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Abstract

In modal semantics, when speaking of possible worlds, there seems to be the tacit assumption
that logical reasoning will stay constant throughout. That is to say that a logical reasoning valid at
one world is valid in all worlds, hence necessary. But what happens then if we decide to consider
possible worlds semantics where different worlds may respond to different logics? What then becomes
necessary?

In this thesis, we expand the possible world semantics for modal logics by not assuming one ‘type’
of possible worlds in a model, but by considering that different possible worlds might reason under
different logics. We focus ourselves on a setting where we combine classical and intuitionistic worlds.

We use F; to denote pure propositional intuitionistic reasoning even if the language contains .
In that sense, formulas of the form [JA behave as propositional variables as far as F; is concerned.
Likewise we consider the -, relation for classical reasoning. We define so-called mized models which
are tuples (W, R, {lw }wew, {Tw }wew), where I, € {i,c} and T3, a set of modal formulas such that

1. L¢T,

2. Ty b1, o= ¢ €Ty

3. Op € Ty <= Yv(wRv =T,y @)

4. -Op € Ty <= Fu(wRu AT, i, —¢p)

We prove soundness of the intuitionistic normal modal logic iK 4+ (bem) wrt mixed models, where
bem is short for ‘Box Excluded Middle’ and denotes the axiom

O0A v -0OA.

The logic iK has well-studied birelational semantics with an R relation for the [0 and < for intuition-
istic implication (Bozi¢ and Dosen [1984)). We prove soundness and completeness for iK + (bem) with
respect to these birelational semantics together with the birelational model frame condition

w < v=Vz(wRz = vRz).

We conclude completeness for iK + (bem) wrt mixed models.

These results pave the way for new semantic constructions of Kripke models, raising intriguing
mathematical and philosophical questions. It invites us to consider the implementation of more
logics, possibly non-comparable, in this construction.
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1 Introduction

In this thesis, we examine the nature of worlds within the framework of possible world semantics related
to modal logic. Specifically, we focus on the relationship between these worlds and what we call the
logical laws of reasoning. Traditionally, in modal logic, even though the nature of possible worlds may
differ, the logical laws within them remain consistent across all worlds. Therefore, if a logical reasoning
is valid in one world, it will be valid in all possible worlds. Necessitation is then defined as the rule that
if a statement can be proven, then it is necessarily true. This aligns with the idea that the axioms and
theorems of a logical system are true in every possible world considered by that system.

For classical modal logic (Blackburn, De Rijke, and Venema 2002)) and intuitionistic modal logic
(Simpson [1994)), the modal connective O is defined as “necessary” or “true in all accessible worlds”.
OP asserts that P is not just contingently true (true in some worlds) but necessarily true (true in all
accessible worlds). Here accessible words do not mean the same thing as possible worlds. Indeed, worlds
accessible by some world w of a system or model do not have to be all possible worlds considered by
that system. Consequently, there might be that in some world, OJP is valid, i.e. P is necessarily true,
but in some other world of the system, P is not necessarily true. This is not possible for purely logical
reasoning however. A tautology A is necessarily true in all worlds of the system, i.e. [JA is true in all
possible worlds.

In this thesis, we decide to rethink this notion of “system-wide necessity” for logical reasoning,
and instead reduce logical reasoning to be partly dependent on the considered world. Specifically, we
investigate what happens to the modal logic system when we allow each possible world to follow its own
distinct logical laws, independent of others.

Mathematically, worlds in our models will be equipped with a set of axioms and derivation rules to
emulate the logical laws occurring at that world. We call this the “local reasoning” of the world. The
modal connective [J will be assessed with regards to the model structure, following the same definition
as classical modal semantics:

0P is true in a world if and only if P is necessarily true, i.e. true in all accessible worlds.

We decide to restrict our set of modal connectives to O only. A further study including ¢ to the language
could be considered.

Metaphysically, this is a relevant approach with regards to modern physical theories of the universe
(Popper [1982, Tegmark [2003)), which challenge the original preconception of a deterministic nature of
reality, ruled only by the laws of classical logic:

“In this (...) multiverse, all mathematical structures exist as real universes, and the structure
that corresponds to our universe is simply one of them. Different mathematical structures
correspond to different physical laws, so in some of these universes, the laws of physics are
completely different from ours.”- Max Tegmark, (2003) Parallel Universes.

If we are considering a realist approach with regards to possible worlds semantics, where we consider
all possible worlds to be real tangible objects, with facts and truths which may be inaccessible to us,
our approach can be viewed as a first attempt at describing these multiverse theories through modal
semantics. An interesting further philosophical study could be to clarify the definition of “accessible
worlds” in this context, as well as the possible ontological definition of OOP.

The choice of possible logics (or logical reasoning) to pick from to construct such models is quite
wide. In this thesis, we consider the pair composed of intuitionistic reasoning and classical reasoning as
a first example. We will explain what we mathematically mean by ”reasoning”, provide a definition of
models of this kind, as well as soundness and completeness results with respect to an extension of the
intuitionistic modal logic iK.

In Chapter 2 we provide a clear definition of the related language and reasoning considered. We then
provide a clear definition of the models, give some examples and provide a semantical definition for a
subset of these models in Chapter 3. Finally, we look at soundness and completeness results with regards
to an extension of the Intuitionistic modal logic iK in Chapters 4 and 5.



2 Language and local reasoning

We aim to construct models in which each individual world is consistent and closed with respect to
its associated logical reasoning, that being classical or intuitionistic. We call this reasoning the “local
reasoning” done at that world. What is meant by local reasoning is reasoning that is done considering
formulas in that world exclusively. For example, in a classical modal context, if in a world w the formulas
Op and Op — 9 are true, then through local reasoning we have that 1 is true. However, if Oy and
O(¢ — 1) are true in w, we cannot deduce (¢ through local reasoning alone, as it requires us to “look
at” formulas in other worlds of the model and reason logically with them. [Ji¢ can always be deduced in
a classical context, however in our context, local reasoning at our world w is not necessarily the same as
the one in other worlds.

We will include the semantic definition of the modal connective O, where Oy is true in a world if and
only if all worlds it sees make true . Here is a simple, purposefully vague (as we have not yet given a
clear cut definition of everything) definition of the models:

A model M will be constituted of a Kripke frame, together with an assignment function, which to
each world w will assign a set T, of formulas which will be the formulas considered valid at that world.
Together with this, each world will be either classical or intuitionistic, and the set T,, will have to be
closed under the assigned propositional logical reasoning, i.e. their local reasoning. These sets will have
the following properties:

o | ¢T,,ie T, will be consistent;
e T, will be closed under classical/intuitionistic reasoning;

e A € Ty, if and only if for each world v connected to w (wRv), A € T,,.

In this Section, we set the language in which we will define these models, and give a more concrete
definition as to what we mean by “local reasoning”.

2.1 The languages £ and L

We will exclusively focus on propositional logic throughout this thesis, as we are interested specifically
in this “extension” of modal semantics, which is related to normal modal logics, themselves related to
propositional language.

We define a language containing the modal connective [J and one without it, together with a set of
propositional variables X. Our main focus will be on the modal language containing [J, as it is in this
language that the formulas valid at each world will be written in. However we also define the usual
propositional language, as it will be relevant in [Section 2.2| and [Section 2.3| when discussing how exactly
we define “classical and intuitionistic reasoning at a world”.

Definition 2.1.1. (£) We define the language £(X) consisting of a set X of propositional variables
together with the connectives A, V, —, - and the logical constants true and false: 1, T.

Once we have fixed our signature, we can define the set of valid formulas.

Definition 2.1.2. (Form) We define the set of propositional formulas Form(X) in the language £(X)
recursively as follows:

1. 1L, T € Form(X);

2. if p € X, then p € Form(X);

3. if ¢ € Form(X), then —¢ € Form(X);
4

. if ¢, 9 € Form(X), then (p A v) € Form(X);

(X
5. if p, 1 € Form(X), then (¢ V ¢) € Form(X);
(

6. if v, 9 € Form(X), then (¢ — v) € Form(X).

Notation 2.1.3. (Binding conventions) For simplification purposes we will omit some brackets when
writing down formulas. We consider the following binding order, similar to usual Modal logical conven-
tions:



1. — as first priority;
2. A and V with equal priority but less to the previous;
3. — least priority.

We also will omit the outer brackets. For example
((d) V) = (pV (Y = 90)))

will be written as ¥y Vi — @ V (=) — ).
We also write (¢ > ¢) for the formula (¢ — ) A (¥ — ¢).

This is the usual propositional language generated by a set X of generators. We now give the {-free
modal propositional language generated by X.

Definition 2.1.4. (£g) We define a language £5(X) consisting of a set X of propositional variables,
together with the connectives [J, A, V, —, = and the true and false constants L, T.

Definition 2.1.5. (Formpg) We define the set of propositional formulas Formg(X) in the language £5(X)
recursively as follows:

1. 1L, T € Formg(X);
2. if p € X, then p € Formg(X);

if o € Formg(X), then —p € Formg(X);

Ll

if ¢ € Formp(X), then Oy € Formg(X);

5. if ¢, 1 € Formg(X), then (¢ A ¢) € Formg(X);
6. if v, ¢ € Formg(X), then (¢ V ¢) € Formp(X);
7. if ¢, 1 € Formg(X), then (¢ — ) € Formg(X).

Notation 2.1.6. (Binding conventions) We will consider similar binding conventions as seen in Form(X),
but adding in the [J connective with the same priority as —. So, for example (¢» VOY) — (¢ V (=0 — ¢))
will be written as ¢ VO — o V (=) — ).

Notation 2.1.7. Let I' C Formg(X). We denote by OI' the set {Op | ¢ € I'} and by —OI" the set
{-=Op|pel}.

Notation 2.1.8. We sometimes refer to £o(X) as £ when X is clear. Similarly, we can write:
o L(X)as L;
e Formp(X) as Formp;

e Form(X) as Form.



2.2 Classical and Intuitionistic Calculus and Derivations

With these sets of propositional formulas, we will now define what it means for a set of formulas of
Formg(X) to syntactically entail a formula of that set, both in the classical and intuitionistic meaning.
For this we define a set of axioms for classical and intuitionistic reasoning, and apply it to our formulas
in Formg(X). We do this by having O-formulas behave just like propositional formulas.
We also define these notions for the set Form(X) of formulas, which gives us the usual logics TPC and
CPC.

Definition 2.2.1. (Classical and Intuitionistic axiom schemata and rules):
Axioms:

Ax1: A= (B — A)

Ax2: A— (B— AADB)

Ax3: ANB— A

Ax4: ANB— B

Ax5. A—AVB

Ax6: B—~AVB

Ax7: (AVB)= (A—=-C)= (B—=C)—0))
Ax8 (A—-B)—» (A= (B—C)) = (A—=0))
Ax9: 1 - A

Ax 10: mAV A

Rules:

A A— B
B

Modus Ponens

We call intuitionistic axiom in Formg(X) or Form(X) any formula of the form of one of the first 9
axioms.
Similarly, we call classical aziom in Formg(X) or Form(X) any formula of the form of one of these 10
axioms. For example ¢ — (09 V¢ — ) is an intuitionistic and classical axiom in Formg(X), as it is of
the form of Ax 1.
However -0y V Oy is a classical axiom in Formg(X) only, as it is of the form of Ax 10.

Proposition 2.2.2. In the language £(X), if ¢ is an intuitionistic axiom, then it is a classical axiom.

Proof. Clearly from the fact the set of intuitionistic axiom schemas is included in the set of classical
axiom schemas. O

As previously mentioned, we are now defining the “local” reasoning present at each world. This
reasoning must of course assess [-formulas, and this is why we must work with the language L. We
do this through propositional derivations. We will also define these derivations for the propositional
language L, giving us the know logics CPC and IPC respectively. We define them in the following way:

Definition 2.2.3. (classical,(x) and classical;(x) derivations) Let I' C Formg(X) and ¢ € Formg(X).
A classicals (xyderivation from T' to ¢ is a sequence of formulas @1, s, ..., % such that for all i €

{1,2,....,k}:
e p;clor
e (; is a classical axiom of Formg(X) or
e There is j,I < ¢ such that ¢; is of the form ¢; — ¢;

® Pr=¢



When there is a classical (x) derivation from I' to ¢ we say that I' syntactically entails ¢ in Formg(X),
denoted as
T }_CED(X ) o

Similarly, we define a classicalz(x)derivation by considering Form(X) and when I' syntactically entails ¢
in Form(X) we denote it as
T )

Notation 2.2.4. When it is clear what set X of generators we are using, we will abbreviate the notation
of classical . (x) and classical;(x) to classicalg and classical respectively when speaking of objects related
to classical derivations of both kinds. We do so for the next few definitions:

We now give a precise definition of closure and tautology in regards to these derivations. These are
the standard definitions, and they will also be for the intuitionistic section. However it is important to
be thorough in this context, as these are new undefined objects with respect to the language L.

Definition 2.2.5. (classicalgy and classical tautologies) The classicalg tautologies are the formulas

¢ € Formg(X) such that
|_CCD(X) ©

Similarly we define the classical tautologies as the formulas ¢ € Form(X) such that
H Yy

Definition 2.2.6. (Closure under classicalg and classical derivations) For a set I' € Formg(X), its
closure under classicaly derivation is the set:

fCD(X) :={p € Formg(X) | T I—CLD(X) v}

For a set I' € Form(X), the closure under classical derivation will be the set:

T = (g € Form(X) | T FEX) )

)

Again we will simplify notation when possible, writing '™ instead of fCD(X , and similarly writing I

instead of fC(X) .

When a set I' = fCD, we say that I is closed under classicaly derivation, or closed under cq.

Similarly, when a set I' = T’ we say that I" is closed under classical derivation, or closed under c.

Definition 2.2.7. (intuitionistic,_(x) and intuitionistic,(x) derivations) Let I' C Formg(X) and ¢ €
Formg(X). An intuitionistic. (x) derivation from I' to ¢ is a sequence of formulas ¢1, 2, ..., ¢} such
that for all ¢ € {1,2,...,k}:

e p;cl'or

e (; is an intuitionistic axiom of Formg(X) or

e There is j,I < ¢ such that ¢; is of the form ¢; — ¢;
® Pp=¢

When there is a intuitionistic,(x) derivation from I' to ¢ we say that I' syntactically entails ¢ in

Formg(X), denoted as

F}—fD(X) 0

Similarly, we define a intuitionisticyx) derivation by considering Form(X) and when I' syntactically entails ¢
in Form(X) we denote it as

L(X
Fl—i( )gp

Notation 2.2.8. Similarly as with classical derivations, we will abbreviate the notation of intuitionistic, (x)
and intuitionistic(x) to intuitionisticy and intuitionistic respectively, when appropriate.



From their definition it is clear that }—f(X) and l—f(x)

and Van Dalen [1988).

are just Fcope and Fipe respectively (Troelstra

Proposition 2.2.9. Let I', o C Formg(X). Then:

[P o = O o
Similarly, let T, ¢’ C Form(X). Then:

I/ D o o T A

Proof. This stems from the fact that an intuitionisticq derivation is also a classicalg derivation, and
similarly all intuitionistic derivations are classical derivations. This can easily be checked from definition
and the fact all intuitionistic axioms are classical axioms, both for £5(X) and £(X).

We do not need to show this for the language L, as it is already well known that a formula provable
in IPC is provable in CPC. (Troelstra and Van Dalen |1988)) O

We now give definitions for tautologies and closure under intuitionistic reasoning.

Definition 2.2.10. (intuitionisticy and intuitionistic tautologies) The
intuitionistico tautologies are the formulas ¢ € Formg(X) such that

|_i£D(X) 0

Similarly we define the intuitionistic tautologies as the formulas 1) € Form(X) such that
LX) "

Definition 2.2.11. (Closure under intuitionisticy and intuitionistic derivation) For aset I" € Formg(X),
the closure under intuitionisticy derivation is the set:

=i0(X

'™ = {4 € Formg(X) | T 2009 )

For a set I' € Form(X), the closure under intuitionistic derivation will be the set:

fi(X) ={p €Form(X) | T }—f(X) v}

fiD(X)

Again we will simplify notation when possible, writing 7 instead of , and similarly writing ™

instead of T,

When a set I' = sz7 we say that I' is closed under intuitionisticy derivation, or closed under ig.
Similarly, when a set I' = fz, we say that ' is closed under intuitionistic derivation, or closed under

2.3 Classicalg and intuitionistico theories

We now give a once again very typical definition of theories in our context, though we should note that
existence of these theories is not immediate:

Definition 2.3.1. (classicaly, classical, intuitionisticy and intuitionistic theories)
e If a set I' is closed under classicalg, we say that it is a classicalg-theory;
e If a set I' is closed under classical, we say that it is a classical-theory;
e If a set I' is closed under intuitionistico, we say that it is a intuitionistico-theory;
e If a set I' is closed under intuitionistic, we say that it is a intuitionistic-theory.

Proposition 2.3.2. If T is a classicalg theory, then it is an intuitionistic theory.



Proof. Let T be a classicalg theory. From Proposition we have that
THOX) = T
But this implies
THON o5 peT,
hence T is a intuitionisticg theory. O
Definition 2.3.3. (Consistency) Let T be any theory. If L ¢ T, we say that T is a consistent theory.

We have now given a definition for classical and intuitionistic theories in both languages. However,
where in the propositional language £ these theories are well known and studied, in the language £
we have yet to prove such theories exist. To this end, we define a mapping o from Formg(X) to a set
Form(Y) of formulas, where Y is an expanded set of propositional variables, combining X with the set
Vo(X) we now define.

The end goal is to prove the existence of classicalg theories and intuitionistic theories using the set
Form(X + V) of propositional formulas.

Definition 2.3.4. (V) Let X be a set of propositional variables. We define the set Vg(X) of proposi-
tional variables such that X N Vo(X) = &, denoted as follows:

Vo(X) == {qe | ¢ € Formg(X)}.

It is important to note that elements in Vo will follow the conventional notation simplifications

mentioned in [Section 2.1l Hence we write that g, € Vg for some ¢, ¢ € Formg(X), but this is in
fact q(y,—y) and these two are a singular propositional variable (i.e. q(,—y) = qp—y for example). This
ensures that each formula in Formp(X) is related to a unique propositional variable in Vo(X).

Notation 2.3.5. If the set X is clear from the context we can write V instead of V5(X). We also write
X + Vg to denote the set X |4 Vg, where | denotes the disjoint union.

Now we give a definition of the mapping og. The goal is to obtain an isomorphic mapping from
Formg(X) to Form(X + Vo). We give the following definition:

Definition 2.3.6. (og) The mapping o : Formg(X) — Form(X + V(X)) is recursively defined on the
complexity of the formula as follows for ¢, % € Formg(X):

o for p e X, og(p) =p;
e og(0y) = q, € Vo(X);

(
o on(p V) = onlp) Voo(¥);
o on(p AY) = onlp) Aoa(V);
o on(p = ¥) = onlp) = oo(¥);
e on(l)=1;
e oo(T)=T.

Example 2.3.7. We give some examples for formulas in Formg(X), for pi, ps, p3 €X:
1. on(p1 VOp2 = O(p3 Ap2)) = p1V Gpy — Gpanps
2. on(O(p1 — p2 V =0ps3)) = @p, —pov-Ops
We now define a function 7 and show it is the inverse function of o.

Definition 2.3.8. (7) We define the mapping 7 : Form(X + V(X)) — Formg(X) defined as follows for
v, € Form(X + Vo):

e for pe X, 7(p) = p;

10



(

(—
o (V) =7(p) VT(¥)
o T(pAY)=T1(p) AT(V)
* 7(p =) =7(p) = 7(¥)
o 7(L)=
o 7(T) =

Notation 2.3.9. We denote by on(T") the set of formulas {oq(¢)| ¢ € I'}. Similarly for 7(T")
Lemma 2.3.10. For all ¢ € Formp(X), we have that 7(og(p)) = ¢.
Proof. Recursively on the complexity of the formulas:

o forpe X, 7(ou(p)) = 7(p) = p;

o 7(o0(ly)) = 7(g,) = Dy;

on(=p)) = 7(mon(y)) = ~7(on(yp)) = ~¢;

(oo(
(oo(
o 7(oa(p V) =1(on(p) Von(¥)) = 7(oaly)) VT(oa(¥)) = ¢ V ¢
o 7(on(p AY)) = 7(on(p) Aoa(¥)) = T(oale)) AT(oa(¥)) = ¢ AY;
o 7(on(p = ¥)) = 7(onlp) = on(¥)) = 7(oaly)) = T(on(¥)) = ¢ = ¢
e 7(oo(L)) =7(L) =L
o T(og(T)=7(T)=T

Lemma 2.3.11. For all ¢ € Form(X + V), we have that og(7(p)) = ¢.
Proof. Recursively on the complexity of the formulas, similarly to the proof given in the lemma above. [J

Hence 7 is the inverse function of og. As a consequence we write from now on 051 instead of 7.

We now look at the key properties for the mapping on. Indeed, the mapping is built such that
not only is there an isomorphism from Formg(X) to Form(X + V), but derivations D passed through
the mapping o give a derivation D’ in the propositional language with expanded set of propositional
variables, and vice-versa, i.e.

L(X+vO
c/(i * )O-D(QO)

r I—f/[iJ(X) ¢ = ook
To show this we first prove the following lemma:

Lemma 2.3.12. Let ¢ € Formg(X) be a classical/intuitionistic axiom of Formg(X). Then og(yp) is a
classical/intuitionistic axiom of Form(X + V)

Proof. As a proof we give an example for one of the classical and intuitionistic axiom schematas. We
consider the first axiom schemata: A — (B — A). If ¢ is of this form then for some %, x € Formg(X),
we have that ¢ = ¢ — (x — ¥). But then og(v) = og(¥) — (oco(x) — oo(¥)) is also a classical and
intuitionistic axiom of the form of the first schemata in Form(X + V). O

Theorem 2.3.13. Let X be a set of propositional variables and let ¥ = X + Vg(X). Then for all
I' C Formg(X), ¢ € Formg(X):

I oK) o = og(D) FEY) on(p)

11



Proof. (=)

To prove this it suffices to show that if there is a classicalg derivation D from IT" to ¢, then there is a
classical derivation D’ from the set og(T") to og(y¢). Let D = {1, @2, ..., on } and consider the derivation
D' = op(D). Then:

o if p; €T, o(i) € op(T)

e if ; is an classical axiom of Formg(X), then og(yp;) is a classical axiom of Form(X + Vg) (from

Lemma [2.3.12)).

e If there is j,! < ¢ such that ¢; is of the form ¢; — ¢;, then oq(y;) is of the form oq(¢; — ¢;) =
oo(er) = oo(ei)

* v == oa(pr) =oaly)

Hence D’ is a classical derivation (in the language £(X + vg)) from og(T) to og(ep).

(<)
With a similar argument we can take a classical derivation D from og(I') € Form(X + Vg) to
on(p) € Form(X + Vo) and consider the derivation D’ = o' (D). O

This theorem and the corollaries to follow are very practical, as we now have a formalised construction
of our intuition that theories in £5(X) behave similarly to theories in CPC or IPC depending on what
type of derivation we are looking at. This will be especially useful when proving these theories are
consistent, since we can now refer to known result about the models of CPC/IPC. But first we provide
some Corollaries.

Corollary 2.3.14. Let X be a set of propositional variables and let Y = X + Vg(X). Then for all
' C Form(Y), ¢ € Form(Y):

IHE) o = o5'(D) FEB) 051 ()
Proof. Let T H5(Y) . Then for some I, we have that I' = og(I”) and ¢ = og(¢’). then from
Theorem [2.3.13) TV 500 ¢'. But now from Lemma [2.3.10| we have that I = o5 (') and ¢’ = 05" ()
hence o5'(T') FEa(0) o5 ().

For the other way we proceed similarly by assuming 051 () FEoX) 051 (), which gives T” F£oX) o
Then again by Theorem [2.3.13} oo (I") 0 og(¢’) and so T 0 ®. O

Corollary 2.3.15. Let X be a set of propositional variables and let Y = X + V(X). Then for all
I' C Formp(X), ¢ € Formpg(X):

T HOE) o s o) FEY) on(p)

Proof. The proof is done in a similar way as in Theorem [2.3.13 O

Corollary 2.3.16. Let X be a set of propositional variables and let Y = X + Vg(X). Then for all
I' C Form(Y'), ¢ € Form(Y):

T o = og' (M) FHPY a5k(p)

Proof. Directly from Corollary and Proposition [2.3.10] similarly to Corollary 2:3.14] O
Corollary 2.3.17. Let I' C Formg(X). Then:
e ' is closed under classicalg if and only if og(T") is closed under classical, and in fact e =
_ — = C
o' (o0(T) );

e T is closed under intuitionisticy if and only if og(T") is closed under intuitionistic and in fact
i i

' = o5 (op(D)).
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Proof. Let T' C Formg(X) be closed under classicalg. Let og(T) FEXFYE) & Then ¢ = og(vy) for
some 9 € Formg(X) and by Theorem m T F£o&) 1. But then by assumption ¢ € I", and so
v =on(®¥) € op(T'), hence og(T) is closed under c.

Similarly, suppose o(T") is closed under classical and let T’ £ 1. Then, by Theorem
og(T) FEXVD) 5 (1), hence oq(¢)) € og(I'), hence ¢ € I'. We then conclude that I' is closed under cg.

Now let ¢ € T2, Then I’ £X) ¢, implying og(T) FEX+VE) oa(e) by Theorem [2.3.13] But now
O(e) € oo (I‘)C7 hence ¢ € 05" (o0 (I‘)c) as desired. We can provide a similar argument for the converse.

For intuitionistic reasoning we can provide an identical proof, replacing ¢ by i. O
Corollary 2.3.18. Let T' C Formg(X). then:

e T is a classicalg theory if and only if og(T) is a classical theory. Moreover, T is consistent if and
only if o(T) is consistent;

e T is an intuitionisticy theory if and only if og(7) is an intuitionistic theory. Moreover, T is
consistent if and only if o(7T) is consistent.

e T'is a classical theory if and only if o Y(T) is a classicalg theory. Moreover, T is consistent if and
only if og(T') is consistent;

e T is an intuitionistic theory if and only if O'Iil(T) is an intuitionisticq theory. Moreover, T' is
consistent if and only if 5" (T) is consistent.

Proof. From Corollary and og(Ll) =1 O
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3 Defining the models

We have now defined local reasoning and given a proof of existence of classicalg and intuitionistic
theories. This defines local reasoning at a world, but as we previously stated it does not assess modal

formulas. As a result,
OpADO(p—q) ¥ EE,'(X)
c/i

for example. This is because the distribution axiom (k): J(A — B) — (OA — OB) cannot be assumed,
else we would be using local reasoning over something happening in another world, and in our setting
we cannot assume it is consistent with reasoning done in the world we are in.

Therefore, we use Kripke semantics and provide a semantical definition of modal formulas and modal
reasoning. More precisely, we want a [-connective that behaves in a classical manner. We do this with
the following construction.

Ug

3.1 Mixed Models

We introduce the definition of mixed models. In these models, we consider a classical structure for the
modal operator [J, where each individual node of this structure is a classicalg theory or intuitionistic
theory. Within the definition of these worlds we include a singleton {c} or {i}, denoting a classical and
intuitionistic world respectively.

Definition 3.1.1. (Kripke frames) A Kripke frame F is a tuple (W; R) such that W is a nonempty set
and R C W2,

Definition 3.1.2. (Extensions) Let W be a nonempty set. An extension ey in the language £5(X) is
a mapping
ew : W — P(Formg(X)) x {c,i}

For an extension ey, we denote for w € W the set Toy C Prormp(x) and Ly, € {c,i} such that ey (w) =
(T, L)

Definition 3.1.3. (Mixed models) A mized model M in the language £o(X) is a tuple (F, ey ) such
that the following holds for all w € W:

1. L¢T,
2. T, " o= peT,

(X)

3. Op € Ty <= Yo(wRv =T, - %) o)

4. -OpeT, < Fu(wRuAT, I—iD(X) —p)
From the definition it follows that T, is a [, theory (since it is closed under [, by property 2).

At first, it may not seem clear why we need property 4) additionally from property 3) and 2). While
in regular classical modal logic models, the [J connective is defined by 3) and that is sufficient, here we
need more. This is because, contrary to the classical modal logic models, we cannot assume the law of
excluded middle at all worlds. Suppose property 4) is not verified in a mixed model M. Then, if we
look at an intuitionistic world w € M, for some formula ¢ we might have that neither Uy nor —Oyp are
in T,,. But this seems to be contradictory to what we want, which is to have a [J connective behaving
as it does in classical modal logic.

So in fact we have here a more ‘complete’ definition of the modal connective [J in the classical context,
like the following Proposition shows:

Proposition 3.1.4. Let M be a mixed model. Then for all ¢ € Formg(X) and for all w € W, (Op € Ty,
or "y € T,).

Proof. This is immediate from properties 3) and 4) of Definition O

When speaking about models we want to have some definition of what it means for a formula to be
valid at a world w € W. Likewise we are interested in what formulas are valid at every world of a model.
To express this we give the following definitions:

14



Definition 3.1.5. (MM) We define the class of mixed models as the set MM.
Definition 3.1.6. (IF) Let M € MM, w € M. We define IF as follows for all ¢ € Formg(X):

Mwlkp <= @ eT,.
When M, w Ik ¢, we say that ¢ is valid (or true) in world w.

We now give a general definition of F. Later one when we discuss different classes of models, this
definition will be valid for them as well.

Definition 3.1.7. (F) Let C be a class of models, let M € C. We define F as follows:
ME ¢ <= Yw e MM,w Ik p)

i.e. ¢ is valid in all worlds of M.

We also define the following for C:
CEp < YMeC(ME yp)

From Proposition [3.1.4] we deduce the following:

Proposition 3.1.8. Let M be a mixed model, ¢ € Formg(X). Then
MEOp Vv -Op

Proof. Let w € M. From the previous Proposition we know Oy or =[Oy is in T,. But since T}, is closed
under c or ¢, considering axioms 4 and 5 in we can see that in both cases, T, -, O V -y and
so w IF Op Vv =0e. O

We know from Proposition that for any box formula, either it or its negation is in every set Ty,.
To better represent this, we give the following definition:

Definition 3.1.9. (Boxset) Let I' € Formg(X) be a set of formulas. We define the boxset of T to be the
set B(T') := 0T U {-Oep|e ¢ T'}.

Proposition 3.1.10. Let M be a mixed model. Then for all w € W, for some I' C Formp(X),
B(T) C T

Proof. From properties 3 and 4 of mixed models, we have that Oy € T,, or -0y € T,,. Consider the set
I'o:={p|Op € Ty} Then we have that B(I'n) C T,,. O

3.2 First Examples

With this definition in mind, the question now becomes if we can find such mixed models. In particular,
we want to see if given a Kripke frame F = (W, R), for all w € W we can find sets T, that satisfy
conditions 1,2,3 and 4 of Definition We will first consider a simple frame F = (W, R) with
W ={w},R = @, and try to find a model with l,, = ¢. For this example and further examples in this
section, we will restrict to a language L(p, q) with finite propositional variables.

Example 3.2.1. (Simple classical model) We consider a Kripke frame F : (W, R) with W = {w}, R=@
and the set Ty = {p V ¢} U B(Formg) . We claim the model M = (F, ) with e(w) = (T1, ¢) is a mixed
model.

Proof. We first show the set 7' is equivalent to the set 7' = 05" ({p V ¢} Uog(B(Formp)) ). Clearly,
o5 ({pVq}U(on(B(Formn))) = {pVq}UB(Formp), and we know from Corollary|2.3.17|that {p V ¢} U B(Formp

aal({p Vqlu UD(B(FormD))L.
Now we show the set T” satisfies the definition of mixed models:

)"

1. {pVq}Uog(B(Formp)) is a set of pairwise different propositional variables together with pV g where

neither p nor ¢ are in 7”, hence clearly consistent and so L ¢ {p V ¢} U og(B(Formg)) implies | ¢
T
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2. By Corollary [2.3.18] since {p V ¢} Uog(B(Formg)) is a classical theory, 7" is a classicalg theory.

3. Because R is empty, vacuously we have that for all ¢ € Formp, Yo € W (wRv = T, I—fD(X) ©),

and this is good because for all ¢ € Formg, Oy € B(Formp) C 7”. Hence 3) is met;

4. Since W is unary, there is no accessible world, hence there does not exist a world v such that
wRv, and since Yo € Formg, =Ly ¢ B(Formg) C T", as this would contradict property 1 and 2 of
Le¢T ‘D property 4 is verified.

So we have that M with e,, = (T4, ¢) defines a mixed model. O

Example 3.2.2. We show a similar example for the same Kripke frame F : (W, R) as in example ?7,
but with [, = 1.

We define the set To = {p,q} U B(Formg)bm. Very similarly to Example ??, we can show this set is

equivalent to the set T4 = 051({p, q} Uog(B(Formg)) ), and we can also show this set has all 4 desired
properties for mixed models, similarly to above. This then gives us a second example when considering
a frame with a singular model.

But what about frames with more than one element? We now provide a constructive proof based on
our first two examples to construct a new example.

Example 3.2.3. We consider the frame F : (W', R') with W’ = {w;, ws, w3} and R’ = {w3 R wy, w3 R ws}.

i.e. the frame:
w9 w1
w3

We then apply the following logical assignment: l,, = ¢, ly, = ¢, lw, = c and the sets T,,, =
Ty, Tw, =Ty, Tw, = {p} UB(Tw, NTy,) . For T, and T, we do not need to check if they satisfy
the properties, as we have shown it in our previous 2 examples (since both w; and ws are related to
no other worlds here, hence the sub-frames generated by them give the examples ?? and [3.2.2] For ws,

properties 1) and 2) can be shown, similarly to our first example. We hence look at properties 3) and 4):

e 3) From the definition of T,,, (and property 1) we show that
Up € Ty, <= @ €Ty, NTy,

if ¢ € T\y, N Ty, then trivially from the definition of T),, we have that Oy € Tj,,.

For the converse, let Oy € T,,, and suppose ¢ ¢ Ty, N Ty,. Then by definition of B(Ty, N Ty, ),
we have that -O¢ € Ty,,. But now Oy A -O¢ € T,,,, and from closure under cg we have that
1 € T,,, a contradiction of property 1). So now we have that Op € T, <= ¢ € Ty N Ty,
Then, Op € T, <= ¢ € Ty, and ¢ € T,,,, hence Yo(wzRv = ¢ € Ty;

e 4) For this property we can proceed similarly as in property 3), using the fact that

Op € Ty <= ¢ & Ty, NTy,.

From this we conclude that the model M = (W', R/, ew ) with ew (v) = (Ty,1,) is a mixed model
with three worlds.

From these examples, we can observe that for tree-like structures, it is possible to provide a recursive
proof of sorts, where for each world w of the frame the set T, is of the form

1
lwO

T, = {consistent set of propositional (no box) formulas} U B( ﬂ Ty)
{v|lwRv}

This is a conjecture we will not prove as it is not relevant to the rest of the thesis.

However, for other types of frames (i.e. non tree-like frames) this is not so clear. For example, for a
frame of the following kind, with w; a classical world and we an intuitionistic world (for example):
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It seems that giving a definition of the sets T3,, and T, to define a mixed model in this frame using
our previous method is not possible. And in general, for any cyclic frames (where there exists cycles
woRwy R...Rw, Rwy) this method does not provide us with examples of mixed models in these frames.

3.3 Concrete models

We now take a different approach to define models related to mixed models, called concrete models.

These models are built with the following idea in mind: take a Kripke frame, and for each node in the
frame assign not a theory (like in mixed models) but a rooted intuitionistic Kripke model. For classical
worlds, we will use intuitionistic Kripke models with a singular node, which validate classical theories in
regular propositional language (Troelstra and Van Dalen [1988)).

So, we are constructing a model constituted of intuitionistic Kripke models connected to each other
through an R relation. The idea being that, through a forcing relation we will define, these rooted Kripke
models will validate a intuitionistico theory (or classicalg theory if it has one node) in the language £g.
And finally we will construct from these concrete models a mixed model validating the same set of for-
mulas. We now give a formalization of this idea.

Notation 3.3.1. In this Section unless stated otherwise, we consider formulas to be in the language

Lo(X).

Definition 3.3.2. (Partial order) Let W be a non-empty set. A partial order < on W is a reflexive,
transitive and antisymmetric relation. We will sometimes write z < y instead of z <y A x # y.

Definition 3.3.3. (Intuitionistic Kripke frame) we call a Kripke frame F = (W, <) an intuitionistic
Kripke frame when < is a partial order over W.

Definition 3.3.4. (Intuitionistic Kripke model) An intuitionistic Kripke model M is a tuple (W, <, V),
where F = (W, <) is an intuitionistic Kripke frame and V' : W — P(X) is a valuation such that V is
monotonic in <, meaning w < x implies V(w) C V(z).

An intuitionistic Kripke model is called rooted when there is some w € W such that for allv € W, w < v.
w is then called a root of F.

We denote by RZM the class of all rooted intuitionistic Kripke models.

Definition 3.3.5. (Assignment Ag) Let F' = (W, R) be a Kripke frame (any Kripke frame, not necessarily
intuitionistic), we define Ay to be a function Ag : W — {¢,i} that assign to each w € W either ¢ or i,
symbolising that w is a classical or intuitionistic node respectively.

Definition 3.3.6. (mg) Let F = (W, R) be a Kripke frame and A\g be an assignment on W. Then
mg : W — RZM is a mapping assigning a rooted intuitionistic Kripke model K., = (U, <y, Vi) to
each node w, where A(w) = ¢ =| U, |= 1. We denote by w € U, the root of I, so in particular, if
Ar(w) = ¢, then U, = {w}.

We now give our definition of a concrete model:

Definition 3.3.7. (Concrete model) Given the above definitions, we call concrete model the tuple
M = (W, R, Ag,mp). It is important to note that this is not a mixed model.

Definition 3.3.8. (Forcing relation I-) Let M := (W, R, Ag, mr) as defined above. Then the relation
Ik is defined on © := |J U, (the sets U,, are given by the mapping mg over W) as follows:
for x € U,: vew

1. zW Land xIF T;

2. zlkpiff x € V,,(p);

3. zIFAANBiff zIF A and z IF B;

4. zIFAVBiff xIF Aor z - B;
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5. zlF A — Biff for all y € U, = <y implies y ¥ A or y I B;
6. xlF-AiffxlFA— L
7. - OA iff for all v, (wRv implies T I+ A)

Definition 3.3.9. (T',,) Given a Kripke frame F, a Ag and a model mg, we define the set
Iy :={A|wl- A}, forwe W.

Claim:. Given a Kripke frame F, a Ar and a mapping mg, we define the extension egp : W —
P(Formg(X)) x {c,i} such that
er(w) = (Fw, Ar(w))

Then we claim (W, R, ef) is a mixed model.
To show this, we first prove some intermediary lemmas:

Lemma 3.3.10. Consider a concrete model M = (F, Ag, mg). If Ap(w) = ¢, then the set T'y, := {4 |
w - A} is closed under cg.

Proof. To show this, similarly to Chapter 1, Section 3 where we proved Theorem [2.3.13] we will consider
the language £(X + V). We will then use a classical propositional model (i.e. a valuation) in that
language to show closure under classical reasoning. Meaning we will construct an extended valuation V'
such that, for ¢ € L(X + Vi), V(¢) = 1 if and only if @ IF 05" (). Then, using the known result that
the set of formulas validated by a classical valuation is consistent and closed under classical reasoning
for the language £ with a set of generators (i.e. {¢ | V(¢) = 1} is closed under c¢) and Corollary [2.3.17
we will get that our set Ty, := {A|w IF A} is closed under cg.

We construct the valuation V' : X 4+ Vg — {0, 1} such that

X)wl-
Vip)=1i {PEXI@FD
(p € Vo) w IF Op where p = q,,

We extend the valuation V to all formulas in the usual way, and write V' I 4 if and only if V' validates
the formula ¢ € Form(X + Vg). Then we show recursively that V IF ¢ <— wl- aal(w):

1. VIHpiff pe Viff wl- 05" (p) by the definition of V;

2. VIH oA
it VIH gand V IH ¢
iff wlk o5 () and @ IF 05" (v) (IH)
iff Wik o5 (¢ Av) (since o5 (A A B) = o5 (A) A o' (B));

3. similarly as above, V IF ¢V ¢ iff w I aal(cp V),

4. VIH o=
fftVikporVIFy
iff w W o5 () or @l 05" (v) (IH)
iff w Ik o5' (¢ = ¥);

We define the set I = {¢ | V I ¢}. Then we have that IV = o(05" (I)) = ony(Tw).
But now since I" is closed under ¢ (since it is the set of all formulas ¢ such that V() = 1), from
Corollary T\, is closed under cq. O

Lemma 3.3.11. Consider a concrete model M = (F, Ag, mg). If Ap(w) = ¢, then the set Ty, := {AJw IF
A} is closed under ig.

Proof. Consider the language £(X + V). Similarly to the previous lemma, we aim to construct an
intuitionistic Kripke model using the same Kripke frame as M such that for each node, the set of valid
formulas is the set of valid formulas at the corresponding node in M. Then again, using the known
result that this set of formulas is closed under i, we get that I',, is closed under cg.

We construct the intuitionistic Kripke model M’ = (U,,, <., V'), with U,,, <,, in K, and a valuation
V.U, — P(X 4+ Vo) such that for x € U,
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(peX)zlkp
(p € Vo) x IF Op where p = g,

Let IF define the usual intuitionistic valuation for M’. Then we show recursively that for all x € U,,, x IF
Y = zlkog'(¥):

p € V(z) if and only if{

1.z M piff pe V' iff x - 05" (p) by the definition of V';

2. zlH oAy iff I ¢ and z IH
iff z IF o' (¢) and = IF o' (v) (TH)
iff z Ik o5' (o A ) (since 05" (AA B) = 05" (A) Aog'(B));

3. similarly as above, z IF ¢ V¢ iff z I 051(90 V),

4. xll—'<p—>wifny(w§wy$yH‘/gooryll—’zb)
iff Vy(e <, y =y ¥ o5’ (p) or y Ik o' (v)) (IH)

iff z Ik o5' () = 05" (¥)
iff z IF 051(90 — );

We define the set I' = {¢ | V I ¢}. Then we have that IV = o(o5"' (IV)) = on(T'y,). But now since I
is closed under 4, from Corollary 2:3.17] T, is closed under if. O

Theorem 3.3.12. Given a concrete model M = (F, A, my I), the extension ep : W — P(Formg(X)) x
{c,i} such that ep(w) = (T'y, Ar(w)) together with the frame F defines a mixed model M’ := (F, er).

Proof. To prove it suffices to show the tuple M’ satisfies the definition of mixed models. For w € F. We
give in order all 4 properties in Definition [3.1.3

1. By definition of I, w ¥ L = 1 ¢ T,

2. o If A\p(w) = ¢, then by Lemma|3.3.10} I',, is closed under cg,
hence Ty, F57 o implies ¢ € Ty

e If A\p(w) = i, then by Lemma|3.3.11} I',, is closed under ig,
hence T, I—fD o implies ¢ € T'y;

3. Op € T, iff w IF Op. This is equivalent by definition to Yo(wRv = ¢ € T'y,), which is what we
want;

4. Similarly, -Op € T, iff w IF Op — L, which is equivalent by definition to Vy(z <, y = Jv(wRv A

v W ). But since x < x, one can see that this is equivalent to Jv(wRvAv W ¢). This is equivalent
to Jv(wRv A ¢ ¢ T',), which is what we wanted.

O

Definition 3.3.13. (Concrete mixed model) We call concrete mized model a mixed model M’ derived
from a concrete model M using Theorem [3.3.12]

Corollary 3.3.14. Let F = (W, R) be a Kripke frame and M = (F, A\, mr IF) be a concrete model.
Let M’ = (F,ew,) be the concrete mixed model obtained from M using Theorem Then for all
we W,

Muwlkp <= M, wlkg

Proof. From definition of M’, we have that M,wl- ¢ < el < €T, <— M, ,wlk¢e O

Definition 3.3.15. (CM, CMM) We call CM the class of all concrete models.
We call CMM C MM the class of concrete mixed models derived from concrete models.

So we have now proven the existence of infinitely many mixed models, notably one can observe that
for any frame F, we can construct a concrete model, hence for all frames there is at least one, and we
could probably show infinitely many, mixed models.

But is this all of them? As it turns out no, since closure under derivation does not always give the
same set of formulas as the forcing relation we defined, as we show using a previous example:
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Proposition 3.3.16. CMM C MM

Proof. as proof we give an example of a non-concrete mixed model. Consider the model K = (W, R, e,,)
such that:

F=WR),W={w}, R=09,1l, =c¢, Ty, ={pVqgu{lp|¢c€ FormD}VD. We have shown in
Example that this is indeed a mixed model. However, if we had for some concrete model M and
w € M that w IF p V ¢, then by definition w I p or w I ¢, i.e. p €Ty or ¢ € T'y,. However we have
that p,q ¢ T, hence this set T,, cannot be given from a concrete model, and K is consequently not a
concrete mixed model. O

The intuition is that the concrete mixed models have some form of maximality attached to them. To
encapsulate this, we formulate the following conjecture:

Definition 3.3.17. (Prime theory) A theory (classicalg or intuitionisticg) T is called prime when ¢ V
1 € T implies that p € T or ¢ € T.

Clearly, if T is a classicalg theory, then it is prime if and only if it is maximal (for all ¢ € Formg(X),
peTor-peT)

Conjecture 3.3.18. The class CMM of all concrete mixed models is the class of all mixed models such
that for all M € CMM, w e M, T, is a prime theory.
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4 Associated logic and first completeness results

Now that we have shown that mixed models exist, we are interested in seeing what logic they relate to.
Our mixed models, combining classical and intuitionistic reasoning are a particular example of this idea
for combining different logical reasoning inside a model construction, in the sense that the two logics we
consider are comparable. Indeed we have that intuitionistic reasoning is a “subset” of classical reasoning,
and as a result any classical theory, i.e. set of formulas closed under classical derivation, is also closed
under intuitionistic derivation of the same kind (see Proposition . As a result, a first intuition is
to think that these models are possibly related to some intuitionistic logic, and since we have the modal
connective [1 present, the first thought is towards iK (Litak |2014). However, as we will now show, we do
have that all formulas of iK are valid in mixed models, but there is also more.

In this chapter unless stated otherwise, we work with the set Formg(X) of modal formulas.

4.1 The logic MixL

Indeed, we do not have an intuitionistic definition of our modal connective, the definition is (in spirit at
least) from classical modal logic. Hence, there are more formulas present, such as the formulas of the
form

0A v -0A,

from Proposition As a result, we look at the logic formed from iK combined with this new axiom
schemata, which we name bem for “Box Excluded Middle”.

Definition 4.1.1. (Substitution) A substitution over Formg(X) is a function o : Formg(X) — Formg(X)
such that, for all A, B € Formg(X):

eo(l)=1
o g(—A) =-0(A)
e o(0A) =00 (A)

e 0(A-B)=0(A) -0(B), for - € {A,V,—}

Definition 4.1.2. (iK) (Simpson 1994) We give a definition of the intuitionistic normal modal logic iK.
iK is the set of formulas containing:

e All IPC axioms (i.e. axioms 1-9 of Definition [2.2.1));
e The Distribution axiom (k): O(p — ¢) — (Op — O).
closed under the inference rules:
e Modus Ponens (MP): If ¢ — ¢, p € iK, then ¢ € iK;
e Substitution (Subst): If ¢ € iK and o is a substitution over Formg(X), then o(p) € iK;
e Necessitation (Nec): If ¢ € iK, then Oy € iK.
We now define the logic MixL = iK 4 bem:

Definition 4.1.3. (MixL) The logic MixL is the logic formed by iK + bem, i.e. the set of formulas
containing:

e All CPC axioms (i.e. axioms 1-9 of Definition [2.2.1));

e The Distribution axiom (k): O(¢ — ¢) — (Op — O);

e The Box excluded middle axiom (bem): Oy v —Oep.
closed under the inference rules:

e Modus Ponens (MP): If ¢ — ¢, € MixL, then ¢ € MixL;

e Substitution (Subst): If ¢ € MixL and o is a substitution over Formg(X), then o(¢) € MixL;
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e Necessitation (Nec): If ¢ € MixL, then Oy € MixL.

Now that we have our logic of interest, we give a definition of provability under MixL. We note that
this is the local consequence relation for MixL.

Definition 4.1.4. (Fuix) let T' C Formpg, ¢ € Formg. We write T’ Fpix. @ when there is a derivation
D : {0, @1, ..., on} where for all i € {0,1,2,...,n}:

e ¢ is an axiom of MixL;

o v, 1’

e There exist some j,! < i such that ¢; = ¢; = ;3

® Vn =@.
When I' = @, we write Fuix. ¢ and say that ¢ is provable in the logic MixL.
Definition 4.1.5. (Closure under Fyix. ) Let I' C Formp. We say define the set [ {¢| T Fmix. ¢},
Ifr= fM'XL, we say that I' is closed under MixL.

Theorem 4.1.6. (Deduction theorem) Let ¢, € Formg, I' C Formg. Then

I'Fmise ¢ = ¢ <= TU{e} Fmi ¥

Notation 4.1.7. For simplification purposes, unless stated otherwise, we will write F instead of Fmix
=, —MixL .
and I instead of T’ for the remainder of the paper.

4.2 Soundness with respect to mixed birelational models

The logic MixL will be the focal point for the rest of this thesis. We will later show it is sound and complete
with respect to mixed models. However managing to show that from scratch might prove difficult, as
the semantics of mixed models is quite unusual and we cannot rely on usual strategies for completeness.
This is also true for concrete models. Hence, we decide to first have a look at the traditional models
considered when talking about intuitionistic normal modal logics such as MixL, birelational models. We
will first show soundness and completeness of MixL with respect to a subset of the class of birelational
models.

Definition 4.2.1. (Intuitionistic birelational model) We call an intuitionistic birelational model a tuple
M = (W, R, <, V) where (W,<,V) is an intuitionistic Kripke model and R is a binary relation such
that:

w < v =Vz(vRz = wRz) (F0)

The logic iK is sound and complete with respect to the class these models, and some logics containing
iK are sound and complete with some subclass of them (see Bozi¢ and Dosen, 1984). For example, the
logic iIK4 = iK + (Op — OOp) is sound and complete with respect to the class of all models with frames
with a transitive R relation. The logic iT = iK + (dp — p) is sound and complete with respect to the
class of all models with reflexive frames, etc.

So we find a frame condition which would satisfy axiom bem.

Definition 4.2.2. (F1) We define the frame condition F1 for birelational frames:
w<v=Vz(wRz = vRz)

Definition 4.2.3. (Mixed birelational model) We call a mized birelational model a tuple M := (W, R, <
, V') where (W, <, V) is an intuitionistic Kripke model and R is a binary relation such that:

w<v=VYz(wRz < vRz) (FO+F1)

We then call F1 the frame property of mixed birelational models.

Here are the two Frame conditions represented, where the straight arrows represent an R relation
and the curved arrows represent a < relation, with dashed arrow representing the relations arising from
the frame conditions:

22



y.—;.z Y o---->0 2

re T e

(F0) (F1)

Mixed birelational models have both of these frame properties, so the overall frame property for
mixed birelational models is as follows:

Yo---->02
re---->efk
(F1+ FO0)

We now take a look at the respective classes of these models, as well as the usual forcing relation
defined for intuitionistic birelational models:

Definition 4.2.4. (BM,MBM) We define the class of intuitionistic birelational models and mixed
birelational models as BM and MBM respectively.

Proposition 4.2.5. MBM C BM.

Proof. From definition, a mixed birelational model has frame property (F0) and hence is an intuitionistic
birelational model, therefore MBM C BM. O

Definition 4.2.6. (IF) Let M := (W, R, <,V) be an intuitionistic or mixed birelational model. We
define the forcing relation IF inductively over a formula 6 as follows (for w € W):

e Mywlkpiff pe V(w);

e MwW L Mwl-T;

M,wlFp Ay iff MywlF @ and M, w I 1;

MiwlF eV iff M,wlkF ¢ or M,w I 1;

M, w - — o iff for all v, w < v implies v ¥ p or v IF ¥,

M, w IF O iff for all v such that wRv we have M, v IF ¢.

For intuitionistic birelational models, we had that the relation R was conservative over <, however
with frame property F1 we have a stronger statement:

Definition 4.2.7. (=<) Let M € MBM. We define the equivalence relation =< on M as follows:
wW=<v:<= wlvorv<w
Lemma 4.2.8. Let M be a mixed birelational model, then for all w,v € M, we have that
w =< v=Vz(wRz <= vRz)
Consequently we also have the following property:
wlFOp <= v - Oep.

Proof. Directly from the frame property of mixed birelational models and definition of the forcing rela-
tion. O

This is a property which will be very important for showing completeness, but for now we do not
focus on it just yet and instead have a look at soundess results for birelational models. We want to prove
that MixL is sound with respect to the class MBM of birelational models. To show this we can rely on
some known results:
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Lemma 4.2.9. iK is sound with respect to the class BM.
Proof. This is a known result, see Bozi¢ and Dogen (1984, O

Lemma 4.2.10. Let ¢ be an instance of axiom bem (i.e. ¢ =O0AV-0OA for some A € Formg ) . Then
for all M € MBM, M E ¢.

Proof. Let M € MBM, w € M. We want to show that w I+ JA VvV -OA.
If w I+ =OA then we are done.
So suppose w W —[JA. We would like to show that w I A. So, let z be such that wRz. We wish

to show z IF A. By w W —0A, there exists y > w, such that y IF JA. By the mixed frame condition, we
have yRz. Therefore, we have z IF A, as desired. O

From the two previous lemmas we can deduce that the logic MixL is sound with respect to the class

MBM.
Theorem 4.2.11. MixL is sound with respect to the class MBM.

Proof. From Lemma we know that iK is sound with respect to the class BM. And from
we have that axiom bem corresponds to the frame condition F1 in the class BM. Hence we have that
MixL = iK + bem is sound with respect to the class MBM. O

4.3 Completeness of MixL with respect to MBM

We have proved soundness of MixL with respect to MBM, so naturally we turn our eyes to Completeness.
We want to show the following:

YMe MBM MIFp = by @

To show this, we will show the contra-positive, i.e. that if some formula ¢ is not derivable from MixL,
then there exists a counter-model M € MBM such that for some w € M, M,w ¥ p. We show this

following a Henkin-style construction of the canonical model.
— —MixL
In this Section, we maintain the simplified writing of - instead of i and I' instead of T’ "

Definition 4.3.1. (Prime set) Let Let I' C Formp. We say I is prime (with respect to MixL) when the
following properties are met:

e (Consistency) L ¢ T
e (Closure) T is closed under MixL (i.e. T F ¢ implies ¢ € T) ;
e (Disjunction property) If p Vo € T', then p € " or ¢ € I
Proposition 4.3.2. Let I' be a prime set. Then:
I'Fp <= el
Proof. Directly from closure. O

We now adopt a Henkin-style construction (Artemov and Protopopescu 2016,Bozi¢ and Dosen [1984])
of the canonical model. The first step is to show that any consistent set A of formulas which does not
prove a formula ¢ under MixL (A ¥ ¢) can be extended to a prime set I which maintains this property,
i.e. I' does not prove (:

Lemma 4.3.3. Let A be a formula and A a set of formulas such that A ¥ A. Then there exists a prime
set I such that A CT" and I'" ¥ A.

Proof. Let A and A be such that A ¥ A. We will construct a sequence (I'y,),en of sets of formulas such
that, for all n € N:

1. Tg=A
2. T, ¥ A;
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3. T, is closed under (i.e. T,, =T,);

4. T, C Ty
From the first 2 items we can deduce that T',, is consistent, since 1 — A (axiom 9) is in T',, by closure
over ¥ .
We will then show the set I' = [J I',, has all above properties except for property 1), as well as the

neN
disjunction property, hence making it a prime set. To achieve this, we apply the following method:

e Start with A and close under consequence. This gives us our I'p;
e Enumerate the set of disjunctions in I'y;

e We pick a disjunction D = @1 V g in I'g. As we will show later, when constructing I';, 11, either
1 Or g, possibly both, is a formula such that the set I'g U {p;} where i € {1,2} is consistent. We
then pick one such that it is and construct I'y = T'o U {¢;};

e We now enumerate the disjunctions in I'; that are not present in I'g, and to construct I's we pick
a ‘new’ disjunction (i.e. not D) and repeat the process;

e Recursively, ', 11 will be defined as T',, U{¢} for some ¢ sub-formula of a disjunction D in the set
of still ‘unresolved’ disjunctions.

The idea for this construction is that when looking at the union of all I",,’s, all disjunctions inside will
be resolved at some step of the process. To ensure this however, we need to define a specific sequence
(Dy)nen of disjunctions such that all disjunctions in " will be equal for some n to D,,. We present this
enumeration first, and then with it in mind provide a recursive definition of I';, 1 1:

Let Ty be the set Ty = A. We enumerate the set of all disjunctions of 'y as (D9),en = {D9, DY, ...}.
For all n € N*, we will enumerate the set of disjunction in I',, that are not in T',_; as (DI)men =

{D§,Dy,...}.
So for all m, D € I')\I',—1 (We have not yet shown what these sets will be, we are just explaining
notation here).

Iy DJ,DY,DY, DY, DY, D2 DY, ..
Fl D57D%aD%aD§7Di7D%7
I'y D D3 D3 D3 Dji,..

I's D3 D} D3 D3 ..

We then define the sequence (D,,)nen as follows:

L] D0:D8

k+1 - _ 0
. Dot — {DO if D,, = DY

D\ if D, = DY, 1#0

So for example, D1 = D}, Dy = DY, D3 = D%, D, = D3, etc.

It can easily be checked that all disjunctions in the set {D™ | n,m € N} are assigned to a disjunction
in this sequence. Very importantly, if we assume I';, to be well defined, then D, is also well defined. we
can also show that D,, € I',, for alln € N

Now assume that all T', and sequences (DE)),,en for k < n are well defined with properties 2),3) and 4),
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and let D,, =1, V ¢, for some ¢, 1, € Formg.

We claim that T, U {¢n} ¥ A or T, U{¢¥,} ¥ A. Suppose not, then we have that ', U {¢),,} b A and
ThoU{entF A ie. Tyt (pn = A) A (¢, — A). But then T'y, - ¢, V ¢, — A and since ¢, V¢, € Ty,
I', F A, a contradiction.

So we have that T, U {p,} ¥ A or T,, U{u,} ¥ A. Let S,, € {pn,¥n} be such that T',, U {S,} ¥ A.
We then define
Fn+1 = Fn U {S’I’L}

This construction does have a slight issue, where if for some n, I'y, = Ty 11, then the sequence (D™ 1) en
is empty and this exact construction fails. However in practice this is not an issue, as we would just
replace these disjunctions by the next ones in line.

Recursively, we prove I';, 11 has all aforementioned properties:

e (I', 41 is closed under ) By definition;

o (I'y41 ¥ A) Since T',, U{S,,} ¥ A, then A ¢ T',, U{S,,} = T',41 and since I';, 1 is closed under F,
FnJrl VAv

e (I, CT,41) Again by definition since clearly I, CT',, U {S,}.

From these properties we can also derive that I',, ;1 is consistent as mentioned above. Now consider the

set T' = |J Ty, We want to show T is prime and T'" ¥ A. For this we show the following:
neN

(Closure) Let I' F . then there exists a derivation D{¢, ..., om } with elements in I' (and then MP
results leading to ¢). Consider the smallest n such that I';, contains all elements of the derivation
that are in I'. Then D is a derivation such that I';, F ¢. And by closure of I';,,, we have that
pel, CT.

(Disjunction property) Let ¢ V¢ € I'. Then since I, C T',,11 for all n, ¢ V4 € Ty or for some
k€ Nx, o VyI'y and ¢ V) ¢ T'_;. But then ¢ V1) = DF for some m € N. Hence ¢ Vv = D,, for

m

some n and as a result, S,, € [',,41 C T ie. Y el or p €T}

ACTyCTIy

(T' ¥ A) by contradiction suppose that I' H A. Then with a similar argument as above we have
that T',, - A for some n € N. But this is a contradiction since I",, ¥ A for all n. Hence I" ¥ A;

(Consistency) Suppose that I' = L. Then from closure we have that L € I"'and I' - L — A, Hence
I'+ A, a contradiction.

Hence we conclude that I' is prime, A CT" and I" ¥ A. O

We give a definition of the canonical model M for the class MBM with respect to the logic MixL.
This canonical model will help us prove completeness with respect to MBM. This will be done by
contra-positive using Lemma showing that when a formula ¢ is not derivable from MixL, then
there is an element w € M such that w does not validate ¢. We will also need to show that M is indeed
in the class MBM.

Definition 4.3.4. (I'g) let I' C Formp. We define the set I'g := {¢ | Op € T'}.
Definition 4.3.5. (Canonical Model) We define the canonical model M := (W, R, <, V) as follows:
o W:={T"| I'is a prime set};
e '<A:<—= T CA;
e 'RA:<—= T CA;
epceV():<= peTl.

Lemma 4.3.6. The Canonical model M is a mixed birelational model.

26



Proof. To show this we need to prove the following;:

1. (W, R) is a Kripke frame;
2. < is a partial order;
3. V is conservative over <,ie. ' <A = V() CV(A);
4. M has frame properties F1 and FO0.
In order:
e (1) R is a relation over W, so (W, R) is a Kripke frame.
e (2) We have that T < A <= T C A, and since C is a partial order over W, so is <.
e B)Letpe V() and ' < A. Then ' C A and p € T, hence p € A, hence p € V(A).

(4) Let T’ < A. We want to show that VE(T'RZ <= ARZE). We begin by showing I'n = An:

Let ¢ € T'g, then Op € T' C A and so ¢ € Ap. Conversely, let ¢ € A and suppose ¢ ¢ I'g.
Then since Oy V -Op € T (by closure over MixL and the fact T' is prime), ¢ € T' C A, hence
—Op € A and Oy € A and by a simple derivation A - L, a contradiction.

SoI'm=Apn. ThenT'R=E <—= I'gCZ «<— A CZ < ARE.

O

We now have shown that the canonical model M is indeed a birelational model. It remains to show
that for any formula ¢, ¢ is an element of I' € M if and only if it is validated by I' in the model (by
the birelational forcing relation). This will then give us, together with Lemma a birelational mixed

counter-model for all formulas 1) such that ¥ :

Lemma 4.3.7. Let M be the canonical model. Then for all I' € M,

I'Fe <= ¢peT

Proof. By induction on the complexity of formulas:

Tkpiff pe V(T) iff p € T
'l 1 and L ¢ T by definition of prime sets;

FFevy

iffTIFporTIFq

iff peT ory eI (IH)

iff o Vip € T since I is prime and closed under consequence;

Tl-pAy

iffC'lFpand -9

iff peT" and ¢ €T (IH)

iff o Ay € T by closure and a simple derivation;

We want to show I'lF ¢ = ¢ <= ¢ = ¢ €I

(<)

Suppose ¢ — ¢ € I' and let A be such that I' < A. Then ¢ — 1 € A. Suppose ¢ € A. Then,
1 € A by a simple derivation and closure. If not, then ¢ ¢ A. So in conclusion we have that ¢ ¢ A
or ¢ € A.

By induction principle this equates to A ¥ ¢ or A IF ¢, and so by definition I' IF ¢ — ).

(=)

Suppose ¢ — ¢ ¢ T

Then I' ¥ ¢ — 4, hence T' U {p} ¥ ¢ (deduction theorem). But then by Lemma , we have
that there exists a prime A such that I'U {¢} C A and A ¥ 9.

But now, A e M, T <A, AlFpand A W ¢ (IH), i.e. thereexistsa A s.t. T <A, AlFp and A IF
1, which is equivalent by definition to I' ¥ ¢ — .
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e We want to show I' IF Oy <= Op eI
(<)

Suppose Op € T'. Let A be such that TRA. Then I'; C A, hence ¢ € A, which by IH gives A I ¢,
and so I'' IF Oep.

(=)
Suppose Uy ¢ T'. Then T' ¥ Ogp. We show that this implies I'g ¥ .
Suppose not, then there exists a set of elements {¢g, 1, ..., on} of g such that

00, P1, -+ on F @
FooApir Ao Apn — ¢ (By deduction theorem)
FOwo Adpr A... AQOgp, — O¢ (By axiom k and necessitation)
Owo, Op1,...,0p, FOp  (By deduction theorem)
I'F0O¢ (By definition of T")

Which is a contradiction.
So I'g ¥ ¢. Then by Lemma , there exists a prime A such that I'g C A and A ¥ ¢. But then

I'RA by definition and A W ¢ by IH, hence I' ¥ ¢.
O
Theorem 4.3.8 (Weak completeness w.r.t. MBM). If ¢ is true in all models M € MBM, then Fyix ©.

Proof. Using the previous lemmas we have shown the contra-positive of this statement, which is that if
there is a formula ¢ such that MixL ¥ ¢, then there exists a model M € MBM (the canonical model)

such that for some element I' € M, T" ¥ ¢. O

28



5 Soundness and Completeness results for mixed models

With this first completeness result for MixL with respect to mixed birelational models, we now look at a
completeness result for mixed models.

5.1 Soundness with respect to mixed models

Lemma 5.1.1. Let M € MM. Then for all ¢ € Formg(X), we have that M E Oy V —-Ce.

Proof. This is just a new iteration of Proposition [3.1.§| O
Lemma 5.1.2. Let M € MM and ¢ be an IPC axiom. Then M F ¢.

Proof. Let w € M. Then T, is either a classicalg theory or an intuitionisticy theory. But then since
FEO & and Ff‘j ¢ and T, is closed under l,,, we have that ¢ € Ty, i.e. w - . O

Lemma 5.1.3. Let M € MM and ¢ a k-axiom instance. Then M F ¢.
Proof. We have that ¢ = 0(A — B) — (A — OB) for some A, B € Formp. Let w € M:

e Suppose (A — B) ¢ T,. Then -J(A — B) € T, (from Lemma(5.1.1). ie. OA — B) - L €
T,. But now from Lemmal5.1.2) 1 — (A — 0OB) € Ty, (axiom 9) and with a simple derivation
we see that O(A — B) — (0A — OB) € Ty,.

o If (A — B) € Ty:

— Suppose A ¢ T,. Then again, A — 1 € T, and L — OB € Ty,. Hence 0A — OB € Ty,
and so O(A — B) —» (DA - OB € T,,.

— If OA,0(A — B) € Ty, then for all v € M, wRv implies A € T,, and A — B € T,. But now
from closure under I—f/E, we get that this implies that for all v, wRv implies B € T;,. Now by
property 3) of mixed models, OB € T,,, and so 0JA,0B,0(A — B) € T,,. From it we deduce

0O(A— B)— (0DA—0OB) €T,
as desired.
O

So we now have that all axiom iterations (i.e. closed under substitution) of MixL are valid in the class
MM. We now show that the set of valid formulas of MM is closed under the remaining inference rules.

Lemma 5.1.4. Let M € MM, M E ¢. Then M E Oep.

Proof. Suppose that for all v € M, v IF ¢ and let w € M. Then w I Oy if and only if for all z € M,
wRz implies z I .
But z IF ¢ from our premise, hence w IF Op. O

Lemma 5.1.5. Let M € MM, M E ¢ and M E ¢ — 1. Then M E 1.

Proof. Let w € M. Then ¢ — 9, € T,,. but since T}, is closed under }—fu‘]:' and p = Y, p }—f/‘:i' P, we

have that ¥ € Ty,. O
Theorem 5.1.6 (Soundness w.r.t. MM). If MixL - ¢, then ¢ is true in all models M € MM.

Proof. From previous Lemmas, we show that all formulas ¢ in MixL are valid in mixed models. We
proceed by induction on the derivation :

o If ¢ is an IPC, (k) or (bem) axiom instance, by Lemmas|5.1.2} |5.1.3|and [5.1.1] we have that M E ¢;

e Suppose that M E . Then by Lemma M E Op:
e Suppose M F ¢ and M F ¢ — 9. Then by Lemma ME 9.
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5.2 Completeness of MixL with respect to MM

We now give a completeness result for the class of models MM. Similar to the previous Section, we will
do this by constructing a canonical model, though instead of the singular canonical model of Section 3.3,
here we will be constructing a class of canonical models, each generated by a prime set I". To do this,
we will consider the canonical model for mixed birelational models of Section 3.3, which we will denote
as M = (W, R, <ar, Var). We also denote its forcing relation as Ik ;.

For each prime set I' € M, we will show we can construct a concrete canonical model K such that
K is a concrete model and for some element w € K, w - ¢ <= T IFjr . From this we will derive a
completeness theorem using Lemma [4.3.3

We first give the following definitions:

Definition 5.2.1. (R},;) We define the relation R}, as the transitive closure of R, i.e.
I'R;;A if and only if there is a chain of elements Ag, A1, ..., A, such that TRy Ao Ry A1 Ry Ry Ap Ry A

Definition 5.2.2. (RZ, Wz) Let = € M. We define the set

R=:={A| ER};,A}U{E}.

From this set we now define the set _
Wz= = {U}A | A€ R:}

Definition 5.2.3. (Af) Let A € M. We define the set
At={I'| A<y I'}
as the usual upwards closure of <j; from A.

Definition 5.2.4. (Concrete canonical model) Let M be the canonical model, 2 € M. We define the
concrete canonical model K = (W, R, Ap, mr) (F := (W, R)) generated by = as follows, where Ap is a
function Ag : Wz — {c,i} and mp is a function mg : Wz — ZKM such that:

o W :=Wxg;
e wrRwp : < FRMA(F,A S RE);
e \p(wa) = cif and only if At={A} (so if AT#£ {A}, Ap(wa) = i);

o mp(wa) = (AT, <, Var). (While it is not in the notation for clarity purposes, it is implied that
here both <,; and Vi, are restricted to the set At)

Remark 5.2.5. In this model, the forcing relation will consequently be defined over the set

0:= [H A1,

A€RE

where |4 denotes a disjoint union. At first it seems this is a slightly different definition of © from concrete
models, however we do this to avoid problems if there is repetition of elements in the union of the sets
AT. Indeed, something like this could be possible:

Let I be the concrete canonical model generated by =, with Z < Ag < A; and ZRAy. Then, we
have that Z,A¢ € RE, and so mp(wz) = (21, <ur, Var), mr(wa,) = (AoT, <ar, Var) are elements of K.
But now A; € 21 and A; € AgT, So there are two copies of Aj in the model. In fact Ay also has two
copies as it is both an element of a Kripke model and the root of another one. We will show that all
occurrences of A € © validate the same set of formulas, and so this will not be an issue.

We now show that a concrete canonical model is a concrete model. For this we need to show the
following:

e F is a Kripke frame;
o for all wa € Wz, mp(wa) is a rooted intuitionistic Kripke model;

For this Section, Let M be the canonical model, ¥ ¢ and = ¥ ¢ with Z prime:
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Lemma 5.2.6. Let A € R=. then mp(wa) = (AT, <as, Var) is a rooted Kripke model.
Proof. We prove the following:

e Trivially (AT, <ps) is a Kripke frame, Moreover, since <, is a partial order, as shown in Lemma
then its restriction to At also is, hence (Af, <j/) is an intuitionistic Kripke frame;

e We have also shown in Lemma that Vi is conservative over <j;, hence its restriction is also
conservative.

e We show A is the root of the set AT simply by definition of it, since clearly A is such that for all
e AT, A <) I'. So mg(A) is a rooted intuitionistic Kripke model.

O

Lemma 5.2.7. Let £ € M. The concrete canonical model K := (W, R, A\g, mg) generated by = is a
concrete model.

Proof. From the previous Lemma and from definition, we have that K is a Kripke frame combined with
an assignment function A\r and myg that respect the definition of concrete models. O

Now similarly to the canonical model, we want to show the following: Let K = (W, R, A\, mg) be the

canonical model generated by E. Let A € [ Af. Then:
A€ERE

AlFp < peA

i.e. ¢ is an element of the set A if and only if it is valid under the forcing relation I for concrete models.
Then from this we will be able to construct concrete counter-models for any formula ¢ such that ¥ ¢,
which will be converted to mixed counter-models through Theorem [3:3:12] And finally from this, we will
conclude the proof of completeness.

We proceed by first proving the intermediary result
KA <= M,AlFp o,

which is equivalent to what we want by Lemma [£:3.7] We first give a reminder of the forcing relation
defined for concrete models:

Let K := (W, R, Ar, mp) as defined above (generated by Z). Then the relation IF is defined on
©:= | A? as follows:

for = éei%; (z is an element of the canonical model M, hence a prime set):

1.xW Land z Ik T;

2. zlkpiff x € V,,(p);

3. zIFAANBiffzlF A and z I B;

4. zlF AV Biff Ik Aor x I+ B;

5. zlF A — Biff for all y € Af, x <y implies y ¥ A or y I- B;

6. zlF-AiffzlF A — L

7. x |- OA iff for all wp € W= (I € RZ), wa Rwr implies T I- A.

We now prove the following Lemma:
Lemma 5.2.8. Let K = (W, R, A\p, mp) be the canonical model generated by Z. Let A € |4 _AT'
Then: e

M, Ay o <= K, Al ¢ (for all copies of A)

Proof. Let T' € mp(wn) = (IIt, <as, Var) We show this recursively over the complexity of formulas:
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[lFa p iff p € Vg, but by definition this is iff T' I p;

I'w ,Land I' ¥ L by definition. Similarly, I lFpy T and T" IF T;

Clkpy Ve
iff T'lkpr @ or Tlpp )
iff TI- ¢ or T I (TH)
iff T'IF oV,

F‘FM 50/\’(/)
iff T'lFpr @ and T Ikpp o
iff T'IF ¢ and T' IF o (IH)
iff T'IF o A

We want to show I'lFpr o =Y <= TI'lFp =9

(<)

Suppose I' IF ¢ — @ and let A € M be such that I' <;; A. By definition of I, since I' € IIT
then A € II1. Then by assumption we have that A W ¢ or A I ¢ by definition. But now by IH,
AW por Alkbp 9, hence we deduce I' IFar o — 93

(=)

Suppose I' IFps ¢ — 1 and let A € IIT be such that I' <py A. Then by assumption A ¥, ¢ or
A lFpr 9. But now by TH, A W ¢ or A I 1, and from this we deduce I' IF ¢ — ;

e We want to show I' Iy Oy <= T'IF Oy
(<)

Suppose I' IF Oy and let A be such that I'Ry;A. Then from the frame condition F'0 of M we have
that IRy A (since IT <j; T'). But now since IT € RZ, by definition of RZ (transitive closure of
Ryr), A € RE and wgRwa. From assumption we have that T' IF Oy and so A IF ¢ by definition.
But now by IH, A IFj; ¢ and we conclude that T' Iy, Op

(=)

Suppose I' IFp; Op and let wa € Wz be such that wpRwa. Then by definition, IIRy; A, and from
the frame condition F1 of M we get that ' Ry;A. Then by assumption we have that A I-y; ¢ and
by IH, A IF ¢. We hence conclude that T" IF (.

O

With all of these lemmas in mind we can now formulate the completeness theorem of MixL with
respect to mixed models:

Theorem 5.2.9 (Weak completeness w.r.t. MM). If ¢ is true in all models M € MM, then Fyi ¢.

Proof. Using the previous lemmas we have shown the contra-positive of this statement, which is that if
there is a formula ¢ such that MixL ¥ ¢, then there exists a model M € MBM (the canonical model)
such that for some element I' € M, T ¥ . O
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Conclusion

In conclusion, we have given a definition of a new kind of modal models, expressing a possible worlds
semantics where worlds are not restricted to a singular logical reasoning. We have provided a first
example for these models, called mixed models, where worlds either follow an intuitionistic reasoning
or a classical reasoning. We have provided soundness and completeness of these mixed models with an
extension of iK, the logic MixL = iK 4 (bem), where bem is the law of excluded middle for O formulas,
i.e. the axiom JA V —[JA. We have also provided a soundness and completeness result with respect to
a subset of intuitionistic birelational models related to intuitionistic modal logic.

In further studies on models of this kind, we could consider an expanded set of logical reasonings
to be applied to worlds of the model. For example, we could consider what a model of this kind
with incomparable logics as possible logical reasoning bases for worlds would look like. As mentioned
previously, this first example has the very specific property of having a logical reasoning (intuitionistic)
be a subset of all other reasonings. Without this property, it is less clear what these models would look
like, and what logic they would relate to.
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