|x|n+1

(n + 1)!
for n ∈ N. We have that ∑+∞

n=0 βn is a convergent series and since

∥ψn(x)∥ ≤ βn for all n ∈ N and all x ∈ [−α, α], by Theorem 4.1, we have that
ψ = ∑+∞

n=0 ψn : Â → Ê converges. Notice that ∑n
k=0 ψn = ϕn − ϕ0; therefore ϕn

converges to ϕ = ψ + ϕ0, an element of C. We can verify that this limit is a fixed
point of F. To see this, notice that on the one hand, since ϕn → ϕ, we have by
Theorem 3.24 that F(ϕn) → F(ϕ). On the other hand, since also ϕn+1 → ϕ, by the
definition of the sequence we have that F(ϕn) → ϕ. Unicity of the limit gives us
that F(ϕ) = ϕ. Hence,

ϕ(x) = u +
∫ x

0
f (s, ϕ(s)) ds.

Taking the derivative, we see that y = ϕ(x) is a solution of the initial value problem
(4.3).

To prove uniqueness, suppose that ỹ is another solution. We define the function

ψ(t) = ∥y(t)− ỹ(t)∥ .

Since,

∥y(t)− ỹ(t)∥ =

∥∥∥∥∫ t

0
f (s, y(s))− f (s, ỹ(s)) ds

∥∥∥∥ ≤ L
∫ t

0
∥y(s)− ỹ(s)∥ = L

∫ t

0
ψ(s) ds.

Therefore,

ψ(t) ≤ L
∫ t

0
ψ(s) ds, ∀ t ≥ 0,

whence, due to Gronwall’s inequality implies that ψ = 0, guaranteeing the unique-
ness.
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The solution y = ϕ(x) of the initial-value problem (4.3) depends not only on
the current value of the independent variable x but also on the initial data u.
Moreover, the uniqueness theorem ensures that, for a given value of x, solutions
with distinct values of u must have distinct values of y, and conversely, distinct
values of y require distinct values of u. The solution may be written y = y(x, u)
to emphasize that y is determined by its initial data, i.e., is a function of its initial
data: for a fixed value of x, it maps initial data u to y. Let us call this function the
solution map and write:

y : [−α,+α]× Ê → Ê

(x, u) 7→ y(u, x).

where y solves the problem{
y′(x, u) = f (x, y(x, u))

y(0, u) = u.
(4.6)

To establish the Theorem of Existence of Solution of ODEs that will indeed be
used in the Deformation Lemma we need a formalized version of the theorem
that assures the continuity of solutions also with respect to initial values. We
begin with the following result.

Lemma 4.14. The following is provable in RCA0. Under the hypotheses of Picard’s theo-
rem, let

y : [−α,+α]× Ê → Ê

(x, u) 7→ y(x, u).

be the solution map. Then there exists K > 0 such that

∥y(x, u)− y(x, u)∥ ≤ K ∥u − u∥

for all u, u and for all x ∈ [−α,+α].

Proof. Take K = eLα and let x ∈ [−α,+α] and u, u ∈ Ê; consider that due to
Picard’s integral approximations we have

∥y(x, u)− y(x, u)∥ =

∥∥∥∥u +
∫ x

0
f (s, y(s, u))− u −

∫ x

0
f (s, y(s, u)) ds

∥∥∥∥
≤ ∥u − u∥+

∫ x

0
∥ f (s, y(s, u))− f (s, y(s, u))∥ ds

≤ ∥u − u∥+
∫ x

0
L ∥y(s, u)− y(s, u)∥ ds

=
∫ x

0

(
L ∥y(s, u)− y(s, u)∥+ ∥u − u∥

x

)
ds.
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Now, applying Theorem 4.12 with M = L and A =
∥u − u∥

x
, we get that

∥y(x, u)− y(x, u)∥ ≤ ∥u − u∥ eLx,

and since eLx ≤ eLα = K, we get the result.
With this in mind, we prove the following theorem.

Theorem 4.15. The following is provable in RCA0. Under the hypotheses of the general-
ized Picard’s theorem, the solution map

y : [−α,+α]× Ê → Ê

(x, u) 7→ y(x, u).

is a coded continuous function.

Proof. Recall following the same notation that in the proof of Picard’s theorem
that Â = [−α,+α]. We denote by d the metric on A × E, the dense subset of
[−α,+α]× Ê:

d((x, u), (x′, u′)) = |x − x′|+
∥∥u − u′∥∥ .

This is just the taxicab norm. We want to code y by Φ ⊆ (A× E)×Q>0 × E×Q>0.
Let Ψ ⊆ A × Q>0 × E × Q>0 be the code of the function ψ : A → Ê that solves{

ψ′(x) = f (x, ψ(x))

ψ(0) = u,
(4.7)

which exists by Picard’s theorem. Now, let Br((x, u)) Φ−→ Bs(b) if and only if

Br(x) Ψ−→ Bs−Kr(b), where K is the constant given by the previous lemma. We first
prove that this defines a code for a partial function:

(CF1) Let Br((x, u)) Φ−→ Bs(b) and Br((x, u)) Φ−→ Bs′(b′). To show that ∥b − b′∥ ≤
s + s′, notice that as we have that Br(x) Ψ−→ Bs(b) and Br(x) Ψ−→ Bs′(b′), we can
get ∥b − b′∥ ≤ s − Kr + s′ − Kr and therefore ∥b − b′∥ ≤ s + s′, as wished.

(CF2) Let Br((x, u)) Φ−→ Bs(b) and d((x, u), (x′, u′)) + r′ < r. We shall show that

Br′((x′, u′))
Φ−→ Bs(b). We have that Br(x) Ψ−→ Bs−Kr(b) and |x − x′|+ r′ < r.

Therefore, by (CF2) applied to the code Ψ we obtain that Br′(x′) Ψ−→ Bs−Kr(b).
Since r′ < r, we know that s − Kr < s − Kr′ so by (CF3) with respect to Ψ it

is straightforward to get Br′(x′) Ψ−→ Bs−Kr′(b) and thus Br′((x′, u′))
Φ−→ Bs(b).
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(CF3) Let Br((x, u)) Φ−→ Bs(b) and ∥b − b′∥ + s < s′. This implies that Br(x) Ψ−→
Bs−Kr(b) and that ∥b − b′∥ + s − Kr < s′ − Kr, so (CF3) with respect to Ψ

gives us that Br(x) Ψ−→ Bs′−Kr(b′). Whence, Br((x, u)) Ψ−→ Bs′(b′), which is
what we needed.

Now, we show that y is totally defined on [−α,+α]× Ê. Let (z, v) ∈ [−α,+α]×
Ê and show that (z, v) ∈ dom(y). For this, we fix ε > 0 and show there is

Br((x, u)) Φ−→ Bs(b) such that d((z, v), (x, u)) < r and s < ε. On the one hand,
let r̂ > 0 such that r̂ <

ε

K
, so ε − Kr̂ > 0. Then, since z ∈ Â, we know there are

Br̄(x̄) Ψ−→ Bs̄(b̄) such that |z − x̄| < r̄ and s̄ < ε − Kr̂. We can choose r̄ as small as
we want, particularly r̄ < r̂. Now, since v ∈ E, we know that v = (vi)i∈I ⊆ E. Let
i ∈ N be such that |z − x̄|+ 2−i < r̄. Therefore |z − x̄|+ ∥v − vi∥ < r̄. Now, let s
be such that s̄ = s − Kr̄. Thus,

s = s̄ + Kr̄ < ε − Kr̂ + Kr̄ < ε − Kr̄ + Kr̄ = ε.

This way, taking x = x̄, u = vi, r = r̄, b = b̄ and the aforementioned s, we have

that Br(x) Ψ−→ Bs−Kr(b), so Br(x) Φ−→ Bb(s) and of course d((z, v), (x, u)) < r and
ε < s.

Finally, let (z, v) ∈ Â × Ê and Br((x, u)) Φ−→ Bs(b) such that d((z, v), (x, u)) < r.

We show that ∥y(z, v)− b∥ ≤ s. On the one hand we have that Br(x) Ψ−→ Bs−Kr(b)
and |z − x| < r, so we know that ∥ϕ(z)− b∥ ≤ s − Kr. Notice that there is ū ∈ E
such that ∥v − ū∥ ≤ r and such that y(z, ū) = ϕ(z). Thus, ∥y(z, ū)− b∥ ≤ s − Kr.
Therefore,

∥y(z, v)− b∥ ≤ ∥y(z, v)− y(z, ū)∥+ ∥y(z, ū)− b∥
≤ K ∥v − u∥+ s − Kr

≤ Kr + s − Kr = s.

This concludes the proof.

Thanks to Theorem 4.13, we have that Problem (4.3) has a unique solution y(t)
defined on an interval I centered in 0. We will denote by (ω−, ω+) the maximal open
interval of existence of y; namely ω− and ω+ are such that there are no solutions
of (4.3) defined on an open interval which contains strictly (ω−, ω+).

For what will follow when analyzing the Deformation Lemma, it will be im-
portant that the solutions of an ODE of the style of (4.3) is globally defined for
positive t, i.e., ω+ = +∞. With this in mind, we present the following results
formalizing the ideas of [1].
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Lemma 4.16. The following is provable in WKL0. If ω+ < +∞ (respectively ω− > −∞)
then y(t) has no limit points as t ↗ ω+ (respectively t ↘ ω−).

Proof. By contradiction, assume that there is v ∈ Ê such that v = lim
t↗ω+

y(t); then,

one could define the problem{
β′(t) = f (s, β(s)),

β(ω+) = v.
(4.8)

which would have a solution β defined in an open maximal interval (ω+ − ε, ω+ +

ε), with ε > 0. But with this, the function

ỹ(t) =

{
y(t), if t ∈ (ω−, ω+),

β(t), if t ∈ (ω+, ω+ + ε)
(4.9)

would be a continuous function that solves (4.3) in (ω−, ω+ + ε), contradicting the
maximality of the interval (ω−, ω+). The same argument holds for ω−.

Theorem 4.17. The following is probable in ACA0. Under the hypotheses of Picard’s
theorem and its notations we have that ω+ = +∞.

Proof. Arguing by contradiction, suppose that ω+ < +∞; i.e., ω+ ∈ R, so ω+ =

(tn)n∈N is a quickly converging Cauchy sequence of rational numbers with tn ∈
(ω−, ω+). Since (4.3) holds for every tj, ti ∈ (tn)n∈N , we have that given j ≤ i:

y(tj)− y(ti) =
∫ tj

ti

d
dt

y(s) ds =
∫ tj

ti

f (s, y(s)) ds,

and therefore,

∥∥y(tj)− y(ti)
∥∥ =

∥∥∥∥∫ tj

ti

f (s, y(s)) ds
∥∥∥∥

≤
∫ tj

ti

∥ f (s, y(s))∥ ds

≤ M|tj − ti| < M · 2−j.

The last inequality implies that (y(tn))n∈N is a Cauchy sequence on Ê. Being in
a complete separable metric space, by Theorem (3.17), we know that (y(tn))n∈N

converges, i.e., there is v ∈ Ê such that lim
n→+∞

y(tn) = v; since tn → ω+, we have

that v = lim
t↗ω+

y(t) so by the previous lemma we reach a contradiction. This way,

we can conclude that ω+ = +∞, so the solution of (4.3) can be obtained for all
t ≥ 0.
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Recall that a function F : Ê → Ê is called locally Lipschitz if for every u ∈ Ê
there are δ > 0 and L > 0, depending on u, such that

(∥x − u∥ < δ ∧ ∥y − u∥ < δ) ⇒ (∥F(x)− F(y)∥ ≤ L ∥x − y∥) ,

and that it is called uniformly bounded if there is C > 0 such that ∥F(x)∥ ≤ C
para todo x ∈ Ê.

With this in mind, we can summarize the results of this section with the fol-
lowing theorem.

Theorem 4.18. The following is provable in ACA0. Let Ê be a separable Banach space and
F : Ê → Ê be a locally Lipschitz and uniformly bounded coded continuous function that
has a modulus of uniform continuity. Then, there is a unique coded continuous function
y : [0,+∞)× Ê → Ê such that{

y′(t, u) = F(y(t, u)),

y(0, u) = u.
(4.10)

This theorem will be used in the proof of the Deformation Lemma, result that
we formalize next.

4.2 The Deformation Lemma in Hilbert Spaces

The Deformation Lemma is a result that can be sated and proved (in the met-
alanguage) for Banach spaces. However, the construction of a quiet technical con-
cept, the pseudo-gradient vector field, must be used to do so. In the last chapter
we will comment on it but not pursue a formalization.

One way to avoid pseudo-gradient vector fields is to work within Hilbert
spaces, where we have a gradient for free instead. It will require an extra hypoth-
esis but it is used in a great amount of Analysis and PDEs literature for theory
and applications (see for example [5] and [9]); in this sense we are not making
unnatural assumptions.

We first recall some basic concepts of the formalized theory of Separable Hilbert
spaces.

Definition 4.19 (Hilbert space). The following definition is made in RCA0. A (code for
a real) separable Hilbert space Ĥ consists of a countable vector space H over Q together
with a function ⟨·, ·⟩ : H × H → R satisfying for all x, y, z ∈ H and a, b ∈ Q:

1. ⟨x, x⟩ ≥ 0,

2. ⟨x, y⟩ = ⟨y, x⟩,
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3. ⟨ax + by, z⟩ = a⟨x, z⟩+ b⟨y, z⟩.

Every Hilbert space can be viewed as a Banach space with norm ∥x∥ = ⟨x, x⟩1/2.
The triangle inequality and the Cauchy-Schwartz inequality follow from the axiomatic
characterization of the inner product, and then the inequality

∥⟨x, y⟩ − ⟨z, w⟩∥ = ∥⟨x, y − w⟩+ ⟨x − z, w⟩∥ ≤ ∥x∥ ∥y − w∥+ ∥x − z∥ ∥w∥

shows that the inner product is continuous. We view Ĥ as the completion of H as usual,
and extend the inner product to the whole space by defining ⟨x, y⟩ = lim

n→+∞
⟨xn, yn⟩ for

x = (xn)n∈N and y = (yn)n∈N; the inequality above can be used to find an explicit code
for the inner product as a continuous function on Ĥ × Ĥ (See [4] for details).

We continue with a very important result.

Theorem 4.20 (Fréchet-Riesz representation). The following is provable in ACA0. Let
Ĥ be a Hilbert space and let F be a bounded linear functional (in short F ∈ Ĥ ′). Then
there is y ∈ Ĥ such that

F(x) = ⟨y, x⟩, ∀ x ∈ Ĥ.

Proof. This follows from (6) of Theorem 13.4 of [4].

It is straightforward to prove within the same system that the representative y
from above is unique. Thus, assuming that the dual space Ĥ ′ exists (as a separable
Banach space within our theory), we can define the Riesz operator R:

R : Ĥ ′ → Ĥ

F 7→ R(F) = y.

This allows us to define the following

Definition 4.21 (gradient). The following definition is made in ACA0. Let Ĥ be a
separable Hilbert space with separable dual Ĥ ′. Let U ⊆ Ĥ be open and R : Ĥ ′ → Ĥ
be the Riesz operator. Let I : U → R be a differentiable functional on x. The element
R(I′(x)) ∈ Ĥ is known as the gradient of I on x and is denoted by ∇I(x). Therefore,

I′(x)h = ⟨∇I(x), h⟩, ∀ h ∈ Ĥ.

In other words, if I is Fréchet differentiable on Ĥ, each element x ∈ Ĥ has linked to it
its gradient that is also an element of Ĥ:

∇I : H → H

x 7→ ∇I(x).

where clearly ∇I = R ◦ I′.
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We can summarize all of this in order to avoid assumptions about dual spaces
with a definition that encapsulates everything of what is needed.

Definition 4.22 (derivative of a functional on a Hilbert space). The following defini-
tion is made in RCA0. Let Ĥ be a separable Hilbert space. Let U ⊆ Ĥ be an open subset
and I : U → R be a functional. We say that I is differentiable at x ∈ U if there is y ∈ Ĥ
such that

I(x + h)− I(x)− ⟨x, y⟩ = o(h), as ∥h∥ → 0.

We write I′(x) = y, as y can be proven to be unique and call it the derivative of I at x.

The following definition is important.

Definition 4.23. The following definition is made in RCA0. Let Ĥ be a separable Hilbert
space and I : Ĥ → R be a functional. We write that I ∈ C1,1(Ĥ) if I has a derivative
at every point x ∈ Ĥ and I ′ : Ĥ → Ĥ is a Lipschitz continuous function (i.e., a coded
continuous functions that satisfies the Lipschitz inequality).

We are ready to prove the version for Hilbert spaces of the Deformation Lemma

Lemma 4.24 (Deformation Lemma). The following is provable in ACA0. Let Ĥ be a
separable Hilbert space and let I ∈ C1,1(Ĥ) such that I satisfies (PS). Suppose c ∈ R and
ε̄ > 0. If c is not a critical value of I, then there exists ε ∈ (0, ε̄) and η ∈ C([0, 1]× Ĥ, Ĥ)

such that:

(a) η(1, Ic+ε) ⊆ Ic−ε.

(b) η(1, u) = u if I(u) /∈ [c − ε̄, c + ε̄.]

Proof. In the first place we consider the following claim:

∃ ε̂ > 0 and ∃ b > 0 such that ∀ u ∈ Ic+ε̂\Ic−ε̂, ∥I′(u)∥ ≥ b. (4.11)

To prove it, we proceed by contradiction and suppose that

∀ ε̂ ≥ 0 and ∀ b ≥ 0, ∃ u ∈ Ic+ε̂\Ic−ε̂ such that ∥I′(u)∥ < b.

Since for every k ∈ N, ε̂k = bk =
1
2k > 0, then ∃ uk ∈ Ic+ε̂k\Ic−ε̂k such that

∥I′(uk)∥ < bk. (4.12)

Thus, for every k ∈ N, we have that c − ε̂k ≤ I(uk) ≤ c + ε̂k and ∥I′(uk)∥ < bk. By
how we chose ε̂k = bk we can conclude that,

I(uk) → c, and ,

I′(uk) → 0.
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This means that the sequence (uk)k of elements of Ĥ is such that (I(uk))k is a
bounded sequence in R and such that I′(uk) → 0 (in Ĥ). Therefore, by (PS), (uk)k

has a convergent subsequence. The limit of this subsequence is a critical point at
the level c, which contradicts the hypothesis. Therefore, we conclude (4.11).

Let ε̃ ≤ ε̂; then c + ε̃ ≤ c + ε̂ and c − ε̃ ≥ c − ε̂. Let u ∈ Ic+ε̃\Ic−ε̃, i.e. c − ε̃ <

I(u) ≤ c+ ε̃; this implies that c− ε̂ < I(u) ≤ c+ ε̂, or in other words, u ∈ Ic+ε̂\Ic−ε̂.
Thus, due to (4.11), we have that ∥I(u)∥ ≥ b. Since ε̃ and u were chosen arbitrarily,
we conclude that no matter how small is ε̃, it follows that∥∥I′(u)

∥∥ ≥ b ∀ u ∈ Ic+ε̃\Ic−ε̃. (4.13)

We want to select ε̃ in such a way that the following sets are separably closed:

A = {u ∈ Ĥ : I(u) ≤ c − ε̃} ∪ {u ∈ Ĥ : I(u) ≥ c + ε̃}

and
B = {u ∈ Ĥ : c − ε ≤ I(u) ≤ c + ε}.

for ε ∈ (0, ε̃).
We will see that it would be enough to guarantee that there is δ > 0 such that

for all 0 < k ≤ δ we have that c − k and c + k are not critical values of I. By
contradiction assume that for all δ > 0, there exists 0 < k ≤ δ such that c − k or
c + k are critical values of I. This allows us to find a sequence of positive numbers
(kn)n∈N such that kn → 0 and such that that c − kn (or c + kn) are critical values of
I. This means that there is a sequence (un)n∈N of elements of Ê such that

I(un) → c, and ,

I′(un) → 0.

Once again by (PS), (un)n∈N has a convergent subsequence. The limit of this
subsequence is a critical point at the level c, i.e., c is critical value of I which
contradicts the hypothesis. Now, we know that the described δ does exists.

We take

0 < ε̃ < min
{

ε̄, δ,
b2

4
,

b
4

}
(4.14)

and let ε ∈ (0, ε̃) to define the sets:

A = {u ∈ Ĥ : I(u) ≤ c − ε̃} ∪ {u ∈ Ĥ : I(u) ≥ c + ε̃}

and
B = {u ∈ Ĥ : c − ε ≤ I(u) ≤ c + ε}.
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We claim that A and B are separably closed. For A, consider the countable set

C = {u ∈ H : I(u) ≤ c − ε̃} ∪ {u ∈ H : I(u) ≥ c + ε̃}.

We want to show that A = C. Let u ∈ A. If I(u) < c − ε̃, then by density and
continuity we can find ū ∈ C such that for all q ∈ Q we have that ∥u − ū∥ < q; so
we are done. In the case that I(u) = c − ε̃, the fact that I′(u) ̸= 0 allows us to find
x ∈ Ê such that I(u + x) < c − ε̃ and therefore find ū ∈ C as close as we want to
u. For B, we can proceed analogously since ε < ε̃.

Now, notice that the relation between ε and ε̃ determine that A ∩ B = ∅.
Consider thus the function:

g(x) =
ρA(x)

ρA(x) + ρB(x)
,

where ρD(x) = inf{∥x − y∥ : y ∈ D}, for D ⊆ Ĥ. Here we use Theorem 3.21 and
thanks to ACA0 we have ρA and ρB as coded continuous functions.

It is possible to prove that g is locally Lipschitz. Notice that g = 0 on A, g = 1
on B and 0 ≤ g(x) ≤ 1 for all x ∈ Ĥ.

Also, consider the function

s : [0,+∞) → [0, 1]

s 7→ h(s) =

{
1, if 0 ≤ s ≤ 1,

1/s, if s > 1.

which is locally Lipschitz because every constant function is and s 7→ 1/s also is
on (1,+∞).

Finally, we define:

W(x) = −g(x)h(
∥∥I′(x)

∥∥)I′(x) (x ∈ Ĥ).

This is a locally Lipschitz continuous function, whence by Theorem 4.18 the
problem {

η′(t, u) = W(η(t, u)),

η(0, u) = u,
(4.15)

possesses a unique solution η ∈ C([0,+∞)× Ĥ, Ĥ).
Restricting the domain we have a function η ∈ C([0, 1] × Ĥ, Ĥ) such that

η(0, u) = u.
We want to prove property (a). Using the Chain Rule we have that:

dI(η(t, u))
dt

= ⟨I′(η(t, u)), η′(t, u)⟩

= ⟨I′(η(t, u)),−g(η(t, u))h(
∥∥I′(η(t, u))

∥∥)I′(η(t, u))⟩

= −g(η(t, u))h(∥I(η(t, u))∥)
∥∥I′(η(t, u))

∥∥2 ≤ 0.
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This implies that I(η(t, u)) is decreasing on t. Thus, η(t, u) ∈ Ic−ε for all u ∈ Ic−ε

and for all t ∈ [0, 1]. To show η(1, Ic+ε) ⊆ Ic−ε, let v ∈ η(1, Ic+ε). Thus, there
is u ∈ Ic+ε such that η(1, u) = v. In the first place, if there is t ∈ [0, 1] such
that u ∈ Ic−ε, we are done; therefore, we assume that η(t, u) ∈ Ic+ε\Ic−ε for all
t ∈ [0, 1]; this way g(η(t, u)) = 1 and

dI(η(t, u))
dt

= −h(
∥∥I′(η(t, u))

∥∥) ∥∥I′(η(t, u)))
∥∥2 .

If on the one hand, t ∈ (0, 1), ∥I′(η(t, u))∥ ≤ 1, then h(∥I′(η(t, u))∥) = 1, and
therefore

d
dt

I(η(t, u)) = −
∥∥I′(η(t, u))

∥∥2 ≤ −b2 ≤ −b2

2
≤ −2ε (4.16)

If on the other hand, t ∈ (0, 1), ∥I′(η(t, u))∥ > 1, then h(∥I′(η(t, u))∥) = 1
∥I′(η(t, u))∥ ,

whence,
d
dt

I(η(t, u)) = −
∥∥I′(η(t, u))

∥∥ < − b
2
≤ −2ε. (4.17)

Hence, for any t ∈ (0, 1) we have that

d
dt

I(η(t, u)) ≤ −2ε.

Due to the Fundamental Theorem of Calculus, we have that

I(η(1, u)) ≤ I(u)− 2ε ≤ c + ε − 2ε ≤ c − ε,

so v = η(1, u) ∈ Ic−ε as desired.
To prove (b), let u ∈ Ĥ be such that I(u) /∈ [c − ε, c + ε]. Since ε̄ > ε̃ then

u ∈ A and since g = 0 on A, we have that W(u) = 0 for all u ∈ Ĥ such that
I(u) /∈ [c − ε, c + ε]; thus, for those u, η(t, u) = u is the unique solution to (4.15)
obtaining what was needed.

Once we have developed the formalized proof of the Deformation Lemma
within ACA0, we are ready to use it to formalize the MPT in the next chapter.



Chapter 5

Formalizing the Mountain Pass
Theorem

In this chapter we use everything that we have reviewed so far to show that
the the proof of the MPT can be formalized within ACA0. We will first proceed
by arguing that ACA0 is strong enough to prove the existence of

c = inf
g∈Γ

max
u∈g([0,1])

I(u).

where
Γ = {g ∈ C([ 0, 1 ], E) : g(0) = 0, g(1) = v}.

5.1 The existence of c in ACA0

In the first place we need a formalized path to code as continuous the function

F : Γ → R.

g 7→ max
t∈[0,1]

I(g(t)).

We recall the non-formalized proof using the ε − δ definition in the metalanguage
before going into the formalized argument.

Proof of the ε − δ continuity of F. Let f ∈ Γ and let ε > 0 be fixed. We have to show
that there is δ > 0 such that for all g ∈ Γ,

d(g, f ) < δ ⇒ |F(g)− F( f )| < ε.

Since [0, 1] is compact and f is a continuous function on [0, 1], then the direct
image f ([0, 1]) is also compact. Thus, I is uniformly continuous on f ([0, 1]) ⊆ Ê.
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Therefore, there is δ0 > 0 such that for every y ∈ f ([0, 1]) and all x ∈ Ê such that
∥x − y∥ < δ, we have that

|I(x)− I(y)| < ε.

Now, let δ = δ0 and assume that d(g, f ) < δ, i.e.,

max
t∈[0,1]

∥g(t)− f (t)∥ < δ.

Let t = arg max
t∈[0,1]

I(g(t)); then

F(g)− F( f ) = I(g(t))− max
t∈[0,1]

I( f (t)) ≤ I(g(t))− I( f (t)).

Now, we also have that ∥∥g(t)− f (t)
∥∥ ≤ d(g, f ) < δ,

and since f (t) ∈ f ([0, 1]) we can conclude that

|I(g(t))− I( f (t))| < ε,

so
F(g)− F( f ) < ε.

Reversing the roles of g and f we obtain |F(g)− F( f )| < ε.

To proceed with the formalized proof that such an F is coded continuous, we
would impose a Lipschitz condition. This would made the construction of the
code more approachable.

Theorem 5.1. The following is provable in WKL0. Let Ê be a Banach space and let
I : Ê → R be a coded continuous function. Let

Â = {g ∈ C([0, 1], Ê) : g(0) = 0, g(1) = v}.

If I is Lipschitz with constant L > 0, then the following is a coded continuous function:

F : Â → R.

g 7→ F(g) = max
t∈[0,1]

I(g(t)).

Proof. Consider the Banach space B̂ = C([0, 1], R), where B is the dense set con-
sisting in the polygonal functions with rational breakpoints. Let

m : B̂ → R.

f 7→ max
t∈[0,1]

f (t),
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and

h : Â → B̂.

g 7→ I ◦ g.

Clearly F = m ◦ h, so if we prove that m and h are coded continuous functions we
are done because of Theorem 3.23.

Let us begin with m. We denote by d the metric on B:

d(a, a′) = max
t∈[0,1]

|a(t)− a′(t)|.

We want to code m by Φ ⊆ B × Q>0 × Q × Q>0, so Let Br(a) Φ−→ Bs(b) if and only
if (a, r, b, s) ∈ B × Q>0 × Q × Q>0 and |max a(t) − b| + r < s. Here max a(t) =

maxt∈[0,1] a(t) is just the maximum of a finite list of rationals (the peaks of the
polygonal function a) and thus a computable quantity.

We first proof that this defines a code for a continuous partial function:

(CF1) Let Br(a) Φ−→ Bs(b) and Br(a) Φ−→ Bs′(b′). We must show that |b − b′| ≤ s + s′.
Since |max a(t)− b|+ r < s and |max a(t)− b′|+ r < s′, then:

|b − b′| = |b − max a(t) + max a(t)− b′|
≤ |b − max a(t)|+ r + |max a(t)− b′|+ r

≤ s + s′.

(CF2) Let Br(a) Φ−→ Bs(b) and d(a′, a) + r′ < r. We must show that Br′(a′) Φ−→ Bs(b),
i.e., |max a′(t)− b|+ r′ < s. Since |max a(t)− b|+ r < s, we have:

|max a′(t)− b|+ r′ = |max a′(t)− max a(t) + max a(t)− b|+ r′

≤ |max a(t)− max a′(t)|+ |max a(t)− b|+ r′

≤ max |a(t)− a′(t)|+ |max a(t)− b|+ r′

= d(a, a′) + r′ + |max a(t)− b|
≤ r + |max a(t)− b|
≤ s.

(CF3) Let Br(a) Φ−→ Bs(b) and |b − b′|+ s < s′. We must show that then Br(a) Φ−→
Bs′(b′), i.e., i.e., |max a(t)− b|+ r < s′. Since |max a(t)− b|+ r < s, we have:

|max a(t)− b′|+ r = |max a′(t)− b + b − b′|+ r′

≤ |max a(t)− b|+ r + |b − b′|
≤ s + |b − b′|
≤ s′.
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Now, we show that m is totally defined on B̂. Let x ∈ B̂ and show that x ∈ dom(m).

For this, we fix ε > 0 and show there is Br(a) Φ−→ Bs(b) such that d(x, a) < a and
s < ε. Since x ∈ B̂, we know that x = (xi)i∈N with xi ∈ B for all i ∈ N. Take
n ∈ N such that 2−n+2 < ε. Now, choose a = xn, b = max a(t), s = 2−n+2

and r = 2−n+1. Thus, is obvious that (a, r, b, s) ∈ B × Q>0 × Q × Q>0 and that

|max a(t)− b|+ r = r < s so Br(a) Φ−→ Bs(b). Moreover, d(x, a) ≤ 2−n < r.
Finally, we have to show that the unique point y ∈ R such that |y − b| ≤ s for

all Br(a) Φ−→ Bs(b) with d(x, a) < r is precisely y = maxt∈[0,1] x(t). Let x ∈ B̂ and

Br(a) Φ−→ Bs(b) such that d(x, a) < r. We want to show that |maxt∈[0,1] x(t)− b| ≤ s.
Since |max a(t)− b|+ r < s, we have that:∣∣∣∣max

t∈[0,1]
x(t)− b

∣∣∣∣ ≤ ∣∣∣∣max
t∈[0,1]

x(t)− max a(t)
∣∣∣∣+ |max a(t)− b|

≤ max
t∈[0,1]

|x(t)− a(t)|+ |max a(t)− b|.

If we show that d(x, a) = limi→+∞ maxt∈[0,1] |xi(t)− a(t)| is indeed equal to maxt∈[0,1] |x(t)−
a(t)|, we are done because we would have:∣∣∣∣max

t∈[0,1]
x(t)− b

∣∣∣∣ ≤ d(x, a) + |max a(t)− b|

< r + |max a(t)− b| < s.

To show that
lim

i→+∞
max
t∈[0,1]

|xi(t)− a(t)| = max
t∈[0,1]

|x(t)− a(t)|,

let ε > 0 and find N ∈ N such that for all i ≥ N,∣∣∣∣max
t∈[0,1]

|xi(t)− a(t)| − max
t∈[0,1]

|x(t)− a(t)|
∣∣∣∣ < ε.

Taking N such that 2−N < ε suffices. Thus, we can conclude that |maxt∈[0,1] x(t)−
b| ≤ s, as wished.

Next, we prove that h is a coded continuous function. As we already stated,
A is the dense set consisting in the piece-wise linear continuous functions with
rational breakpoints with fixed images for 0 and 1. Let Ψ be the code of the given
coded continuous function I and let dA denote the metric on A:

dA(a, a′) = max
t∈[0,1]

∥∥a(t)− a′(t)
∥∥ .

We want to code h by Φ ⊆ A × Q>0 × B × Q>0, so let Br(a) Φ−→ Bs(b) if and only if
(a, r, b, s) ∈ A × Q>0 × B × Q>0 and ∀t ∈ [0, 1], |b(t)− I(a(t))|+ Lr < s.

Let us see that this defines a code for a continuous partial function:
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(CF1) Let Br(a) Φ−→ Bs(b) and Br(a) Φ−→ Bs′(b′). We prove that d(b, b′) ≤ s + s′. Since
for all t ∈ [0, 1], |b(t) − I(a(t))| + Lr < s and |b′(t) − I(a(t))| + Lr < s′, it
follows straightforwardly due to the triangle inequality that for all t ∈ [0, 1],
|b(t)− b′(t)| ≤ s + s′ and therefore that d(b, b′) ≤ s + s′.

(CF2) Let Br(a) Φ−→ Bs(b) and dA(a′, a)+ r′ < r. We must show that Br′(a′) Φ−→ Bs(b).
Let t ∈ [0, 1] and show |b(t) − I(a′(t))| + Lr′ < s. On the one hand, since
dA(a′, a) + r′ < r, then ∥∥a(t)− a′(t)

∥∥+ r′ < r.

On the other hand, using the latter and due to the Lipschitz condition, we
get

|I(a(t))− I(a′(t))|+ Lr′ ≤ L
∥∥a(t)− a′(t)

∥∥+ Lr′

= L(
∥∥a(t)− a′(t)

∥∥+ r′)

< Lr.

Therefore we have that |I(a(t)) − I(a′(t))| + Lr′ < Lr. Then, as |b(t) −
I(a(t))|+ Lr < s, we get:

|b(t)− I(a′(t))|+ Lr′ ≤ |b(t)− I(a(t))|+ |I(a(t))− I(a′(t))|+ Lr′

≤ |b(t)− I(a(t))|+ Lr < s.

(CF3) Let Br(a) Φ−→ Bs(b) and d(b, b′) + s < s′. We show that then Br(a) Φ−→ Bs′(b′).
We have that for all t ∈ [0, 1], |b(t)− I(a(t))|+ Lr < s and |b(t)− b′(t)|+ s <
s′. Thus, given t ∈ [0, 1]:

|b′(t)− I(a(t))|+ Lr ≤ |b′(t)− b(t)|+ |b(t)− I(a(t))|+ Lr.

≤ |b(t)− b′(t)|+ s

≤ s′.

Now, we show that h is totally defined on Â. Let x ∈ Â and show that x ∈ dom(h).

For this, we fix ε > 0 and show there is Br(a) Φ−→ Bs(b) such that d(x, a) < r and
s < ε. Since x ∈ Â, we know that x = (xi)i∈N with xi ∈ A for all i ∈ N. Take n ∈ N

such that 2−n+1(L + 1) < ε. Now, choose a = xn. Since I ◦ a ∈ C([0, 1], R), then by
Theorem 3.32, there is a polygonal function b such that |b(t)− (I ◦ a)(t)| < 2−n+1

for all t ∈ [0, 1]. Choosing r = 2−n+1 and s = 2−n+1(L + 1), is obvious that
(a, r, b, s) ∈ A × Q>0 × B × Q>0 and that for all t ∈ [0, 1], |b(t)− I(a(t))|+ Lr < s.
Evidently, d(x, a) ≤ 2−n < r.



56 Formalizing the Mountain Pass Theorem

Finally, let x ∈ Â and Br(a) Φ−→ Bs(b) such that dA(x, a) < r. We show that
d(I ◦ x, b) ≤ s. The fact that dA(x, a) < r implies that for all t ∈ [0, 1], we have that
∥x(t)− a(t)∥ < r.

Whence, since for all t ∈ [0, 1], |b(t) − I(a(t))| + Lr < s, we get that for all
t ∈ [0, 1]:

|(I ◦ x)(t)− b(t)| ≤ |(I ◦ x)(t)− I(a(t))|+ |I(a(t))− b(t)|
= |I(x(t))− I(a(t))|+ |I(a(t))− b(t)|
≤ L ∥x(t)− a(t)∥+ |(I ◦ a)(t)− b(t)|
≤ Lr + |(I ◦ a)(t)− b(t)| < s.

Whence we get that d(I ◦ x, b) ≤ s, as wished.

Now we are ready to prove the main result of this section, namely, the first
part of the MPT.

Theorem 5.2. (existence of c) The following is provable in ACA0. Let Ê be a Banach
space and let I : Ê → R be a Lipschitz coded continuous function. Suppose that I(0) = 0
and that there exists real numbers ρ, α > 0 such that:

1. If ∥u∥ = ρ then I(u) ≥ α,

2. There is v ∈ Ê such that ∥v∥ > ρ and I(v) ≤ 0.

Then, the following exist:
c = inf

g∈Γ
max

u∈g([0,1])
I(u),

where
Γ = {g ∈ C([ 0, 1 ], E) : g(0) = 0, g(1) = v}.

Proof. Let Γ = Â as previously and let

F : Â → R.

g 7→ F(g) = max
t∈[0,1]

I(g(t)).

This function is well defined because of Theorem 3.30 and is a coded continuous
function thanks to Theorem 5.1. For g ∈ Â, we have that ∥g(0)∥ = ∥0∥ = 0 and
∥g(1)∥ = ∥v∥ > ρ. The fact that g and the norm ∥·∥ are both coded continuous
gives us due to Theorem 3.29 (the intermediate value theorem in RCA0) the ex-
istence of tg ∈ [0, 1] such that

∥∥g(tg)
∥∥ = ρ. Thanks to the condition 1., we have

(I(g(tg)) ≥ α and therefore:

max
t∈[0,1]

I(g(t)) ≥ α.



5.2 The formalized Mountain Pass Theorem in Hilbert Spaces 57

Thus, we have that F(g) ≥ α for all g ∈ Â. Now, let (ai)i∈N be an enumeration
of A and consider the sequence of real numbers (rn)n∈N where rn = F(an) for
all n ∈ N. Thus (rn)n∈N is bounded from bellow and by Theorem 3.31, we have
that infn∈N rn exists. We claim that infg∈Γ F(g) = infn∈N rn. On the one hand,
we show that infn∈N rn is a lower bound of {F(g) : g ∈ Γ}. Let g ∈ Γ. Then
g = (gn)n∈N with gn ∈ A and d(g, gn) ≤ 2−n. This implies that gn → g. Since F
is coded continuous, Theorem 3.24 says that F(gn) → F(g). This and the fact that
F(gn) ≥ infn∈N rn for all n ∈ N gives us that F(g) ≥ infn∈N rn. On the other hand,
we show that infn∈N rn is the greatest lower bound of {F(g) : g ∈ Γ}. In case there
is another lower bound of {F(g) : g ∈ Γ}, say d, it is straightforward to see that
d ≤ infn∈N rn. Thus, we have shown that

inf
g∈Γ

F(g) = inf
n∈N

rn.

Notice that c as defined in the statement of the theorem is just another form to
write infg∈Γ F(g). Thus, the proof is complete.

5.2 The formalized Mountain Pass Theorem in Hilbert Spaces

We are ready to present the formalized proof of the Mountain Pass Theorem.

Theorem 5.3 (Formalized Mountain Pass Theorem). The following is provable in
ACA0. Let Ĥ be a separable Hilbert space and let I ∈ C1,1(Ĥ, R) be a Lipschitz contin-
uously differentiable functional that satisfies (PS). Suppose that I(0) = 0 and that there
exist ρ, α > 0 such that:

1. If ∥u∥ = ρ then I(u) ≥ α,

2. There is v ∈ E such that ∥v∥ > ρ and I(v) ≤ 0.

Then I has a critical value c ≥ α. Moreover, c can be characterized as:

c = inf
g∈Γ

max
u∈g([0,1])

I(u),

where
Γ = {g ∈ C([0, 1], Ĥ) : g(0) = 0, g(1) = v}.

Proof. In the first place, thanks to Theorem 5.2 we know that ACA0 can prove that
c = inf

g∈Γ
max

u∈g([0,1])
I(u) indeed exists, i.e., c ∈ R.

Now, towards proving that c is a critical value of I, we will use our formalized
Deformation Lemma (Lemma 4.24).
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By contradiction, suppose that c is not a critical value of I. By Lemma 4.24
with ε̄ = α/2, we get that there exists ε ∈ (0, ε̄) and η ∈ C([0, 1]× Ĥ, Ĥ) as in the
aforementioned result. By the characterization of the greatest lower bound, we
can find g ∈ Γ such that

F(g) < c + ε. (5.1)

Consider the notation ηt(x) = η(t, x) and define

g̃ : [0, 1] → E

t 7→ η1(g(t)).

We want to show that g̃ ∈ Γ. Due to the continuity of η with respect to the second
variable, since g is also continuous we can state that g̃ is continuous too. Notice
that since ε̄ = α/2, then c − ε̄ > 0. Therefore:

I(0) = 0 < c − ε̄ and I(v) ≤ 0 < c − ε̄.

Thus, by (b) of the deformation lemma, we have:

g̃(0) = η1(g(0)) = η1(0) = 0

and
g̃(1) = ηt(g(1)) = η1(v) = v.

Thus, g̃ ∈ Γ and therefore,
c ≤ F(g̃). (5.2)

By (5.1), I(g(t)) ≤ c + ε for all t ∈ [0, 1]. Thus, g(t) ∈ Ic+ε for all t ∈ [0, 1] and
therefore η1(g(t)) ∈ η1(Ic+ε) for all t ∈ [0, 1]. By (a) of the deformation lemma,
we have that η1(g(t)) ∈ Ic−ε for all t ∈ [0, 1], or in other words g̃(t) ∈ Ic−ε for all
t ∈ [0, 1]. This of course means that I(g̃(t)) ≤ c − ε for all t ∈ [0, 1]; hence:

F(g̃) ≤ c − ε < c. (5.3)

This contradicts (5.2), so we are done.

We have achieved a complete formalization of a version the Mountain Pass
Theorem in Hilbert spaces within the formal subsystem of second order arithmetc
ACA0.



Chapter 6

Conclusions and further research

6.1 Conclusions

We have presented an step by step formalized proof of the MPT in Hilbert
spaces. Our main result is that ACA0 proves the MPT in Hilbert spaces but we
have achieved some partial results quite remarkable on their own to be summa-
rized in what follows:

• WKL0 gives us access to C([0, 1], Ê), a space isomorphic to the space of uni-
formly continuous functions F : [0, 1] → Ê that have moduli of uniform con-
tinuity and that the dense set is given by piece-wise linear continuous func-
tions f : [0, 1] → Ê with rational breakpoints, each represented by finitely
many pairs ⟨x, f (x)⟩ ∈ Q × E. This is the content of theorems 3.30 and 3.32.

• ACA0 proves the existence of solutions of initial value problems defined in
separable Banach spaces; the solutions being defined for every positive real
and being continuous with respect to the independent variable and the initial
values. This is the content of Theorem 4.18.

• ACA0 proves the Deformation Lemma in Hilbert spaces. This is the content
of Lemma 4.24.

• ACA0 proves a version of the Mountain Pass Theorem in Hilbert spaces.
This is the content of Theorem 5.3 where Theorem 5.2 and Lemma 4.24 are
the basic ingredientes.

To close this chapter and monograph, we give some insight on the possible
formalization of a more general result: the MPT in Banach spaces.
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6.2 Further research: towards a formalization of the MPT
in Banach spaces

The proof of the Deformation Lemma in Banach spaces relies on a tool called
pseudo-gradient vector field which allows us to define a initial value problem in
the fashion of problem (4.15) to obtain the deformation without using the Hilbert
space structure.

To shed some light in a possible formalization, we describe in what follows
some highlights in the path towards it that shall be considered.

6.2.1 The Pseudo-gradiente vector field

First, we introduce two important definitions.

Definition 6.1 (Pseudo-gradient vector). Let Ê be a separable Banach space. U ⊆ Ê
and let I : U → R be C1-functional; A vector v ∈ Ê is called a pseudo-gradiente vector
(in short p.g.) for I on u ∈ U if,

(i) ∥v∥ ≤ 2 ∥I′(u)∥Ê′ and

(ii) I ′(u)v ≥ ∥I′(u)∥2
Ê′ .

Here we avoid the parenthesis in the application of I′(u) on v and write I′(u)v instead of
I′(u)(v).

Remark 6.2. In general, a pseudo-gradient vector is not unique. In fact, any convex
combination of any finite set of pseudo-gradient vectors is also a pseudo-gradient vector.

Proof. Let V = {v1, v2, . . . , vn} be a set of n ∈ N pseudo-gradient vectors for I
on u ∈ U and let {λ1, λ2, . . . , λn} be a set of non-negative real numbers such that

n

∑
i=1

λi = 1. We want to show that ∑n
i=1 λivi is a pseudo-gradient vector field for I

on u ∈ U.
On the one hand, to show (i) consider:

∥∥∥∥∥ n

∑
i=1

λivi

∥∥∥∥∥ ≤
n

∑
i=1

λi ∥vi∥

≤
n

∑
i=1

2λi
∥∥I′(u)

∥∥
Ê ′

= 2
∥∥I′(u)

∥∥
Ê ′

n

∑
i=1

λi

= 2
∥∥I′(u)

∥∥
Ê ′ ;
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and on the other hand to verify (ii), we have:

I′(u)

(
n

∑
i=1

λivi

)
=

n

∑
i=1

λi I′(u)vi

≥
n

∑
i=1

λi
∥∥I′(u)

∥∥2
Ê ′ .

=
∥∥I′(u)

∥∥2
Ê ′

n

∑
i=1

λi

=
∥∥I′(u)

∥∥2
Ê ′ .

Definition 6.3 (Pseudo-gradient vector field). Let I : Ê → R be C1 and Ẽ = {u ∈
Ê : I′(u) ̸= 0}. A map V : Ẽ → Ê is called a pseudo-gradient vector field on Ẽ if it is
locally Lipschitz and if V(x) is a p.g. vector for I on x, for every x ∈ Ẽ.

The concept of pseudo-gradient vector field is central in the proof of the De-
formation Lemma for Banach spaces. But the existence of such a field needs of
the following property: paracompactness of separable metric spaces. Fortunately
it has been formalized.

Theorem 6.4 (Theorem II.7.2 of [19], paracompactness). The following is provable in
RCA0. Let X a separable metric space. Given an open covering ⟨Un : n ∈ N⟩, we can
effectively find an open covering ⟨Vn : n ∈ n ∈ N⟩ such that Vn ⊆ Un for all n, and
⟨Vn : n ∈ N⟩ is locally finite, i.e., for all x ∈ X there exists an open set W such that
x ∈ W and W ∩ Vn = ∅ for all but finitely many n.

Finally, we can state the non-formalized version of the main result of this sec-
tion. In the metalanguage, to prove this theorem it is necessary to construct the
pseudo-gradient vector field using distances between points and closed sets which
are presumably not separably closed. Thus, a formalized version of the theorem
as it stands seems to be provable in Π1

1-CA0 in principle. We present the non-
formalized proof to witness the aforementioned difficulties.

Theorem 6.5 (Existence of pseudo-gradient vector fields ). For every functional I ∈
C1(Ê), there is a pseudo-gradient vector field over Ẽ.

Proof. Let u ∈ Ẽ, thus I′(u) ̸= 0, whence ∥I′(u)∥Ê ′ > 0. Recall that the norm in Ê ′

can be characterized in such a way that we can write∥∥I′(u)
∥∥

Ê ′ = sup
v∈Ê

∥v∥=1

|I′(u)v|.
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The characterization of the least upper bound of a set of real numbers A expresses

that for all ε > 0 there is w̃ ∈ A such that sup A − ε < w̃. Then, since
1
6
∥I′(u)∥E′ >

0 we have that there is w̃ ∈ Ê with ∥w̃∥ = 1 such that∥∥I′(u)
∥∥

Ê ′ −
1
6

∥∥I′(u)
∥∥

Ê ′ < |I′(u)w̃|,

i.e.,
5
6

∥∥I′(u)
∥∥

Ê ′ < |I′(u)w̃|

In the case that I′(u)w̃ > 0, then we can state that there is w ∈ Ê with ∥w∥ = 1
such that

5
6

∥∥I′(u)
∥∥

Ê ′ < I′(u)w,

taking w = w̃.
In the case that I′(u)w̃ < 0, then

5
6

∥∥I′(u)
∥∥

Ê ′ < −I′(u)w̃ = I′(u)(−w̃).

Since ∥−w̃∥ = 1, we can affirm that there is w ∈ Ê con∥w∥ = 1 such that

5
6

∥∥I′(u)
∥∥

Ê ′ < I′(u)w,

taking w = −w̃.
The case I′(u)w̃ = 0 leads to a contradiction with the positive behavior of ∥I′(u)∥Ê ′ .
This way, we have shown that ∀ u ∈ Ẽ, ∃w ∈ Ê such that ∥w∥ = 1 and I′(u)w >
5
6
∥I′(u)∥Ê ′ . Hence, v =

6
5
∥I′(u)∥Ê ′ · w is a pseudo-gradient vector for I on Ẽ. In

fact, (i) holds:

∥v∥ =

∥∥∥∥6
5

∥∥I′(u)
∥∥

Ê ′ · w
∥∥∥∥

=
6
5

∥∥I′(u)
∥∥

Ê ′ ∥w∥

≤ 2
∥∥I′(u)

∥∥
Ê ′ ;

and also (ii):

I′(u)v = I′(u)
(

6
5

∥∥I′(u)
∥∥

Ê ′ · w
)

=
6
5

∥∥I′(u)
∥∥

Ê ′ I′(u)w

>
6
5

∥∥I′(u)
∥∥

Ê ′
5
6

∥∥I′(u)
∥∥

Ê ′

=
∥∥I′(u)

∥∥2
Ê ′ .
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Due to the continuity of I′ there is a neighborhood Nu of u, such that

∀ z ∈ Nu, ∥v∥ ≤ 2
∥∥I′(z)

∥∥
E′ and I′(z)v ≥

∥∥I′(z)
∥∥2

E′ ,

i.e., v is a pseudo-gradient vector for I on every z ∈ Nu. Let the family {Ni}i∈J =

{Nui | ui ∈ Ẽ}. This is an open covering of Ẽ and since Ẽ is a metric space, it is
is paracompact and we can guarantee the existence of a locally finite subcovering
{Mi}i∈J . We define for each i ∈ J:

ρi : E → R

x 7→ ρi(x) = dist(x, Ê\Mi), (6.1)

which can be proven to be Lipschitz continuous. By how the distance between
a point and a set is defined, ρi(x) = 0 if x /∈ Mi. Now, consider the following
function

βi : Ê → R

x 7→ βi(x) =
ρi(x)

∑
j

ρj(x)
,

Since each x ∈ Ê is only in a finite number of the subsets {Mi}i∈I we could only
compute finitely many finite distances ρi and therefore the sum in the denominator
is finite and positive. On the other hand, each of the subsets Mi is in some subset

{Ni}i∈J = {Nui | ui ∈ Ẽ} and then we can find zi =
6
5
∥I′(ui)∥E′ · wi a pseudo-

gradient vector for I on each Mi. Finally, we define V(x) = ∑
i

ziβi(x). Since for

each i, 0 ≤ βi ≤ 1 and ∑
i

βi(x) = 1, then for all x ∈ Ẽ, V(x) is a convex combina-

tion of pseudo-gradient vectors for I on x, and therefore a pseudo-gradient vector
for I on x itself. To show that V is locally Lipschitz continuous, consider that ρi

is Lipschitz continuous so the sum of all of them is too; thus the quotient βi es
locally Lipschitz. Then, by definition, for all x0 ∈ Ê there are δi > 0 and Li > 0
(depending on x0) such that for all x ∈ Bδi(x0) we have that

|βi(x)− βi(x0)| ≤ Li ∥x − x0∥ , ∀ i ∈ J.

Recall that that the following is finite: set of indexes i where the function βi is
different from zero for every argument x ∈ Ê. Therefore, we can take δ = mini{δi}
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so δ > 0; this way, for x ∈ Bδ(x0),

∥V(x)− V(x0)∥ =

∥∥∥∥∥∑i
ziβi(x)− ∑

i
ziβi(x0)

∥∥∥∥∥
=

∥∥∥∥∥∑i
(βi(x)− βi(x0))zi

∥∥∥∥∥
≤ ∑

i
|βi(x)− βi(x0)| ∥zi∥

≤ ∥x − x0∥∑
i

Li ∥zi∥ .

Notice that the final sum is finite from the start because of the features of βi so
taking the Lipschitz constant L = ∑

i
Li ∥zi∥ we obtain the result.

We will not pursue a formalization of the latter proof in this work. We just
draw attention at how the functions ρi are defined in (6.1). Since in general the sets
Ê \ Mi are closed, then in a first instance it appears that dist(x, Ê \ Mi) would need
the power of Π1

1-CA0 to be coded continuous (Theorem 3.20); but of course, there
is the possibility to tighten the result to ACA0 by showing that the mentioned sets
are in fact separably closed (Theorem 3.21). If achieved, we can use the pseudo-
gradient vector field to construct a initial value problem as in our proof of the
Deformation Lemma and prove the lemma itself for Banach spaces. At the end,
we conjecture that a generalized MPT for Banach spaces could be formalized in
ACA0.
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