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Abstract: This project explores the integration of Bayesian Optimization (BO) algorithms into
a base machine learning model, specifically Convolutional Neural Networks (CNNs), for classifying
gravitational waves among background noise. The primary objective is to evaluate whether opti-
mizing hyperparameters using Bayesian Optimization enhances the performance of the base model.
For this purpose, a Kaggle [1] dataset that comprises real background noise (labeled 0) and sim-
ulated gravitational wave signals with noise (labeled 1) is used. Data with real noise is collected
from three detectors: LIGO Livingston, LIGO Hanford, and Virgo. Through data preprocessing
and training, the models effectively classify testing data, predicting the presence of gravitational
wave signals with a remarkable score, 83.61%. The BO model demonstrates comparable accuracy
to the base model, but its performance improvement is not very significant (84.34%). However, it
is worth noting that the BO model needs additional computational resources and time due to the
iterations required for hyperparameter optimization, requiring an additional training on the entire
dataset. For this reason, the BO model is less efficient in terms of resources compared to the base
model in gravitational wave classification.

I. INTRODUCTION

The detection of gravitational waves by the LIGO de-
tectors in 2015 has been a significant discovery, confirm-
ing Einstein’s prediction of gravitational waves in 1916
[2]. Detecting and analyzing these signals reveals a va-
riety of physical properties of the objects emitting them
(such as the distance, mass of the astrophysical objects).
Nevertheless, there is large amount of data to be pro-
cessed, which is a problem that has led to the develop-
ment of machine learning based techniques that optimize
data processing in gravitational wave studies.
Among the various data processing methods, the most
important ones are Matched Filtering [3] an Machine
Learning (ML). Matched filtering consists on correlat-
ing a known reference signal (template) with a noisy
input signal for determining if the reference signal is
present or not in the input signal. The template can
be obtained solving and modelling Einstein’s equations
for gravitational waves. However, this method requires a
vast amount of templates, and can be less powerful when
the noise distribution in non-Gaussian.
ML offers one of the most effective and efficient ap-
proaches, as the selection of the appropriate architecture
and proper preprocessing of the data can lead to robust
and reliable outcomes.
For this reason, the objective of this study is to de-
velop a base model using conventional Machine Learn-
ing techniques, along with convolutional neural networks
(CNN), for the detection of gravitational waves amidst
background noise. A brief explanation on the architec-
ture and function of CNN will be provided, as well as the
preprocessing method used for the signals.
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This base model will serve as a reference for a subsequent
model, which will incorporate Bayesian Optimization al-
gorithms to identify optimal hyperparameters. Further
explanation of this approach will be covered later in the
project as well. The aim is to determine whether this ap-
proach enhances accuracy and efficiency in gravitational
wave detection.

A. Introduction to Gravitational Waves

Gravitational waves are ripples in spacetime that can
propagate across vast distances, and come from fully rel-
ativistic sources that are changing rapidly, such as the
collision of two black holes, neutron star mergers or su-
pernovae.
As gravitational waves can be considered as region in
spacetime in which the gravitational field is weak but not
stationary, so weak-field equations are needed for study-
ing them [4].
Weak-field theory assumes that a weak gravitational field
consists in the flat spacetime metric, ηµν , plus a pertur-
bation, hµν , i.e., gµν = ηµν + hµν .
The Einstein equations in vacuum (Tµν = 0) far outside
the field are: (

− ∂2

∂t2
+∇2

)
h̄µν = 0 (1)

where the trace reverse tensor h̄µν = hµν − 1
2η

µνhµ
µ is

used, defined with index-raised quantities. The solution
for 1 has the following wave-like form:

h̄µν = Aµνexp(ikµx
µ) (2)

These equations describe how gravitational waves propa-
gate through spacetime, influencing the proper distances
between objects. This distinction underscores the nature
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of gravitational waves as distortions of spacetime itself.
One of the most significant sources of gravitational waves
(as mentioned before) is the merger of black hole bina-
ries, systems that consist on black holes orbiting each
other, gradually losing energy through emissions of gravi-
tational waves, until they collapse. As the black holes be-
come closer together, the frequency and amplitud of the
gravitational wave increases, resulting in a quasi-circular
inspiral waveform.

FIG. 1: Waveform of a binary merger, created with
PyCBC [5]. The masses of the binary are 15 and 20

solar masses.

II. CONVOLUTIONAL NEURAL NETWORKS
(CNNS)

Gravitational waves signals are time series collected
from three detectors: LIGO Livingston, LIGO Hanford
and Virgo.
Every file of the dataset has three time series correspond-
ing to data from each detector. After the preprocessing
of the data (which will be elaborated upon later), the re-
sulting training data are images. For this reason, CNNs
will be used, because they are domain-aware neural net-
works specifically designed for images.
In CNNs, images are represented as tensors with dimen-
sions corresponding to length, width, and depth, where
depth represents the number of color channels [6]. Each
layer of the CNN is three-dimensional to match the di-
mensionality of the input image. The depth of the layer
corresponds to the image’s color channels: it is 3 for col-
ored images (RGB channels) and 1 for grayscale images.
For the CNN in this TFG, grayscale is enough for differ-
entiating between a signal and noise. The input image
will be a tensor that can be represented as a matrix, while
the layers remain three-dimensional.
The convolution operation that every layer undergoes is
based on a filter that maps the activations from one layer
to the next one, where the filter has weights of the same
depth as the current layer but with a smaller spatial ex-
tent, resulting into a hidden state in the next layer deter-
mined by the dot product between the filter weights and

a spatial region (that matches the filter’s dimensions),
and this process is repeated for all possible positions in
the input. Precisely, the convolution procedure can be
expressed as follows [7]:

yil+1,jl+1,d =

H∑
i=0

W∑
j=0

Dl∑
dl=0

fi,j,dl,d × xl
il+1+i,jl+1+j,dl (3)

Which is reapeated for all D, and for any spatial loca-
tion (il+1, jl+1) satisfying 0 ≤ il+1 < H l−H+1 = H l+1,
0 ≤ jl+1 < W l −W + 1 = W l+1, where H is the number
of rows and W the number of columns. xl corresponds
to the input tensor. fi,j,dl,d represents the set of convo-
lutional kernels.
Additionally, the choice of the loss function is critical, as
it calculates a numerical value that represents the dis-
crepancy between the prediction that has been made by
the CNN for a signal and the true result (the label of
that signal). The output of the loss function is this value.
Thus, minimizing this value is the goal.

III. DATA VISUALIZATION AND
PREPROCESSING

The dataset used in this TFG comes from the ’G2-Net
Gravitational Wave Detection’ competition on Kaggle
[1], and includes data from three interferometers: LIGO-
Hanford, LIGO-Livingston, and Virgo. It comprises two
types of data: signals with real noise combined with a
simulated gravitational wave signal (labeled 1), and sig-
nals containing solely real noise (labeled 0). Both cat-
egories span 2 seconds and have a sampling frequency
of 2048Hz. Using the raw data directly for training the
model (further explanation of the model will be explained
later) is inefficient and will not yield positive results. This
is primarily due to the fact that gravitational wave sig-
nals are weak, their order is comparable to the noise.

FIG. 2: Signals with simulated gravitational wave
(upper) and real noise (lower).

For this end, the data from all detectors is stacked and
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then a Q-transform [8] is employed on the data. In
this case, from the python library nnAudio.Spectrogram
CQT1992v2 [9] is used.
The Q-transform originates from a discrete Fourier
Transform (DFT). Q is the ratio of the center frequency
to bandwidth. It returns a tensor of 3D spectrograms,
in a image format. This format makes the difference
between a gravitational wave signal and a noise signal
clearer, and the model becomes better at distinguishing
the difference after the training with a decent accuracy,
achieving a higher level of accuracy (further details on
this approach elaborated later).
An example of the image obtained after applying the
method for a gravitational wave signal (in the upper im-
age), and for noise (in the lower image) is represented in
FIG.3:

FIG. 3: Q-transformed signals with simulated
gravitational wave (upper) and real noise (lower). The
difference of signals with or without gravitational waves

can not be found with the naked eye.

However, the upside down yellow cones that can be
seen in FIG. 3 must not be misunderstood as gravita-
tional waves. Those are mathematical artefacts that
appear because strains are stacked one next to each
other, resulting into a discontinuity in the intersection
of the signals.
Eliminating these mathematical artefacts was tested, yet
it did not result effective in terms of score. Instead, it
increased the traning time, as it consisted on implement-
ing the CQT for the signals of each detector separately
(and then, stacking the images), which resulted in an
increase up to three times the training time.
A comparison between spectograms obtained by both
methods is shown in FIG.4:

FIG. 4: Signals stacked before CQT (upper) and
stacked after CQT (lower).

IV. BASE MODEL

The dataset is divided in two parts: the training set
and the testing set.

• Training Set: In the training set, the signals are
labeled according to whether they contain a signal
(label 1) or not (label 2), and are used to train the
model. This data is used for teaching the model
how to distinguish between signals with gravita-
tional waves, or noise.

• Testing Set: The testing set consists of signals
that are all labeled with the same neutral value
(0.5), since its purpose is to evaluate the perfor-
mance of the trained model on unseen data. For
this reason, the label is chosen as 0.5 to ensure that
model’s predictions are not biased. After the test-
ing, the model will return a value in-between 0 and
1, indicating the presence of a gravitational wave if
the value is higher than 0.5, or the absence of it if
the value is lower than 0.5.

The labeling of the dataset is crucial because it condi-
tions the architecture of the model. In this case, it forces
the output to be a number comprised among (0,1). Us-
ing the Keras library, it is possible to construct a CNN
using pre-built layers (in this TFG only sequential archi-
tectures are implemented). The input layer of the model
is a convolutional layer where the input is a tensor shaped
with the same size as the Q-transformed signal. It em-
ploys 256 filters (the number of filters is important for
the BO part).
Following the convolutional layer, a Batch normalization
layer is implemented (it adjusts the presentation of the
data, for a better compatibility in the next stages of the
model), and then flattened, for transforming the output
into a one-dimensional array.
Then, a dense layer with the same filters as the convo-
lutional layer is implemented, and the number of dense
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layers implemented are a important parameter for the
BO part (along with the number of filters), since it will
be modified to increase the accuracy of the model.
Finally, the output layer consists in a single dense layer
with a sigmoid activation function, and generates an out-
put comprised among (0, 1), which is a probability score
that indicates the presence of a gravitational wave.

V. BAYESIAN OPTIMIZATION (BO) MODEL

Once a base model is established, it is possible to im-
prove it optimizing its hyperparamters. The difference
between hyperparameters and normal parameters is that
normal parameters are modified during training, while
hyperparameters are set before training begins and are
not modified during training by the CNN.
The strategy that this current TFG is studying is
Bayesian optimization [10]. The goal of this method is
to find the global maximum or minimum of a function
(in this case, the accuracy function), with the following
steps:

1. First, a surrogate model is defined (it is called sur-
rogate because it acts as a stand-in or substitute for
the final model that you ultimately want to build or
optimize), in which a set of initial hyperparameters
are chosen. This set is the prior.

2. Secondly, the function (the performance metric we
want to optimize, namely the loss or accuracy func-
tion) is evaluated (using the Bayes rule), in order
to determine the posterior. The posterior is a dis-
tribution that provides a probabilistic summary of
the true function.

3. Then, an acquisition function α(x) (which is a func-
tion of the posterior) will decide the next sample
point, xt = argmaxxα(x).

4. This process is repeated (from step 2) with new
sampled data until the method converges.

Acquisition functions are crucial to Bayesian Optimiza-
tion. For this TFG, the function used will be probability
of improvement (PI). It chooses the next query point as
the one which has the highest probability of improvement
over the current max f(x+). Mathematically:

xt+1 = argmax(P (f(x) > f(x+) + ε)) (4)

where P (·) indicates probability and ε is a small positive
number that represents the exploration of the method
(high values of ε correspond to more exploration).
In the context of CNN, a the python library scikit-
optimize will be used, as it provides the tools to imple-
ment this optimization in the model.
The code initially declares a search space for the opti-
mization. The dimension of the search space is 2:

• Dense layers. This hyperparameter sets the number
of dense layers in the neural network. The search
space for the possible number of dense layers con-
sists of integer values from 1 to 4.

• Number of filters (width of a CNN). In a CNN each
filter (also known as channel) generates a feature
map for identifying patterns. Numbers among 2i

∀ 5 ≤ i ≤ 8 will be searched (i being an integer
number).

To perform the optimization, gp-minimize [11] from
scikit-optimize will be used. This function applies BO
method explained earlier in this section, maximizing the
value of accuracy (it minimizes the negative accuracy
value). Further explanation of its implementation can
be found in the Appendix.
It is important to mention that this function calls the
model with a different set of hyperparameters each time,
until it reaches the number of calls specified in the func-
tion (we will use n calls = 16). However, every call uses
all the training data for the training, which is costly. In
order to reduce the training time, the approach used in
this TFG consists on dividing the dataset in 16 parts, and
every call (namely, every exploration of a set of hyper-
parameters) will use one part of the dataset. This vastly
reduces cost of this method, but the fact that the train-
ings are not made with the entire dataset might have a
negative influence in the result of the accuracy obtained
for each sampling point.
The resulting hyperparameters found with the BO
method will be used for training the model, and its per-
formance will be compared to the base model, which used
a not optimized set of hyperparameters.
The next figure shows an example of the exploration of
the hyperparameter space, finding the hyperparameters
that lead to the maximum accuracy.

FIG. 5: Exploration of the hyperparameter space, in
which the color bar represents the accuracy. The yellow

star corresponds to the best result

The greatest value of accuracy is obtained when the num-
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ber of dense layers is 2, and the number of filters is 256
(base 2 logarithm of the number of filters equals to 8),
which represents the point (8,2) in the hyperparameter
space. With a low number of filters, CNNs do not capture
all the important features present in the spectrograms,
and the accuracy diminishes considerably, as shown in
the color map.

VI. RESULTS

It is important to mention that hyperparameters that
were not optimized, such as the learning rate, batch size,
and activation functions are identical in the base model
and the BO model.
Once the model has predicted the entire test dataset, a
file with the predictions is submitted to Kaggle. Sub-
missions are evaluated [1] on area under the ROC curve
between the predicted probability and the observed tar-
get, and it provides a score from 0 to 1. For the base
model, the score has been 0.83612. The base model used
as default hyperparameters 1 dense layer and 28 neurons.
The BO model occupied double the base model training
time (it required two trainings with the entire dataset).
With the first training, the best hyperparameters were
obtained: 28 neurons and 2 dense layers. With this hy-
perparameters, the score of the model became 0.84339.
Comparing to the score of the base model (0.83612), the
difference is approximately 0.007. As a reference, the
difference between the first and the second place in this
competition is 0.003.
As seen in FIG.3, the greatest number of filters stud-
ied lead to the maximum accuracy, so greater values of
width were also studied in different tranings. However,
the model became unstable for values greater than 28, so
the possibility of studying greater values was discarded.
This is because every point in the hyperparameter space,

as explained previously, was studied with a reduced set of
training data, which might be the cause for the instabil-
ity of the model for high values of width. In this current
TFG, we do not dispose of sufficient computational re-
sources to train the hyperparameter optimization part
with the totality of the training set for every step.

VII. CONCLUSIONS

This TFG has explored that models based on a con-
volutional neural networks, with the appropriate prepro-
cessing of the data, lead to a great performance for grav-
itational waves classification.
Optimizing the hyperparameters with Bayesian Opti-
mization seem to have a slight increase of performance
in terms of score (as mentioned before, it can be the dif-
ference between winning and loosing the competition).
However, the optimal hyperparameters obtained are very
similar to the hyperparameters of the base model, which
might be the reason to this minimal increase. Neverthe-
less, this algorithm vastly increases the computational
cost of the training, and becomes unstable for great val-
ues of the number of filters. Better results can be ob-
tained using a greater amount of data for the exploration,
yet the model becomes even more expensive.
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VIII. APPENDIX

The codes used for preprocessing the data and for the
models are shown in this Appendix. Every line of code
will begin with - to differentiate among the other lines.

Preprocessing: The steps followed for the prepro-
cessing of the data are explained in section III:

- waves = np.hstack(raw_signals)
- waves = waves / np.max(waves)
- waves = torch.from_numpy(waves).float()
- transform=CQT1992v2(sr=2048, fmin=20,
fmax=1024, hop_length=64, verbose = False)
- image = transform(waves)
- image = np.array(image)
- image = np.transpose(image,(1,2,0))

Base model: It consists on a basic one-dimensional
CNN with one dense layer with 256 neurons, and the rec-
tified linear unit (ReLU) activation function. Its input
shape matches with the dimensions of the Q-transformed
signal. Additionally, it has one dense layer with the same
number of neurons and ReLU, and the output layer, with
sigmoid activation function.
The compilation is done with Adam optimizer with learn-
ing rate 0.0002.

- from keras.models import Sequential
- from keras.layers import Dense, Dropout,
Flatten, Conv1D, MaxPool1D, BatchNormalization
- from keras.optimizers import RMSprop,Adam
- from nnAudio.Spectrogram import CQT1992v2

- model = Sequential()
- model.add(Conv1D(256, input_shape=(69, 195,),
kernel_size=3, activation=’relu’))
- model.add(BatchNormalization())
- model.add(Flatten())
- model.add(Dense(256, activation=’relu’))
- model.add(Dense(1, activation=’sigmoid’))
- model.compile(optimizer = Adam(lr=2e-4),
loss=’binary_crossentropy’,metrics=[’acc’])

Bayesian Optimization model: First of all, the
dataset is split in 16 divisions which correspond to the
files that comprise it, and they are set to be cycled; every
time this vector is called, it will return the next string
(referring to the next file):

- from itertools import cycle
- next_dir = cycle([’0’, ’1’, ’2’, ’3’, ’4’,
’5’, ’6’, ’7’, ’8’, ’9’, ’a’,
’b’, ’c’, ’d’, ’e’, ’f’])

Then, the hyperparameters to be optimized are defined:

- import skopt
- from skopt import gp_minimize
- from skopt.space import Real, Integer,
Categorical

- dim_log_width = Integer(low=4, high=8,
name=’log_width’)
- dim_layers = Integer(low=1, high=5,
name=’layers’)
- dimensions = [dim_log_width, dim_layers]

gp minimize requires a function that includes the archi-
tecture of the CNN, the training data and the value to
be minimized. It was built as follows:

- def train(params):
- dir = next(next_dir)
- train_idx = labels[labels[’id’]
.str.startswith(dir)][’id’].values
- y = labels[labels[’id’].isin(train_idx)]
[’target’].values
- log_width, layers = params

- train_idx, train_Valx = train_test_split
(list(labels[labels[’id’].str.startswith(dir)]
.index), test_size=0.2, random_state=2021)
- train_generator = DataGenerator
(’/kaggle/input/g2net-gravitational-wave-
detection/train/’, train_idx, labels
[labels[’id’].str.startswith(dir)], 256)
- val_generator = DataGenerator
(’/kaggle/input/g2net-gravitational-wave-
detection/train/’, train_Valx,
labels[labels[’id’].str.startswith(dir)], 256)

- model = Sequential()
- model.add(Conv1D(2**log_width, input_shape=
(69, 193,), kernel_size=3, activation=’relu’))
- model.add(BatchNormalization())
- model.add(Flatten())
- for i in range(layers):
- model.add(Dense(2**log_width,
activation=’relu’))
- model.add(Dense(1, activation=’sigmoid’))
- model.compile(optimizer=Adam(lr =2e-4),
loss=’binary_crossentropy’, metrics=[’accuracy’])

- history = model.fit(train_generator,
validation_data=val_generator, epochs=1)

- val_loss, val_accuracy = model.evaluate
(val_generator)
- return -val_accuracy

The function DataGenerator will not be shown in this
Appendix. It covers the preprocessing of the data, Q-
transforming the signals and stacking the data in batches.
Finally, the prior is defined and the function gp minimize
is called:

- prior = [5, 1]

- result = gp_minimize(
func=train,
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dimensions=dimensions,
acq_func=’PI’,
n_calls=16,
x0=prior)

The optimal hyperparameters are packed inside of the

vector result and are used to train the model, which has
the same structure as the base model, the only changing
part are that now it will use the optimal width and dense
layers.
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